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Summary

The rising of data science, internet of things and arti�cial intelligence have

profoundly impacted manufacturing. The amount of data produced by man-

ufacturing is growing and adopting data-driven strategies can make factories

more e�cient and competitive. The �nal goal of this Thesis is to improve

performances of production chains in Industry 4.0, detecting and correct-

ing failures through a root cause analysis approach. Machine learning ap-

proaches have been combined to Group Technology algorithms, bringing to

new analysis patterns. Results have been applied to food manufacturing

sector, giving the possibility of many future development of FDM project.
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Chapter 1

Introduction

1.1 Root cause analysis

Root Cause Analysis (RCA) is a technique used for identifying the reason

of a problem, instead of simply reporting and correcting the problem itself,

as described in [7]. The problem can be intended as a non-compliant situa-

tion or an error in a production chain. Focusing on root causes correction

has the bene�t of improving long term e�ciency of industrial processes,

systematically reducing the occurrence of errors.

Analysis is done after the event occurrence, thus RCA process is di�erent

to incident management. Causes of a problem can be multiple and both

correlated or independent of each other. After a deep comprehension of

causes, RCA can be used to predict probable failures even before their

occurrence.

Application of RCA to industrial process can lead to the development

of a smarter production chain, with great bene�ts in production costs and

e�ciency.

1.2 Industry 4.0 - FDM

Industry 4.0, as described in [8], is the name of a project of the German

government started 2011, focused on the modernization of the productive
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1 � Introduction

system. That terminology and initiatives, which refers to the fourth indus-

trial revolution, have been adopted and extended �rst by European Union

then by the rest of the world. Figures of this section have been found in [9],

in Figure 1.1 is shown industry evolution.

Figure 1.1: Industry evolution

The main categories of technological development supported by the in-

dustry 4.0 plan indicated by the Economic Development Ministry are shown

in Figure 1.2.

Figure 1.2: Industry 4.0 categories

The project in exam belongs to the category of Big data and analytics,
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1 � Introduction

it refers to the macro area of IoT (Internet of Things), namely industrial

internet integration with innovative sensors and data analytics. A de�nition

of IoT is 'network of physical objects that contain embedded technology to

communicate and sense or interact with their internal states or the external

environment'. In particular, Industrial Internet of Things (IIoT) refers to

the application of IoT to the speci�c industrial �elds. The characterizing

elements of IIoT are:

� Interconnection of sensors, processes, machines, environment and peo-

ple

� Huge data generation, with possibility of exchanging and processing

� Possibility of adopting, complementary to the existing industrial au-

tomation infrastructures, of innovative sensors to better characterize

real-time processes, materials, consumption

� Usage of data generated from the production machines, often consid-

ered not useful and discarded

� Exploitation of the Advanced Analytics and Machine Learning tech-

niques for real time processing of the vast amount of data generated

(Data Lake), with the purpose to extract valuable information

� Possibility of generating automatic feedback to production processes,

displaying the results of data analysis

Industrial IoT allows a better characterization of the production process,

giving rational support for management decisions and leading to reduction

of human interventions and wastes. Moreover, with the identi�cation of

predictive patterns on the evolution of the state of machines and processes, is

possible to avoid or reduce production block events, optimizing the planning

of maintenance operations. Finally, the possibility of a real-time production

feedback allows to a rapid identi�cation of production errors that brings

to increase and stabilize the quality of the outgoing product despite the

variability of the raw material.
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1 � Introduction

Food Digital Monitoring

Food Digital Monitoring (FDM) is one of Finpiemonte's a research & devel-

opment projects that aims to create a model of industrial food processing

control, based on IoT, open data and big data. Data related to chemical,

physical and microbiological parameters are collected throughout the food

production chain, then they are elaborated, allowing a detailed monitoring

over the productive process. The monitoring system obtained allows to de-

tect and correct anomalies very quickly, improving e�ciency and reducing

waste and rework. The ultimate goal of FDM project is to create a 'Smart

Industry' able to monitor in Near Real Time every critical phase of the

production process, improving security and economic and environmental

sustainability.

Figure 1.3: Data �ow

FDM project is coordinated by aizoOn Consulting, in collaboration with

Piedmont's food industries related to products of excellence, such as choco-

late, beer, oil, probiotics and food supplements. Data of production chain

are not available at the moment because project is under development, thus

most of the analysis will be performed over open data obtained by Bosch

production chain. Bosch datasets have been published on Kaggle web site,
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1 � Introduction

in occasion of a machine learning competition.

1.3 Bosch data collection

Bosch data collection, available at the link [5], contains a great number of

measurements generated by parts while they move through Bosch's produc-

tion lines. Each part is characterized by a quality control Response and a

unique Id. If the part passes the quality control, it will be characterized by

Response=0, while if it fails, it will be characterized by Response=1. The

goal is to predict which part will fail quality control and to understand the

cause of the failure.

The data collection is split in three datasets: Categorical, Numeric and

Date.

� Numeric: contains the values of all the numeric variables in the

dataset, included the value of Response

� Categorical: contains the values of all the categorical variables in

the dataset

� Date: contains a sort of time stamp that speci�es when the data of

categorical and numeric have been collected

Each �le contains a single row collecting data generated by a certain

part, indexed with an unique Id, and a large number of columns, character-

ized by a unique code. The code denotes a particular feature and depends on

the production Line, the Station on the Line and the feature number. Cat-

egorical and Numeric describe feature values and are coded using the same

convention: for example, a feature characterized by the code 'L0_S1_F31'

is the feature number 31, measured on Line 0, Section 1.

Date speci�es when values have been collected. Each column name ends

in a number that corresponds to the previous feature number: for example,

in the column labeled 'L0_S1_D32' in Date, we can �nd the timestamp of

the feature named 'L0_S1_F31', contained in Numeric or Categorical. It

9



1 � Introduction

must be observed that there isn't a two-way correspondence between the

columns in Date and the columns in Numeric and Categorical, in fact, some

variable hasn't a correspondent timestamp.

Numeric, Categorical and Date share only one common column, named

Id, containing numeric values sorted in growing order. Each value in Id is a

unique number that refers to a particular part. If I want to collect all data

related to a part, I have to join the three tables using Id as key.
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Chapter 2

Exploratory analysis

2.1 Pre-processing analysis

Before applying any kind of cleaning process, datasets need an introductory

analysis. The structure of each �le will be studied separately.

Pre-processing Numeric

The Numeric dataset, before any kind of cleaning process, will be called

PreProcNumeric. PreProcNumeric dataset contains all the values of the

numeric features and the column Response, which describes the error that

will be the target of the prediction. Figure 2.1 is a sample of a few columns

of the dataset.

Figure 2.1: Header of PreProcNumeric

In Figure 2.2 is shown the result obtained calculating the percentage of

not NaN values and Response=1 rows.
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2 � Exploratory analysis

Figure 2.2: Percentage of not NaN values and Response=1 rows in PreProc-
Numeric

In Figure 2.2, there are less than 20% of useful values, while the remain-

ing part is composed by NaN , i.e. 'Not a Number'. Because each Line

describes the passage of a particular part through the production lines,

we can imagine that a NaN in a particular columns means that the part

didn't passed through the area of the production line related to the feature

described in that column.

The errors, described by Response = 1, are only about 0.5% of the

total. Since positive responses (Response = 0) and negative responses

(Response = 1) are disproportionately distributed, to make a good pre-

diction of the errors, we will have to focus to get a very low false positive

rate.
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2 � Exploratory analysis

Pre-processing Categorical

The Categorical dataset, before any kind of cleaning process, will be called

PreProcCategorical. PreProcCategorical dataset contains all the values of

the categorical features. There are only a few not NaN values, in fact, if

we check a few columns of the header as done in PreProcNumeric, we only

�nd NaN values.

The row shown in Figure 2.3 is the �rst one also containing not NaN

values and it has a very big Id number.

Figure 2.3: First not null row in PreProcCategorical

Calculating the percentage of not NaN values, is possible to notice that

there are less than 3% of useful values, while the remaining part is composed

by NaN . Dropping useless rows and columns during the cleaning process

will help to increase this percentage.

13



2 � Exploratory analysis

Pre-processing Date

The Date dataset, before any kind of cleaning process, will be called Pre-

ProcDate. PreProcDate dataset contains all the timestamps, that describes

when data of Numeric and Categorical have been collected. In Figure 2.4

we can see the header.

Figure 2.4: Header of PreProcDate

As well as the other datasets, there are a lot of NaN and only less than

18% of useful values, as shown in Figure 2.5.

Figure 2.5: Percentage of not NaN values in PreProcDate

Timestamps are saved as numeric values, not in a date format as the

name could suggest. We can imagine that each value could represent the

time, in seconds, passed from the passage of the previous part through the

line.
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2 � Exploratory analysis

2.2 Data processing

After a brief analysis, datasets can be cleaned, in order to get them smaller

and more signi�cant. The following is a resume of each step of the cleaning

process.

Data splitting

Data sources are semi-structured �les in CSV format: each �le weights

more than 2Gb. To make them easier to be read and elaborated, each �le

has been split by production line. There are four lines, called 'L0', 'L1',

'L2', 'L3'. From now, each Line will be considered separately.

Data normalization

A variable is considered useful for the analysis if it assumes di�erent values in

di�erent rows, while a constant variable doesn't bring any information and

can be eliminated. PreProcNumeric and PreProcDate didn't contain any

useless variable, while 81 columns have been eliminated from PreProcCate-

gorical, which contained only NaN values and didn't have a correspondent

column in Date.

A row, characterized by a particular Id, is considered useless for a certain

Line if it contains only NaN values in all three tables PreProcNumeric,

PreProcCategorical and PreProcDate, except in the column Response, that

can assume only 0/1 values.

After a separate analysis for each Line, each useless row has been

deleted. In the end of the process, some thousand of row from each Line

have been eliminated. Only two rows with Response=1 have been deleted

from all four lines: comparing them with the thousands of rows with Re-

sponse=0 deleted, the loss of information can be considered insigni�cant.
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2 � Exploratory analysis

2.3 Post-processing analysis

After processing, datasets can be examined more in depth. Reading the

documentation, we can understand that each Line represent a di�erent pro-

duction line inside the Bosch factory. Each Line will be considered sepa-

rately, studying how the structure of each dataset changes from Line to Line

and then focusing on the relation among the three data sources. The goal

is to �nd for each Line the most useful features for the error prediction.

2.3.1 Line 0

After the cleaning process, each dataset contains 916029 rows related to

Line0, indexed by the common primary key Id. Each �le will be initially

studied separately, then will be studied how the three dataset are each other

related.

Line 0 Numeric

The dataset obtained processing PreProcNumeric and isolating informa-

tion related to Line 0, will be called L0Numeric. L0Numeric contains 169

columns. In Figure 2.6 is shown the result obtained calculating the percent-

age of not NaN values and Response=1 rows in this particular Line.

Figure 2.6: Percentage of not NaN values and Response=1 rows in
L0Numeric

The number of not NaN values has been slightly increased after the

cleaning process, but they are still very frequent. To visualize the distribu-

tion of NaN values over the dataset, has been used an heatmap: a di�erent

16



2 � Exploratory analysis

color is assigned for each numeric value, while the NaN values are left with-

out color. In Figure 2.7 is shown the result obtained plotting the �rst 100

rows.

Figure 2.7: Heatmap of the �rst 100 rows of L0Numeric

NaN values are not random distributed. In fact, features look to be

gathered in clusters within which, they have a similar behavior: or all they

are NaN, or all they assume a numerical value. Looking at the identi�cation

17



2 � Exploratory analysis

codes, we can understand that features with the same behavior belong to

the same Section. We can suppose a Section to be a particular machinery,

containing various sensors: each sensor is represented by a speci�c feature

in the dataset. This theory explains why features in the same section have

a common behavior: if a certain part passes through the machinery rep-

resented by a certain Section number, all the features in that Section will

assume numeric values, while if the part doesn't pass through that machin-

ery, all the features will assume NaN value. With this mind, we can study

the relation between Sections and Response.

A Section a�ects the value of Response only if the part passes through

the machinery it represents, i.e. only if its features assume not NaN values.

In order to �nd a correlation between the error and the activation of a

particular section, features have been grouped by Section (for example:

features 'L0_S0_F0' and 'L0_S0_F2' belong to the group 'S0'), then can

be de�ned an index, that will be called error rate of the Section Si:

err(Si) =
N1(Si)

N(Si)
(2.1)

Where N1(Si) indicates the number of rows where the Section Si has

not NaN values and Response=1, N(Si) indicates all the rows where the

Section Si has not NaN values.

The average error rate err of the dataset coincides with the percentage

of Response=1 described above. If err(Si) is bigger than the average, the

probability of Response=1 is higher when the Section Si is active (i.e. as-

sumes not NaN values), vice versa the probability is lower if the err(Si) is

lower than average. In Figure 2.8 has been calculated the err(Si) for each

Section in Line 0 and it has been compared with the average err = 0.00537

(red line).

There aren't Section with a particular importance, but we will have more

interesting results in the following Lines.

18



2 � Exploratory analysis

Figure 2.8: Error rate for each Section
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2 � Exploratory analysis

Line 0 Categorical

The dataset obtained processing PreProcCategorical and isolating informa-

tion related to Line 0, will be called L0Categorical. L0Categorical dataset

contains 294 columns. In Figure 2.9 is shown the percentage of not NaN

values in this particular Line.

Figure 2.9: Percentage of not NaN values in L0Categorical

There are really a few useful values. Since this dataset contains categori-

cal values, it is necessary to study how the categorical labels are distributed.

Di�erent features can assume the same label value. In Figure 2.10 is shown

the frequency of appearance for each label value, excluding NaN .

Figure 2.10: Labels with relative frequency

A few labels appear in the most of the cases, while the others appear

very rarely. All the labels with an appearance frequency lower than 2.5%

20



2 � Exploratory analysis

have been grouped in 'Other'. To calculate the error rate for each label,

has been used the same formula used for features in Numeric dataset:

err(Li) =
N1(Li)

N(Li)
(2.2)

Where N1(Li) indicates the number of rows where the label Li appears

and Response=1, while N(Li) indicates all the rows where label Li appears.

The result shown in Figure 2.11 is very di�erent from the one obtained

studying L0Numeric.

Figure 2.11: Error rate for each label

To explain the di�erence, we need to consider that the dataset contains
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2 � Exploratory analysis

only 0.02% of not NaN values. Since also Response = 1 appears very

rarely, we can suppose that the error_rate = 0 of the majority of the

labels is due to the fact that the simultaneous presence of two rare events

is very improbable. With this presupposition, we can see that some label

have interesting error rates, compared to the average of 0.53%:

� T98: err(T98) = 1.4%, almost three times more than the average,

but N(T98) = 142 (i.e. it compares only 142 times in all the dataset).

It's not very useful.

� T48: err(T48) = 1.2%, more than the double of the average and

N(T48) = 1054. It may be useful.

� T8: err(T8) = 0.9% and N(T8) = 2796. It has an error rate a bit

lower than T48, but it appears more frequently.

� T32: err(T32) = 0.7% and N(T32) = 2846. It appears with the same

frequency of T8, but it has a lower error rate.

� T1: err(T1) = 0.3%, about an half of the average and N(T1) =

240762. It is the label which appears with more frequency, it may be

an useful index.

In Figure 2.12 we can see the error rate of each Section, calculated using

(2.10).

Since each Section has a few rows with not NaN values, we need to

compare the results with the number of useful rows in the dataset, indicated

in Figure 2.13 by the column 'Samples'.

The most interesting Sections are:

� S9: err(S9) = 0.4%,a bit lower than the average and N(S9) = 496

� S4: err(S4) = 0.8%, higher that the average,but N(S9) = 123

� S2: err(S2) = 1.1%, more than the double of the average, but

N(S2) = 263
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2 � Exploratory analysis

Figure 2.12: Error rate for each Section

Figure 2.13: Error rate and appearance frequency for each Section

23



2 � Exploratory analysis

� S10: N(S10) = 503, is the section that appears more often, but

err(S10) = 0%, it looks a very strange coincidence

Line 0 Date

The dataset obtained processing PreProcDate and isolating information re-

lated to Line 0, will be called L0Date. L0Date dataset contains 184 columns.

In Figure 2.14 we can see the percentage of NaN values in this particular

Line.

Figure 2.14: Percentage of NaN values in L0Date

The percentage is coherent with the other two datasets. An heatmap

has been used to visualize data distribution. In Figure 2.15 is shown the

plot of the �rst 100 rows.

As already noticed in L0Numeric, there is a clusterization by Section.

We can also notice that each features in a Section has exactly the same

value and it means that they have been recorded exactly in the same time.

This fact supports the hypothesis that each Section contains the values of

the sensors of a certain machinery. We can also see that values of di�erent

Sections in the same row defer a little, and this can mean that the part

passes quite quickly from a machinery to the following. As example, in

Figure 2.16 are plotted all the not NaN values of a row.

They only di�er by some decimal point: while values in the same row are

very similar, values in di�erent rows have a great variability. In Figure 2.17

is shown the trend of the average value calculated row by row,over the �rst
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2 � Exploratory analysis

Figure 2.15: Heatmap of the �rst 100 rows of L0Date

100 Ids.

There is a great variance, that can be due to the di�erent elaboration

time for di�erent products.
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2 � Exploratory analysis

Figure 2.16: Plot of not NaN values of a row in L0Date

Figure 2.17: Plot of the average values of the �rst 100 rows of L0Date
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2 � Exploratory analysis

Heatmaps

L0Date dataset should give a numeric time value for each value recorded

in L0Numeric and L0Categorical, but dimensions suggest that a lot of data

are missing. L0Numeric contains 169 columns and L0Categorical contains

294 columns, hence L0Date should contain 169 + 294 = 463 columns, while

it only contains 184. In this section the three datasets will be compared

qualitatively, using heatmaps and studying the presence/absence of data.

L0Numeric vs L0Date

The purpose of this heatmap is to to check if each value in L0Numeric has

a correspondent timestamp in L0Date. Comparing L0Numeric and L0Date

datasets, is possible to �nd �ve possible situations, that are represented

with di�erent colors:

� Both �lled: both L0Numeric and L0Date cells contain not NaN values

(Green)

� L0Date=NaN, L0Numeric �lled: L0Numeric cell contains a numeric

value, while the corresponding cell in L0Date is NaN (Blue)

� L0Date not exists, L0Numeric �lled: L0Numeric cell contains a nu-

meric value, while the corresponding cell in L0Date doesn't exist (Yel-

low)

� L0Date �lled, L0Numeric=NaN: L0Numeric cell contains a NaN value,

while the corresponding cell in L0Date contains a not NaN value (Red)

� L0Numeric=Nan, L0Date=NaN/not exists: Both cells contains NaN

or L0Numeric contains NaN, while L0Date cell doesn't exists (No

color)

In Figure 2.18 is shown the result obtained plotting the �rst 1000 rows.
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2 � Exploratory analysis

Figure 2.18: L0Numeric vs L0Date heatmap

Beside the both NaN case, there are only two situations: "both �lled"

and "Numeric �lled and Date doesn't exist". In a situation of perfect in-

formation, we should only �nd the "both �lled" case, but as we can see,

not every feature in L0Numeric has a correspondent timestamp. This may

be due to the fact that recording a timestamp for each feature is wasteful,

since a lot of features are recorded in the same time or simply because a
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2 � Exploratory analysis

part of the instrumentation is old and it hasn't the possibility to record a

time value.
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2 � Exploratory analysis

L0Categorical vs L0Date

The purpose of this heatmap is to check if each value in L0Categorical

has a correspondent timestamp in L0Date. As seen before, comparing

L0Categorical to L0Date dataset, is possible to �nd �ve possible situations,

that are represented with di�erent colors:

� Both �lled: both L0Categorical and L0Date cells contain not NaN

values (Green)

� L0Date=NaN, L0Categorical �lled: L0Categorical cell contains a not

NaN value, while the corresponding cell in L0Date is NaN (Blue)

� L0Date not exists, L0Categorical �lled: L0Categorical cell contains a

not NaN value, while the corresponding cell in L0Date doesn't exist

(Yellow)

� L0Date �lled, L0Categorical=NaN: L0Categorical cell contains a NaN

value, while the corresponding cell in L0Date contains a not NaN value

(Red)

� L0Categorical=Nan, L0Date=NaN/not exists: Both cells contains

NaN or L0Categorical contains NaN, while L0Date cell doesn't ex-

ists (No color)

In Figure 2.19 is shown the result obtained plotting the �rst 1000 rows.

Beside the both NaN case, the situations "both �lled" and "Categorical

�lled and Date doesn't exist" appear very rarely, while the the case "Date

�lled and Categorical=NaN" appears in the most of the cases. This situa-

tion can be explained only supposing that categorical sensor can give NaN

as output. This means that in Categorical dataset we can �nd two di�erent

"kind of NaN":

� Case 1: NaN means "no data have been collected". In this case, the

corresponding value in Date is also "NaN
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2 � Exploratory analysis

Figure 2.19: L0Categorical vs L0Date heatmap

� Case 2: NaN means "data with NaN value has been collected". In

this case, the corresponding value in Date is not NaN

In a situation of perfect information, we could easily distinguish the two

di�erent kind of NaN by checking whether the corresponding value in Date

is NaN or not, but in this case, a part of the feature haven't a corresponding

column in Date, making a perfect discrimination impossible.

31



2 � Exploratory analysis

L0Date vs L0Numeric & L0Categorical

The purpose of this heatmap is to check if each value in L0Date is the

timestamp of a correspondent value in L0Numeric or L0Categorical. We

need remember that the three datasets only have Id as common column,

so each column of L0Date can refer only to one column in L0Numeric or

L0Categorical, but not to both of them. As seen before, comparing L0Date

to L0Numeric and L0Categorical datasets, is possible to �nd �ve possible

situations, that are represented with di�erent colors:

� Both �lled: L0Date and one of L0Numeric or L0Categorical cell con-

tain not NaN values (while the other doesn't exist) (Green)

� L0Numeric or L0Categorical=NaN, L0Date �lled: L0Date cell con-

tains a not NaN value, while one corresponding cell in L0Numeric or

L0Categorical is NaN (while the other doesn't exist) (Blue)

� Both L0Numeric and L0Categorical do not exist, L0Date �lled: L0Date

cell contains a not NaN value, while the corresponding cell in L0Numerical

and L0Categorical doesn't exist (Yellow)

� L0Numeric or L0Categorical �lled, L0Date=NaN: L0Date cell con-

tains a NaN value, while the corresponding cell in L0Numeric or

L0Categorical contain a not NaN value (Red)

� L0Date=Nan, L0Numeric and L0Categorical=NaN/not exist: L0Date

cell contains NaN, while L0Numeric and L0Categorical contain NaN

or don't exist (No color)

In Figure 2.20 is shown the result obtained plotting the �rst 1000 rows.

The result obtained is almost what we could expect looking at the

heatmaps before. The green columns are due to the result obtained in

"L0Numeric vs L0Date", while the blue ones are explained in "L0Categorical

vs L0Date". We can see that there are not red cells: it means that every

not NaN value in L0Numeric and L0Categorical has a correspondent not
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Figure 2.20: L0Date vs L0Numeric & L0Categorical heatmap

NaN timestamp in L0Date, if the related column exists. The only exception

we can see are some yellow cells that represent columns in L0Date without

any correspondence in L0Numeric or L0Categorical. At the moment can't

be �nd any good explanation for this phenomenon except that data incon-

sistency.
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Correlation test

The purpose of this analysis is to �nd any kind of correlation between

di�erent Sections. Since almost each Section has features in both L0Numeric

and L0Categorical, each dataset will be studied separately, then results will

be compared.

Given a and b two Sections, the index called confidence is de�ned as

follows:

conf(a, b) = P (a|b) = #{a, b}
#{a}

(2.3)

It de�nes the ratio between the times Sections a and b are active in

the same row and the times Section a is active. In particular, conf(a, b)

measures how much b ⇒ a namely, how much the presence of a implies

the presence of b. This index has values in [0,1] and is used for �nding

association rules between a and b: if conf(a, b) ∼ 1, then the presence of

a means that b has high probability to appear, while conf(a, b) ∼ 0 means

that the presence of a means that b has low probability to appear. We need

to observe that the index isn't symmetric, in fact conf(a, b) /= conf(b, a).

The characteristic of con�dence index is that it is in�uenced by relative

frequencies of the events a and b. For example, if #{a} = 1000, #{b} = 10

and #{a, b} = 10, we can see a strong relation between a and b, because b

happens if and only if happens a, then conf(b, a) = 1, while conf(a, b) =

0.01, so we can understand that b⇒ a, but a /⇒ b.

L0Numeric

In this preliminary analysis will be studied when each Section assumes

not NaN values, not studying the particular values assumed, but only con-

sidering the cases active/not active. The con�dence index (2.12) between

each Section is plotted using an heatmap in Figure 2.21.

There are couples of Sections with negative association (i.e. if a is active,

then b isn't active and vice versa), such as S14 and S15, S16 and S17 and
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Figure 2.21: Con�dence between Sections in L0Numeric

so on. We can suppose that these Sections could represent machinery that

work in parallel or machinery with mutually exclusive utility (i.e. paintings

of di�erent colors). Response has also been plotted, but the associations we

see aren't strong enough to be signi�cant.
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L0Categorical

In Figure 2.22, relation between Sections in L0Categorical is studied

using (2.12).

Figure 2.22: Con�dence between Sections in L0Categorical

The result is less signi�cant than the one obtained with L0Numeric,

since there is a greater number of NaN values. In particular, we can see

some Sections without values: this is due to the fact that some of the NaN

values have a correspondent not NaN timestamp, so the Sections can't be

eliminated, because the NaN we see are an output of the machinery, not an

'absence of information'.
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L0Date

The relation between Sections in L0Date is studied in Figure 2.23 using

(2.12).

Figure 2.23: Con�dence between Sections in L0Date

As expected, the result obtained con�rms what already noticed studying

L0Numeric.
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2.3.2 Line 1

After the cleaning process, each dataset contains 267273 rows related to

Line1, indexed by the common primary key Id. Each �le will be initially

studied separately, then will be studied how the three dataset are each other

related.

Line 1 Numeric

The dataset obtained processing PreProcNumeric and isolating informa-

tion related to Line 1, will be called L1Numeric. L1Numeric contains 514

columns. In Figure 2.24 is shown the result obtained calculating the per-

centage of not NaN values and Response=1 rows in this particular Line.

Figure 2.24: Percentage of not NaN values and Response=1 rows in
L1Numeric

The number of not NaN values is lower than L0Numeric, but Response=1

are slightly more frequent. To visualize the distribution of NaN values over

the dataset, has been used an heatmap: a di�erent color is assigned for each

numeric value, while the NaN values are left without color. In Figure 2.25

is shown the result obtained plotting the �rst 100 rows.

NaN values are not random distributed. As already noticed, features

look to be gathered in clusters within which, they have a similar behavior:

or all they are NaN, or all they assume a numerical value. Looking at

the identi�cation codes, we can understand that features with the same

behavior belong to the same Section but, di�erently from Line 0, in the

same Section is possible to �nd more groups of features. Since there are

only two big Sections in this Line, we can suppose a Section to be a very

big machinery, containing various working stations: since the machinery is
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Figure 2.25: Heatmap of the �rst 100 rows of L1Numeric

very big, parts doesn't pass through every working station, this means that

there are various groups of sensors with di�erent recording time. With this

mind, we can study the relation between Sections and Response.

A Section a�ects the value of Response only if the part passes through

the machinery it represents, i.e. only if its features assume not NaN values.
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In order to �nd a correlation between the error and the activation of a par-

ticular section, features have been grouped by Section, then can be de�ned

an index, that will be called error rate of the Section Si:

err(Si) =
N1(Si)

N(Si)
(2.4)

Where N1(Si) indicates the number of rows where the Section Si has

not NaN values and Response=1, N(Si) indicates all the rows where the

Section Si has not NaN values.

The average error rate err of the dataset coincides with the percentage

of Response=1 described above. If err(Si) is bigger than the average, the

probability of Response=1 is higher when the Section Si is active (i.e. as-

sumes not NaN values), vice versa the probability is lower if the err(Si) is

lower than average. In Figure 2.26 has been calculated the err(Si) for each

Section in Line 1 and it has been compared with the average err = 0.00725

(red line).

Figure 2.26: Error rate for each Section

There are only two big Sections, it is possible to notice that Section S25

has approximately half of the error of S24.
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Line 1 Categorical

The dataset obtained processing PreProcCategorical and isolating informa-

tion related to Line 1, will be called L1Categorical. L1Categorical dataset

contains 1146 columns. In Figure 2.27 is shown the percentage of not NaN

values in this particular Line.

Figure 2.27: Percentage of not NaN values in L1Categorical

There more useful values in this Line than in Line 0, however the per-

centage is very low. Since this dataset contains categorical values, it is

necessary to study how the categorical labels are distributed. Di�erent fea-

tures can assume the same label value. In Figure 2.28 is shown the frequency

of appearance for each label value, excluding NaN .

Figure 2.28: Labels with relative frequency
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Only 2 labels appear in the most of the cases, while the others appear

very rarely. All the labels with an appearance frequency lower than 1%

have been grouped in 'Other'. To calculate the error rate for each label,

has been used the same formula used for features in Numeric dataset:

err(Li) =
N1(Li)

N(Li)
(2.5)

Where N1(Li) indicates the number of rows where the label Li appears

and Response=1, while N(Li) indicates all the rows where label Li appears.

The result shown in Figure 2.29 is very di�erent from the one obtained

studying L1Numeric.

Figure 2.29: Error rate for each label

To explain the di�erence, we need to consider that the dataset contains
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only 2.47% of not NaN values. Since also Response = 1 appears very

rarely, we can suppose that the error_rate = 0 of the majority of the

labels is due to the fact that the simultaneous presence of two rare events

is very improbable. With this presupposition, we can see that some label

have interesting error rates, compared to the average of 0.72%:

� T24: err(T98) = 55%, very high, compared to the average, but

N(T24) = 380. It's particularly useful.

� T1372: err(T48) = 12.7%, more than 17 times the average and

N(T1372) = 1805. It is useful.

� T8389632: err(T8) = 14.8% and N(8389632) = 513. It has an error

rate a bit higher than T1372, but it appears less frequently.

In Figure 2.30 we can see the error rate of each Section, calculated using

(2.10).

Figure 2.30: Error rate for each Section

Since there are only 2 Sections in this Line, the result is very similar to

the one obtained studying L1Numeric.
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Line 1 Date

The dataset obtained processing PreProcDate and isolating information re-

lated to Line 1, will be called L1Date. L1Date dataset contains 621 columns.

In Figure 2.31 we can see the percentage of NaN values in this particular

Line.

Figure 2.31: Percentage of NaN values in L1Date

The percentage is coherent with the other two datasets. An heatmap

has been used to visualize data distribution. In Figure 2.32 is shown the

plot of the �rst 100 rows.

As already noticed in L1Numeric, there is a clusterization by Section.

We can also notice that each features in a Section has exactly the same

value and it means that they have been recorded exactly in the same time.

This fact supports the hypothesis that each Section contains the values of

the sensors of a certain machinery. We can also see that values of di�erent

Sections in the same row defer a little, and this can mean that the part

passes quite quickly from a machinery to the following. In Figure 2.33 is

shown the trend of the average value calculated row by row,over the �rst

100 Ids.

There is a great variance, that can be due to the di�erent elaboration

time for di�erent products.
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Figure 2.32: Heatmap of the �rst 100 rows of L1Date

Figure 2.33: Plot of the average values of the �rst 100 rows of L1Date
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Heatmaps

L1Date dataset should give a numeric time value for each value recorded in

L1Numeric and L1Categorical, but dimensions suggest that a lot of data are

missing. L1Numeric contains 514 columns and L1Categorical contains 621

columns, hence L1Date should contain 514 + 1146 = 1660 columns, while

it only contains 631. In this section the three datasets will be compared

qualitatively, using heatmaps and studying the presence/absence of data.

L1Numeric vs L1Date

The purpose of this heatmap is to to check if each value in L1Numeric has

a correspondent timestamp in L1Date. Comparing L1Numeric and L1Date

datasets, is possible to �nd �ve possible situations, that are represented

with di�erent colors:

� Both �lled: both L1Numeric and L1Date cells contain not NaN values

(Green)

� L1Date=NaN, L1Numeric �lled: L1Numeric cell contains a numeric

value, while the corresponding cell in L1Date is NaN (Blue)

� L1Date not exists, L1Numeric �lled: L1Numeric cell contains a nu-

meric value, while the corresponding cell in L1Date doesn't exist (Yel-

low)

� L1Date �lled, L1Numeric=NaN: L1Numeric cell contains a NaN value,

while the corresponding cell in L1Date contains a not NaN value (Red)

� L1Numeric=Nan, L1Date=NaN/not exists: Both cells contains NaN

or L1Numeric contains NaN, while L1Date cell doesn't exists (No

color)

In Figure 2.34 is shown the result obtained plotting the �rst 1000 rows.

Beside the both NaN case, that is more frequent in this Line than in Line

0, there are only two situations: "both �lled" and "Numeric �lled and Date
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Figure 2.34: L1Numeric vs L1Date heatmap

doesn't exist". In a situation of perfect information, we should only �nd

the "both �lled" case, but as we can see, not every feature in L1Numeric

has a correspondent timestamp. This may be due to the fact that recording

a timestamp for each feature is wasteful, since a lot of features are recorded

in the same time or simply because a part of the instrumentation is old and

it hasn't the possibility to record a time value.
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L1Categorical vs L1Date

The purpose of this heatmap is to check if each value in L1Categorical

has a correspondent timestamp in L1Date. As seen before, comparing

L1Categorical to L1Date dataset, is possible to �nd �ve possible situations,

that are represented with di�erent colors:

� Both �lled: both L1Categorical and L1Date cells contain not NaN

values (Green)

� L1Date=NaN, L1Categorical �lled: L1Categorical cell contains a not

NaN value, while the corresponding cell in L1Date is NaN (Blue)

� L1Date not exists, L1Categorical �lled: L1Categorical cell contains a

not NaN value, while the corresponding cell in L1Date doesn't exist

(Yellow)

� L1Date �lled, L1Categorical=NaN: L1Categorical cell contains a NaN

value, while the corresponding cell in L1Date contains a not NaN value

(Red)

� L1Categorical=Nan, L1Date=NaN/not exists: Both cells contains

NaN or L1Categorical contains NaN, while L1Date cell doesn't ex-

ists (No color)

In Figure 2.35 is shown the result obtained plotting the �rst 1000 rows.

Beside the both NaN case, the situations "both �lled" and "Categorical

�lled and Date doesn't exist" appear very rarely, while the the case "Date

�lled and Categorical=NaN" appears in the most of the cases. This situa-

tion can be explained only supposing that categorical sensor can give NaN

as output. This means that in Categorical dataset we can �nd two di�erent

"kind of NaN":

� Case 1: NaN means "no data have been collected". In this case, the

corresponding value in Date is also "NaN
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Figure 2.35: L1Categorical vs L1Date heatmap

� Case 2: NaN means "data with NaN value has been collected". In

this case, the corresponding value in Date is not NaN

In a situation of perfect information, we could easily distinguish the two

di�erent kind of NaN by checking whether the corresponding value in Date

is NaN or not, but in this case, a part of the feature haven't a corresponding

column in Date, making a perfect discrimination impossible.
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L1Date vs L1Numeric & L1Categorical

The purpose of this heatmap is to check if each value in L1Date is the

timestamp of a correspondent value in L1Numeric or L1Categorical. We

need remember that the three datasets only have Id as common column,

so each column of L1Date can refer only to one column in L1Numeric or

L1Categorical, but not to both of them. As seen before, comparing L1Date

to L1Numeric and L1Categorical datasets, is possible to �nd �ve possible

situations, that are represented with di�erent colors:

� Both �lled: L1Date and one of L1Numeric or L1Categorical cell con-

tain not NaN values (while the other doesn't exist) (Green)

� L1Numeric or L1Categorical=NaN, L1Date �lled: L1Date cell con-

tains a not NaN value, while one corresponding cell in L1Numeric or

L1Categorical is NaN (while the other doesn't exist) (Blue)

� Both L1Numeric and L1Categorical do not exist, L1Date �lled: L1Date

cell contains a not NaN value, while the corresponding cell in L1Numerical

and L1Categorical doesn't exist (Yellow)

� L1Numeric or L1Categorical �lled, L1Date=NaN: L1Date cell con-

tains a NaN value, while the corresponding cell in L1Numeric or

L1Categorical contain a not NaN value (Red)

� L1Date=Nan, L1Numeric and L1Categorical=NaN/not exist: L1Date

cell contains NaN, while L1Numeric and L1Categorical contain NaN

or don't exist (No color)

In Figure 2.36 is shown the result obtained plotting the �rst 1000 rows.

The result obtained is almost what we could expect looking at the

heatmaps before. The green columns are mainly due to the result ob-

tained in "L1Numeric vs L1Date", while the blue ones are explained in

"L1Categorical vs L1Date". We can see that there are not red cells: it

means that every not NaN value in L1Numeric and L1Categorical has a
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Figure 2.36: L1Date vs L1Numeric & L1Categorical heatmap

correspondent not NaN timestamp in L1Date, if the related column exists.

The only exception we can see are some yellow cells that represent columns

in L1Date without any correspondence in L1Numeric or L1Categorical. At

the moment can't be �nd any good explanation for this phenomenon except

that data inconsistency.
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Correlation test

The purpose of this analysis is to �nd any kind of correlation between

di�erent Sections. Since almost each Section has features in both L1Numeric

and L1Categorical, each dataset will be studied separately, then results will

be compared.

Given a and b two Sections, the index called confidence is de�ned as

follows:

conf(a, b) = P (a|b) = #{a, b}
#{a}

(2.6)

It de�nes the ratio between the times Sections a and b are active in

the same row and the times Section a is active. In particular, conf(a, b)

measures how much b ⇒ a namely, how much the presence of a implies

the presence of b. This index has values in [0,1] and is used for �nding

association rules between a and b: if conf(a, b) ∼ 1, then the presence of

a means that b has high probability to appear, while conf(a, b) ∼ 0 means

that the presence of a means that b has low probability to appear. We need

to observe that the index isn't symmetric, in fact conf(a, b) /= conf(b, a).

The characteristic of con�dence index is that it is in�uenced by relative

frequencies of the events a and b. For example, if #{a} = 1000, #{b} = 10

and #{a, b} = 10, we can see a strong relation between a and b, because b

happens if and only if happens a, then conf(b, a) = 1, while conf(a, b) =

0.01, so we can understand that b⇒ a, but a /⇒ b.

Since Line 1 contains only two Sections, studying correlation for each

dataset is unnecessary, because the result obtained is always the same.

In this preliminary analysis will be studied when each Section assumes

not NaN values, not studying the particular values assumed, but only con-

sidering the cases active/not active. The con�dence index (2.12) between

each Section is plotted using an heatmap in Figure 2.37.

The two Sections have a strong negative correlation, thus if a part passes

through one of the Sections, the probability of passing also through the other

is very low.
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Figure 2.37: Con�dence between Sections

There are only two sections, then studying correlation of L1Categorical

and L1Numeric dataset would give exactly the same results.
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2.3.3 Line 2

After the cleaning process, each dataset contains 357019 rows related to

Line2, indexed by the common primary key Id. Each �le will be initially

studied separately, then will be studied how the three dataset are each other

related.

Line 2 Numeric

The dataset obtained processing PreProcNumeric and isolating information

related to Line 2, will be called L2Numeric. L2Numeric contains 43 columns.

In Figure 2.38 is shown the result obtained calculating the percentage of not

NaN values and Response=1 rows in this particular Line.

Figure 2.38: Percentage of not NaN values and Response=1 rows in
L2Numeric

The number of not NaN values is slightly lower than than in the other

lines, but they are still very frequent. To visualize the distribution of NaN

values over the dataset, has been used an heatmap: a di�erent color is

assigned for each numeric value, while the NaN values are left without color.

In Figure 2.39 is shown the result obtained plotting the �rst 100 rows.

NaN values are not random distributed. In fact, features look to be

gathered in clusters within which, they have a similar behavior: or all they

are NaN, or all they assume a numerical value. Looking at the identi�cation

codes, we can understand that features with the same behavior belong to

the same Section. We can suppose a Section to be a particular machinery,

containing various sensors: each sensor is represented by a speci�c feature

in the dataset. This theory explains why features in the same section have
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Figure 2.39: Heatmap of the �rst 100 rows of L2Numeric

a common behavior: if a certain part passes through the machinery rep-

resented by a certain Section number, all the features in that Section will

assume numeric values, while if the part doesn't pass through that machin-

ery, all the features will assume NaN value. With this mind, we can study

the relation between Sections and Response.
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This dataset contains three di�erent sections, where the �rst one con-

tains only a little percentage of NaN values, while the last one is almost

completely �lled of NaN values.

A Section a�ects the value of Response only if the part passes through

the machinery it represents, i.e. only if its features assume not NaN values.

In order to �nd a correlation between the error and the activation of a par-

ticular section, features have been grouped by Section, then can be de�ned

an index, that will be called error rate of the Section Si:

err(Si) =
N1(Si)

N(Si)
(2.7)

Where N1(Si) indicates the number of rows where the Section Si has

not NaN values and Response=1, N(Si) indicates all the rows where the

Section Si has not NaN values.

The average error rate err of the dataset coincides with the percentage

of Response=1 described above. If err(Si) is bigger than the average, the

probability of Response=1 is higher when the Section Si is active (i.e. as-

sumes not NaN values), vice versa the probability is lower if the err(Si) is

lower than average. In Figure 2.40 has been calculated the err(Si) for each

Section in Line 2 and it has been compared with the average err = 0.00721

(red line).

Figure 2.40: Error rate for each Section
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The Section S26 contains only a few not null values, as seen in Fig-

ure 2.39, but it has the higher error rate. This fact can mean that Section

S26 represent an old machinery, that processes part in a slow and ine�cient

way.
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Line 2 Categorical

The dataset obtained processing PreProcCategorical and isolating informa-

tion related to Line 2, will be called L2Categorical. L2Categorical dataset

contains 159 columns. In Figure 2.41 is shown the percentage of not NaN

values in this particular Line.

Figure 2.41: Percentage of not NaN values in L2Categorical

There percentage of useful values is particularly high respect to the

others categorical datasets. Since this dataset contains categorical values,

it is necessary to study how the categorical labels are distributed. Di�erent

features can assume the same label value. In Figure 2.56 is shown the

frequency of appearance for each label value, excluding NaN .

Figure 2.42: Labels with relative frequency

There are only three labels and only one appears in more than 96% of
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the cases. All the labels with a low appearance frequency have been grouped

in 'Other'. To calculate the error rate for each label, has been used the

same formula used for features in Numeric dataset:

err(Li) =
N1(Li)

N(Li)
(2.8)

Where N1(Li) indicates the number of rows where the label Li appears

and Response=1, while N(Li) indicates all the rows where label Li appears.

The result shown in Figure 2.43 is very di�erent from the one obtained

studying L2Numeric.

Figure 2.43: Error rate for each label

To explain the di�erence, we need to consider that the dataset contains

only a little percentage of not NaN values related to label T2. Since also

Response = 1 appears very rarely, we can suppose that the error_rate = 0

of T2 is due to the fact that the simultaneous presence of two rare events is

very improbable. With this presupposition, we can see that labels haven't
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particular error rates.

In Figure 2.44 we can see the error rate of each Section, calculated using

(2.10).

Figure 2.44: Error rate for each Section

These Sections have a very regular behavior, there are not particular

results to analyze.
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Line 2 Date

The dataset obtained processing PreProcDate and isolating information re-

lated to Line 2, will be called L2Date. L2Date dataset contains 78 columns.

In Figure 2.45 we can see the percentage of NaN values in this particular

Line.

Figure 2.45: Percentage of NaN values in L0Date

The percentage is coherent with the other two datasets. An heatmap

has been used to visualize data distribution. In Figure 2.46 is shown the

plot of the �rst 100 rows.

As already noticed in L2Numeric, there is a clusterization by Section.

We can also notice that each features in a Section has exactly the same

value and it means that they have been recorded exactly in the same time.

This fact supports the hypothesis that each Section contains the values of

the sensors of a certain machinery. We can also see that values of di�erent

Sections in the same row defer a little, and this can mean that the part

passes quite quickly from a machinery to the following. In Figure 2.47 is

shown the trend of the average value calculated row by row,over the �rst

100 Ids.

There is a great variance, that can be due to the di�erent elaboration

time for di�erent products.
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Figure 2.46: Heatmap of the �rst 100 rows of L2Date

Figure 2.47: Plot of the average values of the �rst 100 rows of L2Date
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Heatmaps

L2Date dataset should give a numeric time value for each value recorded

in L2Numeric and L2Categorical, but dimensions suggest that a lot of data

are missing. L2Numeric contains 43 columns and L2Categorical contains

159 columns, hence L2Date should contain 43 + 159 = 202 columns, while

it only contains 78. In this section the three datasets will be compared

qualitatively, using heatmaps and studying the presence/absence of data.

L2Numeric vs L2Date

The purpose of this heatmap is to to check if each value in L2Numeric has

a correspondent timestamp in L2Date. Comparing L2Numeric and L2Date

datasets, is possible to �nd �ve possible situations, that are represented

with di�erent colors:

� Both �lled: both L2Numeric and L2Date cells contain not NaN values

(Green)

� L2Date=NaN, L2Numeric �lled: L2Numeric cell contains a numeric

value, while the corresponding cell in L2Date is NaN (Blue)

� L2Date not exists, L2Numeric �lled: L2Numeric cell contains a nu-

meric value, while the corresponding cell in L2Date doesn't exist (Yel-

low)

� L2Date �lled, L2Numeric=NaN: L2Numeric cell contains a NaN value,

while the corresponding cell in L2Date contains a not NaN value (Red)

� L2Numeric=Nan, L2Date=NaN/not exists: Both cells contains NaN

or L2Numeric contains NaN, while L2Date cell doesn't exists (No

color)

In Figure 2.48 is shown the result obtained plotting the �rst 1000 rows.

Beside the both NaN case, there is only the situation "both �lled". This

is a situation of perfect information, were every feature in L2Numeric has
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Figure 2.48: L2Numeric vs L2Date heatmap

a correspondent timestamp. Since L2Date has less columns than expected,

this means that all missing columns are related to L"Categorical
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L2Categorical vs L2Date

The purpose of this heatmap is to check if each value in L2Categorical

has a correspondent timestamp in L2Date. As seen before, comparing

L2Categorical to L2Date dataset, is possible to �nd �ve possible situations,

that are represented with di�erent colors:

� Both �lled: both L2Categorical and L2Date cells contain not NaN

values (Green)

� L2Date=NaN, L2Categorical �lled: L2Categorical cell contains a not

NaN value, while the corresponding cell in L2Date is NaN (Blue)

� L2Date not exists, L2Categorical �lled: L2Categorical cell contains a

not NaN value, while the corresponding cell in L2Date doesn't exist

(Yellow)

� L2Date �lled, L2Categorical=NaN: L2Categorical cell contains a NaN

value, while the corresponding cell in L2Date contains a not NaN value

(Red)

� L2Categorical=Nan, L2Date=NaN/not exists: Both cells contains

NaN or L2Categorical contains NaN, while L2Date cell doesn't ex-

ists (No color)

In Figure 2.49 is shown the result obtained plotting the �rst 1000 rows.

Beside the both NaN case, the situation "both �lled" appears very rarely,

while the the case "Date �lled and Categorical=NaN" appears in the most

of the cases. This situation can be explained only supposing that categorical

sensor can give NaN as output. This means that in Categorical dataset we

can �nd two di�erent "kind of NaN":

� Case 1: NaN means "no data have been collected". In this case, the

corresponding value in Date is also "NaN
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Figure 2.49: L2Categorical vs L2Date heatmap

� Case 2: NaN means "data with NaN value has been collected". In

this case, the corresponding value in Date is not NaN

In a situation of perfect information, we could easily distinguish the two

di�erent kind of NaN by checking whether the corresponding value in Date

is NaN or not, but in this case, a part of the feature haven't a corresponding

column in Date, making a perfect discrimination impossible.

66



2 � Exploratory analysis

L2Date vs L2Numeric & L2Categorical

The purpose of this heatmap is to check if each value in L2Date is the

timestamp of a correspondent value in L2Numeric or L2Categorical. We

need remember that the three datasets only have Id as common column,

so each column of L2Date can refer only to one column in L2Numeric or

L2Categorical, but not to both of them. As seen before, comparing L2Date

to L2Numeric and L2Categorical datasets, we can �nd �ve possible situa-

tions, that are represented with di�erent colors:

� Both �lled: L2Date and one of L2Numeric or L2Categorical cell con-

tain not NaN values (while the other doesn't exist) (Green)

� L2Numeric or L2Categorical=NaN, L2Date �lled: L2Date cell con-

tains a not NaN value, while one corresponding cell in L2Numeric or

L2Categorical is NaN (while the other doesn't exist) (Blue)

� Both L2Numeric and L2Categorical do not exist, L2Date �lled: L2Date

cell contains a not NaN value, while the corresponding cell in L2Numerical

and L2Categorical doesn't exist (Yellow)

� L2Numeric or L2Categorical �lled, L2Date=NaN: L2Date cell con-

tains a NaN value, while the corresponding cell in L2Numeric or

L2Categorical contain a not NaN value (Red)

� L2Date=Nan, L2Numeric and L2Categorical=NaN/not exist: L2Date

cell contains NaN, while L2Numeric and L2Categorical contain NaN

or don't exist (No color)

In Figure 2.50 is shown the result obtained plotting the �rst 1000 rows.

Green columns are due to the result obtained in "L2Numeric vs L2Date",

while the blue ones are explained in "L2Categorical vs L2Date". We can see

that there are not red cells: it means that every not NaN value in L2Numeric

and L2Categorical has a correspondent not NaN timestamp in L2Date, if

the related column exists.
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Figure 2.50: L2Date vs L2Numeric & L2Categorical heatmap

Correlation test

The purpose of this analysis is to �nd any kind of correlation between

di�erent Sections. Since almost each Section has features in both L2Numeric

and L2Categorical, each dataset will be studied separately, then results will

be compared.

Given a and b two Sections, the index called confidence is de�ned as
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follows:

conf(a, b) = P (a|b) = #{a, b}
#{a}

(2.9)

It de�nes the ratio between the times Sections a and b are active in

the same row and the times Section a is active. In particular, conf(a, b)

measures how much b ⇒ a namely, how much the presence of a implies

the presence of b. This index has values in [0,1] and is used for �nding

association rules between a and b: if conf(a, b) ∼ 1, then the presence of

a means that b has high probability to appear, while conf(a, b) ∼ 0 means

that the presence of a means that b has low probability to appear. We need

to observe that the index isn't symmetric, in fact conf(a, b) /= conf(b, a).

The characteristic of con�dence index is that it is in�uenced by relative

frequencies of the events a and b. For example, if #{a} = 1000, #{b} = 10

and #{a, b} = 10, we can see a strong relation between a and b, because b

happens if and only if happens a, then conf(b, a) = 1, while conf(a, b) =

0.01, so we can understand that b⇒ a, but a /⇒ b.

Since Line 2 contains only three Sections, studying correlation for each

dataset is unnecessary, because the result obtained is always the same.

Figure 2.51: Con�dence between Sections in L2Numeric

In this preliminary analysis will be studied when each Section assumes
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not NaN values, not studying the particular values assumed, but only con-

sidering the cases active/not active.

The con�dence index (2.12) between each Section is plotted using an

heatmap in Figure 2.51. The three Sections show a strong negative corre-

lation. We can suppose that these Sections could represent machinery that

work in parallel or machinery with mutually exclusive utility (i.e. paintings

of di�erent colors). There are only three sections, thus studying correla-

tion of L2Categorical and L2Numeric dataset would give exactly the same

results.
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2.3.4 Line 3

After the cleaning process, each dataset contains 1183158 rows related to

Line3, indexed by the common primary key Id. Each �le will be initially

studied separately, then will be studied how the three dataset are each other

related.

Line 3 Numeric

The dataset obtained processing PreProcNumeric and isolating informa-

tion related to Line 3, will be called L3Numeric. L3Numeric contains 246

columns. In Figure 2.52 is shown the result obtained calculating the per-

centage of not NaN values and Response=1 rows in this particular Line.

Figure 2.52: Percentage of not NaN values and Response=1 rows in
L3Numeric

This Line contains the highest percentage of not NaN values. To vi-

sualize the distribution of NaN values over the dataset, has been used an

heatmap: a di�erent color is assigned for each numeric value, while the NaN

values are left without color. In Figure 2.53 is shown the result obtained

plotting the �rst 100 rows.

Not null data are more densely distributed, compared to the other lines

and NaN values are not random distributed. In fact, features look to be

gathered in clusters within which, they have a similar behavior: or all they

are NaN, or all they assume a numerical value. Looking at the identi�cation

codes, we can understand that features with the same behavior belong to

the same Section. We can suppose a Section to be a particular machinery,

containing various sensors: each sensor is represented by a speci�c feature
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Figure 2.53: Heatmap of the �rst 100 rows of L3Numeric

in the dataset. This theory explains why features in the same section have

a common behavior: if a certain part passes through the machinery rep-

resented by a certain Section number, all the features in that Section will

assume numeric values, while if the part doesn't pass through that machin-

ery, all the features will assume NaN value. With this mind, we can study

the relation between Sections and Response.
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A Section a�ects the value of Response only if the part passes through

the machinery it represents, i.e. only if its features assume not NaN values.

In order to �nd a correlation between the error and the activation of a par-

ticular section, features have been grouped by Section, then can be de�ned

an index, that will be called error rate of the Section Si:

err(Si) =
N1(Si)

N(Si)
(2.10)

Where N1(Si) indicates the number of rows where the Section Si has

not NaN values and Response=1, N(Si) indicates all the rows where the

Section Si has not NaN values.

The average error rate err of the dataset coincides with the percentage

of Response=1 described above. If err(Si) is bigger than the average, the

probability of Response=1 is higher when the Section Si is active (i.e. as-

sumes not NaN values), vice versa the probability is lower if the err(Si) is

lower than average. In Figure 2.54 has been calculated the err(Si) for each

Section in Line 3 and it has been compared with the average err = 0.00581

(red line).

Figure 2.54: Error rate for each Section

It is easy to notice that Section 32 has a really high error rate. This great
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error can be explained assuming that this Section describes a machinery

dedicated to rework damaged parts or to perform a particularly delicate

operation.
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Line 3 Categorical

The dataset obtained processing PreProcCategorical and isolating informa-

tion related to Line 3, will be called L3Categorical. L3Categorical dataset

contains 418 columns. In Figure 2.55 is shown the percentage of not NaN

values in this particular Line.

Figure 2.55: Percentage of not NaN values in L3Categorical

The percentage of useful values is not so low, compared to the other

Lines. Since this dataset contains categorical values, it is necessary to study

how the categorical labels are distributed. Di�erent features can assume the

same label value. In Figure 2.56 is shown the frequency of appearance for

each label value, excluding NaN .

Figure 2.56: Labels with relative frequency

There are 35 di�erent labels, but only one appears in the most of the

cases, while the others appear very rarely. To calculate the error rate for
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each label, has been used the same formula used for features in Numeric

dataset:

err(Li) =
N1(Li)

N(Li)
(2.11)

Where N1(Li) indicates the number of rows where the label Li appears

and Response=1, while N(Li) indicates all the rows where label Li appears.

The result shown in Figure 2.57 is very di�erent from the one obtained

studying L3Numeric.

Figure 2.57: Error rate for each label

To explain the di�erence, we need to consider that the dataset contains

only a little percentage of not NaN values. Since also Response = 1 appears

very rarely, we can suppose that the error_rate = 0 of the majority of the
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labels is due to the fact that the simultaneous presence of two rare events

is very improbable. With this presupposition, we can see that some label

have interesting error rates, compared to the average of 0.58%:

� T514: err(T514) = 33%, it is the highest error rate ever found, but

N(T514) = 9 (i.e. it compares only 9 times in all the dataset). It's

not very useful.

� T48: err(T48) = 6%, ten times the average and N(T48) = 556. It

may be useful.

� T4: err(T4) = 23% and N(T4) = 775. It has an error rate a bit lower

than T514, but it appears more frequently.

� T2: err(T2) = 16% and N(T2) = 4831. It appears quite frequently,

it is very useful.

� T16: err(T16) = 5%, about an half of the average and N(T16) =

3800. It appears less frequently than T2 and it has a smaller error

rate, but it may be useful.

In Figure 2.58 we can see the error rate of each Section, calculated using

(2.10).

Since each Section has a few rows with not NaN values, we need to

compare the results with the number of useful rows in the dataset, indicated

in Figure 2.59 by the column 'Samples'.

The most interesting Sections are:

� S49: err(S49) = 16%, but it appears very rarely, N(S49) = 43

� S38: err(S38) = 33%, very high, but N(S38) = 3

� S35: err(S35) = 16%, but N(S2) = 61

� S32: N(S32) = 21588, is the section that appears more often and

err(S32) = 5%, ten time the average, it probably is the most useful
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Figure 2.58: Error rate for each Section

Figure 2.59: Error rate and useful rows for each Section
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Line 3 Date

The dataset obtained processing PreProcDate and isolating information re-

lated to Line 3, will be called L3Date. L3Date dataset contains 273 columns.

In Figure 2.60 is shown the percentage of NaN values in this particular Line.

Figure 2.60: Percentage of NaN values in L3Date

The percentage is coherent with the other two datasets. An heatmap

has been used to visualize data distribution. In Figure 2.61 is shown the

plot of the �rst 100 rows.
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Figure 2.61: Heatmap of the �rst 100 rows of L3Date
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As already noticed in L3Numeric, there is a clusterization by Section. It

is also possible to notice that each features in a Section has exactly the same

value and it means that they have been recorded exactly in the same time.

This fact supports the hypothesis that each Section contains the values of

the sensors of a certain machinery. We can also see that values of di�erent

Sections in the same row defer a little, and this can mean that the part

passes quite quickly from a machinery to the following. In Figure 2.62 is

shown the trend of the average value calculated row by row,over the �rst

100 Ids.

Figure 2.62: Plot of the average values of the �rst 100 rows of L3Date

There is a great variance, that can be due to the di�erent elaboration

time for di�erent products.
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Heatmaps

L3Date dataset should give a numeric time value for each value recorded

in L3Numeric and L3Categorical, but dimensions suggest that a lot of data

are missing. L3Numeric contains 246 columns and L3Categorical contains

418 columns, hence L3Date should contain 246 + 418 = 664 columns, while

it only contains 273. In this section the three datasets will be compared

qualitatively, using heatmaps and studying the presence/absence of data.

L3Numeric vs L3Date

The purpose of this heatmap is to to check if each value in L3Numeric has

a correspondent timestamp in L3Date. Comparing L3Numeric and L3Date

datasets, is possible to �nd �ve possible situations, that are represented

with di�erent colors:

� Both �lled: both L3Numeric and L3Date cells contain not NaN values

(Green)

� L3Date=NaN, L3Numeric �lled: L3Numeric cell contains a numeric

value, while the corresponding cell in L3Date is NaN (Blue)

� L3Date not exists, L3Numeric �lled: L3Numeric cell contains a nu-

meric value, while the corresponding cell in L3Date doesn't exist (Yel-

low)

� L3Date �lled, L3Numeric=NaN: L3Numeric cell contains a NaN value,

while the corresponding cell in L3Date contains a not NaN value (Red)

� L3Numeric=Nan, L3Date=NaN/not exists: Both cells contains NaN

or L3Numeric contains NaN, while L3Date cell doesn't exists (No

color)

In Figure 2.63 is shown the result obtained plotting the �rst 1000 rows.
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Figure 2.63: L3Numeric vs L3Date heatmap

Beside the both NaN case, there are only two situations: "both �lled"

and "Numeric �lled and Date doesn't exist". In a situation of perfect in-

formation, we should only �nd the "both �lled" case, but as we can see,

not every feature in L3Numeric has a correspondent timestamp. This may

be due to the fact that recording a timestamp for each feature is wasteful,

since a lot of features are recorded in the same time or simply because a
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part of the instrumentation is old and it hasn't the possibility to record a

time value.
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L3Categorical vs L3Date

The purpose of this heatmap is to check if each value in L3Categorical

has a correspondent timestamp in L3Date. As seen before, comparing

L3Categorical to L3Date dataset, is possible to �nd �ve possible situations,

that are represented with di�erent colors:

� Both �lled: both L3Categorical and L3Date cells contain not NaN

values (Green)

� L3Date=NaN, L3Categorical �lled: L3Categorical cell contains a not

NaN value, while the corresponding cell in L3Date is NaN (Blue)

� L3Date not exists, L3Categorical �lled: L3Categorical cell contains a

not NaN value, while the corresponding cell in L3Date doesn't exist

(Yellow)

� L3Date �lled, L3Categorical=NaN: L3Categorical cell contains a NaN

value, while the corresponding cell in L3Date contains a not NaN value

(Red)

� L3Categorical=Nan, L3Date=NaN/not exists: Both cells contains

NaN or L3Categorical contains NaN, while L3Date cell doesn't ex-

ists (No color)

In Figure 2.64 is shown the result obtained plotting the �rst 1000 rows.

Beside the both NaN case, the situations "both �lled" and "Categorical

�lled and Date doesn't exist" appear very rarely, while the the case "Date

�lled and Categorical=NaN" appears in the most of the cases. This situa-

tion can be explained only supposing that categorical sensor can give NaN

as output. This means that in Categorical dataset we can �nd two di�erent

"kind of NaN":

� Case 1: NaN means "no data have been collected". In this case, the

corresponding value in L3Date is also "NaN
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Figure 2.64: L3Categorical vs L3Date heatmap

� Case 2: NaN means "data with NaN value has been collected". In

this case, the corresponding value in L3Date is not NaN

In a situation of perfect information, we could easily distinguish the two

di�erent kind of NaN by checking whether the corresponding value in Date

is NaN or not, but in this case, a part of the feature haven't a corresponding

column in Date, making a perfect discrimination impossible.
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L3Date vs L3Numeric & L3Categorical

The purpose of this heatmap is to check if each value in L3Date is the

timestamp of a correspondent value in L3Numeric or L3Categorical. We

need remember that the three datasets only have Id as common column,

so each column of L3Date can refer only to one column in L3Numeric or

L3Categorical, but not to both of them. As seen before, comparing L3Date

to L3Numeric and L3Categorical datasets, is possible to �nd �ve possible

situations, that are represented with di�erent colors:

� Both �lled: L3Date and one of L3Numeric or L3Categorical cell con-

tain not NaN values (while the other doesn't exist) (Green)

� L3Numeric or L3Categorical=NaN, L3Date �lled: L3Date cell con-

tains a not NaN value, while one corresponding cell in L3Numeric or

L3Categorical is NaN (while the other doesn't exist) (Blue)

� Both L3Numeric and L3Categorical do not exist, L3Date �lled: L3Date

cell contains a not NaN value, while the corresponding cell in L3Numerical

and L3Categorical doesn't exist (Yellow)

� L3Numeric or L3Categorical �lled, L3Date=NaN: L3Date cell con-

tains a NaN value, while the corresponding cell in L3Numeric or

L3Categorical contain a not NaN value (Red)

� L3Date=Nan, L3Numeric and L3Categorical=NaN/not exist: L3Date

cell contains NaN, while L3Numeric and L3Categorical contain NaN

or don't exist (No color)

In Figure 2.65 is shown the result obtained plotting the �rst 1000 rows.

The result obtained is almost what could be expected looking at the

heatmaps before. The green columns are mainly due to the result ob-

tained in "L3Numeric vs L3Date", while the blue ones are explained in

"L3Categorical vs L3Date". We can see that there are not red cells: it

means that every not NaN value in L3Numeric and L3Categorical has a
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Figure 2.65: L3Date vs L3Numeric & L3Categorical heatmap

correspondent not NaN timestamp in L3Date, if the related column exists.

The only exception we can see are some yellow cells that represent columns

in L3Date without any correspondence in L3Numeric or L3Categorical. At

the moment can't be �nd any good explanation for this phenomenon except

that data inconsistency.

88



2 � Exploratory analysis

Correlation test

The purpose of this analysis is to �nd any kind of correlation between

di�erent Sections. Since almost each Section has features in both L3Numeric

and L3Categorical, each dataset will be studied separately, then results will

be compared.

Given a and b two Sections, the index called confidence is de�ned as

follows:

conf(a, b) = P (a|b) = #{a, b}
#{a}

(2.12)

It de�nes the ratio between the times Sections a and b are active in

the same row and the times Section a is active. In particular, conf(a, b)

measures how much b ⇒ a namely, how much the presence of a implies

the presence of b. This index has values in [0,1] and is used for �nding

association rules between a and b: if conf(a, b) ∼ 1, then the presence of

a means that b has high probability to appear, while conf(a, b) ∼ 0 means

that the presence of a means that b has low probability to appear. We need

to observe that the index isn't symmetric, in fact conf(a, b) /= conf(b, a).

The characteristic of con�dence index is that it is in�uenced by relative

frequencies of the events a and b. For example, if #{a} = 1000, #{b} = 10

and #{a, b} = 10, we can see a strong relation between a and b, because b

happens if and only if happens a, then conf(b, a) = 1, while conf(a, b) =

0.01, so we can understand that b⇒ a, but a /⇒ b.

L3Numeric

In this preliminary analysis will be studied when each Section assumes

not NaN values, not studying the particular values assumed, but only con-

sidering the cases active/not active. The con�dence index (2.12) between

each Section is plotted using an heatmap in Figure 2.66.

This Line appears separated in two block with a strongly negative rela-

tion, probably dedicated to processing di�erent kind of parts. Inside each
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Figure 2.66: Con�dence between Sections in L3Numeric

block, some Sections are negatively related, that could represent machinery

that work in parallel or machinery with mutually exclusive utility.

L3Categorical

In Figure 2.67, relation between Sections in L3Categorical is studied

using (2.12).

Figure 2.67: Con�dence between Sections in L3Categorical
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The result is less signi�cant than the one obtained with L3Numeric,

since there is a greater number of NaN values.

L3Date

The relation between Sections in L3Date is studied in Figure 2.68 using

(2.12).

Figure 2.68: Con�dence between Sections in L3Date

As expected, the result obtained con�rms what already noticed studying

L3Numeric. In conclusion, Line 3 contains the higher error rates, this means

that it will be one of the most useful Lines in creating a well performing

model.
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Chapter 3

Objectives

In order to perform a Root Cause Analysis is necessary to create a predic-

tive model capable of explaining data behavior with a good approximation

and then to extrapolate the most signi�cant features. According to the

exploratory analysis, data are not 'ready to use' but they are very heteroge-

neous, large dimensional and with a lot of missing values. In the following

chapter are described methods used to solve all the problems encountered.
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Chapter 4

Methods

To make a good prediction, it is necessary to consider that di�erent types

of part pass throught the production lines. Parts of the same type or with

similar features are processed with the same machineries, namely they have

not null values in the same Sections in the dataset under exam. The dis-

cipline dedicated to part clustering is called Group technology or cellular

manufacturing.

4.1 Group technology

Group technology started in 1920s with the purpose to improve manufac-

turing e�ciency. The aim, as described in [1], was to classify parts, so that

parts with similar features could be manufactured together with standard-

ized processes.

More generally, GT can be de�ned as a theory of management, where

similar products are clustered together. Nowadays, this technology is used

by factories in two di�erent ways: groping machines according to the parts

manufactured by them (this application is called Cellular Manufacturing)

or grouping parts according to the machines they pass through. Both ap-

proaches bring signi�cant bene�ts such as:

� Decreased setup time
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� WIP quantity reduction (WIP means Work In Progress, refers to parts

partially processed)

� Material-manipulation cost reduction

� Decreased direct and indirect work cost

� Better quality

� Optimized material �ow

� Improvement in machine utilization

� Optimized space utilization

For example, in Figure 4.1 is represented a typical factory organization,

where machines are grouped on the basis of their functionality.

Figure 4.1: Typical organization

Part �ow is very intricate and this involves a big loss of time and e�-

ciency. Using the theory of group technology, machinery can be organized

in cells, where each cell is dedicated to the processing of a particular family

of parts, as shown in Figure 4.2.
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Figure 4.2: Cellular Manifacturing organization

The result is a reorganization where �ows are shorter and more linear.

In more complex situations, where there are more parts and machinery are

not dedicated to a single family of parts, cells need to interact with each

other, but the aim of Cellular Manufacturing is to minimize inter-cellular

interactions.

In the context in exam, Group Technology can be used to divide all the

di�erent parts produced in small groups with similar machinery path. Since

datasets are very large, it is necessary to �nd an algorithm able to perform

a good clustering in a short time. Di�erent algorithms will be tested on

L3Numeric, one of the bigger and more interesting datasets in exam. All

the techniques described have been found in [4]

Data preparation

Group technology algorithms doesn't need data generated by parts passing

through machines, but they only need to know whether or not a certain

part passes through a certain machine. As discovered in previous analysis,

each Section contains the values of the sensors of a certain machinery, so
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it is possible to reduce data granularity grouping by Sections. L3Numeric

is thus modi�ed as follows: it has a single column for each section, from

which it takes its name, and its entries can assume 0 and 1 values only. If

we �nd a 1 in row i and column j, it means that part i passed through

the machinery j, while a 0 means that the part is not passed through that

machine. The dataset obtained in this process is called L0NumericS, in

Figure 4.3 is shown its header.

Figure 4.3: Header of L3NumericS

This is the data format used in the algorithms described below.

4.1.1 Rank Order Clustering

ROC algorithm, �rst published in [6], is one of the most used in Group

Technology problems. Considering L3NumericS as a rectangular matrix

with 0,1 values, with n rows and m columns, the algorithm sorts rows

and columns in order to create a block-diagonal matrix, where each block

identi�es a distinct cluster.

The algorithm assigns a value to each column making a scalar product

with an array of powers of 2, sorted in ascending order (i.e. [1 2 22 23 24 . . . ]),

obtaining a score for each column. Columns are then sorted in ascending

order according to their score. The same process is applied to the rows.

Algorithm stops when sorting steps don't change rows and columns order

anymore or when the maximum number of iterations maxIter is reached.

Steps of the algorithm are shown below:
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� Step 1: Create an array of powers of 2 with size m, called PR, where

the i− th entry assumes the value: (PR)i = 2i

� Step 2: Create an array of powers of 2 with size n, called PC, where

the i− th entry assumes the value: (PC)i = 2i

� Step 3: For each row j, whose entries are {aji}i=1,...,m, calculate the

corresponding score RSj making a scalar product with PR:

RSj =
m∑
i=1

(PR)i ∗ aji =
m∑
i=1

2i ∗ aji (4.1)

� Step 4: Sort the rows in increasing order of their score RSj

� Step 5: For each column j, whose entries are {aij}i=1,...,n, calculate

the corresponding score CSj making a scalar product with PC:

CSj =
n∑

i=1

(PC)i ∗ aij =
n∑

i=1

2i ∗ aij (4.2)

� Step 6: Sort the columns in increasing order of their score CSj

� Step 7: If the number of iterations is equal tomaxIter, stop. If during

step 4 or step 6 any rearrangement was necessary, go to step 3, else

stop

Before applying ROC algorithm on L3NumericS, it is interesting to have

a graphical interpretation of the distribution of 0 and 1 in the dataset.

In Figure 4.4 is shown an heatmap of the �rst 100 rows of L3NumericS,

where green cells represent the presence of a 1, while red cells represent the

presence of a 0.

After the execution of ROC algorithm, rows and columns of L3NumericS

are sorted as shown in Figure 4.5.

The algorithm generates a block-diagonal matrix, where it is possible

to see two main groups or family of parts, where parts in each group are

quite similar each other and are very di�erent from parts of the other group.
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Figure 4.4: Heatmap of L3NumericS

Figure 4.5: Heatmap of sorted L3NumericS

While ROC algorithm generates a very good graphical result, it has three

main technical problems:

� Di�cult to convert the graphical result to a real classi�cation, indeed

it doesn't produce as output groups of row ids, but only a 'sorted list'

containing all the ids.
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� Impossible to set 'how much similar' rows in the same groups are.

� Impossible to use the algorithm on a large matrix. Since it is necessary

to generate two vectors containing increasing powers of 2 of length n

and m respectively, it means to save very large numbers in each cell of

the array. This algorithm �ll computer's memory very quickly, making

impossible to proceed.

These issues make necessary to reject the possibility to apply ROC al-

gorithm on the whole dataset in exam.

4.1.2 Similarity Coe�cient Algorithm

Another algorithm used in Group Technology problems is SC Algorithm.

It works with a matrix �lled with 0 and 1, the same format of the dataset

L3NumericS used before. The algorithm generates groups of similar rows

using a similarity coe�cient. Di�erently from ROC algorithm, the output

is not a sorted matrix, but a list of groups of row ids (i.e. a dictionary). A

row belongs to a certain group if the similarity coe�cient between the row

and the group is higher than a �xed threshold and there is not a group that

can generate an higher coe�cient.

The most used coe�cient is the Jaccard similarity coe�cient : given

two rows representing two distinct parts, it measures the ratio between the

number of machines visited by both parts and the total machines visited by

at least one of the parts. Similarity coe�cient Sij calculated between two

rows i, j of the matrix L3NumericS with n rows and m columns, where aik

is the entry in the i− th row and j − th column, is calculated in (4.3):

Sij =

∑m
k=1 aikajk∑m

k=1(aik + ajk − aikajk)
(4.3)

In SC Algorithm, similarity SGiGj
between a certain group of rows Gi

and another group Gj is de�ned as the minimum of the similarities Shk

calculated between each row of the �rst group h ∈ Gi and each row of the

second group k ∈ Gj:
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SGiGj
= min

h∈Gi
k∈Gj

{Shk} (4.4)

With these assumptions, de�ned a threshold of minimum similarity

minSim required to a row to belong to a certain group, is possible to

describe the SC algorithm:

� Step 1: Place each row in a distinct group, creating n groups Gi,

i = 1, . . . , n

� Step 2: For each group Gi, calculate the similarity coe�cient SGiGj

with all the other groups. Merge Gi with Gj if:

SGiGj
≥ minSim and SGiGj

= max
k
{SGiGk

}

This algorithm has some important characteristics:

� The solution is a real classi�cation, since the result is a dictionary of

groups, rather than a graphical classi�cation

� Classi�cation is based on a coe�cient of similarity, that can be set

arbitrarily

� The algorithm doesn't use a lot of memory, then it can be used on a

very large matrix

The only problem found using the SC Algorithm is computational time.

In Figure 4.6 is shown how much time the algorithm needs to classify dif-

ferent numbers of rows of L3NumericS.

Since the pattern is quadratic, classi�cation of the whole dataset (more

than a million of rows) is feasible, but very time expensive. A solution is to

customize the original SC Algorithm, making it more e�cient in analyzing

the dataset in exam.
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Figure 4.6: Computation time of SC Algorithm used on di�erent numbers
of rows of L3NumericS

4.1.3 Customized Similarity Coe�cient Algorithm

Similarity Coe�cient Algorithm can be adapted, in order to reduce the

computational time. Since industrial manufacturing is based on production

of a great number of identical products, is logical to suppose that grouping

by Sections on the datasets in exam and replacing numerical values with 1

and NaN with 0 as done with L3NumericS, a lot of rows will assume exactly

the same values. With this consideration, it follows that SC Algorithm

spends a lot of time in classifying one by one a lot of identical row. Since

checking if two rows are identical is much faster that calculating Similarity

Coe�cient between a row an the rest of the dataset, SC Algorithm can be

Customized as follows:

� Step 1: Create groups of identical rows

� Step 2: From each group, select a single row

� Step 3: Apply classical SC Algorithm on the selected rows

� Step 4: Assign all the identical rows to the same group
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Standard SC Algorithm and his customized version produce exactly the

same result, while computational time is considerably di�erent, in particular

when working on a large number of rows. In Figure 4.7 is shown how much

time Customized SC Algorithm needs to classify the same numbers of rows

of L3NumericS analyzed by the classical version.

Figure 4.7: Computation time of Customized SC Algorithm used on di�er-
ent numbers of rows of L3NumericS

Pattern is initially quadratic, but assumes a sub-linear trend when the

number of rows becomes bigger. In Figure 4.8 are compared the results

obtained by the standard and the customized version.

Customized SC Algorithm is extremely less time-expensive, thus it has

all the features required to solve the problem in exam.

Before applying CSC Algorithm on the whole data in exam, it is nec-

essary preparing each dataset of each Line (i.e. L0Numeric, L0Categorical,

. . . ,L3Date) as described in 'Data preparation' and joining all them to-

gether. Since these operations are very memory and time expensive, the

problem can be optimized using only one dataset for each Line. Categor-

ical datasets are not suitable for this purpose, since they are mostly �lled

with NaN; Numeric and Date dataset have a similar percentage of NaN, but
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Figure 4.8: Comparation of computation times of Standard and Customized
SC Algorithm

Numeric are more appropriate, because they contain more columns.

Established to apply CSC Algorithm on the dataset obtained joining

L0NumericS, L1NumericS, L2NumericS and L3NumericS, it is necessary to

set the Jaccard similarity coe�cient: with a value of 0.75, the algorithm

generates 1182 di�erent groups. Despite the great number of elements gen-

erated, more than 70% of the whole data is contained in the 29 bigger

groups.
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4.2 Random forest

Each group generated by CSC Algorithm, contains data related to a di�erent

family of parts produced by Bosch factory. With the purpose to explain at

least 70% of the data, is necessary to consider the 29 bigger groups. For

brevity, will be considered only the biggest and the smallest ones. The

names of the groups depend on the order they have been generated by CSC

Algorithm:

� Group 21 : is the biggest group generated, it contains 38219 rows. The

total number of not null columns obtained joining all the datasets, se-

lecting only the rows related to this group and converting Categorical

values using contingency tables is 955. Only 0.46% of the row have

Response=1 label.

� Group 48 : is the smallest group generated, it contains 9257 rows. The

total number of not null columns obtained joining all the datasets, se-

lecting only the rows related to this group and converting Categorical

values using contingency tables is 782. Only 0.36% of the row have

Response=1 label.

All analyzes will be performed on both groups, using a software called

'R', dedicated to statistical purposes. Algorithms described in this section,

have been found in [3].

Since Random Forest algorithm can not manage NaN values, it was

decided to replace each null entry of the dataset with an outlier, that is a

very anomalous value. Considering vij as the null value found in row i and

column j of the dataset, it will be replaced with the value:

v∗ij = maxj + 10 ∗ (maxj −minj + 1)

where maxj and minj are respectively the maximum and the minimum

value found into the column j.
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4.2.1 Standard approach

Description

Random forest is a classi�cation algorithm, very used in machine learning

contexts. It is composed by a certain number (settable with the command

'ntree') of Decision trees, from which it derives its particular name. This

algorithm is used both for classi�cation and regression: since the problem

is to distinguish between Response=0 and Response=1 parts, is necessary

to use the classi�cation version. A Decision tree is composed by nodes and

leafs, in each node data are splitted in two child nodes, according to the value

of a certain variable, with the purpose to separate the labels in the best way

possible. A leaf is a child node that doesn't need splitting anymore, because

all the elements (or at least the great majority), have the same label. At

each node, the feature that separates better the elements is selected among

a certain number of 'candidates' (settable with the command 'mtry'). To

measure how well data are splitted, is necessary to de�ne an index, that can

be calculated for each node or leaf of the three, called Gini Index :

Gini = 1−
c∑

i=1

(pi)
2 (4.5)

Where c is the number of di�erent classes and pi is the proportion of

elements of class i in the node in exam. De�ning ni the number of elements

of class i i the node, pi can be easily obtained as follows:

pi =
ni∑c
j=1 nj

The best splitting feature for the node k is the one that maximizes the

Gini index decrease, Dk, calculated as the di�erence between the Gini index

of the node k, Ginik, and the weighted sum of the Gini index of his two

child nodes, Ginik1 and Ginik2 :

Dk = Ginik −
(

N1

N1 +N2

Ginik1 +
N2

N1 +N2

Ginik2

)
(4.6)
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Where N1 and N2 are respectively the number of element in the �rst

and second child node. Another possible setting is the maximum depth of

a tree (settable with the command 'maxdepth'), that impose a maximum

number of consequent splittings for the tree. An example of Decision Tree

is shown in Figure 4.9.

Figure 4.9: Example of decision tree

To classify an element using a Random forest means classifying the same

element with all the trees generated and then using all the votes collected

to assign a �nal label: usually is assigned the most frequent label (majority

vote).

Application

The �rst approach is to apply a simple Random Forest. In Figure 4.10

is shown how to train a Random Forest with 20 trees, that considers 30

features at each split, with the purpose of predicting the binary value of

Response, using all the other features of the dataset called trainData.

Figure 4.10: R code: Random Forest with 20 trees, that considers 30 fea-
tures at each split
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The model is then applied on another dataset, called testData. A widely

used tool used to evaluate the quality of a classi�er is the confusion matrix,

which compares model's prediction to the real solution

True

negative
0

0

False

negative

1

False

positive
1

True

positive

Prediction

outcome

Actual value

De�ning Response=0 as the negative outcome and Response=1 as the

positive one, the four boxes of the matrix represent di�erent results of the

classi�cation:

� True negative (TN ): number of negative elements correctly classi�ed

� True positive (TP): number of positive elements correctly classi�ed

� False negative (FN ): number of positive elements wrongly classi�ed

as negative

� False negative (FP): number of negative elements wrongly classi�ed

as positive

Many evaluation indexes can be calculated using these four values, the

most useful in this context are:

� True positive rate (TPR): also called Sensitivity, measures the pro-

portion of positive labels correctly identi�ed. Is calculated as TP
TP+FP

� False positive rate (FPR): measures the proportion of positive labels

wrongly identi�ed as negative. Is calculated as FP
FP+TN

One of the possible outputs of a Random Forest is the probability of

the element under analysis to belong to the positive class. A good way to
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evaluate a classi�er is to study the behavior of TPR and FPR when varying

the value of the probability threshold necessary for the assignation of posi-

tive class label. The curve describing the behavior of these indexes is called

ROC (Receiver Operative Characteristic) curve. The overall performance

of a classi�er is given by calculating the Area Under the Curve (AUC): an

area near to 0.5 indicates a nearly random classi�cation, while an area near

to 1 indicates an almost perfect classi�cation.

In Figure 4.11 and Figure 4.12 are shown the ROC curves obtained

applying standard random forest algorithm on the test dataset of Group 21

and Group 48 respectively.

Figure 4.11: ROC curve obtained applying random forest algorithm on
Group 21 test dataset (AUC=0.5121)
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Figure 4.12: ROC curve obtained applying random forest algorithm on
Group 48 test dataset (AUC=0.5274)

The classi�ers obtained have a very bad performance. One of the causes

of the poor classi�cation obtained may be the strong unbalance of data,

since both datasets contain less than 1% of Response=1 rows. Moreover,

any kind of parameter tuning process is very time expensive, because of the

high dimensional data. A di�erent approach is necessary.
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4.2.2 Downsampling approach

Description

Downsampling approach consist in training a Random Forest model on a

subset of the original data. The subset contains all the element of the

minority class (Response=1) and a randomly selected subset of the majority

class (Response=0), so that class frequencies match, creating a balanced

dataset. The dataset obtained contains less rows than the original one, thus

this technique solves both the problems of high dimensional and unbalanced

data.

Data balancing technique is a very powerful tool, but it needs to be used

very carefully, in order to get a correct evaluation of model's performances,

as described in [2]. First of all, only train data need to be balanced, while

model obtained must be tested on a dataset were classes have the original

unbalanced ratio. The same approach must be maintained while applying

the cross-validation method: data must be split between validation and

training set before class balance process. A wrong application of the down-

sampling algorithm can bring a not correct estimation of model's ability

of class recognition, while a wrong application of oversampling algorithm

(i.e. creating duplicates of minority class elements) can bring to even worse

consequences, such as over�tting.

As an example, in Figure 4.13 is shown a wrong application of the over-

sampling algorithm, where duplicates of the minority class are generated

before the execution of the cross-validation.

Is possible to notice that the same element appears in both validation

and train set, causing the phenomenon called over�tting. In Figure 4.14

is shown the correct application of the oversampling algorithm, where data

duplication is performed after the creation of validation set, in order to

avoid any kind of over�tting.

The procedure described is automatically performed setting sampling =

"down" inside the trainControl command, while training a Random Forest,
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Figure 4.13: Wrong application of oversampling algorithm during cross-
validation

Figure 4.14: Correct application of oversampling algorithm during cross-
validation

using the train function contained into the caret package.

111



4 � Methods

Application

In Figure 4.15 is shown how to train a Random Forest using the downsam-

pling option provided by caret package.

Figure 4.15: R code: training a Random Forest with downsampling

Looking at the settings contained in trainControl, is possible to notice

that it has been disposed to perform a 10-fold cross validation, with the

purpose to evaluate model's performances. In order to get a better result,

di�erent values of mtry have been tested. The resulting model has slightly

improved performances: this means that downsampling approach is a good

solution, but further tuning is necessary. One of the output provided by

Random Forest algorithm is the 'variable importance', namely how much,

on average, each variable decreases Gini index when used to split a node. As

an example, in Figure 4.16 is shown the variable importance plot obtained

by Group 21 dataset.

In order to get better performance, it is necessary to study interactions

between variables: this can be easily performed replacing the model equa-

tion "Response ∼ .", with a second degree equation "Response ∼ .ˆ2".

Since studying every interaction consistently increases computational time,

it is necessary to make a feature selection, in order to study only the

most signi�cant variables. Selecting only features with mean decrease Gini
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Figure 4.16: Variable importance plot of Group 21

greater than 1, a smaller dataset called trainSmall is obtained. In Fig-

ure 4.17 is shown how this dataset is used to train a Random Forest con-

sidering interactions.

The �rst two lines of codes are used to start a parallel computation

using 5 cores (terminated in the last line), in order to reduce computa-

tional time. Besides mtry, more di�erent parameters have been tested,

such as min_samples_leaf, that speci�es the minimum number of elements

contained in a leaf node, min_samples_split, that speci�es the minimum

number of elements that a node must contain in order to be split again and

max_depth that speci�es the maximum dept of the trees generated. All the

models obtained with di�erent parameters have been compared, with the

purpose of selecting the best performing model. Utilizing the technique just

described over the train datasets of Group 21 and Group 48, is possible to
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Figure 4.17: R code: training a Random Forest with downsampling, inter-
actions and parameter tuning

create models with good performances: in Figure 4.18 and Figure 4.19 are

shown the ROC curves obtained.

Final models obtained can explain quite well data behavior, thus is pos-

sible to analyze variable importance in order to detect root causes of the

failures.
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Figure 4.18: ROC curve obtained applying the best performing model on
Group 21 test dataset (AUC=0.9129)

Figure 4.19: ROC curve obtained applying the best performing model on
Group 48 test dataset (AUC=0.965)
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Results

Looking at the variable importance plots obtained by the best performing

models, is possible to �nd the root causes of the failures during the produc-

tion chain.

Figure 5.1: Variable importance plot obtained by the best performing model
of Group 21

In both Figure 5.1 and Figure 5.2 is possible to notice that the most
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Figure 5.2: Variable importance plot obtained by the best performing model
of Group 48

important causes of failures are related Line 3, in particular to Section

29,30 and 33. The following step in a real Root Case Analysis problem,

would be the inspection of machinery related to these Sections, in order to

detect any sort of malfunction.

5.1 Application

Results obtained studying Bosch datasets can be applied to many industrial

situations. One of the most suitable cases of application are data provided

by one of the companies participating in the FDM project. The dataset in

exam contains the output generated by a machinery while processing raw

food, in order to reduce its humidity level. Data are con�dential, so the

name of the company and the kind of food processed will not be declared.

The drying process analyzed is still a prototype, then only 15 runs have
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been recorded at the moment. Actual process consists in the following steps:

� Step 1 : Test in laboratory the humidity level of the food

� Step 2 : Start the drying process

� Step 3 : Every 2 hours stop the machinery and test humidity

� Step 4 : If humidity percentage is lower than 6%, stop the process,

else restart from Step 2

The goal of the analysis is to skip step 2, reducing the number of lab-

oratory analysis predicting food humidity only using machinery outputs

and discovering which variables a�ect humidity levels the most, in order to

optimize the process.

Since the process stops when ideal humidity level is reached, only a

few rows describe the ideal state of the product, this means data are very

unbalanced. Data produced by machinery's sensors have already been pre-

processed and organized, in order to make possible inspection activities. The

model obtained applying methods described in previous chapters explains

quite well data behavior: in Figure 5.3 is shown the variable importance

plot.

As it could be expected, the variable that in�uence humidity level the

most are time, that indicates how much time has passed since the beginning

of the process, umidita_iniziale, that indicates the initial humidity level,

and HMI_grammi_persi_�lt, that indicates the total loss of weight of the

food during the process. All machinery's sensors have a similar importance,

this means that there are not bad-working parts, then no correction of the

process is needed.
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Figure 5.3: Variable importance plot obtained by the best performing model
of FDM dataset
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5.2 Conclusion

In this Thesis various issues like data unbalance and heterogeneity have

been faced while studying Bosch dataset. The innovative resolution pattern

formulated can be applied to many di�erent industry 4.0 contexts, in order

to detect and prevent failures, reducing wastes and improving e�ciency and

quality.

Food manufacturing is a very suitable �eld of application, thus Food

Digital Monitoring project, despite being still under development, will cer-

tainly get great bene�ts from the application of the pattern created and will

provide the opportunity for further developments.

In conclusion, research and improvement of manufacturing digitization

can provide more information and assets to ensure new data-driven business

models.
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