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Summary

The variational autoencoder is a generative model that is able to produce examples
that are similar to the ones in the training set, yet that were not present in the
original dataset. While this model has many use cases in this thesis the focus is on
anomaly detection and how to use the variational autoencoder for that purpose. In
the first part various state of the art anomaly detection algorithms are presented, in
the second part the structure and the functioning of the variational autoencoder are
presented, along with a comparison with the classic autoencoder. The details on how
to exploit the variational autoncoder as an anomaly detection tool are also described
in this part. In the third part experiments carried out with different datasets and
different architectures are shown. In the last part a new use case is proposed, in
particular on how to use the variational autoencoder to perform semantic novelty
detection in a natural language processing context.
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Chapter 1

Introduction

Anomaly detection has been a classic problem in machine learning with many ap-
plications. It can be used in order to spot faulty parts in a production chain, detect
damaged packages, fraudulent transactions in a banking system and even cancerous
cells in a biopsy.
While it may look like a specific application of the classic binary classification prob-
lem in most of these cases it’s not useful to proceed in that fashion in order to solve
the problem. Anomalous data is usually not available in big quantities, making the
two classes highly unbalanced, which means a binary model will be hard to train. In
other applications anomalous data could be completely absent in the training set,
since one may want to detect anomalies that did not occur yet.

1.1 Problem Definition
Anomaly consists in spotting data that is supposedly produced by a generative
process different by the one used for the normal data.
Given a dataset

x1, x2, ..., xn ∈ Rp

There are three possible scenarios:

• Supervised: the normal and anomalous data are labelled accordingly

• Clean: data only consists only of normal data

• Unsupervised: data consists of a mixture of normal and abnormal data

1



1 – Introduction

In the unsupervised scenario we will assume that our training data follow a contam-
ination model

x1, . . . , xp ∼ (1 − p)f0 + pf1

where f0 is the distribution of the normal data and f1 is the distribution of the
anomalous data, and p is reasonably small. We can note that if p is very small we
would fall back to the clean setting.

1.2 Previous work

This section describes the state of the art algorithms used in order to address the
anomaly detection problem.

• Support vector machines for novelty detection [17]

• Kernel PCA for novelty detections [10]

• Isolation forest [14]

• Local outlier factor for anomaly detection [5]

1.2.1 One class SVM for anomaly detection

This model is used in an unsupervised setting, where the training data consists of
both normal and non normal data.
Support vector machines are a very popular classification algorithm used in super-
vised learning. SVMs are a generalization of support vector classifiers.
Let’s suppose our data has two labels +1, −1 and that is linearly separable. We wish
to find the best hyperplane that divides our data in two regions. The first problem
we need to solve is defining "the best" hyperplane, since in many cases there are
infinite valid ones. One way to proceed is by defying the best hyperplane as the one
that has the biggest margins, meaning that maximizes the perpendicular distance
between the hyperplane and the points in the dataset. The vectors that are closest
and equidistant from the boundary are called support vectors [11].
This method has the advantage that the decision boundary does not depend on
the points that are far from the hyperplane, but adding a new point close to the

2



1 – Introduction

Figure 1.1: Some examples of the pos-
sible decision boundaries

Figure 1.2: decision boundary found
by linear svm

decision boundary changes the latter significantly, meaning that it’s not robust and
prone to overfitting.

Once we found a possible hyperplane we would be able to classify a new example
x̂ in our feature space Rp simply by checking in which side of the plane it lays.

β0 + β1x̂1 + · · · + βpx̂p > 0 then ŷ = +1

β0 + β1x̂1 + · · · + βpx̂p < 0 then ŷ = −1

Which translates to
ŷ(β0 + β1x̂1 + · · · + βpx̂p) > 0

Figure 1.3: The decision boundary
doesn’t change if we move a point that
was outside the margin such that it
stays outside the margin.

Figure 1.4: The decision boundary
changes significantly if we add a point
close to the boundary

3



1 – Introduction

In order to find the margin and the weights of the hyperplane we need to solve
the following optimization problem [11]

max
β0,...,βp

M

subject to
pØ

j=0
β2

j ,

yi(β0 + β1x1 + · · · + βpxp) > M ∀i = 1, . . . , n

Another limitation we need to overcome is that we still need our data to be
linearly separable, which is a very strict constraint.
We can partially solve these issue by adding the concept of a soft margin. That
means that we let the points in our dataset cross the decision boundary, but in
order to classify most of the observations correctly we need to introduce a cost with
every misclassified example.

max
β0,...,βp
Ô1,...,Ôn

M

subject to
pØ

j=0
β2

j ,

yi(β0 + β1xi1 + · · · + βpxip) > M(1 − Ôi) ∀i = 1, . . . , n

Ôi ≥ 0,
nØ

i=0
Ôi < C

Even with soft margins not many classification problems can be solved by linear
decision regions, that’s why we need non-linear kernels.
A key finding of SVMs is that the decision boundaries weights only depends by the
dot product between x and the support vectors xi [11].

f(x) = β0 +
Ø

xi∈SV s

αiéx, xiê

If we replace the dot product with a more general function the we will call kernel,
and we will be able to find more complex decision boundaries.
Common kernel functions that are widely used are:

K(xi, xiÍ) = x|
i xiÍ Linear Kernel

4



1 – Introduction

K(xi, xiÍ) = exp(−γ
pØ

j=1
(xij − xiÍj)2)) Radial basis function

K(xi, xiÍ) = (x|
i xiÍ + c)d Polynomial kernel of d-degree

Let’s now see how this supervised technique can be used in an unsupervised way for
anomaly detection.
Recalling the scenario in which we are working we are assuming that our data
contains both normal and anomalous data

x1, . . . , xp ∼ (1 − p)f0 + pf1

where f0 is the distribution of normal data and f1 is the distribution of the anomalous
data.
The intuition behind the one class SVM is that the normal data will fall in the
region predicted by the algorithm, while the anomalous data will fall outside of the
margins. We need to add a few more constraints to our data for the one class SVMs
to work properly. The first one is that p should be small, while the second one is
that f1 should have a much larger support of f0, otherwise the anomalous data will
cluster and the SVM will incorporate that data in the one-class. Lastly, the support
of the distributions should have little to no overlap.

Figure 1.5: Synthetic dataset Figure 1.6: SVM decision boundary
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1 – Introduction

1.2.2 Kernel PCA for novelty detection

This method is used in a "clean" setting, where only normal data is used at training
time.

Principal component analysis

Principal component analysis is a dimensionality reduction technique. It defines a
new set of dimensions where each of the new dimension is a linear combination of
the original features. The first new dimension would be

Z1 = φ11X1 + φ21X2 + · · · + φp1Xp con
pØ

j=1
φ2

j1 = 1

While the number of new dimensions can be as high as the original feature space we
need to find only the most relevant ones. In order to do this we are going to identify
the direction in which the data has maximum variance. While the first component

Figure 1.7: Original Dataset Figure 1.8: Dataset after PCA trans-
formation

found by PCA is the one that explains the most variance, the second component
has to be perpendicular to the first one, and should be the one that explains the
most variance not considering the first one.
While all of these components could be found by solving an optimization problem
it turns out that exploiting the covariance matrix is the better way to proceed.

C = 1
N

X|X

The eigenvectors of the covariance matrix will form the basis of the the new vector
space, while the respective eigenvalues represents the amount of variance explained

6



1 – Introduction

through that axis. This means that the first component is the eigenvector that has
the biggest eigenvalue.

V −1CV = D

Where V is the matrix of eigenvectors, and D is a diagonal matrix where the eigen-
values are.

Kernel PCA

The main disadvantage of PCA is that the new components are a linear combination
of the old ones, which means it’s not going to perform well for high dimension non
linear dataset. For this reason kernel PCA has been introduced [20].
Instead of using our dataset we are going to map it to a higher dimensional space
using a non linear function called kernel.

xi ∈ Rp −→ Φ(xi) ∈ RM

M >> p

After this mapping simple PCA could be performed, but since it would be very
computationally expensive a new kernel matrix is used to carry out the computation,
achieving the same result (details in [20]).
Now that we have a new feature space we need to use it to identify anomalies [10].
At training time we are going to feed our model with only non anomalous data,
and we will then decide how many components to keep to compute the contracted
version of the dataset. At test time we will compute the components of our test
examples and then we are going to reconstruct them. The anomaly score will be the
reconstruction error in our new feature space.
A common kernel is

k(x, y) = exp
−||x − y||2

2σ2

1.2.3 Isolation forest

This model is used in a scenario similar to the one class SVM’s one, specifically in
an unsupervised setting. The isolation forest takes a different approach from the one
class SVM, since instead of grouping normal data it tries to isolate the anomalous
data. The isolation forest basic component is the isolation tree, which is a simple

7



1 – Introduction

binary tree where at each node Ti both the feature and threshold for our splitting
rule are picked randomly. An existing node stops generating children if and only if
there is only one example following the splitting rule for that specific path (meaning
the example has been isolated) or a maximum height has been reached. This means
that at the end of the training process we will have a completely overfitted random
classification tree, that can be used for anomaly detection purposes. The main in-
tuition of this algorithm is that if an example is anomalous it will be isolated after
few cuts in the feature space, which translates having a low height in the isolation
tree. This kind of score is non straight-forward but it has been represented by the
following formula [14]

s(x, n) = 2− E(h(x))
c(n)

where c(n) = 2H(n − 1) − 2(n − 1)/n

Where n is the cardinality of our training data, H(n) is the harmonic number and
h(x) is the height of the example x in the isolation tree. We notice that we use the
expected value of the height, since we actually will be using a forest of trees where
each tree has been trained with a subset of the training data.
The score s(x, n) will be close to one for anomalies, while it will be closer to zeros
for normal data.

Figure 1.9: Synthetic dataset Figure 1.10: Isolation forest decision
boundaries

1.2.4 Local outlier factor for anomaly detection

The local outlier factor (LOF) [5] is a density based anomaly detection algorithm.
The factor itself is a measure of how outlying a specific point is: lof ≈ 1 not an

8



1 – Introduction

outlier, lof º 1 for outliers.
It’s a local method since only a neighborhood of each point is considered in order
to compute its LOF, and should be used in an unsupervised setting.
We are going to need to introduce some preliminaries definitions in order to under-
stand how it works. The first one is the k-distance of a point, which is the distance
of the k-th clostest point. The second one is the reachability distance.

reach − distance(p, q) = max(k − distance(q), d(p, q)

where d(p, q) is the distance between two points. If p is in the radius defined by the
k-distance around q the reach distance is simply the k-distance, otherwise it will be
the standard distance between two points.
We now are going to define the local reachability density of a point. The lrd is the
inverse of the average of all the reach-distances between the point and all of its
k-neighbours.

lrd(p) = kq
q∈neighbours reach − distance(p, q)

Now we are going to define the local outlier factor itself. The lof(p) is the average
between the ratios between every point in the neighborhood and the point p.

lof(p) =
q

q∈neighbours
ldr(q)
ldr(p)

k

Now that we defined the lof we only need to decide a threshold for deciding when
a point can be defined as an outlier, but it has to be specific for every dataset.

Isolation forest has an overall good performance for clustered data, and is not
susceptible to the addition of useless features. Since LOF is density based it will
have problems with dataset with a large amount of features, since in those spaces
the distance between two points is less meaningful (this problem is also known as
curse of dimensionality) which means that it will not perform good with images.
KPCA and SVM are both non-linear models and can work with simple images.

1.3 Neural Networks and Generative Models
All of the models presented in the previous section will have troubles if applied to
dataset with a large amount of features, like images. These complex datasets are

9



1 – Introduction

historically being treated with deep and convolutional neural networks. For this
reason we are now introducing neural networks and generative models (a specific
application of NNs) and in the second chapter we will exploit there models in order
to build an anomaly detector.

1.3.1 Perceptron

Neural networks are a popular machine learning technique, they can be used for both
regression and classification since they can be considered function approximators.
The building block of neural networks are perceptrons, a computational unit that
mimics how the biological neuron works.

Figure 1.11: Perceptron architecture

where hθ is a non linear function called activation function.

hθ(x) = h(θ0 + θ1x1 + θ2x2 + θ3x3)

which can be written in vector notation adding the element x0 = 1 to x, so that
both x, θ ∈ Rp+1.

hθ(x) = g(θ|x) = g(z)

In this formulation θ0 is called bias, while θ1, . . . , θp are called weights. The most
used activation functions are the Sigmoid function (or logistic function) and the
ReLu (Rectified Linear Unit) function.

g(z) = 1
1 + e−z

Sigmoid function

10



1 – Introduction

g(z) =

0 for z < 0
z for z ≥ 0

ReLu function

If the perceptron uses the Sigmoid function as activation it is actually able to per-
form logistic regression, since the Sigmoid function represents the probability of one
example of belonging to one class. More specifically, given a dataset

D = {x(i), y(i)} with x(i) ∈ Rp, y(i) ∈ {0,1}, i = 1, . . . , n

we want the output of our perceptron to be the probability of belonging to class 1.
The only things we can change in our model are the weights θ, and one option would
be to do it minimizing the Mean Squared Error (MSE) between the prediction and
the actual class

J(θ) = 1
n

nØ
i=1

(y(i) − hθ(x(i)))2

but since the MSE is not a convex function it is hard to optimize. In order to solve
this problem a modified convex function has been introduced

J(θ) = 1
n

nØ
i=1

cost(y(i), hθ(x(i)))

cost(y, ŷ) =

− log ŷ if y = 1
− log(1 − ŷ) if y = 0

cost(y, ŷ) = −y log(ŷ) − (1 − y) log(1 − ŷ)

Looking at Figure 1.12 we can interpret this new cost function: if the predicted
probability of one example ŷ is close 0, but the actual class is 1 then that example
will contribute to the total cost with a high value, while if the predicted probability
was rightfully close to 1 then that example would not contribute to the cost at
all. Since the cost function for examples with y = 0 is symmetric to the one for
examples with y = 1 we can do the same kind of reasoning for the other part of the
cost function.
Now that we have a model and a cost function to minimize we only need to find a way
to change the values of the weights such that they will converge to a solution that
gives us the expected output. The most common of these optimization algorithms
is Gradient Descent.
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Figure 1.12: in red: cost for y = 1
in blue: cost for y = 0

1.3.2 Gradient Descent

After finding the appropriate cost function the problems becomes

min
θ

J(θ)

which can be solved exploiting the derivative of the cost function.
Suppose our cost function to be strictly convex and that we can compute the deriva-
tive of this function with a closed form. If we start from a random point in the
function domain then we could understand in which direction we should move in
order to get closer to the minimum by looking at the derivative.

repeat until convergence{θj = θj − α
∂

∂θj

J(θ)}

Where alpha is the learning rate, which represents how big of a step we are making
at each iteration. A big learning rate implies faster training times but if too big can
result in the algorithm not converging at all.

12
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1.3.3 Neural Networks

In order to form a neural network we add hidden layers between the input layer
and the output layer. Each one of the input nodes is connected to each node of the
first hidden layer, but the weights are going to be different for each node of the
hidden layer in order to compute different intermediate features that will help our
classification.

Figure 1.13: Neural Network architecture

Let us define the notation of our neural network.

• a
(j)
i is the activation unit i of the layer j

• θ(j) will now be a matrix of weights controlling the function mapping between
layer j and layer j + 1

We can compute the value of the activation function of the middle layer as such

z
(2)
1 = θ

(1)
10 x0 + θ

(1)
11 x1 + · · · + θ

(1)
1n xn

a
(2)
1 = g(z(2)

1 )

z
(2)
2 = θ

(1)
20 x0 + θ

(1)
21 x1 + · · · + θ

(1)
2n xn

a
(2)
1 = g(z(2)

1 )

Which in matrix notation becomes

z(j) = θ(j−1)a(j−1)

a(j) = g(z(j))

Where g is an activation function.
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1.3.4 Backpropagation

Since we now have a more complex architecture with different layers we are going to
need a more complex algorithm than gradient descent in order to understand how
to change the weights of each layer.
Let’s consider a problem where the cost function J(θ) is given by the mean squared
error

J(θ) = 1
n

nØ
i=1

(y(i) − hθ(x(i)))2

Each of the example contributes to the final value of the cost of the entire network,
but let us focus on the contribution of only one example in the training data, let’s
call it J0

J0 = (y(i) − a
(3)
1 )2

Let’s suppose that the current value of J0 is not the expected one, this means that
we should change the weights of the network so that it will give us the expected
output, in particular a

(3)
1

a
(3)
1 = g(z(3))

z
(3)
1 = θ(2)a(2)

The first weights we can change are the ones that are directly connected to the
output, let’s look at one in particular and compute the derivative of J0 with respect
to it, exploiting the chain rule

14
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∂J0

∂θ
(2)
10

= ∂z(3)

∂w(3)
∂a(3)

∂z(3)
∂J0

∂a(3) = a
(2)
1 gÍ(z3)2(a(3) − y)

We can now use this derivative to update the value of θ10. The piece of cost function
J0 is not only sensitive to the weights but also to the activation value of the layer
before, but we can’t directly change that. What we can do is change the values of
the weights that produced that activation value. In order to change those values we
need to compute the derivatives of θ(1) in a similar fashion as before.
This process has to be done for every example in our training dataset and for every
weight in the network for how many iterations it takes the algorithm to converge.
For very big networks with big dataset this process can be very slow, but it can
be accelerated using batches: at every iteration only a representative subset of the
dataset is taken and used to update all the weights in the network.

1.3.5 Convolutional Neural Network

When dealing with images neural networks with only fully connected layers can be
very hard to train because the amount of parameters involved. For example for a
black and white image with size 28 × 28 would be represented with an array of 784
elements. If we wanted to add a layer with with 200 nodes after the input layer the
matrix would have size 784 × 201, for a total of 157584 parameters to train.
This is one of the reasons the Convolution operation has been introduced in neural
networks.

The Convolution operation

The convolution operation can be defined between to real value functions but we
are going to need it only for discrete functions. For two functions f and g defined
over a set of integers i ∈ I we have

(f ∗ g)[i] =
Ø
m

f [m]g[i − m]

which for two dimension discrete functions with indexes i ∈ I, j ∈ J becomes

(f ∗ g)[i, j] =
Ø
m

Ø
n

f [m, n]g[i − m, j − n]

15



1 – Introduction

The function g is called kernel or filter. While this is the formulation used in signal
processing in machine learning the actual operation that is done is cross-correlation,
even if everybody refers to it as convolution. The only difference is that in cross-
correlation is the minus sign in the kernel.

(f õ g)[i, j] =
Ø
m

Ø
n

f [m, n]g[i + m, j + n]

We are going to refer to cross-correlation as convolution from now on.
When applied to images the convolution is performed with a filter whose dimension
are smaller than the unfiltered images. At every step of the summation the filter is
placed on top of a specific region of the image (starting from the upper left corner)
and element wise matrix multiplication is performed, then all the entries of the
resulting matrix are summed. At the next step the filter is moved of one pixel to
the right and so on.
At training time the values of the filter is what is to be determined, calculating the
gradients and performing backpropagation. From a n × n image and a f × f filter
a n − f + 1 × n − f + 1 image will be produced.
A useful parameter that can be added to the normal convolution to make it perform
faster is the stride. With a stride of 1 normal convolution is performed, with a stride
of 2 or more the filter is moved of 2 or more pixel at every step of the summation.

Transposed convolution

Transposed convolution (often referred as deconvolution) is used to obtain an image
with larger dimensions than the input one.
In order to accomplish that a fractional stride is used, which means every row and
every column of the input image a row or column made of zeros is added. Convolu-
tion is performed as usual after this modification of the input image.

1.3.6 Generative models

Generative models are an unsupervised learning technique that aims at generating
new and unseen examples that are similar to the ones in the dataset. For a dataset
with only one numeric feature a simple generative model could consist in simply fit-
ting a known distribution to our data and then sampling from it. This method can
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work for higher dimension as far as we have a good model for learning an explicit
probability density for our data, which is a very difficult task for high dimension
data (like images).
There are more complex models were the probability density is explicit, Neural
Autoregressive Distribution Estimation (NADE), Masked Autoencoder for Distri-
bution Estimation (MADE), PixelRNN and PixelCNN (the last two are specifically
designed for images).

1.3.7 PixelRNN

The main purpose of this architecture is to model the probability p(x) where x is a
vector that describes an image, exploiting the product rule

p(x1, x2, . . . , xn) =
NÙ

n=1
p(xn|x1, . . . , xn−1)

The pixelRNN [19] model starts by generating the first pixel in the upper left-hand
corner and then proceeds by generating the other pixels sequentially, where the
every pixel influences directly the value of the pixel to its right and the pixel below
him. This dependency is modeled using a recurrent neural network, more specifically
using an LSTM layer (whose weights are shared for the generation of every pixel).
This does not mean that the value of one specific pixel depends only on its direct
neighbour since an RNN is able to retain information of long sequences. At training
time the networks aims at assigning a probability p(x) to every pixel maximizing
the negative log likelihood. The major drawback of this approach is that sequential
generation is very slow.

1.3.8 PixelCNN

The pixelCNN [19] works similarly to the pixelRNN, in fact it also starts by the upper
left-hand corner to generate the image, but it models the dependencies between
the current pixel and the previous ones using a convolutional neural network. The
pixel area used to model the current pixel is called "context region". In this case
the dependency is models using a convolutional neural network with filter over the
context region. This has the advantage of leading to faster training time (since
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convolution can be parallelized) but generation needs still to be sequential, hence
slow.

1.3.9 GAN

While the last two methods computed an explicit and tractable probability density
the generative adversarial network (GAN) uses a completely different approach.
There are two neural networks: the first one (called generator) takes as input random
noise and outputs an image (that will hopefully be "realistic") while the second
network (called discriminator) takes as input an image and classifies it as "fake" or
"real" (outputting likelihood between 0-1 of real image).
The players are effectively playing a two player game, which means that for the
model to work it is necessary to find a Nash equilibrium. The objective function of
this minimax game is

min
θg

max
θd

[Ex∼pdata
log D(x) + Ez∼p(z) log(1 − D(G(x)))]

where D(x) is the output of the discriminator when a real image has been given as
input, while G(x) is the output of the discriminator when a fake (meaning made by
the generator) has been given as input. We can note that the discriminator wants to
maximize the objective such that D(x) is close to 1 when the input is real, while it
wants to minimize D(G(x)) when the input is fake. The generator wants to do the
exact opposite minimizing the objective, such that D(G(x)) is close to 1 (meaning
that the discriminator has been fooled).
Different architectures have been used for both the generator and the discriminator,
two examples are the simple fully connected layers, and the convolutional architec-
ture. After training we can use the generator to network to produce new samples of
our dataset, by giving random noise as input. It is interesting to note that if we take
two generated images and their respective random noise we can create a path in
the latent space that connects the two random noise, and generate images sampling
from points laying in that path. In this way we are able to produce samples that
gradually transition from the first generated image to the second one.
Another interesting property of the latent space z where we sample from the random
noise is that simple vector math works out. For example: if we take the vector z

that produces the image of a man with sunglasses, subtract to that a vector z that
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produces the image of a man, and sum to the results a vector z that produces the
image of a woman, then feed the resulting vector to the generator we will obtain the
image of a woman with sunglasses.
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Chapter 2

Variational Autoencoder

The variational autoencoder is a generative model with a probabilistic background.
We are not going to use its generative capabilities but we are going to exploit its
ability to model very complex distributions in a latent space in order to detect
anomalies.

2.1 Preliminaries: Information Theory and KL Di-
vergence

2.1.1 Information

In probability theory the information of an event represents how surprised you would
be if that event would occur [3]. For example if you were in the middle of a very hot
summer, the sentence "It’s going to snow tomorrow" would carry a lot of informa-
tion, while the sentence "It’s going to be sunny tomorrow" would carry almost no
information, since that outcome is very likely. More formally:

P ("It’s going to snow tomorrow") = psnow

P ("It’s going to be sunny tomorrow") = psunny

Then the Information associated to those two events would be:

I("It’s going to snow tomorrow") = log2
1

psnow
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I("It’s going to be sunny tomorrow") = log2
1

psunny

If we assume that psunny >> psnow then the sentence "It’s going to snow tomorrow"
will carry more information than the sentence "It’s going to be sunny tomorrow"
which can be written as I("It’s going to snow tomorrow") > I("It’s going to be sunny tomorrow")
(and can be easily proved using the properties of logarithms). In general, the Infor-
mation of an event E is written as:

I(E) = − log2 P (E)

The unit measure of information is called bit, when an event with probability 0.5
occurs we gain 1 bit of information since log2 0.5 = 1. It’s also worth noting that
the information of a certain event (an event with probability equal to one) is zero,
consistently with our initial observations.

2.1.2 Entropy

Since the information describes only single events we need a new definition for de-
scribing probability distributions. Given a probability space (X , F , P ) we can define
the entropy of a discrete random variable X the expected value of the information.

H(X) = E[I(X)] = −
Ø
x∈X

P (x) log P (x)

and can be interpreted as the average amount of information that a random variable
carries. Let’s compare the entropy of the outcome of a fair coin (we will call this r.v.
X1) and the entropy of the outcome of a coin where P (head) = 0.8 (we will call this
r.v. X2 ):

H(X1) = −0.5 ∗ log2 0.5 − 0.5 ∗ log2 0.5 = 1

H(X2) = −0.8 ∗ log2 0.8 − 0.2 ∗ log2 0.2 = 0.72

X1 has the state of maximum uncertainty and has the greatest entropy, while X2

has less uncertainty and also has a smaller entropy. The behavior of the entropy
with respect to the probability of tossing head is shown in figure 2.1.

We can then conclude that Entropy is a measure of uncertainty. At the same
time the entropy can be interpreted as how much information is in our distribution.
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Figure 2.1: Plot of the entropy for a binomial distribution

2.1.3 Kullback-Leibler Divergence

In the next section we will need to approximate a complex probability distribution
with a simpler (parametric) distribution, but in order to do this we need a measure
of how much information is lost in the process. That is why we need to introduce the
KL divergence. Given two discrete random variables X and Z defined over the same
set {x1, . . . , xn} and their respective probability densities p and q, the Kullback-
Leibler Divergence can be expressed as:

DKL[p||q] = Ex∼X [log p(x) − log q(x)] =
nØ

i=1
p(xi)[log p(xi) − log q(xi)]

I should be noted that this is not a symmetrical quantity since Dkl(p||q) /= Dkl(q||p)
and that the divergence satisfies Dkl(p||q) ≥ 0 and Dkl(p||q) = 0 if and only if
p(x) = q(x) [4] page 55

2.2 Probability Model

A Variational Autoencoder is a probabilistic generative model where the probability
density P (X) is modeled through a latent variable z. Our objective is to model
P (X) such that sampling from the distribution would lead to a convincing example
of our dataset, yet that is not in the original dataset. The relation between the latent
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variable and the original vector space is given by

P (X) =
Ú

z
P (X|z)P (z)dz (2.1)

Since the variational autoencoder can also be seen as a directed probabilistic graph-
ical model, we can also express it as a graph:

X p(X|z)

z p(z)

Where P (X|z) represents the probability distribution of X conditioned on z. The
main problem of 2.1 is that the integral over z is intractable since the dimension
of z could be relatively large. We can obtain the posterior distribution of z using
Bayes theorem.

P (z|X) = P (X|z)P (z)s
z P (X|z)P (z)dz

(2.2)

The variable z should represent latent information of the original dataset, if
we take as an example the MNIST dataset of hand written digits [13] it would be
desirable if each component of z represented which digit is going to be generated
by the model, the thickness of the stroke, or the skewness of the digit. On the other
hand choosing and hard coding this information into the latent variable would not
be feasible.
The VAE (Variational Autoencoder) takes another approach and assumes that z has
a know prior distribution P (z) where each component has no easy interpretation.
One choice might be having z ∼ N (0, I).
One consequence of this model is that following a trajectory in the vector space of
z and sampling an example of X for each point of the trajectory would lead to a
series of images with similar characteristics, transitioning from a digit to another,
as shown in the example below.

Even if we now have an easy way of sampling from the latent variable z we still
don’t know how to sample from the original vector space of X, X . In order to do
that we need do build a function f(z; θ) where f : Z → X . The easiest way to
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Figure 2.2: Images generated following the path (1,1) → (1, −1)

Figure 2.3: Images generated following the path (1, −1) → (−1, −1)

model such function is to build a neural network and optimize over θ to suit our
needs. Even if we now have both P (z) and P (X|z) we are still not able to compute
the likelihood of our data X since the equation 2.1 has an intractable integral. It is
useful to note that the probability P(X) is very close to zero in most of the domain
of X. Following the MNIST example, most of the domain does not look like a written
digit, some of might look like a non-existing character, but most of it will look like
random noise, and for all of those example P(X) has to be very close to 0. For this
reason it is a good idea to sample from value of z that have a high probability of
having produced an example X. In order to do this we introduce a new function,
Q(z|X), which given X gives us a distribution over z which represents the values
that are likely to produce X. Q(z|X) needs to be a complex function and in order
to model it we are going to use once again a neural network. This neural network
has to approximate the distribution P (z|X) expressed in (2.2), for this reason we
are going to use the KL divergence introduced in section 2.1.3

DKL[Q(z|X)||P (z|X)] = Ez∼Q(z|Z)[log Q(z|X) − log P (z|X)] =

Ez∼Q(z|X)[log Q(z|X) − log P (X|z)P (z)
P (X) ] =

Ez∼Q(z|X)[log Q(z|X) − log P (X|z) − log P (z)] + log P (X) =

DKL[Q(z|X)||P (z)] − Ez∼Q(z|X)[log P (X|z)] + log P (x)

Figure 2.4: Images generated following the path (−1, −1) → (−1,1)
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Figure 2.5: Images generated following the path (−1,1) → (1,1)

Rearranging the terms:

log P (X) − DKL[Q(z|X)||P (z|X)] = Ez∼Q(z|X)[log P (X|z)] − DKL[Q(z|X)||P (z)]
(2.3)

The right hand side of the equation is what we want to maximize. Let’s analyze the
term DKL[Q(z|X)||P (z)]. We know that P (z) is distributed as standard normal dis-
tribution, while we want to model Q(z|X) as a normal distribution whose parameters
depend on our data set X, in other words we want Q(z|X) to be N (µ(X), Σ(X))
where µ(X) and Σ(X) are neural networks.
The KL divergence between two multivariate gaussians is

DKL[N (µ0, Σ0)||N (µ1, Σ1)] = 1
2[(µ0 − µ1)|Σ−1

1 (µ0 − µ1) + Tr(Σ0Σ−1
1 ) − log |Σ0|

|Σ1|
− n]

applied to our case

DKL[N (µ(X), Σ(X))||N (0, I)] = 1
2[µ(X)|µ(X) + Tr(Σ(X)) − log |Σ(X)| − n]

as shown in appendix A.
The second addend of the left hand side of 2.3 is considered an error term, while
logP (X) is the log-likelihood (what we want to maximize). In pseudo code the last
expression becomes

kl_loss = 0.5*sum(square(z_mean) + exp(z_log_var) - z_log_var - 1)

Where we both model z_mean and z_log_var (the log of the variance) as neural
networks whose input layers is X, note that z_log_var is not a matrix but a vector,
since it represents the diagonal of the covariance matrix (which is a diagonal matrix).
We also use the fact that the determinant of a diagonal matrix is the sum of the
trace of that matrix.
We still need to analyze Ez∼Q(z|X)[log P (X|z)] that is the log-likelihood of P (X|z),
which for gaussians distributions becomes the mean squared error.
The total loss function of our neural network in pseudo code becomes
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reconstruction_loss = mse(input, output)
vae_loss = K.mean(reconstruction_loss + kl_loss)

Figure 2.6: The structure of the Variational Autoencoder

2.3 Similiarities with classic Autoencoder
The autoencoder is a type of neural network used for non-linear dimensionality
reduction, image denoising, image restoration. The main concept is to have the
output layer to be of the same size and shape of the input layer while introducing a
bottleneck in the architecture. In this way the autoencoder is forced to learn a lower
dimension representation of our dataset. The name variational autoencoder derives
from the parallelism with the classic autoencoder, since in both networks we can
identify an encoder and a decoder.

2.3.1 Autoencoders

The structure of the autoencoder is very simple, it only consists in a feed-forward
neural network where the number of output nodes is exactly the same as the number
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of input nodes. Since these kind of networks are used for dimensionality reduction
purposes we have to introduce a bottleneck in the structure of the feed forward
network.

Figure 2.7: An example of a classic autoencoder

In order to ensure that the last layer of the network outputs a reconstruction of
the input, during training time we minimize the reconstruction error.

L(X; θ) = ||X − fθ(gφ(X))||2

In this way the network is forced to learn a low dimension representation of our
dataset. It’s worth noting that without the bottleneck in our architecture the loss
function would be trivial to minimize since the network could copy the values of
the input layer through the hidden layer and then passing those same values to the
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output layer.
The first part of our network is the encoder, and after training can be used to output
a lower dimension array that represent the initial data, while the second part is the
decoder network, and after training can be used to restore the compressed data.

Figure 2.8: The first row shows the original data, the second row shows a represen-
tation of the compressed data, while the third row shows the reconstructed data

2.3.2 Autoencoders as generative models

Once the training process is completed we can detach the decoder from the network
and use it to generate data, however the classic autoencoder is not able to generate
digits as we can see from the examples in figure 2.9. one of the reason why is that we
never constrained the "latent" representation z to lay in a specific region of the vector
space, which means that sampling from a normal distribution N (0, I) is completely
arbitrary, as it would be arbitrary to sample from any other distribution.

Figure 2.9: Output of the decoder whose input was a sample from a isotropic mul-
tivariate gaussian
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Even perturbing the compressed version of a digit in our dataset and then re-
constructing it does not provide any useful insight on how the autoencoder can
be used as a generative model. It does not change any of the characteristic of the
original digit in a useful way (for example changing the thickness of the stroke or
transitioning to another digit) as shown in figure 2.13.

Figure 2.10: Original image next to the perturbed images.

2.3.3 Autoencoders an anomaly detectors

Even though the autoencoder doesn’t model a probability distribution, neither in
the latent space nor in the original space, we can still use it to perform anomaly
detection. The anomaly score is the mean square error between the input and the
reconstructed data, in this way we are assuming that the autoencoder does a better
job reconstructing samples from a distribution it encountered at training time than
samples it never saw before. Since the autoencoder cannot get different samples in
the latent space the reconstruction error used as anomaly score is a deterministic
measure, while the anomaly score used in the VAE is a probabilistic one. The metric
used in order to evaluate the models is described in chapter 3. Results in the next
table.

2.4 Plotting latent varibales in 2D
We will now try to further understand the differences between the variational au-
toencoder and the classic autoencoder.
In order to do this we are going to use an autoencoder whose bottleneck has dimen-
sion 2, and a variational autoencoder whose latent variable has dimension equal to
2 (which means the mean and variance used to sample data have dimension 2).
After training both models with training data we will plot the embedded version of
the test data. For the VAE we are going to plot the conditioned mean in z for each
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Anomaly Digit Autoencoder AUC Convolutional Autoencoder AUC
0 0.67 0.85
1 0.12 0.32
2 0.78 0.97
3 0.57 0.94
4 0.48 0.92
5 0.64 0.95
6 0.72 0.91
7 0.61 0.71
8 0.57 0.95
9 0.51 0.69

Table 2.1: Area under the ROC curve for each digit for autoencoders.

sample. Looking at the plot of the variational autoencoder we can immediately note
that points representing the same digit are clustered together, but we can also note
that the whole complex is disposed in bivariate gaussian fashion (which is what we
were trying to accomplish when building our loss function).
On the other hand in the plot of the classic autoencoder points are not particularly
clustered and they don’t form any particular shape.

2.5 Detecting anomalies with VAE

Once we built our VAE we need to train it using nominal data from the MNIST
dataset (a dataset formed by hand written digits, more details in the next chapter).
Since MNIST does not have explicit labels for anomalies detection purposes we are
going to define anomalous and nominal data ourselves by removing one class from
the entire dataset and labeling as anomalous. All the other classes will passed to the
neural network at training time, in this way the variational autoencoder will learn
to model those classes.
The next step is building a metric that will be used at test time in order to identify
anomalous data. In order to do that we will feed a test example to the encoder part
of our network, which will output its mean and variance in the latent space. We will
then sample from a multivariate normal distribution whose mean and variance are
those output by the encoder (remember that the produced variance is a vector that
represents the diagonal of a diagonal matrix). After that we will feed the sampled z
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Figure 2.11: 2D plot of (variationally)autoencoded digits.

Figure 2.12: 2D plot of autoencoded digits.

in the latent space to our decoder network, that will produce a reconstructed version
of the initial input data. If the the input example belongs to one of digit classes that
the autoencoder encountered during training the reconstruction should be relatively
accurate, while if it belongs to the anomalous class the reconstruction should not
resemble the initial input.
For example when when the VAE has been given every digit except "4" as training
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data it fails to reconstruct images that represent the number 4 properly. It’s worth
noting that the VAE thinks the input image is a 9 and reconstruct it as such.

Figure 2.13: Input image "4" in the bottom row. Three samples of reconstructions
of that very "4" in the top row.

The actual anomaly score in constructed similarly to the one used in classic
autoencoder: the squared difference between the original input and the reconstructed
one is computed, but this time it’s averaged over the number of samples we decided
to take from the normal distribution in the latent space z.

score =
LØ

l=1
(X̂l − X)2

Where L is the number of samples, X̂l is the reconstruction of the lth sample, and X

is the original input image. One of the advantages of using a variational autoncoder
instead of a classic one is that it’s possible to get more than one sample from the
distribution in the z vector space, thus getting more than one reconstruction of
the original image. In my experiments I didn’t find the increasing of L to give
substantially better results.

32
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Figure 2.14: AUC when the number of
samples varies for digit 1

Figure 2.15: AUC when the number of
samples varies for digit 9
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Chapter 3

Experiments

3.1 Histograms, ROC curves, Area under the curve

In order to asses how and if the VAE is working we will use the anomaly score
produced ad test time. We will then build two histograms of said score, one over
anomalous data, one over normal data, in order to visualize if anomalous data has
an higher reconstruction error.
While these histograms provide a visual aid of how the VAE is operating it does
not give us a number that we can use to compare different results, for this reason
we need to introduce the Receiver Operating Characteristic (ROC) curve, and the
Area Under the Curve (AUC).

3.1.1 ROC

Given two overlapping gaussians distributions (a positive class and a negative class)
our task is to understand how separable are those two classes. For this reason we
need to choose a threshold and see how much area of the gaussian curve lays in the
wrong side of the threshold for each of the two classes.

Since we will not be dealing with the explicit densities of the distributions but
from the respective histograms instead of looking at the area of the density we will
use the True Positive Rate (TPR) and the False Positive Rate (FPR).

TPR = TP

TP + FN
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Figure 3.1: Example of the histograms for two gaussians

Figure 3.2: Example of a ROC curve

FPR = FP

FP + TN

Where TP (True Positive) is the number of positive examples classified correctly,
FN (False Negative) is the number of examples whose prediction was negative but
whose true condition was positive, FP (False Positive) is the number of examples
whose prediction was positive but whose true condition was negative, while TN

(True Negative) is the number of negative examples classified correctly. More specif-
ically the ROC curve plots the True Positive Rate and the False Positive Rate on
a plane, while the deciding thresholds varies. This means that every point of the
curve corresponds to a specific threshold value, but we are not interested on the
value per se, making it a useful tool for comparing models where the thresholds are
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in different scales.
If the two gaussians distributions were fully separable the curve would form a 90o

angle, since every point corresponding to thresholds over the left (negative) gaus-
sian would have TPR of 1, while every point corresponding to thresholds over the
right (positive) gaussian would have FPR od 1,thresholds the manage to completely
separate the two gaussians would have TPR of 1 and FPR of 0. On the other hand
if the two gaussians had the exact mean and variance (meaning that they are not
separable in any way) the ROC curve would lay on the bisector of the plane.

3.2 MNIST results

A series of experiments have been performed to evaluate efficacy of the variational
autoencoder as an anomaly detection algorithm. The first dataset we used is MNIST
[13], which contains images of handwritten digits, ranging from 0 to 9. In order to
use it for anomaly detection we labelled only one digit has anomalous data and every
other digit has normal digit, and performed the experiments for every possible digit
as anomalous.
There are 60000 images in the training set by default (6000 for each digit), but since
we removed one there are 54000 images in our custom training data. There are 10000
images in the test set, 1000 of which are labeled as anomalies.
The training is done only with normal data in an unsupervised fashion, in this way
the model will learn to generate only the classes we put in the normal dataset, and
will hopefully have trouble reconstructing anomalies, since it wasn’t presented at
training time.

It is now clear that a good numeric indicator of the performance of the model
would be to compute the area under the ROC curve, which will be close to 1 for
very good models that can separate classes, while would be close or under 0.5 for
model that are not able to separate the two classes.

We tested to different architectures, details are presented in the next table.
In the third layer there are both the mean and the variance of the VAE model, each
with 200 nodes.

The architecture labeled Dense NN1 is the one used by Jinwon An and Sungzoon
Cho in "Variational Autoencoder based Anomaly Detection using Reconstruction
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Dense Architectures
Dense NN 1 Dense NN 2

Type #Nodes Activation Type #Nodes Activation
Input 784 Input 784
Dense 400 relu Dense 400 relu
Dense* 200 - 200 linear Dense* 400 - 400 linear
Sample 200 Sample 400
Dense 400 relu Dense 400 relu
Output 784 relu Output 400 relu

Table 3.1: Architectures of the dense neural networks.

Convolutional architecture
Type Filters/Nodes Stride Activation Outputshape
Input 28 × 28 × 1
Conv 3 × 3 × 32 2 relu 14 × 14 ×

32
Conv 3 × 3 × 64 2 relu 7 × 7 × 64
Flatten 3136
Dense 200 relu 200
Dense* 100 - 100 linear 100 - 100
Sample 100
Dense 3136 3136
Reshape 7 × 7 × 64
Deconv 3 × 3 × 64 2 relu 14 × 14 ×

64
Deconv 3 × 3 × 32 2 relu 28 × 28 ×

32
Deconv 3 × 3 × 1 1 sigmoid 28 × 28 × 1

Table 3.2: Details of the convolutional architecture.

Probability" [1]. The main differences between NN1 and NN2 is that in NN2 the
data is projected in a vector space with a bigger dimension with respect to NN1.
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Figure 3.3: Histogram of anoma-
lies score, 0 vs all Figure 3.4: ROC curve of 0

Figure 3.5: Histogram of anoma-
lies score, 1 vs all Figure 3.6: ROC curve of 1 vs all

Figure 3.7: Histogram of anoma-
lies score, 2 vs all Figure 3.8: ROC curve of 2 vs all
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Figure 3.9: Histogram of anoma-
lies score, 3 vs all Figure 3.10: ROC curve of 3 vs all

Figure 3.11: Histogram of anoma-
lies score, 4 vs all Figure 3.12: ROC curve of 4 vs all

Figure 3.13: Histogram of anoma-
lies score, 5 vs all Figure 3.14: ROC curve of 5 vs all
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Figure 3.15: Histogram of anoma-
lies score, 6 vs all Figure 3.16: ROC curve of 6 vs all

Figure 3.17: Histogram of anoma-
lies score, 7 vs all Figure 3.18: ROC curve of 7 vs all

Figure 3.19: Histogram of anoma-
lies score, 8 vs all Figure 3.20: ROC curve of 8 vs all
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Figure 3.21: Histogram of anoma-
lies score, 9 vs all Figure 3.22: ROC curve of 9 vs all
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The digits where the VAE performs the worst are 1,7 and 9. It looks like the
variational autoencoder manages to reconstruct both 1 and 7 since they are both
very simple symbols that the autoencoder leanrs to draw even if it never saw 1s and
7s at training time. This hypothesis is strengthened by the fact that the performance
gets worst for those 2 digits when a convolutional (variational autoencoder) is used:
convolutional neural networks are able to learn more complex strokes, and a simple
vertical dash can be easily learned by other digits.
In particular when 1 is the anomalous digit the VAE reconstruct it as a very thin 8,
and the reconstruction error between those two is very small. On the other hand it

Figure 3.23: Original 1s Figure 3.24: Reconstructed 1s (by the
convolutional VAE)

looks like 9 under performs because it’s very similar to 8, and the reconstruction error
between 8s and 9s is very small. Another interesting thing to note is the shape of
the ROC curve for the handwritten digit 1, since it changes convexity at right of the
curve. This kind of behaviour cannot happen if the histograms where representative
of to gaussians.
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When the deciding threshold is at around 0.030 there are more normal examples to
the right of the threshold (hence being misclassified) than anomalous ones. This is
reflected in the ROC curve: there is an area in which the curve is under the bisector,
But when the deciding threshold is at the beginning of the two histograms the are
more anomalous examples to the right of the deciding threshold.

Anomaly Digit VAE NN2 CONV VAE AE Jinwon VAE [1] PCA
0 0.90 0.85 0.67 0.91 0.71
1 0.35 0.32 0.12 0.14 0.15
2 0.94 0.97 0.78 0.92 0.85
3 0.88 0.94 0.57 0.78 0.60
4 0.90 0.92 0.48 0.81 0.55
5 0.93 0.95 0.64 0.86 0.70
6 0.93 0.91 0.72 0.85 0.84
7 0.68 0.71 0.61 0.60 0.70
8 0.95 0.95 0.57 0.89 0.61
9 0.68 0.69 0.51 0.54 0.47

Table 3.3: Area under the ROC curve for each digit and for each model tested.

3.3 Adding impurities to the training data

In the real world is very hard to gather completely clean data, and hand labeling
can be expensive and time consuming. For this reason we are going to test how
the model performs when we give a small percentage of anomalous data at training
time. We tested 1% and 0.1%.

While every digit performed significantly worst with 1% of impurities we have
to take into account the number of different classes the VAE is learning to model
only in the normal data. There are 9 classes only in the normal data, which means
the impurities are actually close to 10% in number with respect to another normal
class.
Both with 1% and 0.1% the class 1 is the one that performed the worst, which means
that our model does not need a big number of samples in order to model a simple
vertical dash.
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Anomaly Digit VAE 1% Impurities 0.1% Imputirites
0 0.90 0.77 0.89
1 0.35 0.09 0.24
2 0.94 0.92 0.95
3 0.88 0.79 0.83
4 0.90 0.78 0.84
5 0.93 0.87 0.91
6 0.93 0.78 0.90
7 0.68 0.53 0.71
8 0.95 0.88 0.92
9 0.68 0.57 0.60

Table 3.4: Area under the ROC curve for VAE when adding impurities.

3.4 A note on one class SVM
We tested one class SVM with the exact same set up as the for the VAE but from
our experiments it seemed that the model had troubles modeling the normal class,
since it’s formed by multiple subclasses.
For this reason we tested one class SVM with only one digit as normal class and the
other digits as outliers (the opposite of what we have done previously). With this
configuration the one class SVM with rbf kernel is able to recognize outliers.
It should be noted that the one class SVM does not output a score, but it predicts

Normal Digit One class SVM
0 0.68
1 0.96
2 0.58
3 0.67
4 0.72
5 0.64
6 0.70
7 0.79
8 0.63
9 0.79

Table 3.5: Area under the ROC curve for the one class SVM

directly outliers and normal examples at testing time; this means that the ROC curve
consists in only one point, with coordinates true positive rate and false positive rate.
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All digits have TPR of 1 and varying FPR (which determines the AUC).
The one class SVM is able to model the digit 1,7 and 9 fairly well, and while this
seems in contrast to what happened with the VAE and AE we have to take into
account the fact that we are in the opposite scenario as before. We can then interpret
this result by saying that even for the one class SVM those are the easiest classes
to model, which is consisten with what we saw in the previous sections.

3.5 KDDCUP99 results

The original KDD99 dataset is a dataset widely used as a benchmark in fraud
detection. Each entry of the dataset describes a computer network connections,
it has 41 attributes (of which 34 are continuous and 7 categorical). We are using
a modified version with only 4 attributes: service, duration, src_bytes, dst_bytes.
The only categorical attribute is service with 5 categories, http, smtp, ftp, ftp_data,
others. Only entries with service=http are used here.
There are 3,377 entries that are "attacks" (anomalies in our context) of the 567,497
total entries.
The architecture of both the encoder and the decoder is very simple. The input layer
has 3 nodes, the only one hidden layer modeling the latent space has 2 nodes, and
the output node has again 3 nodes.

Figure 3.25: Histogram of anoma-
lies score for the http dataset
(VAE).

Figure 3.26: ROC curve for the
http dataset (VAE).

As you can see from Figure 3.31 and 3.32 the model manages to separate com-
pletely attacks and regular network connections. The ROC curve is made of only
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one point with coordinates (0,1) since the histograms are completely separable.
The one class SVM manages to separate anomalies almost perfectly, as the VAE
manged to do. The isolation forest is also able to reach the same level of perfor-
mance of the one class SVM and the VAE, with a significant shorter training time.

Figure 3.27: ROC curve for the
http dataset using the one class
SVM

Figure 3.28: ROC curve for the
http dataset using the isolation
forest

A similar experiment has been performed but using entries with service=smtp.
More information about both dataset can be found at [16] and [8]

Figure 3.29: Histogram of anoma-
lies score for the smpt dataset
(VAE).

Figure 3.30: ROC curve for the
smtp dataset (VAE).

While from the histogram it looks like the two classes are separated the anoma-
lies have smaller reconstruction error, which is not the intended behaviour. This is
reflected by the fact that the ROC curve lies under the diagonal, which suggests
that our model is performing worse than a random choice. Given the results of the
MNIST experiments we could speculate and say that the attacks in the smtp dataset
have a less complex structure that the VAE is able to learn, but this would need
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further assessments.

While the one class SVM manages to separate the two classes, the isolation forest
fails completely since the ROC curve lies on the diagonal.

Figure 3.31: ROC curve for the
smtp dataset using the one class
SVM

Figure 3.32: ROC curve for the
smtp dataset using the isolation
forest
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Chapter 4

Language processing

4.1 Problem setup

We will now try to apply the techniques used in previous chapters in natural language
processing.
The ideal scenario for this application would be monitoring a community that writes
text with a common interest (for example an online forum) and understand when
the members of this community would start talking about a new topic.

4.2 Dataset and preprocessing

In order to simulate this situation the Sentence Classification Dataset /citesentence
has been used. While this dataset provides labels for a small subset of the data, we
used the much larger unlabeled portion, since we will be using unsupervied learning
techniques.
The data set consists of a corpus made of academics articles, each belonging to one
of these three fields:

• Computational Biology

• The machine learning repository on Arxiv

• The psychology journal Judgment and Decision Making
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Two of these fields will be labeled as normal data while the other one will be
labeled as anomalous data. Each article will be split in sentences, such that one
sentence will be one row of our dataset.

4.3 Universal Sentence Encoder

Now that we have a dataset made of different sentences from different fields we need
to transform it in something the our VAE can process, namely an array of numbers.
This process is usually called feature extraction
In order to decrease the number of unique words we applied a common algorithm in
natural language processing called stemming. Stemming consists in identifying com-
mon prefixes in different words so that words like "playing", "plays", "played" were
all mapped to "play". The next step consisted in eliminating from the sentences the
words that appeared too often (usually called stopwords), since those are probably
not field specific, and eliminating the words that appeared too sporadically.
At this point we have to actually create an array of numbers, the approach we used
is called Bag of Words and it works like this: An array that has as dimension the
number of unique words in our dictionary with 0 in all of its entries is created. For
each sentence one element of that array corresponds to the counter of how many
times that word appears in that sentence (this process is usually called CountVec-
torizer). It’s clear that even after stemming and removing stopwords the size of the
vocabulary will still be very big, which means that vectors will be long and most
importantly very sparse.
After these vectors are created they are fed to our VAE like we did for MNIST
images. Our model was not able to recognize anomalous sentences, my hypothesis
is that this happened since my dataset consists only of 36167 sentences, not enough
for the VAE to learn how to represent them given that the vectors are very sparse.
We need to find a way to create a numeric array that represents our sentence that
is not sparse, but since our dataset is still relatively small we are going to use the
concept of transfer learning.
Transfer learning is a technique that consists in leveraging pretrained models in or-
der to train our model on top of the pretrained one. More specifically we are going to
use the Universal Sentence Encoder [6]. This tensorflow model takes as input words,
sentences, or full paragraphs and gives as output a 512 array that represents what
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was gives as input. This means that sentences with similar meaning such as "How
are you today?" and "How do you feel today" are going to be mapped as adjacent
vectors in the new space.
It is possible to compute a semantic textual similarity between to sentences by using
the inner product of the to respective 512 arrays.

Figure 4.1: Semantic textual similarity of simple sentences

Semantic similarity between short sentences gives the desirable result, while it
has trouble with long sequences.

Figure 4.2: Semantic textual similarity: the first three sentences are from the Arxiv
papers, while the second three are from the biology journal
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4.4 VAE application and results
We both gave as input of the Universal Sentence Encoder full sentences without any
preprocessing and sentences preprocessed with our stemming and CountVectorizer.
Sentence without preprocessing performed considerably better.
Class 1 corresponds to sentences from the Arxiv machine learning repository, class
2 corresponds to sentences from the psychology journal, while class 3 corresponds
to sentences from the computational biology journal.

Figure 4.3: Histogram of recon-
struction error when class 1 is
anomalous

Figure 4.4: ROC curve when class
1 is anomalous

Figure 4.5: Histogram of recon-
struction error when class 2 is
anomalous

Figure 4.6: ROC curve when class
2 is anomalous
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Figure 4.7: Histogram of recon-
struction error when class 3 is
anomalous

Figure 4.8: ROC curve when class
3 is anomalous
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Results with stemmed, countVectorized and then encoded sentences:

Figure 4.9: Histogram of recon-
struction error when class 1 is
anomalous

Figure 4.10: ROC curve when
class 1 is anomalous

Figure 4.11: Histogram of recon-
struction error when class 2 is
anomalous

Figure 4.12: ROC curve when
class 2 is anomalous

Figure 4.13: Histogram of recon-
struction error when class 3 is
anomalous

Figure 4.14: ROC curve when
class 3 is anomalous
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Conclusions

From our experiments it looks like the variational autoencoder is able to solve dif-
ferent kinds of anomaly detection problems, from images, semantic analysis and
structured Data.
It is able to deal with datasets in which the normal class is formed of multiple sub-
classes, each with its own characteristics, but it has problems when the anomalous
class is substantially easier to model that the other ones, since it can learn to repro-
duce it looking at the other classes.
It has all the benefits and drawbacks of other deep learning techniques, for example
it is able to take advantage of more layers provided that the amount of data used
for training is appropriate. The number of hyperparameters of the architecture is
substantial and many experiments are needed in order to determine the architecture
for each problem.
When given a large training set it has the advantage of performing feature extrac-
tion in the first layers of the network, which means it can accept as input data with
many dimension like images (where the support of the images distribution is very
small considering the whole space), where methods that leverage simple statistical
properties fail. Future work could focus on exploring other generative methods that
model the probability distribution in latent space in an explicit way for anomaly
detection purposes, like MADE [9] and NADE [18] networks.
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An appendix

A.1 KL Divergence between two multivariate Gaus-
sians

X ∼ N (µ0, Σ0) , with µ0 ∈ Rd, Σ0 ∈ Rd×d

Y ∼ N (µ1, Σ1) , with µ1 ∈ Rd, Σ1 ∈ Rd×d

Since the two random variables are multivariate normal we now that the density of
X is

p(x) = (2π)− n
2 |Σ0|−

1
2 exp(−1

2(x − µ0)|Σ−1
0 (x − µ0))

and the density of Y is

q(x) = (2π)− n
2 |Σ1|−

1
2 exp(−1

2(x − µ1)|Σ−1
1 (x − µ1)

We can now proceed to compute the divergence between the two random variables

DKL[X||Y ] = Ex∼X [log X − log Y ] =
Ú +∞

−∞
p(x)[log p(x) − log q(x)]dx =

Ú +∞

−∞
p(x) log p(x)dx −

Ú +∞

−∞
p(x) log q(x)dx

Let’s compute the first addend of the last equationÚ +∞

−∞
p(x) log p(x)dx =

Ú +∞

−∞
p(x) log[(2π)− n

2 |Σ0|−
1
2 exp(−1

2(x−µ0)|Σ−1
0 (x−µ0))]dx =

Ú +∞

−∞
p(x){log[(2π)− n

2 |Σ0|−
1
2 ] + log[exp(−1

2(x − µ0)|Σ−1
0 (x − µ0))]}dx =

55



A – An appendix

Ú +∞

−∞
p(x){log[(2π)− n

2 |Σ0|−
1
2 ] − 1

2(x − µ0)|Σ−1
0 (x − µ0)}dx =

Ex∼X [log[(2π)− n
2 |Σ0|−

1
2 ]] − 1

2Ex∼X [(x − µ0)|Σ−1
0 (x − µ0))] =

log[(2π)− n
2 |Σ0|−

1
2 ] − 1

2Tr{Σ−1
0 Σ0} = log[(2π)− n

2 |Σ0|−
1
2 ] − 1

2n

Let’s compute the second addend of equation using matrix properties from the
Matrix Cookbook [15]Ú +∞

−∞
p(x) log q(x)dx =

Ú +∞

−∞
p(x) log((2π)− n

2 |Σ1|−
1
2 exp(−1

2(x − µ1)|Σ−1
1 (x − µ1)) =

Ú +∞

−∞
(p(x) log((2π)− n

2 |Σ1|−
1
2 ) − 1

2(x − µ1)|Σ−1
1 (x − µ1)) =

Ex∼X [log((2π)− n
2 |Σ1|−

1
2 )] − 1

2Ex∼X [(x − µ1)|Σ−1
1 (x − µ1)] =

log((2π)− n
2 |Σ1|−

1
2 ) − 1

2(µ0 − µ1)|Σ−1
1 (µ0 − µ1) − 1

2Tr(Σ0Σ−1
1 )

Putting everything together

DKL[X||Y ] = log[(2π)− n
2 |Σ0|−

1
2 ]−1

2n−{log((2π)− n
2 |Σ1|−

1
2 )−1

2(µ0−µ1)|Σ−1
1 (µ0−µ1)−1

2Tr(Σ0Σ−1
1 )} =

−1
2 log |Σ0|

|Σ1|
− 1

2n + 1
2(µ0 − µ1)|Σ−1

1 (µ0 − µ1) + 1
2Tr(Σ0Σ−1

1 ) =

1
2[(µ0 − µ1)|Σ−1

1 (µ0 − µ1) + Tr(Σ0Σ−1
1 ) − log |Σ0|

|Σ1|
− n]
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