
POLITECNICO DI TORINO
Mathematical Engineering

Master’s Degree

Master’s Thesis

Sentiment analysis using
ensemble methods:

an application to Twitter

Supervisor: Author:
Prof. Roberto Fontana Gianluca Fino

April 2019

To my family

Sentiment analysis using ensemble methods:
an application to Twitter

Abstract
This work mainly concerns the sentiment analysis (an application of natural
language processing) and the ensemble methods. The first part of the thesis
shows how data are collected from Twitter (with a procedure called scraping)
and the way in which a data set is built with the frequency of the words most
used by nine Italian politicians. After that, using SAS software, a descriptive
analysis and a study of language similarity among some of the Italian politi-
cians are proposed. This part, developed during the internship period, inspired
the sentiment analysis and the rest of the study, concerning text mining and
classification. Some of the most famous algorithms used in these fields and the
evaluation of their performance are reported. After that, the focus is on ensem-
ble methods, which combine the previous algorithms in order to achieve better
results. Sentiment analysis is explained in detail, with particular attention to
the branch of human emotions. An application is proposed: some tweets, col-
lected from a famous Twitter profile, are labelled with an emotion using the
ensemble methods. The results obtained show how these methods are able to
achieve good performance in this context.

Keywords: sentiment analysis, ensemble methods, classification, machine
learning, Python, Twitter

I

Acknowledgements

Thanks to my family and my girlfriend, for always been close to me in
difficult times.

My friends for making me live these years with lightheartedness.
My classmates for sharing this experience in the best possible way.
My colleagues for introducing me to the world of work.
No pain no gain.

II

Contents

1 Tweets of Italian politicians 3
1.1 Program overview . 3
1.2 Twitter API . 4
1.3 Text analysis on tweets . 5
1.4 Main functions and output . 6

1.4.1 Main functions . 6
1.4.2 Data frame . 8
1.4.3 Word cloud . 9

1.5 Descriptive analysis in SAS . 9
1.5.1 Frequency of words . 9
1.5.2 Correlation of the language of politicians 12

2 Classification problems 15
2.1 Main concepts of machine learning 15
2.2 Decision trees . 16
2.3 Logistic regression . 18

2.3.1 Logistic function . 18
2.3.2 Multinomial logistic regression 19

2.4 Naive Bayes classifiers . 20
2.5 K-nearest neighbors . 21
2.6 Support vector machines . 22

2.6.1 Maximal margin classifier 23
2.6.2 Support vector classifier 24
2.6.3 SVMs . 24

2.7 Performance evaluation . 26
2.7.1 Metrics . 26
2.7.2 K-fold cross-validation . 28

2.8 Stochastic gradient descent . 29

3 Ensemble methods 31
3.1 Voting methods . 32

3.1.1 Choice of weights . 33
3.1.2 Calibration of probabilities 34

3.2 Bagging . 35
3.2.1 Random forest . 36

3.3 Boosting . 38
3.3.1 Adaboost for multi-class classification 39

3.4 Stacking . 39

III

4 Sentiment analysis 41
4.1 Data preparation . 41
4.2 Feature extraction . 43

4.2.1 Sparse matrix . 45
4.3 Application . 46

4.3.1 Python script . 46
4.3.2 Numerical results . 47
4.3.3 Twitter sentiment analysis 51

5 Conclusions 55

A Programs instructions 57
A.1 Twitter_politicians . 57
A.2 Twitter_emotion . 57

B Python codes 59

C SAS codes 69

List of Figures

1.1 Conceptual scheme . 4
1.2 Twitter credentials . 5
1.3 Python code for Twitter API . 5
1.4 Dictionary of censored politicians 6
1.5 Output of function "funcStatusHash" 6
1.6 Output of function "funcStatusSingle” 7
1.7 Output of function "funcWords” 7
1.8 Data frame Pandas . 8
1.9 First lines of the text file opened in Microsoft Excel 9
1.10 Word cloud obtained with the homonymous library 11
1.11 Ordered bar chart: words quoted more than seventy times after

seven days of scheduling. 12
1.12 Ordered bar chart: number of tweets published in the last week for

each politician. 13
1.13 Broken lines show the frequency of the most used words. 14

2.1 Partition: toy example of a partition by binary splitting, as used
in CART algorithm. 16

2.2 A section of decision tree in sentiment analysis application with
three classes. The leaves with orange rectangle correspond to joy
class; those with purple color to the fear class; leaves for the
sadness class are not present because the tree was cut on the third
level. 17

2.3 Logistic function . 18
2.4 Two-dimensional plot with k-nearest neighbors algorithm. The

k parameter is equal to six and the circle shows the six nearest
neighbors. 22

2.5 Two classes of observations, shown in blue and in red. The sep-
arating hyperplane is displayed as a black line. 23

2.6 Two classes of observations, shown in blue and in red. The radial
kernel is used as decision boundary. 25

2.7 Confusion matrix in binary case 26
2.8 Confusion matrix with number of instances 27
2.9 Confusion matrix with accuracy on the diagonal 27
2.10 k-fold cross-validation for classification 28
2.11 ROC curves of three-classification problem 29

3.1 Ensemble models architecture . 31
3.2 Calibration plot for SVM model in two-classification problem . . 35

V

3.3 Bagging procedure . 36
3.4 Bootstrap approach: toy example of four bootstrap samples ob-

tained from a data set of ten observations. 37
3.5 Random forest procedure . 37
3.6 Boosting procedure . 38
3.7 Stacking procedure on two levels 40

4.1 Example of stemming procedure 42
4.2 Few lines of the dictionary CONTRACTION_MAP, defined to

handle contractions of English words. 42
4.3 Bag of words model: feature vectors and feature names. 44
4.4 TF-IDF model: feature vectors and feature names. 44
4.5 TF-IDF model for single words and 2-grams: feature vectors and

feature names. 45
4.6 CSR representation for sparse matrix 46
4.7 5-fold cross-validation on decision tree 47
4.8 Average methods developed in Python 48
4.9 Grid search with 5-fold cross-validation on random forest: accu-

racy values . 49
4.10 Voting method: weighted mean of 16 algorithms. 50
4.11 F1 score of extra trees method depending on the number of trees 52
4.12 Stacking method . 52

List of Tables

1.1 Words quoted more than sixty times 10
1.2 Words quoted more than seventy times after seven days of schedul-

ing . 10
1.3 Correlation of words for selected politicians after two days of

scheduling. 13

4.1 Tree-based methods with evaluation of performance, sorted by F1

score . 51
4.2 Algorithms used in Python with evaluation of performance, sorted

by F1 score . 52
4.3 Emotion analysis: expected and detected feelings for fifteen tweets.

The ambiguous tweets are colored in yellow, while those wrongly
classified are red. 53

VII

VIII

Introduction

Internet is a huge source of information and web scraping is the easiest way
to get data from it. Nowadays, social networks play a fundamental role in
the dissemination of information. For example, in the 2016 American election
Twitter was the largest source of breaking news. In this context, text mining has
become a topic of particular interest. It is the process of deriving high-quality
information from text and it is strictly correlated to sentiment analysis.

My idea was initially to develop a project in Python to become familiar with
scraping and subsequently to analyze the obtained data with SAS 1.

Scraping can be done through the use of application programming interface
(API). In computer science, API indicates every set of procedures available to
the programmer, collected together to provide a series of specific tools for the
realization of a certain task. The first part of the study concerns the analysis
of the words of the most recent tweets written by nine politicians representing
the main political forces of Italy.

Tweets are usually the expression of a subjective context rather than an
objective one. This is the starting point of the study and the reason why I
decided to perform an emotion analysis. It is a type of sentiment analysis
that refers to the detection of human feelings. With the purpose of doing it
as precisely as possible, I used what are commonly called ensemble methods.
They are a powerful machine learning technique, developed in the last years
and widely used in classification problems.

My work is composed by five chapters which naturally constitute three parts.
The first one concerns what I introduced before about scraping and his applica-
tion on Italian politicians. The second one reviews some popular classification
models and it is very useful to understand the State-Of-The-Art of machine
learning algorithms. After that it focuses on ensemble methods that, in con-
trast to ordinary learning approaches, try to construct a set of learners and
combine them. The last part is an application of emotion analysis and it uses
the methods above on real data to underline the power of this ensemble tech-
niques.

Chapter 1 describes the main steps in which data are collected and how they
are used to create a data set with the frequency of words used by each politician.
After that, using the data set previously created, an analysis is carried out in
SAS. It shows a visualization of the results in the form of graphs and tables and
a study of language similarity among the Italian politicians.

In Chapter 2 some of the most important methods of classification in machine
learning and the ways to evaluate their performance are shown.

1SAS is a statistical software developed in C by SAS Institute.

1

2

In Chapter 3 these methods are combined to increase their accuracy. Some
different ways of doing it are shown and they all are a particular type of ensemble
methods. To train my models I used a data set available online, with 7666 tweets
and 7 different emotions.

In Chapter 4 sentiment analysis is proposed. It refers to the use of natural
language processing, textual analysis and computational linguistics to extract
information and associate it with a label. In my case, tweets are classified with
an emotion like joy, sadness, etc...

Finally, Chapter 5 contains the conclusions.

Chapter 1

Tweets of Italian politicians

The first chapter shows the way in which information are retrieved through
Twitter 1, the baselines of the script made in Python language and a descriptive
analysis using SAS.

The politicians involved in the study are Berlusconi, Bonino, Di Maio,
Grasso, Grillo, Maroni, Meloni, Renzi and Salvini. To get their tweets, scraping
(a procedure for extracting data from websites) is used.

In section 1.1 the structure of the program is shown. In section 1.2 the
connection to Twitter application is explained. Section 1.3 introduces some
notions of text mining used in Italian languages. In the next section the output
of the main functions developed and the creation of data frame that will be
imported in SAS are shown. Then a visual description of the most used words is
given, through a word cloud representation (section 1.4.3). Finally, a descriptive
analysis and a correlation study between politicians are proposed.

1.1 Program overview

In figure 1.1 the conceptual scheme of the program is shown. First of all, through
Twitter API the connection to the famous social network is established. After
that for each politician tweets are downloaded, cleaned according to the rules of
natural language, split into words, counted their frequency and put them in a
vector. A data set with these vectors is created and written on a text file. This
process is repeated for several days until it is decided to stop the scheduling.
Every day, at the same time, the script runs, downloads the new tweets and
adds them to the previous. Scheduling is used to improve the number of tweets
available (Twitter imposes a limit to the scraping, allowing the download of the
two hundred most recent for profile).

Subsequently the updated data set is loaded in SAS. In the following sections
every step of this process is explained in detail. The Python code can be divided
into the following sections:

1Twitter is a social network, created on 2006 by Obvious Corporation of San Francisco,
on which users post and interact with messages known as "tweets" with a maximum length
of two hundred and eighty characters. The name "Twitter" comes from the English verb to
tweet which means "chirp." Tweet is also the technical term of the service updates and it can
be done through the site itself, via SMS, with instant messaging programs, e-mail, or through
various applications based on Twitter’s application programming interface (API).

3

4 CHAPTER 1. TWEETS OF ITALIAN POLITICIANS

Figure 1.1: Conceptual scheme

• Import of libraries needed and definition of some variables.

• Download of tweets through Tweepy library and its API service.

• Definition of functions used.

• Text mining on tweets.

• Creation of a data frame, thanks to Pandas library, with n-rows and nine
columns, having for each politician the frequency of all words used.

• Creation of text files.

• Use of the Wordcloud library to create an image containing the most used
words.

1.2 Twitter API
The first step to connect on Twitter application and to use the API service
is to get four secret keys (figure 1.2). Subscription is required and it is avail-
able on platform, at link https://apps.twitter.com/. Entering personal data as
explained in the website tutorial makes free connection possible.

Once the access credentials have been obtained, the program can be imple-
mented in python. First of all, download of Tweepy library is a possible choice
to easily use the keys. After that the modules "OAuthHandler" and "API" are
used, in order to connect to the site and create an object called "api" (figure
1.3). This object has some functions like user_timeline or search, which make
it easy get tweets from a personal page (first function), or about a topic (the
second one).

A tweet is a message with a maximum length of two hundred and eighty
characters. After the download a json form is obtained and it has to be analyzed

1.3. TEXT ANALYSIS ON TWEETS 5

to get the necessary information, such as the full text of the tweets and if is a
retweet or not.

Figure 1.2: Twitter credentials

Figure 1.3: Python code for Twitter API

1.3 Text analysis on tweets

Once the tweets have been downloaded, some data cleaning procedures are
used. In this case tweets are sentences in Italian language and some procedures
of natural language processing available in English (they will be explained in
detail in 4.1), like “stemming”, are not commonly used in Italian. It reduces every
name or verb to its word stem (for example "playing", "plays" and "played" are
considered as the same word "play").

Italian grammar is more complicated and cannot be used easily in this con-
text. One option for doing this is to manually create a dictionary in which
every of the most common words refers to its root, such as its infinite form.
The project does not get a lot of advantages from the previous technique and
so “stemming” is not used. A procedure that can be used in every language is
the elimination of stop words [1]. They are some commonly used words (such
as “the”) that the program ignores, because they are meaningless and are not
useful for analysis. They are all included in a list of words, called stop list, which
is not universal but depends on the natural language processing tools used. A
common choice in Python script is NLTK library.

6 CHAPTER 1. TWEETS OF ITALIAN POLITICIANS

Figure 1.4: Dictionary of censored politicians

Figure 1.5: Output of function "funcStatusHash"

Another procedure, that is very simple to implement, exploits re library in
order to use regular expression to remove punctuations, emoji and other special
character (more details in 4.1).

1.4 Main functions and output

1.4.1 Main functions

In this section the most important variables and functions are shown. First of
all, a dictionary called “DictPolitici” is defined, which makes more practical the
connection to politician’s profile (figure 1.4). After that and the definition of
other variables, some functions are developed.

One of the most interesting is "funcStatusHash", that is used to obtain an
identifier for each tweet. This very big number (more than 30 digits), called
hash, is a unique code of fixed length in hexadecimal format that is randomly
reproduced. It is an alternative to the tweet ID and it can be very useful in case
in which it is not easy to obtain an identifier. A portion of result is shown in
figure 1.5. When a comparison between old and new tweets is done, the hash is
used to choose which ones can be add to the list. This happens because, as it is
mentioned before, the program is able to obtain the last 200 tweets, regardless
of the number of the most recent ones.

After that, "funcStatusSingle" applied to Renzi’s account is presented (figure
1.6). The sentences are split into words, with the hash number at first. There
are many prepositions and punctuation marks, which will be deleted before the
counting of frequency.

The so-called stop words of the Italian language are removed, in addition to

1.4. MAIN FUNCTIONS AND OUTPUT 7

Figure 1.6: Output of function "funcStatusSingle”

t

Figure 1.7: Output of function "funcWords”

other words of little interest such as "rt", "via" and "http".

The function "funcWords", through collections library, counts the frequency
of words. As can be seen in figure 1.7 words are shown with their frequency, in
descending order (Salvini’s official account is used as example). The function
with suffix "App" shows the counting after scheduling. For instance the word
"italiani", is quoted two more times after one day.

Each day the most recent tweets are added to the previous two hundred
and, according to the same procedures, the frequency is updated. The words
stored can increase a maximum of fifty per day, in order to allow the inclusion
of new words and not lose the frequency of those already considered. To better
understand the problem let us make a practical example, setting the number of
words considered to one hundred and fifty. The word "world", on the second
day, is one hundred and fiftieth place in the ranking of the most used with
a frequency of three. The next day a new word is quoted four times; this
exceeds "world" in the rankings, which is no longer considered causing a loss
of information. Therefore, the increase in the number of words examined is
necessary.

8 CHAPTER 1. TWEETS OF ITALIAN POLITICIANS

Figure 1.8: Data frame Pandas

1.4.2 Data frame
A data frame can be considered as a matrix in Rn,m composed by n-rows (ob-
servations) and m-columns (variable). In this project the first column shows
the words in exam while the following nine represent, for each politician, the
frequency of these words. Few lines and four columns are shown in figure 1.8,
in which "/” indicates that there are more columns in Pandas data frame which
are not plotted, because of Jupyter Notebook visualization limit. Once the data
frame has been created the phase of scraping and data manipulation is over. At
this point it is possible to write this information on a text file, written with ";"
after each word or frequency, in order to subsequently import a table in SAS.
In figure 1.9 some lines of text file, opened in Microsoft Excel, are shown.

1.5. DESCRIPTIVE ANALYSIS IN SAS 9

Figure 1.9: First lines of the text file opened in Microsoft Excel

1.4.3 Word cloud

Word cloud is a visual representation of text data, typically used to depict the
most important keywords on websites. In this case it is used to represent the
most frequency words, as shown in figure 1.10. A figure, as input of the word
cloud, is needed. A usual choice can be a colored circle in a white background.
The libraries used in Jupyter Notebook are Wordcloud and PIL. It should be
noted that the python interpreter of computer may not be able to use them,
giving an error, so this part of code must be commented during the scheduling.

1.5 Descriptive analysis in SAS

This section shows the results obtained with SAS. After a first step of data
import 2, section 1.5.1 shows some results about the count of tweets and words.
Then, a correlation matrix between the politicians in question is created and
some figures are shown (section 1.5.2).

1.5.1 Frequency of words

In the tables 1.1 and 1.2 the most quoted words, on the first day and after a week
of scheduling, are reported. Some words, like "#forzaitalia", "@emmabonino"
and "@pietrograsso" are excluded, as personal references of a single politician.
It can be noted how the word "thank", for example, was not present on the first
day of scheduling because it did not reach sixty citations, while it is after seven
days because it is mentioned seventy-five times in total.

Two bar charts are shown below, representing the total frequency of words
in table 1.2 (figure 1.11) and the number of tweets posted by the politicians in
the last seven days (1.12).

2 This data refers to the period of time between 09/05/2018 and 03/06/2018.

10 CHAPTER 1. TWEETS OF ITALIAN POLITICIANS

Table 1.1: Words quoted more than sixty times

Table 1.2: Words quoted more than seventy times after seven days of scheduling

1.5. DESCRIPTIVE ANALYSIS IN SAS 11

Figure 1.10: Word cloud obtained with the homonymous library

It can be noted that after seven days the amount of data has increased: num-
ber of tweets written by Berlusconi, Bonino, Di Maio, Grasso, Grillo, Maroni,
Meloni, Renzi e Salvini are respectively at 202, 208, 202, 206, 217, 215, 216, 209
and 232 for a total of 1907 compared to the previous 1800, reporting an increase
of about 6% in the number of tweets.

12 CHAPTER 1. TWEETS OF ITALIAN POLITICIANS

Figure 1.11: Ordered bar chart: words quoted more than seventy times after
seven days of scheduling.

1.5.2 Correlation of the language of politicians
The goal of this section is to figure out which politicians are more similar in
the way of speech. For this purpose, a correlation analysis, through "CORR"
procedure, is used [2]. The input data frame contains all the words collected after
two days of scheduling. The choice of forty-eight hours is made to guarantee
more words (two hundred for each politician) and a more reliable analysis.

Subsequently a graph is drawn with the trend of the words of the table
1.3, with the purpose of graphically verifying the results obtained from the
correlations. Berlusconi’s line (blue) and Meloni’s one (light blue) suggest a
greater similarity of language between the two politicians (figure 1.13) and to
underline this fact, the lines are reported thicker.

1.5. DESCRIPTIVE ANALYSIS IN SAS 13

Figure 1.12: Ordered bar chart: number of tweets published in the last week for
each politician.

Table 1.3: Correlation of words for selected politicians after two days of schedul-
ing.

14 CHAPTER 1. TWEETS OF ITALIAN POLITICIANS

Figure 1.13: Broken lines show the frequency of the most used words.

Chapter 2

Classification problems

This chapter introduces some of the most famous algorithms used in machine
learning (ML) for classification problems. This overview is very useful to un-
derstand the State-Of-The-Art machine learning algorithms. After that, eval-
uation metrics and k-fold cross-validation are proposed in order to choose the
best model for the problem in exam. Finally, a method used to improve the
performance of an algorithm, called stochastic gradient descent, is introduced.

2.1 Main concepts of machine learning
Machine learning predicts things based on patterns it has been trained with. In
this context, classification is the process where computers group data together
based on predetermined variables, also called features. When dealing with a
classification problem, it is important to always keep in mind that 100% ac-
curacy cannot be achieved. ML is used to obtain classifications quickly and
automatically with as much precision as possible. There are some fundamental
concepts, that must be exposed before analyzing the main algorithms [3]:

• Data preparation: the first step of a machine learning approach. It consists
of preprocessing data before feature extraction and training.

• Feature extraction: the process used to extract features. They are indi-
vidual measurable properties for each observation in a data set. In the
simplest cases features are the columns of the input data set.

• Training set: a subset of the input one. It is used to train the model.

• Testing set: the remaining part of a data set, used to see how well an
algorithm performs.

• Model: a mathematical representation of a real-world process, obtained
by combining features and one algorithm of ML. It is the mathematical
structure from the input xi to the prediction yi.

• Learning: the process of an algorithm learning from the training set in
order to create the mapping function from the input to the output. It
can be of two types: supervised when the output is known, unsupervised
otherwise.

15

16 CHAPTER 2. CLASSIFICATION PROBLEMS

• Hyperparameter tuning: hyperparameters of the model to change to ob-
tain better performance.

• Overfitting: it occurs when the model fits the training data too well and
predicts very bad on new data.

• Evaluation of performance: use some metrics or methods to evaluate the
models.

2.2 Decision trees

Decision trees are simple, useful for interpretation and, in case of classification
problems, they are used to predict a qualitative response. This algorithm in-
herits the name from its structure. Each node that is not a leaf is associated
with a feature test, also known as split. The answer can be positive or negative
and, based on it, a splitting rule is applied. The feature space is divided into a
number of simple regions R1, R2, ..., Rm and the set of decisions are represented
in a tree (figure 2.1) [5].

Figure 2.1: Partition: toy example of a partition by binary splitting, as used in
CART algorithm.

Each subset (region) is considered as the given data set for the next step,
generating a recursive process. In a node m, representing a region Rm with Nm
observations, the proportion of class k observations is defined as:

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k), (2.1)

where I refers to the indicator function.
As a criterion for the splits one of these three measures is typically used.

Let the misclassification error as

E = 1− p̂mk, (2.2)

2.2. DECISION TREES 17

the Gini-Index

G =

K∑
k=1

p̂mk(1− p̂mk) (2.3)

and the cross-entropy or deviance

D = −
K∑
k=1

p̂mk log(p̂mk) (2.4)

Scikit-learn, the python library used to import the module DecisionTreeClas-
sifiers, implements CART (classification and regression trees) algorithm. By
default, it uses the Gini Index to evaluate splits in the data set.

To better understand this algorithm, an example with some numerical values
can be useful (figure 2.2). Each internal node shows some information about its
split, the Gini index, the distribution of sample and the most probably class.
The minimum value of Gini index will always be 0 when all observations belong
to one label; this occurs when p̂mk is equal to one. In the orange rectangle of
the second level, the class chosen for the leaf is joy. The maximum value of Gini
index could be when all target values are equally distributed. In this case it is
equal to 1 − 1

k , where k is the number of classes in the classification problem.
This is clear in the bottom of the tree in which a sample of 2463 observations
is equally divided into three classes.

Figure 2.2: A section of decision tree in sentiment analysis application with
three classes. The leaves with orange rectangle correspond to joy class; those
with purple color to the fear class; leaves for the sadness class are not present
because the tree was cut on the third level.

18 CHAPTER 2. CLASSIFICATION PROBLEMS

2.3 Logistic regression

2.3.1 Logistic function

An explanation of standard logistic function is the starting point to understand
the logistic regression algorithm [6]. It is a sigmoid function, which takes any
input t ∈ R and outputs a value in [0, 1] (figure 2.3).

Figure 2.3: Logistic function

The logistic function σ(t) is defined as follows:

σ(t) =
exp(t)

1 + exp(t)
=

1

1 + exp(−t)
(2.5)

Assuming t as linear function in two dimensions, t = β0 + β1x, the logistic
function can be rewritten as:

p(x) =
1

1 + exp(−(β0 + β1x))
(2.6)

where p(x) is a probability, and by definition ranges from 0 to 1. In a classifi-
cation problem, with y ∈ {0, 1}, p(x) can be seen as the probability that a new
point belongs to class 1:

p(x) = P (G = 1|X = x) (2.7)

Therefore, predicting the class is equivalent to finding the value of β0 and β1.
The logit (natural logarithm of the odds) is introduced as:

g(p(x)) = logit(p(x)) = ln

(
p(x)

1− p(x)

)
= β0 + β1x (2.8)

So,
p(x)

1− p(x)
= exp(β0 + β1x) (2.9)

2.3. LOGISTIC REGRESSION 19

2.3.2 Multinomial logistic regression

Multinomial logistic regression is a type of linear method for classification with
more than two classes involved. It models the posterior probabilities ofK classes
via linear functions in x. The name derives from its underlying technique that
is quite the same as the linear regression. At the same time, it ensures that the
output value is between [0, 1] and that they sum to one (due to the definition
of probability). The model involves K − 1 logit transformations:

log
P (G = 1|X = x)

P (G = K|X = x)
= β10 + βT1 x

log
P (G = 2|X = x)

P (G = K|X = x)
= β20 + βT2 x

...

log
P (G = K − 1|X = x)

P (G = K|X = x)
= β(K−1)0 + βTK−1x,

(2.10)

It is useful to apply the exponential function on both terms of the equations
and express

P (G = K|X = x) = 1−
K−1∑
l=1

P (G = l|X = x) =⇒

P (G = K|X = x) = 1− P (G = K|X = x)

(
K−1∑
l=1

exp(βl0 + βTl x)

)
=⇒

P (G = K|X = x) =
1

1 +
∑K−1
l=1 exp(βl0 + βTl x)

The resulting model is

P (G = 1|X = x) =
exp(β10 + βT1 x)

1 +
∑K−1
l=1 exp(βl0 + βTl x)

P (G = 2|X = x) =
exp(β20 + βT2 x)

1 +
∑K−1
l=1 exp(βl0 + βTl x)

...

P (G = K|X = x) =
1

1 +
∑K−1
l=1 exp(βl0 + βTl x)

,

(2.11)

and of course all probabilities sum to one. As in the binary case, predicting the
class is equivalent to finding the value of ~β.

It should be noted that in natural language processing, logistic regression
classifiers are commonly used as an alternative to naive Bayes classifiers (ex-
plained in the next section), but they may not be appropriate given a very large
number of classes to learn.

20 CHAPTER 2. CLASSIFICATION PROBLEMS

2.4 Naive Bayes classifiers

Naive Bayes classifiers are a family of method based on Bayes’ theorem. In the
general form the Bayes’ theorem is:

P (A|B) =
P (B|A)P (A)

P (B)
, (2.12)

where A and B are events and P(B) is not equal to 0. P (A|B) and P (B|A) are
conditional probabilities, while P(A) and P(B) are marginal probabilities.

Considering a partition A1, ..., An of Ω (Ai
⋂
Aj 6= ∅ ∀i 6= j and

⋃n
i=1Ai =

Ω) the previous equation can be rewritten:

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)∑n
j=1 P (B|Aj)P (AJ)

∀i = 1, ..., n (2.13)

One of the main algorithms among Naive Bayes classifiers is Multinomial
Naive Bayes, that is one of the most popular in the field of text analysis. Com-
paring to the previous algorithm, learning in such a model is faster than for a
logistic regression classifier. It introduces multinomial distribution to compute
the probabilities in situations where there are more than two possible outcomes.
Although it is a simple method, it is very competitive in data mining after an
appropriate preprocessing. In this context the features are the frequency of
words (as will be explained in 4.2). It assumes that the value of a particular
feature is independent from the value of others. This implies that correlations
between features are not considered. Hence, it is called naive.

Considering a set of predictors X as (x1, ..., xd) and the class y, the goal is
to find the probability of class y given the vector of features X [6]:

P (Y = y|X) =
P (x1|Y = y)× P (x2|Y = y)× ...× P (xd|Y = y)× P (Y = y)

P (x1, ..., xd)
(2.14)

Since P (x1, ..., xd) is constant, the denominator can be removed, and a pro-
portionality can be introduced.

P (Y = y|X) ∝ P (x1|Y = y)× P (x2|Y = y)× ...× P (xd|Y = y)× P (Y = y)
(2.15)

In a two classes problem, say 0 and 1 as labels, the algorithm predicts class
one if P(Y = 1|X) > 0.5, class zero otherwise. The idea of the algorithm is
the same in multi classification problems, in which the class with the largest
probability is chosen.

Hence,

y = argmax
y

P (Y = y)

d∏
i=1

P (xi|y) (2.16)

In Multinomial Naive Bayes, maximum-likelihood estimates are provided
for each term in 2.16. The estimate for P (Y = y) for y ∈ {1, . . . , k} takes the
following form:

P (Y = y) =
Ny
n
, (2.17)

2.5. K-NEAREST NEIGHBORS 21

where n is the number of observations and Ny =
∑n
i=1Nyi is simply the number

of times that the label y is seen in the training set T . P (xi|y) can be expressed
as:

P (xi|y) =
Nyi
Ny

, (2.18)

where Nyi =
∑
x∈T xi is the number of times feature i appears in a sample of

class y in the training set T . To avoid zero probabilities a smoothing version of
it is also introduced:

P (xi|y) =
Nyi + α

Ny + αn
. (2.19)

Considering ~θ as a parameter vector consisting of values for all probabilities in
the model, the previous estimates can be derived by maximization of the log-
likelihood function [7]. Remember that maximize a function or its logarithm is
the same. L(~θ) is defined as:

L(~θ) =
n∑
i=1

logP (Y = y(i)) +
n∑
i=1

d∑
j=1

logP (x
(i)
j |y

(i)) (2.20)

Maximum-likelihood estimation finds the parameter values that maximize
L(θ).

2.5 K-nearest neighbors
Given a query point x0, k-nearest neighbors (KNN) finds the k closest points in
distance to x0 and then classify it using majority vote among the k neighbors.
To understand how this algorithm works a toy example with k = 6 is presented
in figure 2.4. In order to give a label (red or blue) to a new observation, the
yellow one, six neighbors are considered. It can be seen in the circle that four
points are red, while two are blue. So, the new point is classified by majority
vote as red.

To evaluate which ones are the neighbors, the concept of distance is intro-
duced [8]. The Euclidean distance is one of the most used and it can be seen as
a particular case of Minkowski distance. The last is defined as

d(~x, ~y) =

(
n∑
i=1

|xi − yi|p
)1/p

, (2.21)

where p is a positive number. Manipulating the value of p is possible to obtain
three different popular distances:

• p = 1: Manhattan distance

• p = 2: Euclidean distance

• p =∞: Chebychev distance

Another famous measure is the Mahalanobis one. It evaluates the dis-
tance between a point P and a distribution D, measuring how many stan-
dard deviations are from P to the mean of D. So, the Mahalanobis distance

22 CHAPTER 2. CLASSIFICATION PROBLEMS

of an observation ~x = (x1, x2, . . . , xN)T from a set of observations with mean
~µ = (µ1, µ2, . . . , µN)T and covariance matrix S is defined in a vector notation
as:

DM (~x) =
√

(~x− ~µ)TS−1(~x− ~µ) (2.22)

Another one is the cosine similarity, that is a measure of similarity between
two non-zero vectors. It can be derived from the definition of dot product as
follows:

~x · ~y = ‖~x‖‖~y‖ cos(θ) =⇒ cos(θ) =
~x · ~y
‖~x‖‖~y‖

(2.23)

From the previous formula it is clear that the cosine similarity measures the
angle between the two vectors.

Figure 2.4: Two-dimensional plot with k-nearest neighbors algorithm. The k
parameter is equal to six and the circle shows the six nearest neighbors.

2.6 Support vector machines

Support Vector Machine (SVM) is a supervised machine learning algorithm
which can be used successfully in classification challenges. In the first part of
the section a two classes classification problem is analyzed, while at the end a
more than two classes approach is presented. The support vector machine is a
generalization of a classifier called the maximal margin classifier. This simple
version of SVM, that requires classes be separable by a linear boundary, helps
to understand how this complex algorithm works.

2.6. SUPPORT VECTOR MACHINES 23

2.6.1 Maximal margin classifier
The maximal margin classifier finds a maximum marginal hyperplane which
helps in classifying new data points. An hyperplane is defined as:

β0 + β1X1 + ...+ βpXp = 0, (2.24)

where p is the dimension [6]. A value X = (X1, X2, ..., Xp)
T can be seen as a

point of the space that lies on the hyperplane if it satisfies the previous formula.
If X does not lie on the hyperplane it means that it can be on one of the two
sides:

β0 + β1X1 + ...+ βpXp > 0,

or
β0 + β1X1 + ...+ βpXp < 0.

It can be used as a very elementary classifier: a test observation is assigned to
a class depending on which side of the hyperplane it is.

In the simplest case in figure 2.5 it should be noted that an infinite number
of hyperplanes can be used, only by shifting a tiny bit up or down, or rotating
a little, the existing one. In order to have a single choice, the maximal margin
hyperplane (also known as the optimal separating hyperplane) is introduced. It
has the farthest minimum distance to the training observations.

Figure 2.5: Two classes of observations, shown in blue and in red. The separat-
ing hyperplane is displayed as a black line.

In figure 2.5 two training observations, called support vectors, are equidistant
from the maximal margin hyperplane and they lie along the blue lines indicating
the width of the margin. The maximal margin hyperplane depends only on the
support vectors, because a movement of one of these two points affects the
optimal separating hyperplane, while a movement of others not.

24 CHAPTER 2. CLASSIFICATION PROBLEMS

Let a set of n training observations x1, ..., xn ∈ Rp and its labels y1, ..., yn ∈
{−1, 1}, the maximal margin hyperplane is defined as the solution to the fol-
lowing optimization problem:

max
β0,β1,...,βp

M

s.t.
p∑
j=1

β2
j = 1

yi(β0 + β1xi1 + . . . βipxip) ≥M, ∀i = 1, . . . , n

(2.25)

The optimization problem chooses β0, . . . , βp to maximizeM (the margin of the
hyperplane) under the constraints that each observation is at least a distance
M from the hyperplane and that it is on the correct side.

2.6.2 Support vector classifier
A relaxed version of the problem 2.25, called support vector classifiers, admits
some misclassified observations in order to achieve robustness and better clas-
sification:

max
β0,β1,...,βp

M

s.t.
p∑
j=1

β2
j = 1

yi(β0 + β1xi1 + ...βipxip) ≥M(1− εi), ∀i = 1, ..., n

εi ≥ 0;

n∑
i=1

εi = C,

(2.26)

where C is a tuning parameter that sets the number of misclassified observations.
εi is a parameter that can be equal to zero, giving the problem 2.25, if the
observation is on the correct side of the hyperplane; greater than 1 if it is on
the wrong side; ∈ (0, 1) if it is within the margin. The support vector classifiers
can be represented as

f(x) = β0 +

p∑
j=1

αi(xijxi′j), (2.27)

with n parameters αi.

2.6.3 SVMs
In most cases data are not linearly separable and a different approach is neces-
sary. In order to handle this non-linearity some functions, such polynomials or
splines, are applied. This involve a change in the number of features. The idea
of SVMs is to find an automatic way to achieve efficient computations enlarging
the feature space. This is done with kernels: functions used to quantify the
similarity of two observations. In the simplest case it can be seen as an inner
product between two observations:

K(xi, xi′) =

p∑
j=1

xijxi′j , (2.28)

2.6. SUPPORT VECTOR MACHINES 25

where p is the dimension of the predictor space. To obtain a more flexible
decision boundary a polynomial kernel of degree d is introduced:

K(xi, xi′) = (1 +

p∑
j=1

xijxi′j)
d. (2.29)

There are different types of kernels, one of the main used is the radial one (figure
2.6). It is defined as:

K(xi, xi′) = exp(−γ
p∑
j=1

(xijxi′j)
2), (2.30)

with γ as a positive constant that ranges from 0 to 1. γ = 0.1 is usually a good
default value.

Another popular choice in literature is the neural network kernel, defined as:

K(xi, xi′) = tanh(k1

p∑
j=1

xijxi′j + k2), (2.31)

with k1 and k2 as constants. So, a support vector machine can be seen as a
support vector classifier with a non-linear kernel. It can be defined as

f(x) = β0 +

p∑
j=1

αiK(xijxi′j), (2.32)

with n parameters αi, one for each observation.

Figure 2.6: Two classes of observations, shown in blue and in red. The radial
kernel is used as decision boundary.

SVMs can also be extended to multi classification problems [9]. The most
commonly used methods are one-versus-one and one-versus-all. In the first

26 CHAPTER 2. CLASSIFICATION PROBLEMS

method K(K−1)
2 SVMs are constructed, each of which compares a pair of classes.

An observation is classified using all the SVMs. The resulting class is obtained
by majority votes of all classifiers.

The second approach constructs K separate binary classifiers for K-class
classification, comparing one of all the K classes to K − 1 remaining ones. A
test observation is applied to the class that gives the maximum output value.

2.7 Performance evaluation

To evaluate which model is the best, applied to a particular problem, perfor-
mance evaluation is needed [6]. First of all, some evaluation metrics and the
receiver operating characteristic (ROC) curve are defined. After that, cross-
validation is introduced in order to make the classification more robust, repeat-
ing the experiment multiple times, using all the different parts of the training
set as validation sets.

2.7.1 Metrics

Figure 2.7: Confusion matrix in binary case

In order to evaluate the accuracy for each class, confusion matrix is intro-
duced (figure 2.7 for binary case). The accuracy of a classifier is defined as
follow:

Accuracy =
TN + TP

TN + FP + FN + TP
, (2.33)

where the acronyms indicate true negative, true positive, false positive and false
negative. In multiclassification problems true positive are on the diagonal (figure
2.8). The value of accuracy can be seen on the diagonal of normalized confusion
matrix, as in figure 2.9 where the values for joy, sadness and fear are respectively
83.3%, 76.7% and 77.3%. These percentages are obtained by divided the value
in each cell for the sum of the row (for instance 0.833 is equal to 225

225+30+15).
In some cases, this metric may not be accurate: for example if one set has a
small percentage of "positive" (say 1%), a classifier that always says "negative"
obtains an accuracy of 99%. Alternative measures are:

Precision =
TP

FP + TP
, (2.34)

that, given all the predicted labels for a given class, indicates how many instances
are correctly predicted;

Recall =
TP

FN + TP
, (2.35)

2.7. PERFORMANCE EVALUATION 27

that shows the percentage of positives classified as positives;

F1 score =

(
recall−1 + precision−1

2

)−1
= 2 ·

(
precision · recall
precision+ recall

)
, (2.36)

that is the harmonic average of the precision and recall and reaches its best
value at 1, in which precision and recall are perfect;

Specificity =
TN

FP + TN
, (2.37)

that is equal to 1 - FPR (false positive rate), which is the proportion of false
positives on the total of observations.

Figure 2.8: Confusion matrix with number of instances

Figure 2.9: Confusion matrix with accuracy on the diagonal

The ROC curve is created by plotting the true positive rate (TPR) against
the FPR [12]. The first is also called precision or sensitivity, while the second is
equal to 1 - specificity. This is strongly related to the concept of area under the
curve (AUC). The top left corner of the plot is the “ideal” point, where there
is a true positive rate of one and a false positive rate of zero. It means that a
larger area under the curve is usually better.

28 CHAPTER 2. CLASSIFICATION PROBLEMS

An extension in multi-class problems is proposed in figure 2.11, in which
every line represent the ROC curve for each class [11]. The dimension of space
needed to describe a problem with c classes is c(c− 1). It is clear that a binary
classification ROC curve can be drawn in a bi-dimensional plot, while in three-
classification problem the dimension requested is 6.

2.7.2 K-fold cross-validation
Cross-validation uses the initial training data to generate multiple train-test
splits [6]. In case of k-fold cross-validation, data is partitioned into k subsets,
called folds. Then, the algorithm is iteratively trained on k − 1 folds using the
remaining one (called held-out fold) as the test set. A function to evaluate test
error is needed: it can be the mean squared error, MSE, in case of a regression
problem or the number of misclassified observations in case of a classification
one (figure 2.10).

Figure 2.10: k-fold cross-validation for classification

The test error is then computed on the observations in the held-out fold and
this procedure is repeated k times. Then, k-fold CV estimate is computed by
averaging these values. For regression problems

CV(k) =
1

k

k∑
i=1

MSEi, (2.38)

while in classification ones

CV(k) =
1

k

k∑
i=1

Erri, (2.39)

where Erri indicates the number of misclassified observations in the i-th held-
out.

Since the calculation is repeated k times, cross-validation can provide a more
truthful result of the performance measure used for a given method. It is very
useful in data science and it is a preventative measure against overfitting. This

2.8. STOCHASTIC GRADIENT DESCENT 29

phenomenon is "the production of an analysis that corresponds too closely or
exactly to a particular set of data and may therefore fail to fit additional data or
predict future observations reliably". An overfitted model follows the training
data, it is too dependent from them and it is likely to have a bad performance
on new unseen data. In contrast an underfitted model cannot capture the un-
derlying trend of the data and it cannot predict on new data well enough.

Figure 2.11: ROC curves of three-classification problem

2.8 Stochastic gradient descent

Stochastic gradient descent (SGD) is an iterative method for optimizing a dif-
ferentiable objective function. It is a stochastic approximation of the gradient
descent, where the term stochastic refers to the fact that samples are random
selected. It is a popular algorithm for training models in machine learning, like
support vector machines and logistic regression. The python module that im-
plements this method is SGDClassifier. In order to use one of the algorithms
above the loss parameter is set to "hinge" or "log".

SGD is one of three variants of gradient descent [10]. Batch gradient descent
and mini-batch gradient descent are the others and they differ in how much
data are used to compute the gradient of the objective function. Considering
an objective function that has the form of a sum:

J(w) =
1

n

n∑
i=1

Ji(w), (2.40)

with the parameter w to be estimated. Each Ji is associated to each observation
in the training set. In order to minimize the above function, the batch gradient
descent method performs the following iterations:

w := w − η · ∇wJ(w), (2.41)

where η is the learning rate.

30 CHAPTER 2. CLASSIFICATION PROBLEMS

Stochastic gradient descent (SGD) in contrast performs a parameter itera-
tion, also called update, for each training observation xi. It performs one update
at a time, and it is usually much faster than batch method. At each iteration

w := w − η · ∇wJ(w;x(i)), (2.42)

where J(w;x(i)) indicates Ji(w). This formula is applied until the algorithm
converges. Briefly, it happens when η decrease with an appropriate rate 1.

Mini-batch gradient descent performs an update for every mini-batch of n
training observations, instead of using one. This usually allows the algorithm
to get better performance in less time. The equation becomes

w := w − η · ∇wJ(w;x(i:i+n)), (2.43)

where x(i:i+n) indicates that n observations are used.

1More details are not reported, because out of the scope of the thesis.

Chapter 3

Ensemble methods

Also known as learning multiple classifier systems, they are a powerful machine
learning technique, developed in the last years and widely used in classification
problems [13]. The idea of combining multiple classifiers starts from the prin-
ciple that there is no perfect machine learning algorithm. Every model has its
limitations and weaknesses, so the goal is to consider the best possible decision
taken overall in order to overcome these boundaries. Combining multiple algo-
rithm is at least more accurate than random guessing, because random errors
cancel each other out and correct decision are reinforced. Some competitions,
like Kaggle, have in multiple classifiers the most winning ones. This chapter
provides an introduction to ensemble methods, with particular focus on some
well-known algorithms in the context of classification problems: voting methods,
bagging, boosting and stacking.

Figure 3.1: Ensemble models architecture

Ensemble methods can be divided into two types:

• Homogeneous ensembles: they are a combination of n base learners, also

31

32 CHAPTER 3. ENSEMBLE METHODS

called weak learners, generated by base learning algorithms of the same
type, like decision tree, SVM etc. . . One of the most representative meth-
ods is Random Forest, that, as the name suggests, is composed by a huge
number of decision trees.

• Heterogeneous ensembles: different learners are used, so the base learners
are indicated as individual ones, in order to make a distinction from the
previous method.

A common architecture of homogeneous ensembles is shown in figure 3.1, in
whichm models are trained on a portion of the training data and then combined
together giving the final model. The model combiner can be obtained in different
ways and it will be analyzed later.

3.1 Voting methods
Voting methods build several estimators and then average their predictions.
The ensemble one has usually a best performance than single base estimators.
Consider the following scenario with a set of T individual classifiers h1, . . . , hT
and K classes, each one labelled as ck with k ∈ [1, . . . ,K] [4]. For a classifier
ht t ∈ [1, . . . , T] the outputs associated to an instance x are a K-dimensional
vector (h1t , . . . , h

K
t). hkt has two formulations:

• Class label: hkt ∈ {0, 1} that takes value 1 if the class is k and 0 otherwise.

• Class probability: hkt ∈ [0, 1]. It can be seen as an estimate of the posterior
probability P (ck|x) for classifier ht.

There are several ways to combine prediction. First of all, the mode can
be used to obtain the value that occurs most often for each classification. This
type is called plurality voting:

H(x) = cargmax
j

∑T
i=1 h

j
i (x)

, (3.1)

where H(x) is the output of the ensemble classifier.
Another one is majority voting, where at least 50% of classifiers choose the

same class. In case of an observation does not reach this percentage, is cannot
be classified. This is a reject option and is clear that in plurality voting it does
not exist.

H(x) =

{
cj if

∑T
i=1 h

j
i (x) >

1

2
#T

rejection otherwise
(3.2)

where #T indicates the number of models used.
For example, consider a three-classification problem, with class y ∈ {0, 1, 2}.

Using four classifiers, the prediction classes for the first observation are 0, 2, 0
and 1. It is clear that plurality chooses class 0 as best prediction, while majority
voting gives a reject option because class 0 reaches 50%, without exceeding it.

Another possibility is to simply use the mean of predictions. It can be done
via class label or probability representation. As was said before, in the first
case when a model classified an instance in a class j the resulting vector have

3.1. VOTING METHODS 33

all entries equal to zero and one in position j. For example, it can be (0, 0, 1,
0) for third class in a four-classification problem. Suppose to have other two
classifiers that give (0, 1, 0, 0) and (0, 0, 1, 0) as class label vectors. Evaluate
the mean implies to sum the elements in the same position and divide by the
number of classifiers, giving (0, 1/3, 2/3, 0). For each class it is defined as:

Hj(x) =
1

T

T∑
i=1

hji (x) (3.3)

Now, choosing the higher value in the vector it is clear that the predicted class
by the ensemble classifier is the third.

An example with the prediction probabilities applied to a three-classification
problem is reported. For an observation the vectors of class probabilities are
the following:

• first classifier: [0.37, 0.34, 0.29]

• second classifier: [0.4, 0, 0.6]

• third classifier: [0.57, 0.08, 0.35]

Applying formula 3.3, the classifier evaluates the mean in each class and the
result is [0.4467 0.14 0.4133]. Now, the predicted class is chosen as the higher
value in the vector. So, the observation is associated to the first class.

The last case of voting methods evaluates a weighted mean, giving more
importance to the most accurate classifiers:

Hj(x) =

T∑
i=1

wih
j
i (x), (3.4)

where the sum of weights is one.
In both cases of mean and weighted mean the output H(x) of the ensemble

classifier is obtained as the maximum value in the vector composed by Hj(x),
it is defined as:

H(x) = cargmax
j

Hj(x) (3.5)

With an accurate choice of weights, the last ensemble can be the best among
voting methods.

3.1.1 Choice of weights

Let ~l = (l1, . . . , lT)T the vector composed by the outputs of the individual
classifiers, where li is the class label predicted for the instance x by classifier hi
and pi its accuracy [4].

Maximum-likelihood can be used to find the estimates for the weights of
equation 3.4. Since every output of classifier hkt can be seen as an estimate of
the posterior probability P (ck|x), it is possible to refer to the observations made
for Multinomial Naive Bayes in section 2.4:

P (Y = ck|l) = log

(
P (Y = ck)

T∏
i=1

P (li|ck)

)
(3.6)

34 CHAPTER 3. ENSEMBLE METHODS

This posterior probability can be rewritten in order to obtain an approximation
for the weights:

P (Y = ck|l) = logP (Y = ck) +

T∑
i=1

logP (li|ck)

= logP (Y = ck) + log

 T∏
i=1,li=ck

P (li|ck)

T∏
i=1,li 6=ck

P (li|ck)


= logP (Y = ck) + log

 T∏
i=1,li=ck

pi

T∏
i=1,li 6=ck

(1− pi)


= logP (Y = ck) +

T∑
i=1,li=ck

log

(
pi

1− pi

)
+

T∑
i=1

log(1− pi)

= logP (Y = ck) +
T∑
i=1

hki (x) log

(
pi

1− pi

)

The last equation comes from the fact that hki ∈ {0, 1}, takes value 1 if the class
is k and 0 otherwise. It can be seen that the first term of the right-hand side
does not depend on the classifiers, while the second according to 3.4 shows that

wi ∝ log

(
pi

1− pi

)
(3.7)

It is a very interesting result because it suggests that the optimal weights
should depend on the accuracy of the classifier.

3.1.2 Calibration of probabilities

For heterogeneous ensembles method calibration of probabilities is required [14].
It is a rescaling operation that is applied after a model made its predictions.
Well-calibrated probabilities reflect the true likelihood of the class predicted.
To understand this fundamental concept, think about a classification problem
that have to say an e-mail is a spam or not.

A probability value of 50% would be well-calibrated if, for example, in one
hundred past prediction fifty would be spam. The first step is divide data into
groups based on their class probabilities. For example, it can be done using
10 sets, each one also called bin, with range of 10% ([0,10%], ..., (90. 100%]).
Suppose that 30 samples are classified with probability less than 10% and there
is a single event. The midpoint of the first set is 5% and the observed event rate
would be 3.33%. The calibration plot displays the midpoint of the bin on the
x-axis and the observed event rate on the y-axis. Ideally, the model produced
well-calibrated probabilities if the points falls on the line y = x (figure 3.2).

In literature there are two popular approaches: Platt Scaling and Isotonic
Regression [15]. In particular, there are some algorithms that do not produce
predictions of probabilities, so these must be approximated. Some examples are
support vector machines and decision trees. The calibration can bring many
advantages to these models. In the first method calibrated probabilities can be

3.2. BAGGING 35

obtained applying logistic regression to the output of the algorithm:

p̂ =
1

1 + exp−(β0 + β1f)
, (3.8)

where f is the output, β0 and β1 are parameters fitted by maximum likelihood
estimation on the training set. It is usually done with k-fold cross-validation.

Isotonic regression is more general than Platt method with sigmoid function.
The only restriction is that the mapping function has to be isotonic (monotoni-
cally increasing). Given the prediction fi and the true value yi the assumption
is

yi = m(fi) + εi (3.9)

It solves the following problem:

min

n∑
i=1

wi(yi − ŷi)2

s.t. ŷmin = ŷ1 ≤ ŷ2 ≤ · · · ≤ ŷn = ŷmax,

(3.10)

where each wi is strictly positive and each yi is a real number.

Figure 3.2: Calibration plot for SVM model in two-classification problem

3.2 Bagging
Bagging (stands for Bootstrap AGGregatING) is particularly useful and fre-
quently used in the context of decision trees, because of their high variance [16].

36 CHAPTER 3. ENSEMBLE METHODS

Indeed, it is a procedure used in order to decrease the variance of a machine
learning algorithm. For example, the predictions for an average of trees have
lower variance than the variance of the individual ones.

The concept of bootstrap is introduced. It is a type of resampling with
replacement, in which smaller random samples of the same size (bootstrap sam-
ples) are obtained by the original data set. In bagging the classifiers are built
on bootstrap samples of the training set. Then, their outputs are combined by
a plurality vote.

Its general idea is shown in figure 3.3. From a data set of N observations,
M bootstrap samples are constructed, each one with N observations. Since, it
happens with replacement each observation has a probability p = 1

N of being
selected and p∗ = 1− 1

N of not being selected. So, the probability of not being
selected n times is (

1− 1

n

)n
≈ e−1 = 0.368 (3.11)

This procedure is also called 0.632 bootstrap, because the training data contains
approximately 63.2% of the instances. A toy example of this approach is shown
in figure 3.4.

Figure 3.3: Bagging procedure

3.2.1 Random forest
Random forest is used in the context of decision trees and its name derives from
the idea of using many of them to increase the quality of the predictions. It is
very similar to bagging, but in training each model just a random sample of m
predictors, among the full number of p, is chosen as split candidates [17]. This
difference causes the trees in the forest to be de-correlated. For classification
problems, a usual choice is to set m =

√
p.

3.2. BAGGING 37

Figure 3.4: Bootstrap approach: toy example of four bootstrap samples obtained
from a data set of ten observations.

Figure 3.5: Random forest procedure

38 CHAPTER 3. ENSEMBLE METHODS

3.3 Boosting

This is a general approach, which refers to a family of algorithms able to convert
weak learners to stronger ones. In this procedure the models are grown sequen-
tially: each one is grown using information from the previous (figure 3.6). The
most popular boosting algorithm due to Freund and Schapire is “AdaBoost.M1.”
In order to understand how this algorithm works an example is proposed. It
is a two-class classification problem with N observations and the output class
Y ∈ {−1, 1}. A weak classifier M(X), one whose error rate is slightly better
than random guessing, takes a vector of predictor variables X and produces a
prediction in one of the two classes. Random guessing refers to a method in
which the events involved have an equal chance of being chosen.

Figure 3.6: Boosting procedure

Given one weak classification algorithm, it is sequentially applied to repeat-
edly modified versions of the training data, producing a sequence ofM weak clas-
sifiers. At the first step, classifier M1 is trained in the usual way. Some weights
are initialized giving the same importance to every observation (wi = 1

N). From
the second one, until the end, the training data set is modified applying some
weights w1 . . . wn to each observation. Weak classifiers are trained to the data
set and the one with the lowest classification error em is selected. Then, the
weight αm for the Mm is introduced as

αm =
1

2
log

(
1− em
em

)
(3.12)

For a classifier with less than 50% accuracy, where em is greater than 0.5,
the weight αm is negative and vice versa. So, it is possible to combine the
prediction flipping the sign. It should be noted that, sometimes in literature,
the term 1

2 is omitted in formula 3.12. However, it does not change the logic of

3.4. STACKING 39

this term. Then, for each data point its weight is updated:

wm+1(xi, yi) =
wm(xi, yi) exp(−αmyiMm(xi))

Zm
, (3.13)

where Zm is a normalization constant that guarantees the sum of all instance
weights is equal to 1.

For example, imagine that a positive weighted classifier misclassifies the
observation in exam, the "exp" term in the numerator would be always larger
than 1, giving more weight to this misclassified observation in the next iteration.
This happens because yiMm(xi) is -1, αm is positive and so also −αmyiMm(xi)
is positive.

Otherwise, weights associated to correct predictions are decreased due to the
negative term −αmyiMm(xi) that, applying the exponential function, gives a
number ∈ (0, 1). Summing up, the relative influence of misclassified observations
is increased, inducing the next classifier in the sequence to predict better.

Then the prediction of each algorithm is combined with the others through
a weighted majority vote. The final prediction obtained is

F (X) = sign

(
M∑
m=1

αmMm(X)

)
, (3.14)

where α values give more weight to the more accurate classifiers.

3.3.1 Adaboost for multi-class classification
The two-class adaboost algorithm can also be extended in multi classification
problem. The logic is the same of the binary case, but with one critical adjust-
ment to the algorithm. According to [19] the proposed algorithm is equivalent to
a forward stagewise additive modeling one, that minimizes an exponential loss
for multi classification. The new algorithm, called SAMME (Stagewise Addi-
tive Modeling using a Multi-class Exponential loss function), is almost identical
to AdaBoost but with a simple update to the αm of formula 3.12. The term
log(K − 1), where K is the number of class, is introduced obtaining

αm = log

(
1− em
em

)
+ log(K − 1) (3.15)

It is clear that for two-class problem this term is equal to 0 and does not
affect αm. As natural consequence, αm in order to be positive only requires
1− em > 1

K , in contrast to 0.5 in two-class adaboost.
One of the most famous algorithms for boosting in Python is called Ad-

aBoostClassifier.

3.4 Stacking
Another type of ensemble method that can achieve excellent results in classi-
fication is stacking. It is a general procedure composed by different learners
(algorithms) and levels [20]. A learner, called meta-learner, is trained to com-
bine the individual ones of the previous level. This procedure can be applied
over and over again. In figure 3.7 a general procedure of two levels is shown.

40 CHAPTER 3. ENSEMBLE METHODS

The name comes from the fact that the final model is said to be stacked on
the top of the others. It should be noted that in any ensemble method there is
not guarantee that the model created will have better performance than all the
algorithms used.

Figure 3.7: Stacking procedure on two levels

Chapter 4

Sentiment analysis

Emotion analysis is one of the main techniques in text mining. Also roughly
knows as text analytics, it is the process of deriving high-quality information
from text [21]. This involves using Natural language processing (NLP). It is a
subfield of computer science that refers to the interactions between computers
and natural languages, developed and evolved by human through communica-
tion and natural use. Machine translation is one of the most famous applications
for NLP, with Google Translator as the main example.

The applications of sentiment analysis are many: for example, surveys on
public opinion, customer satisfaction in relation to a specific product or service
and research relating to political orientations before the elections.

Emotion analysis refers to the process of identifying human emotions from
a sentence or a period. To make this analysis machine learning algorithms need
some data as input. In this study the training set is composed by 7666 tweets
associate to 7 different emotions. Evaluations of performance are done for only
three emotions, because the small size of the data set affects a lot the program
accuracy. A classification made for more than five emotions cannot reach the
70% of accuracy, while with tree emotions is almost 80%.

4.1 Data preparation

Data preparation is the act of preprocessing data. It refers to all the steps that
should be followed to clean and standardize textual data into a form that could
be used as input by natural language processing or applications. In order to use
the machine learning algorithms for sentiment analysis some transformations
are needed.

First of all, word tokenization is applied. It is the process of splitting or
segmenting sentences into their words. After that, procedures of text normal-
ization, like stemming, the elimination of stop words and cleaning text (removing
punctuations, emoticons, html etc...) are used. Stemming, as introduced in 1.3,
is a procedure in which one term is reduced to its stem (figure 4.1). Lemmati-
zation is very similar to this technique, but every word is reduced to its root,
also known as lemma, that is different from the stem. The last one may not
be a lexicographically correct word, while the first one is always present in the
dictionary.

41

42 CHAPTER 4. SENTIMENT ANALYSIS

Figure 4.1: Example of stemming procedure

Contractions are another example of text normalization. They are shortened
version of words or expressions. They exist in either written or spoken forms
and they are used quite extensively in the informal language of social media. In
case of English language, they are often created by removing one of the vowels
from the word (for instance isn’t sometimes replaces is not). A contraction
map available at https://github.com/search?q=text+analytics is used (figure
4.2). This link refers to a search query on github.com, one of the main web
platforms used by software developments.

To remove punctuations, emoji and other special character regular expres-
sions can be very useful. "Regular expressions use the backslash character (’\’)
to indicate special forms or to allow special characters to be used without invok-
ing their special meaning. A regular expression (or RE) specifies a set of strings
that matches it. " [22]. It has a lot of functions like "sub" (substitute words or
characters with others), or "findall" that find all the words of the desired type
in a string. For example r’ \# \w+’, used as first argument of re.findall, allows
to obtain all the words that begins with # (the second argument needed from
the function is a string in which to search).

Figure 4.2: Few lines of the dictionary CONTRACTION_MAP, defined to han-
dle contractions of English words.

4.2. FEATURE EXTRACTION 43

4.2 Feature extraction
Before training a model a procedure of feature extraction is needed [21]. As was
introduced in 2.1 features can be the attribute or a data set. In text mining
something more complicated is required, in order to transform sentences in
number vectors. So, feature vectors are a row representation of words into the
corpus (a sentence or a period), expressed by numbers. In the program two
different types are used:

• Bag of Words Model

• TF-IDF Model

The first one involves a frequency representation, in which each column
represents a word in the document and its value is expressed by a number that
is the frequency of times that the word occurs. For instance, in a toy example
using two sentences the word "father" occurs two times (figure 4.3).

The second one is TF-IDF, that stands for term frequency inverse document-
frequency. As the name suggests, it involves two terms multiplied by each other:

tf -idf(d, t) = tf(d, t)× idf(t) (4.1)

The first, that represents the bag of words model, is the number of the time
that a word occurs in a corpus, while the second is expressed as

idf(t) = log

(
1 + nd

1 + df(d, t)

)
+ 1, (4.2)

where nd is the total number of documents or sentences and df(d, t) is the num-
ber of documents that contain term t. The second one is used to re-weight the
frequency of the words that are very common in the documents, like (“the”, “is”
in English). The resulting tf-idf vectors are then normalized by the Euclidean
norm:

tf -idf(d, t) =
tf -idf(d, t)

‖tf -idf(d, t)‖
(4.3)

In order to understand the inverse document-frequency a numerical example
is proposed: there are 100 documents and 99 of them contain the word "hello",
while 49 contain the word "man". In the first case:

idf(t) = log

(
1 + 100

1 + 99

)
+ 1 ' 0 + 1 = 1,

giving a weight of one to the word present in almost all documents. In the
second case:

idf(t) = log

(
1 + 100

1 + 49

)
+ 1 ' 0.7 + 1 = 1.7,

giving more weight to this word.
An output of this technique is presented in figure 4.4, where the sentences

used are the same of example in figure 4.3.
In order to have a more complete extraction, in addiction to words, an-

other possibility is to consider also the n-grams. They are a combination of n
contiguous words in the corpus (figure 4.5).

44 CHAPTER 4. SENTIMENT ANALYSIS

Figure 4.3: Bag of words model: feature vectors and feature names.

Figure 4.4: TF-IDF model: feature vectors and feature names.

4.2. FEATURE EXTRACTION 45

Figure 4.5: TF-IDF model for single words and 2-grams: feature vectors and
feature names.

4.2.1 Sparse matrix

In the corpus used as input to the algorithms there are thousands of tweets.
Remembering what was said before in chapter 1: every tweet is a sentence or
a period with a maximum length of two hundred eighty characters. It is clear
that in a feature representation (figure 4.3, in case of two tweets) there are a lot
of zeros, for those terms that have not been said. A matrix that contains mostly
zero values is called sparse, in contrast to a matrix in which most of the values
are non-zero, called dense. It is computationally expensive to represent and
work with sparse matrices. In python language there are libraries developed to
handle this type of matrices, like SciPy and its module csr_matrix. Figure 4.6
shows this type of representation: the row and column numbers of the non-zero
elements are displayed in the parentheses and its value on the right.

46 CHAPTER 4. SENTIMENT ANALYSIS

4.3 Application

In this section a script developed in Python is proposed. To understand better
the methods of chapter 3 algorithms of chapter 2 are used to construct some
ensemble classifiers and numerical results are reported. Then, the best method
according to its value of accuracy and F1 score is chosen. The goal of the study
is to use what was previously learned about scraping, ensemble methods and
sentiment analysis to associate an emotion to some tweets.

4.3.1 Python script

As input, a data set available online with 7666 tweets and 7 different emotions
is used. Several tests were done and at the end it was decided to perform a
classification on three classes of the emotion data set: joy, sadness and fear.
The script can be divided into the following sections:

• Import of libraries and definition of functions used for text normalization
and the evaluation of performance.

• Definition of a Twitter class to connect to a specific query

• Text mining and feature extraction for tweets

• Training of some models, cross-validation and choice of the best one

• Voting methods

• Tree-based methods

• Stacking

• Download of tweets and emotion classification

Figure 4.6: CSR representation for sparse matrix

4.3. APPLICATION 47

4.3.2 Numerical results
After the text mining procedure on the emotion data set, some models are
trained. As was said before cross-validation can be used to avoid overfitting
and have a more realistic value for the accuracy. An example of 5-fold cross-
validation on decision trees is shown in figure 4.7. The first number is the mean
of F1 score for the five folds and the second one is its variance.

Figure 4.7: 5-fold cross-validation on decision tree

Python allows to use some methods like GridSearchCV to make cross-validation
over more parameters. An example is shown in figure 4.9, where random forest
uses several numbers of trees, five or ten as minimum number of samples in a
node and the Gini impurity or the Information gain as criterion of split. The
best combination is chosen according to the higher value of accuracy. As in the
previous example of cross-validation, the first value of the grid is a mean of all
values obtained by a 5-fold cv and the second one is its variance. At the end the
classification report, obtained with the homonym python method, is proposed.

In order to introduce the voting methods on Python a toy example on emo-
tion data set is proposed. The algorithms used are k-nearest neighbors, decision
trees and multinomial naive bayes. There are different possibilities to improve
the accuracy of these models, simply modifying the hyperparameters like the
number of neighbors, the minimum number of leaves etc...

The voting methods used are the plurality one with its mode, the mean
and the weighted mean. It can be seen in figure 4.8 that the best ensemble
method is obtained with the last one, that gives more importance to more
accurate algorithms. In this case the first one has the highest value of accuracy,
so during the combination it will have more influence. The vector of weights
is chosen among one hundred different combinations. It should be noted that
averaging the three previous algorithms results in an ensemble classifier with at
least 0.69 of accuracy, that is higher than the worst in use (decision tree with
0.67).

The weights can be compared to the expected values of section 3.1. Re-
member that the proportion of weights should be dependent on the accuracy of
individual learners [4]:

wi ∝ log

(
pi

1− pi

)
(4.4)

48 CHAPTER 4. SENTIMENT ANALYSIS

Figure 4.8: Average methods developed in Python

In figure 4.8 the weights used, randomly chosen in one hundred different
combinations, are 0.46, 0.24 and 0.3. These values are not too far from those
expected by formula 4.4.

A more complete example is shown in figure 4.10. There are sixteen algo-
rithms in it:

• three logistic regression models

• three multinomial Naive Bayes

• two logistic regression models with stochastic gradient descent approach

• two support vector machines

• two decision trees

• one support vector machine with stochastic gradient descent approach

• one 50-nearest neighbors

• one 100-nearest neighbors

• one random forest

4.3. APPLICATION 49

As has been introduced in chapter 2 naive Bayes and logistic regression
classifiers are usually very used in sentiment analysis [21]. This is why they
have been chosen three times. The other models are chosen to reach the best
possible predictions.

In order to achieve better results five hundred of combinations of weights are
generated. This method chooses the best and gives an accuracy of 0.797. The
average prediction is always better than the worst algorithm used. In particular,
the value of accuracy is always higher than 0.754 (figure 4.10).

Figure 4.9: Grid search with 5-fold cross-validation on random forest: accuracy
values

50 CHAPTER 4. SENTIMENT ANALYSIS

Figure 4.10: Voting method: weighted mean of 16 algorithms.

As discussed in chapter 3 ensemble methods are usually applied to decision
tree-based classifiers. The well-known algorithms used in Python related to
trees are:

• DecisionTreeClassifier: it implements CART algorithm for decision trees.

• BaggingClassifier: it implements bagging.

• GradientBoostingClassifier: it implements gradient boosting approach.

• RandomForestClassifier: it implements random forest algorithm.

• ExtraTreesClassifier: it implements extremely randomized trees.

BaggingClassifier and GradientBoostingClassifier allow to use several algo-
rithms as base estimator. In this case DecisionTreeClassifier is chosen.

Extra randomized trees model is very similar to random forest except for
two important things [23]. First, when it looks for the best split to separate
the samples of a node into two groups, it tests random splits over fraction

4.3. APPLICATION 51

of features and the best split is chosen among those. Instead, random forest
tests all possible splits over fraction of features (that usually is its square root).
Second, extra randomized trees model uses the whole learning sample, rather
than bootstrap technique. As every ensemble method in classification problems,
it yields the final prediction by majority vote. These two differences allow to
reduce a bit the variance of the model, at the expense of a slight increase in
bias.

In table 4.1 the performance of tree-based models are shown, sorted by
decreasing values of F1 score. The best method is Extra trees, which is trained
with one hundred eighty-five trees and entropy as the function to measure the
quality of a split. The other parameters that can be tuned, like the maximum
depth of the tree, the number of features etc... are set to the default values.

The performance of these methods can easily improved by tuning the hy-
perparameters. It can be seen in figure 4.11 that with more than two hundred
trees the F1 score is always almost greater than 0.77.

After that, using the python module StackingClassifier from mlxtend li-
brary, the stacking procedure is developed. It allows to perform a 5-fold cross-
validation and, of course, to choose the learners of the first level and the meta
classifier. The models used are five: k-nearest neighbors, random forest, multi-
nomial naive bayes, logistic regression and decision tree. The second learner is
logistic regression model (figure 4.12). The result is competitive, but probably
due the short size of input data set one cannot fully appreciate the performance
of this technique. It is a good method to improve the accuracy of some models
but, in this case, it cannot outperform support vector machine or extra random-
ized trees.

Table 4.1: Tree-based methods with evaluation of performance, sorted by F1

score

A summary of all the algorithms used in the project can be seen in the table
4.2.

4.3.3 Twitter sentiment analysis

An application is proposed: some tweets, collected from a famous Twitter profile,
are labelled with an emotion using the best method among the previous ones
(the ensemble method with sixteen models). They were downloaded so that
they have a minimum length of one hundred characters and no more than three
hashtags. Otherwise, they would have been too difficult to classified.

For each emotion in table 4.3 the five most recent tweets are shown. Each
tweet has three columns of reference: the expected emotion, the detected one
and a probability value for each class. The blue value is the highest in the vector
and it determines the detected class. The ambiguous predictions are colored in

52 CHAPTER 4. SENTIMENT ANALYSIS

Figure 4.11: F1 score of extra trees method depending on the number of trees

Figure 4.12: Stacking method

Table 4.2: Algorithms used in Python with evaluation of performance, sorted by
F1 score

4.3. APPLICATION 53

yellow, while the mistakes are in red. It should be noted that, sometimes, the
algorithm is pretty sure about the forecast. For example, in the eighth tweet
the value of the predicted class is 0.9, while in the fifth, representing a wrong
classification, the model is uncertain about joy or sadness (probability of 0.41
versus 0.46).

The table is created as a pandas data frame. The column "Emotion" is
added to the previous ones after exporting the file to Excel.

Considering the not ambiguous tweets of table 4.3, just two tweets among
eleven seem to be misclassified. It means that about 82% are correctly classified
and this reflects the results previously obtained.

Table 4.3: Emotion analysis: expected and detected feelings for fifteen tweets.
The ambiguous tweets are colored in yellow, while those wrongly classified are
red.

54 CHAPTER 4. SENTIMENT ANALYSIS

Chapter 5

Conclusions

The aim of this work was to carry out a sentiment analysis. With the purpose
of doing it as precisely as possible, I used what are commonly called ensemble
methods. The idea of combining multiple classifiers starts from the principle
that there is no perfect machine learning algorithm. Every model has its limita-
tions and weaknesses, so the goal is to consider the best possible decision taken
overall in order to overcome these boundaries.

After the preprocessing phase, I trained several ensemble classifiers. Among
the most famous there are certainly bagging, boosting, stacking and the voting
methods. In this case, it emerged that the best algorithm is a voting one with
heterogeneous models. It is very important to remember that the choice of the
algorithm to apply is strongly dependent on the data to analyze. It also must
be chosen on the basis of the input data set.

I applied the stacking method with two levels to my study, but the results
were not as significant as in voting methods. Another input data set could be
used, and the development of new procedures based on more levels will be the
aim of further studies.

Once the best algorithm was chosen, a sentiment analysis was performed on
the tweets of a famous politician. The results obtained showed that in about
80% of cases the algorithm is able to correctly classify the tweets.

This work could also be extended to other social networks and different
aspects of sentiment analysis could be considered, such as customer satisfaction
on some commercial products.

55

56 CHAPTER 5. CONCLUSIONS

Appendix A

Programs instructions

This appendix helps the user who wants to launch the programs. The following
instructions concern the program about politicians (Twitter_politicians) and
the program of emotion analysis (Twitter_emotion).

A.1 Twitter_politicians
1. First of all, download the last version of Anaconda and select "Add Ana-

conda to my PATH environment variable" during the installation phase.
Anaconda is used to launch the .ipynb program from Jupyter Notebook 1.

2. Download the last version of Python to launch the .py program dur-
ing scheduling. This can be generated from the .ipynb file, by running
"Jupyter nbconvert -to script <file.ipybn>" from the terminal. In this
case, comment the portion of code referred to the word cloud, since some
libraries, as Wordcloud and PIL, cannot be used with the native Python
interpreter.

3. Download the required libraries: it can be done by terminal running "py -
m pip install <library name>" or "pip install <library name>" statement.

4. Enter the login credentials of the twitter application, as explained later.

5. Set the directory where the output files will be printed.

6. Enter the date of the first day of scheduling.

7. Run all.

A.2 Twitter_emotion
1. The same first four points as in A.1.

2. Enter the path of the emotion data set.
1Jupyter Notebook is an interactive Web-based computing environment for creating docu-

ments. A Jupyter Notebook document is a JSON type, which is composed by an ordered list
of cells that may contain code, text, math and graphs.

57

58 APPENDIX A. PROGRAMS INSTRUCTIONS

3. Enter the path for the output data sets.

4. Run all.

Appendix B

Python codes

This appendix shows some of the most interesting pieces of code developed in
Python.

Listing B.1: Twitter class

class TwitterClient(object):

def __init__(self):

#Credentials
consumer_key=’HTdVyKp4I2SZAtJt3BjxyFs1e’

consumer_secret=’Q221FPjVZrPvtxCOBeN4sUehytU4Rjs8E0CM4BQSKwmBHxbiCD’

access_token=’977105053227118592−NSPbMDxFsHtOTMkqHUIo8Ibn93I8cf4’
access_secret=’mmykGQLvzIOBAXd11ZyfPOnCsB0ByUYxBYfCTzKzDyQrZ’

#Authentication
try:

self.auth = OAuthHandler(consumer_key , consumer_secret)

self.auth.set_access_token(access_token , access_secret)

self.api = tweepy.API(self.auth)

except:

print("Error: Authentication Failed")

def get_tweets(self, query, count = 10):

tweets = []

try:

#user_timeline for user , otherwise search
load_tweets = self.api.user_timeline(screen_name = query,

include_rts = False,

tweet_mode = ’extended’,

count=count, language=’en’)

mytweet_hash = []

59

60 APPENDIX B. PYTHON CODES

mytweet_at = []

for status in load_tweets:

if len(status.full_text)>100 and len(status.full_text)<200:

mytweet=status.full_text

if re.findall(r’\#\w+’, mytweet):

mytweet_hash.append(re.findall(r’\#\w+’, mytweet))

if str(mytweet_hash).count(’#’) < 4:

tweets.append(mytweet)

if re.findall(r’\@\w+’, mytweet):

mytweet_at.append(re.findall(r’\@\w+’, mytweet))

if str(mytweet_at).count(’@’) < 4:

tweets.append(mytweet)

else:

tweets.append(mytweet)

except tweepy.TweepError as e:

print("Error : " + str(e))

return tweets

Listing B.2: Data preparation and feature extraction

#####DATAPREPARATIONANDFEATUREEXTRACTION#####

Emotion_list=[]

Tweet_list=[]

#mysent= [joy fear anger sadness disgust shame guilt]
mysent= [’joy’, ’sadness’, ’fear’]

with open(’/Users/Gianluca/Desktop/Tesi/SENTIMENT/emotion.csv’, ’r’) as f:

reader = csv.DictReader(f, delimiter=’;’)

for row in reader:

if row[’Emotion’] in mysent:

Emotion_list.append(row[’Emotion’])

Tweet_list.append(row[’Tweet’])

Emotion_df = pd.DataFrame(

{’Emotion’: Emotion_list ,

’Tweet’: Tweet_list

})

Emotion_df = Emotion_df.sample(frac=1).reset_index(drop=True)

cont=Emotion_df[’Tweet’]

sent=Emotion_df[’Emotion’]

61

train_X, val_X, train_y, val_y = train_test_split(cont,sent,random_state=1)

data preparation
norm_train_tweet = normalize_corpus(train_X,lemmatize=True,only_text_chars=True)

feature extraction
vectorizer , train_features = build_feature_matrix(documents=norm_train_tweet ,

feature_type=’tfidf’,

ngram_range=(1, 2),

min_df=0.0, max_df=1.0)

normalize tweets
norm_test_tweet = normalize_corpus(val_X,lemmatize=True,only_text_chars=True)

extract features
test_features = vectorizer.transform(norm_test_tweet)

Listing B.3: Calibrated probabilities and ROC curves

model_0 = SGDClassifier(loss=’hinge’, penalty=’elasticnet’, alpha=0.0001,

max_iter=100, random_state=1, tol=1e−3)

model = CalibratedClassifierCV(model_0, cv=5, method=’sigmoid’)

model.fit(train_features , train_y)

y_predict = model.predict(test_features)

predicted_probas = model.predict_proba(test_features)

Plot curves for multi−classification
import matplotlib.pyplot as plt

import scikitplot as skplt

skplt.metrics.plot_roc(val_y, predicted_probas , plot_micro=False, plot_macro=False,

cmap=plt.get_cmap(’Spectral’))

plt.show()

Listing B.4: Models and confusion matrices

def models():

’ ’ ’ algorithms ’ ’ ’
svm=LinearSVC()

sgd_svm = SGDClassifier(loss=’hinge’, penalty=’elasticnet’, alpha=0.0001, max_iter=100,

random_state=1, tol=1e−3)
log = SGDClassifier(loss=’log’, penalty=’elasticnet’, alpha=0.0001, max_iter=100,

random_state=1, tol=1e−3)
log_reg = LogisticRegression(random_state=1)

tree = DecisionTreeClassifier(random_state=1,min_samples_leaf=10)

mnb = MultinomialNB(alpha=1.0e−10)
n_neighbors = 50

knc = neighbors.KNeighborsClassifier(n_neighbors , weights=’distance’)

62 APPENDIX B. PYTHON CODES

rf = RandomForestClassifier(min_samples_leaf=10, n_estimators=100)

et = ExtraTreesClassifier(n_estimators=375, criterion=’entropy’)

n_estim = 5

bagS = OneVsRestClassifier(BaggingClassifier(SVC(kernel=’linear’, probability=True),

max_samples=1.0 / n_estim,

n_estimators=n_estim))

bagT = BaggingClassifier(base_estimator=tree, n_estimators=50)

xgb = GradientBoostingClassifier()

ada = AdaBoostClassifier()

myclf= {

"Linear Support vector machines" : svm,

"Stochastic gradient descent, svm" : sgd_svm,

"Stochastic gradient descent, logistic" : log,

"Logistic regression" : log_reg,

"Decision Tree" : tree,

"Multinomial Naive Bayes" : mnb,

"K−nearest neighbors" : knc,
"Random forest" : rf,

"Extra trees" : et,

"Bagging TREE" : bagT,

"Bagging SVM" : bagS,

"Adaboost" : ada,

"XGBoost" : xgb

}

return myclf

#Fit and predict
my_eval=[]

for clf in models():

time0=0

time1=0

time0 = time()

myclf=models()[clf].fit(train_features , train_y)

time1 = time()

predicted_sentiments = myclf.predict(test_features)

#print(’Time to f i t ’ , clf , ’ is %f second’ %(time1−time0))
my_perf=display_evaluation_metrics(true_labels=val_y,

predicted_labels=predicted_sentiments)

my_eval.append(f1_score_performance(true_labels=val_y,

predicted_labels=predicted_sentiments))

print(’\n’)

#CLASSIFICATIONREPORT and CONFUSIONMATRIX
index, value = max(enumerate(my_eval), key=operator.itemgetter(1))

print(’The best algorithm is’, list(models())[index])

best_model=models()[list(models())[index]]

my_best=best_model.fit(train_features , train_y)

63

best_prediction=my_best.predict(test_features)

display_classification_report(val_y, best_prediction , dec=3, classes=mysent)

#CONFUSIONMATRIX
classes=mysent

plt.figure()

plot_confusion_matrix(create_confusion_matrix(val_y, best_prediction , labels=classes),

classes=classes,

title=’Confusion matrix’,

cmap=plt.cm.Greens)

plt.figure()

plot_confusion_matrix(create_confusion_matrix(val_y, best_prediction , labels=classes),

classes=classes, normalize=True,

title=’Normalized confusion matrix’,

cmap=plt.cm.Blues)

plt.show()

Listing B.5: Voting classifier and ensemble model with weighted mean

#Voting classifier
model = VotingClassifier(estimators=[(’MODEL1’, model1),

(’MODEL2’, model2),

(’MODEL3’, model3),

(’MODEL4’, model4),

(’MODEL5’, model5),

(’MODEL6’, model6),

(’MODEL7’, model7),

(’MODEL8’, model8),

(’MODEL9’, model9),

(’MODEL10’, model10),

(’MODEL11’, model11),

(’MODEL12’, model12),

(’MODEL13’, model13),

(’MODEL14’, model14),

(’MODEL15’, model15),

(’MODEL16’, model16)],

voting=’soft’)

model.fit(train_features , train_y)

myVoting = model.predict(test_features)

##
#Weighted mean
model1 = neighbors.KNeighborsClassifier(n_neighbors , weights=’distance’)

model2 = DecisionTreeClassifier(random_state=1,min_samples_leaf=10)

64 APPENDIX B. PYTHON CODES

model3 = MultinomialNB(alpha=1.0e−10)

model1.fit(train_features , train_y)

my_model1 = model1.predict(test_features)

print("\nEvaluating the accuracy for each model:")

print("\nK−nearest neighbors:", accuracy_performance(val_y, my_model1 ,
positive_class=1))

model2.fit(train_features , train_y)

my_model2 = model2.predict(test_features)

print("Decision Tree:", accuracy_performance(val_y, my_model2 ,

positive_class=1))

model3.fit(train_features , train_y)

my_model3 = model3.predict(test_features)

print("Multinomial Naive Bayes:", accuracy_performance(val_y, my_model3 ,

positive_class=1))

pred1=model1.predict_proba(test_features)

pred2=model2.predict_proba(test_features)

pred3=model3.predict_proba(test_features)

myweight = []

myscore = []

for i in range(1,100):

a=np.random.dirichlet(np.ones(3),size=1).round(2)

myweight.append(a)

my_array = []

mediapredw=pred1∗a.item(0) + pred2∗a.item(1) + pred3∗a.item(2)

for row in mediapredw:

index, value = max(enumerate(row), key=operator.itemgetter(1))

if index == 0:

my_array.append(’fear’)

if index == 1:

my_array.append(’joy’)

if index == 2:

my_array.append(’sadness’)

myscore.append(accuracy_performance(val_y, my_array, positive_class=1))

index_w, value_w = max(enumerate(myscore), key=operator.itemgetter(1))

print(’The ensemble model with WEIGHTED MEAN:’, value_w)

print(’The weights used are’, myweight[index_w])

print(’\n’)

plt.xlabel(’Index of weights vector’)

65

plt.ylabel(’Accuracy’)

plt.title(’Ensemble model with weighted mean’)

plt.plot(range(1,100), myscore, linewidth=2.0)

plt.axis([0, 100, 0.68, 0.78])

plt.grid(True)

plt.show()

Listing B.6: Models on CSV

#WRITINGONCSV
my_models=[]

my_f1=[]

my_acc=[]

my_prec=[]

my_rec=[]

for clf in models():

my_models.append(clf)

myclf=models()[clf].fit(train_features , train_y)

predicted_sentiments = myclf.predict(test_features)

my_f1.append(f1_score_performance(true_labels=val_y,

predicted_labels=predicted_sentiments))

my_acc.append(accuracy_performance(true_labels=val_y,

predicted_labels=predicted_sentiments))

my_prec.append(precision_performance(true_labels=val_y,

predicted_labels=predicted_sentiments))

my_rec.append(recall_performance(true_labels=val_y,

predicted_labels=predicted_sentiments))

mypd = pd.DataFrame(np.column_stack([my_models , my_f1, my_acc, my_prec, my_rec]),

columns=[’Algorithm’, ’F1 score’, ’Accuracy’, ’Precision’, ’Recall’])

mypd_sort=mypd.sort_values(by=[’F1 score’],ascending=False)

#print(mypd_sort)

mypd_sort.to_csv("/Users/Gianluca/Desktop/models.csv",

encoding=’utf−8’, index=False, sep=’;’)

Listing B.7: Stacking classifier

meta = LogisticRegression(solver=’lbfgs’, multi_class=’auto’)

sclf = StackingClassifier(classifiers=[model5, model14, model2, model16],

use_probas=True,

average_probas=False,

meta_classifier=meta)

print(’Stacking model:’)

print(’ 5−fold cross validation’)
print(’ Logistic regression as meta classifier’)

66 APPENDIX B. PYTHON CODES

print()

for clf, label in zip([model5, model14, model2, model16, sclf],

[’K−nearest neighbors’,
’Random forest’,

’Multinomial Naive Bayes’,

’Decision tree’,

’StackingClassifier’]):

scores = model_selection.cross_val_score(clf, train_features , my_train_y ,

cv=5, scoring=’accuracy’)

print("Accuracy: %0.3f (+/− %0.3f) [%s]"

% (scores.mean(), scores.std(), label))

Listing B.8: Sentiment analysis

if __name__ == "__main__":

query = ’@realDonaldTrump’

api = TwitterClient()

my_best_model = CalibratedClassifierCV(best_model_0 , cv=5, method=’sigmoid’)

my_best_model.fit(train_features , train_y)

tweets = api.get_tweets(query = query, count = 200)

tweets_norm=normalize_corpus(tweets,

lemmatize=True,

only_text_chars=True)

tweets_test_features = vectorizer.transform(tweets_norm)

predicted_tweets = my_best_model.predict(tweets_test_features)

probab = my_best_model.predict_proba(tweets_test_features).round(2)

proba = []

for el in probab:

proba.append(str(el))

joy_tweets = []

sadness_tweets = []

fear_tweets = []

joy_sent = []

sadness_sent = []

fear_sent = []

joy_prob = []

fear_prob = []

sadness_prob = []

67

for i in range(0,len(predicted_tweets)):

if predicted_tweets[i] == ’joy’:

joy_tweets.append(tweets[i])

joy_sent.append(’joy’)

joy_prob.append(proba[i])

if predicted_tweets[i] == ’sadness’:

sadness_tweets.append(tweets[i])

sadness_sent.append(’sadness’)

sadness_prob.append(proba[i])

if predicted_tweets[i] == ’fear’:

fear_tweets.append(tweets[i])

fear_sent.append(’fear’)

fear_prob.append(proba[i])

def output_sent(sent,tweets,prob,emotion):

mypd = pd.DataFrame(np.column_stack([sent, prob, tweets]),

columns=[’Emotion’, ’Probabilities’, ’Tweet’])

return mypd

#Output
myf = output_sent(fear_sent ,fear_tweets ,fear_prob ,’fear’)

myj = output_sent(joy_sent,joy_tweets ,joy_prob ,’joy’)

mys = output_sent(sadness_sent ,sadness_tweets ,sadness_prob ,’sadness’)

mys2 = mys[−5:]
myj2 = myj[−5:]
myf2 = myf[−5:]

mypd.concat([mys, myj, myf])

mypath="/Users/Gianluca/Desktop/"

mypd.to_csv(mypath + query + ".csv", encoding=’utf−8’, index=False, sep=’;’)

68 APPENDIX B. PYTHON CODES

Appendix C

SAS codes

This appendix shows some of the most interesting pieces of code written in SAS.

Listing C.1: Import and charts
PROC IMPORT OUT= WORK. paro l e_

DATAFILE= "C:\\ Users \ g f i n o \Desktop\SEMANTIC\OUTPUT\\
2018−05−16_Twitter_P o l i t i c i_Data_Frame . txt "

DBMS=DLM REPLACE;
DELIMITER=’ 3B ’x ;
GETNAMES=YES;
DATAROW=2;

RUN;

/∗Data frame dopo 2 g i o r n i d i s imu laz ione ∗/
PROC IMPORT OUT= WORK. paro l e_2g

DATAFILE= "C:\\ Users \ g f i n o \Desktop\SEMANTIC\OUTPUT\0_HASH\\
2018−05−09_2018−05−11_Twitter_P o l i t i c i_Data_Frame_app . txt "

DBMS=DLM REPLACE;
DELIMITER=’ 3B ’x ;
GETNAMES=YES;
DATAROW=2;

RUN;

proc s o r t data=paro l e_ out=paro l e_plus ;
by descending Totale ;
run ;

t i t l e ’ Frequenza␣ d e l l e ␣ paro l e ’ ;

ax i s 1 s tagge r l a b e l=none ;
ax i s 2 l a b e l=(a=90 ’ Frequenza ’) ;
pattern1 v=s o l i d c o l o r=blue ; /∗ Per barre c o l o r e ro s s o ∗/

/∗ Create space at the bottom of the graph ∗/
f oo tno t e h=.01 in ’ ␣ ’ ;

ods r t f f i l e=’ temp . r t f ’ s t y l e=HTMLBLUE;

data paro l e_60 ;

69

70 APPENDIX C. SAS CODES

s e t pa ro l e_plus ;
where Totale > 60 ;
i f pa ro l e in ("# f o r z a i t a l i a " , "@emmabonino" , "@pie t rogras so ")

then d e l e t e ;
proc p r i n t data=Parole_60 ;
run ;
ods r t f c l o s e ;

ods r t f f i l e=’ temp . r t f ’ s t y l e=HTMLBLUE;
proc gchart data=paro l e_60 ;

vbar paro l e / sumvar=Totale maxis=ax i s1 r a x i s=ax i s2 l e v e l s=a l l
descending ;

run ;
qu i t ;
ods r t f c l o s e ;

Listing C.2: Correlation
/∗ CORRELAZIONE ∗/
TITLE ’CORRELAZIONE␣POLITICI ’ ;
ods r t f f i l e=’ temp . r t f ’ s t y l e=HTMLBLUE;
TITLE ’ c o r r e l a z i o n e ␣9␣ p o l i t i c i ’ ;
proc co r r data=Parole_2g ;

var Ber lu s con i Bonino Di_Maio Grasso G r i l l o
Maroni Meloni Renzi S a l v i n i ;

run ;
ods r t f c l o s e ;

/∗∗∗/
/∗ GRAFICO SOVRAPPOSTO ∗/
TITLE ’Andamento␣ f requenza ␣ paro l e ’ ;

data paro l e_2g_60 ;
s e t pa ro l e_2g ;
where Totale > 60 ;
i f pa ro l e in ("# f o r z a i t a l i a " , "@emmabonino" , "@pie t rogras so ")

then d e l e t e ;
proc p r i n t data=Parole_2g_60 ;
run ;

/∗ Disegno 9 p o l i t i c i ∗/

ax i s1 s tagge r l a b e l=none ;
ax i s 2 l a b e l=(a=90 ’ Frequenza ’) order=(0 to 75 by 10) ;

symbol1 i n t e r p o l=j o i n
value=C

font=marker
width=6

co l o r=_s t y l e_;
symbol2 i n t e r p o l=j o i n

value=C
font=marker

width=2

71

c o l o r=_s t y l e_ ;
symbol3 i n t e r p o l=j o i n

value=C
font=marker

width=2
co l o r=_s t y l e_ ;

symbol4 i n t e r p o l=j o i n
value=C
font=marker

width=2
co l o r=_s t y l e_ ;

symbol5 i n t e r p o l=j o i n
value=C

width=2
font=marker
c o l o r=_s t y l e_ ;

symbol6 i n t e r p o l=j o i n
value=C
font=marker

width=2
co l o r=_s t y l e_ ;

symbol7 i n t e r p o l=j o i n
value=C
font=marker

width=6
co l o r=_s t y l e_ ;

symbol8 i n t e r p o l=j o i n
value=C
font=marker

width=2
co l o r=_s t y l e_ ;

symbol9 i n t e r p o l=j o i n
value=C
font=marker

width=2
co l o r=_s t y l e_ ;

l egend1 l a b e l=none
po s i t i o n=(top cente r i n s i d e)
mode=share ;

ods r t f f i l e=’ temp . r t f ’ s t y l e=HTMLBLUE;
proc gp lo t data=paro l e_7g_60 ;

p l o t b e r l u s c on i∗paro l e bonino∗paro l e d i_maio∗paro l e
g ra s so∗paro l e g r i l l o ∗paro l e maroni∗paro l e
meloni∗paro l e r e n z i∗paro l e s a l v i n i ∗paro l e/

over l ay legend=legend1
v r e f =1000 to 5000 by 1000
l v r e f=2
hax i s=ax i s1 hminor=4
vax i s=ax i s2 vminor=1;

run ;
qu i t ;
ods r t f c l o s e ;

72 APPENDIX C. SAS CODES

Bibliography

[1] S.Bird, and E. Klein. Natural Language Processing with Python. O’Reilly
Media, 2009.

[2] Sas Institute. Step-by-Step Programming with Base SAS 9.4. SAS Publish-
ing, 2013.

[3] I. Idrid. Python Data Analysis. Packt Pub Ltd, 2014.

[4] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. Taylor & Fran-
cis Group, LLC, 2012.

[5] T. Hastie, R. Tibshirami, and J. H. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[6] G. James, D. Witten, T. Hastie, and R. Tibshirami. An Introduction to
Statistical Learning: with Applications in R. Springer, 2013.

[7] K. Deng. Omega: on-line memory-based general purpose system classifier.
PhD Thesis, Tech. Report, CMU-RI-TR-98-33, 1998.

[8] M. Parsian. Data Algorithms. O’Reilly Media, 2015.

[9] X. He, Z. Wang, C. Jin, Y. Zheng, and X. Xue. A simplified multi-class
support vector machine with reduced dual optimization. Pattern Recognition
Letters archive, 33, 2012.

[10] S. Ruder. An overview of gradient descent optimization algorithms.
arXiv:1609.04747, 2017.

[11] C. Ferri, J. Hernández-Orallo, M. A. Salido. Volume under the ROC Surface
for Multi-class Problems. Machine Learning: ECML 2003, pp. 108-120.

[12] A. Srinivasan. Note on the Location of Optimal Classifiers in N-dimensional
ROC Space. Technical Report PRG-TR-2-99, Oxford University Computing
Laboratory, Wolfson Building, Parks Road, Oxford, 1999.

[13] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
A JOHN WILEY & SONS, 2004.

[14] M. Kuhn, and K. Johnson. Applied Predictive Modeling. Springer, 2013.

[15] A. Niculescu-Mizil, and R. Caruana. Predicting Good Probabilities With
Supervised Learning. ICML ’05 Proceedings of the 22nd international con-
ference on Machine learning, 2007, pp. 625-632.

73

74 BIBLIOGRAPHY

[16] L. Breiman. Bagging Predictors. Machine Learning, 1996, 24, pp. 123-140.

[17] L. Breiman. Random Forests. Machine Learning, 2001, 45, pp. 5–32.

[18] R. Schapire, and E. Freund Boosting: Foundations and Algorithm. MIT
Press, 2012.

[19] J. Zhu, H. Zou, S. Rosset, and T. Hastie Multi-class AdaBoost. Statistics
and Its Interface, 2009, 2, pp. 349–360.

[20] S. Džeroski, and B. Ženko. Is Combining Classifiers with Stacking Better
than Selecting the Best One? Machine Learning, 2004, 54, pp 255–273.

[21] D. Sarkar. Text Analytics with Python. Springer, 2016.

[22] F. Jeffrey. Mastering Regular Expressions. O’Reilly Media, 2009.

[23] P. Geurts, D. Ernst, and L. Wehenkel. Extremely Randomized Trees Ma-
chine Learning, 2006, 63, pp 3-42.

	Tweets of Italian politicians
	Program overview
	Twitter API
	Text analysis on tweets
	Main functions and output
	Main functions
	Data frame
	Word cloud

	Descriptive analysis in SAS
	Frequency of words
	Correlation of the language of politicians

	Classification problems
	Main concepts of machine learning
	Decision trees
	Logistic regression
	Logistic function
	Multinomial logistic regression

	Naive Bayes classifiers
	K-nearest neighbors
	Support vector machines
	Maximal margin classifier
	Support vector classifier
	SVMs

	Performance evaluation
	Metrics
	K-fold cross-validation

	Stochastic gradient descent

	Ensemble methods
	Voting methods
	Choice of weights
	Calibration of probabilities

	Bagging
	Random forest

	Boosting
	Adaboost for multi-class classification

	Stacking

	Sentiment analysis
	Data preparation
	Feature extraction
	Sparse matrix

	Application
	Python script
	Numerical results
	Twitter sentiment analysis

	Conclusions
	Programs instructions
	Twitter_politicians
	Twitter_emotion

	Python codes
	SAS codes

