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Abstract � Shape optimization of wings in periodic motion is a modern and highly valuable

discipline, which involves strictly research and industry. The necessity of a trade-o� between

accuracy and computational time lead to di�erent choices in terms of solver from the standard

ones.

The classical unsteady simulation methods are not always e�ective in solving periodic motions,

because an expensive transient needs to be met �rst.

The Time Spectral Method allows to simulate a periodic �ow, coupling several steady computa-

tions with a satisfying accuracy and a consistent reduction of time.

This work has the aim of implementing a robust TSM solver for the solution of external �ows.

The solver has been developed externally in a python script, interacting with the ONERA CFD

solver elsA, exploiting its modularity, but adopting a di�erent approach: the exact Jacobian

matrix is extracted and numerical strategies are investigated to help the convergence process.

The code has been validated via test cases comparisons performed by the reference solver elsA,
and moreover it showed faster convergence.

A �rst gradient-based steady optimization is implemented, creating the basis for the future

implementation of the unsteady TSM optimizer.

Keywords : aeroelasticity, numerical methods, unsteady optimization, time spectral method,

transonic unsteady �ows, modular implementation

Abstract � L'ottimizzazione di forma di ali in movimento periodico è una disciplina moderna e

altamente valida, che coinvolge strettamente ricerca e industria. La necessità di un compromesso

tra accuratezza e tempi di calcolo portano a scelte diverse in termini di solutore, rispetto a quelle

standard.

I classici metodi di simulazione instazionaria non sono sempre e�cienti nel risolvere moti period-

ici, poichè prima che la soluzione converga a quella a regime, viene necessariamente incontrato

un transitorio costoso e spesso non utile.

Il metodo Time-Spectral permette di simulare un �usso periodico, accoppiando diversi calcoli

stazionari con un'accuratezza soddisfacente ed una riduzione di tempo consistente.

Il presente lavoro ha l'obiettivo di implementare un solutore TSM robusto per la risoluzione di

�ussi esterni. Il solutore è stato sviluppato esternamente in uno script python, interagendo con il

solutore CFD ONERA elsA, sfruttando la sua modularità, ma adottando un approccio di�erente:

è estratta la matrice Jacobiana esatta e sono investigate delle strategie numeriche per aiutare

il processo di convergenza. Il codice è stato validato attraverso casi test, operando confronti

tra i risultati del solutore esterno e quelli del solutore di riferimento elsA, riuscendo inoltre a

dimostrare una convergenza più rapida.

Una prima ottimizzazione stazionaria gradient-based è stata implementata, gettando le basi per

la futura implementazione dell'ottimizzatore TSM instazionario.

Parole chiave : aeroelasticità, metodi numerici, ottimizzazione instazionaria, metodo time-

spectral, implementazione modulare

ONERA Politecnico di Torino

29 avenue de la Division Leclerc Corso Duca degli Abruzzi, 24

92322, Châtillon, France 10129, Torino, Italy





Introduction

Nowadays the development of high performances aircraft, helicopters, drones, engines or missiles

is the main goal of aerospace industry. Performances are improved if the design is well adapted

to the operative �ight conditions and the desired forces: in order to achieve this goal a study on

the shape optimization is needed.

Powerful tools aimed at steady shape optimization have already been developed. Thanks to

CFD codes like elsA, provided with an optimization module able to extract the desired gradients

and optimizers that follow an algorithm to �nd the right parameters to minimize an objective

function, usually drag, it is possible to perform steady optimization, but also unsteady periodic

optimization: it means �nding the parameters which minimize the average drag over a period,

for a pitching airfoil. This is the ultimate goal of the present work (and the following works).

In order to compute shape optimization problems externally from the ONERA CFD code, build-

ing an external solver of �ows is �rst of all necessary. It is chosen to build a Time Spectral

Method solver.

The reason of this choice stands in terms of speed and e�ciency of calculations: in fact, an

unsteady complete computation needs to encounter a transient before reaching a steady periodic

regime. This transient is expensive in terms of number of iterations and subsequently in terms of

CPU time, and above all it is irrelevant for most of practical applications when the main intent

is modelling of physical phenomena. This is why new techniques have been developed recently.

The Time Spectral Method, dedicated to periodic �ows and based on Fourier analysis, allows to

bypass the transient, to compute only the established periodic motion, saving computational time

for purely periodic problems when compared to standard time-implicit methods. The established

motion is computed by several steady computations, coupled each other by a source term.

Hence non-linear systems resulting from time-spectral discretizations should be solved, that

become larger and sti�er as more time instances are employed or the period of the �ow becomes

especially short.

After building a TSM solver, its behaviour is investigated, and new strategies are proposed.

Thesis organization

Chapter 1 presents the two test cases performed on the airfoil NACA 64A010, on which the

solver is tested. The airfoil is in a sinusoidal pitching motion, and the two conditions studied

consist in one with a low Mach number �ow and low forcing frequency, and one with a high

transonic Mach number �ow with a higher frequency.

Chapter 2 introduces the Time Spectral Method in detail, deriving the �nal system to solve, and

presenting also an example of how the time-spectral matrix, key feature of TSM, is exploited in

simple cases.
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Chapter 3 covers the numerical models adopted to simulate a �ow around an airfoil in pitching

motion, taking into account the continuous change of frame of reference in the motion equations.

In Chapter 4 direct and iterative solution methods of linear systems are discussed.

Chapter 5 gives a short overview of the CFD solver elsA, concerning the discretization models

used and the solution process of a steady mean �ow.

Chapter 6 deals with the core of the thesis, providing a detailed description of the steps carried

out in the numerical development of the solver: �rst the implementation of the partially im-

plicit TSM, its parallelization, then the fully implicit formulation and its adaptation to parallel

computing. The �owchart of the algorithm is presented to show clearly how the solver works.

After �nding in Chapter 7 the right reference data to validate the solver for the two test cases,

in Chapters 8 and 9 the results of the steady and the TSM external solver are provided: the

density �eld, the wall pressure and the aerodynamic coe�cients are validated with respect to

reference solutions, and the convergence behaviour is analyzed.

In Chapter 10 a steady optimization is performed to one of the test cases adopted for the solver,

constituting a �rst step in the building of the �nal unsteady optimizer.

Chapter 11 gives a summary of this dissertation as well as a discussion on directions for future

work.



Chapter 1

Test cases

The test cases to test and validate the implementation of the TSM solver involve a symmetric

airfoil in a pitching motion. The prescribed motion is sinusoidal, that means that the angle of

attack follows a periodic function:

α(t) = α0 + α̂ sin(ωt) (1.1)

The two test cases have been performed experimentally by the AGARD [1] on a NACA64A010
airfoil: one implies a low Mach case and the other a higher one, respectively named dynamic
index 29 and dynamic index 55.

M = 0.502

p∞ = 171000 Pa

p◦ = 203152 Pa

q = 30199 Pa

f = 10.8 Hz

α0 = −0.22◦

α̂ = 1.02◦

Table 1.1: Dynamic index 29

M = 0.796

p∞ = 133912 Pa

p◦ = 203321 Pa

q = 59395 Pa

f = 34.4 Hz

α0 = −0.21◦

α̂ = 1.01◦

Table 1.2: Dynamic index 55

where α0 is the mean angle of attack and α̂ is the amplitude of the pitching motion.

So two Mach numbers, M = 0.502 and M = 0.796, and two frequencies of pitching will be

studied, f = 10.8Hz and f = 34.4Hz.

The studied �ow is compressible and it is studied by the Euler Equations: it means that there

are no viscosity, thermal e�ects and gravity which in�uence the state of the �uid, air in this case.
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1.1 Mesh

The mesh adopted for the test cases corresponds to a NACA 64A010 airfoil.

The NACA airfoils are airfoils shaped for aircraft wings developed by the National Advisory

Committee for Aeronautics (NACA). The shape of NACA airfoils is described using a series of

digits following the word "NACA", representing several numerical shape parameters, to enter

into equations and generate precisely the desired shape.

The characteristics of the 64A - series studied airfoil NACA 64A010 are the following:

• the position of the maximum thickness is located at 40 percent of the chord

• the airfoil is symmetric (due to the fourth digit - 0), or the lift coe�cient can't exceed the

0 value for a 0 angle of attack

• the maximum thickness ratio is 10 percent of the chord

Figure 1.1: Structured 2D C-mesh of the NACA64A010 airfoil

The mesh �les contain the coordinates of the nodes in x, y, z direction, in form of block. The

problem studied is a 2D problem in x, z directions, and the adopted mesh is called "false 3D
problem" because of the presence of only two planes in the y - direction, used to satisfy the

condition of zero speed and zero �uxes in this direction.

The adopted mesh is of the structured type. In fact there are roughly two kinds of mesh to be

used in CFD ( [2]):

• structured meshes: the term "structured" refers to the way the grid information is addressed

by the computer. In fact in a structured CFD grid, it is possible to build a function to

turn the physical domain into a uniform Cartesian grid. In such a way it is easy to identify

and access to a given point. It is used to speed CFD codes. On the other hand it is not

allowed to set additional points into the grid if for any reason it is useful to have a more

re�ned zone. The structured mesh utilized in this dissertation is a C-grid (�g. 1.1), named

this way due to the shape similar to the letter "C" in which all the lines bend back to meet

up with themselves at some point. In the analysed case the line that describes the airfoil
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surface meets at the trailing edge, where the line leading from the lower surface of the

airfoil coincides with the line from the upper surface. It is then clear that the mesh is �ner

around the airfoil and on its wake, where the highest gradients of variables are present. On

the other hand in the far �eld from the airfoil wing e�ects on the �ow can be neglected,

and a strong re�nement is not needed.

• unstructured meshes: Unstructured CFD grids don't have a direct mapping between the

points stored in memory and their connections in the physical space. It means that the

cell at a certain 'n' location in memory may not have physical relation to the cell next to

it at location 'n+1'. This implies that the unstructured solver is more complex, in order

to manage to correlate one point of the grid to another one. Nevertheless it allows to have

more freedom to customize the grid with respect to the needed resolution in particular

areas. An example of such a mesh is presented in �g. 1.2 for a NACA 0012 airfoil.

Figure 1.2: Example of unstructured mesh

The number of cells of the chosen mesh is 8192, 256 in the x - direction and 32 in the z - direction.

As previously said, the y - direction is implemented with only 2 nodes to form 1 false 3D cell.





Chapter 2

Time Spectral Method

The Time Spectral Method has been introduced in CFD from turbomachinery developers trying

to reduce the computational time needed for simulations of internal �ows, starting from 2D and

non viscous �ows, to arrive to multi-stage 3D viscous �ows and external �uid dynamics.

In fact it allows to skip the transient part of a standard unsteady simulation (time domain based,

in which every time step depends on the previous one), and solves only the established motion,

thanks to the passage back and forth to and from the frequency domain.

Figure 2.1: Example of unsteady computation performed by elsA

The Time Spectral Method is very useful to characterize and predict the response of non-linear

dynamic systems subject to periodic oscillations, both auto-induced and due to a harmonic

excitation.

In the context of aerodynamic analysis of the �ow around moving surfaces, the Time Spectral

Method is placed between LFD (Linearized Frequency Domain) Navier Stokes or Euler Equations
( [3]) and the URANS (Unsteady Reynolds - Averaged Navier Stokes) concerning the realism of the

physical non-linearities of the �ow. The term URANS is improperly used in this case to indicate

an Unsteady Euler simulation, without the contribution of viscosity and thermal conductivity.

9
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accuracy−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DLM LFD TSM URANS

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
computational time

In fact the basic state of linearized methods is a steady �ow, which returns the same results as a

RANS (steady) computation, while TSM's �ow is averaged in time, and its results are di�erent

from a steady �ow. In the LFD case, the �ow is linearized around a �xed position of the geometry

while the TSM preserves the non-linearities of the �ow.

The calculations URANS correspond to a uniform sampling of the period and are integrated

subsequently, while TSM can be considered a method parallel in time.

URANS can become too computationally expensive while increasing the size of the problem, but

LFD cannot solve dynamic non-linearities, but only the steady ones: in this context TSM are

introduced to save computational time with respect to URANS without losing the property to

take into account all the non-linearities of the �ow.

Lots of TSM approaches are given by the literature. Two of them are proposed in the following

section, one that solves the equations in the frequency domain and one in the time domain. The

resolution in the time domain will be then adopted.

2.1 Resolution in the frequency domain

The method Non - Linear Frequency Domain (NLFD) by McMullen et al. [4] turns the unsteady
equations in the temporal domain into several steady problems in the frequency domain, ex-

tending the discussion of time averaged �uxes with the additional presence of the fundamental

frequency of a perturbation.

In order to relax the notation, the problem will be treated as uni-dimensional (conservative

variables W and R as scalar instead of vectors), and the concatenation of instants or frequencies

that will soon be explained will be noted with bold characters (conservative variables W and

residuals R).

The unsteady equations, after being discretized with the �nite volumes approach, can be written

in the following form:

V
∂W

∂t
+R(W ) = 0 (2.1)

Under the hypothesis of time periodicity with pulsation ω of W and R(W ), the Fourier series of

eq. 2.1 is:
∞∑

k=−∞

(
ikωV Ŵk + R̂k

)
eikωt = 0 (2.2)

where Ŵk and R̂k represent the Fourier coe�cients for W and R(W ) for a mode k. Since the

complex exponential family forms an orthogonal basis, the only way for eq. 2.2 to be true is that

the contribution of each mode k is zero.

ikωV Ŵk + R̂k = 0 ∀k ∈ Z (2.3)
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An in�nite number of steady equations is then obtained (eq. 2.3) in the frequency domain.

Because of evident practical reasons, only a subset of modes, symmetric around 0, up to mode

N , is considered , −N ≤ k ≤ N in the frequency domain, and the Non-Linear Frequency Domain

method can be used.

ikωV Ŵk + R̂k = 0, k ∈ [−N,N ] (2.4)

In matrix form, eq. 2.4 can be written as:

iKωV Ŵ + R̂ = 0, (2.5)

with K, diagonal matrix with the 2N + 1 terms corresponding to harmonics and the bold vector

corresponding to the concatenation of frequencies:

K = diag(−N, ..., N) (2.6)

Ŵ = (Ŵ−N , Ŵ1−N , ..., ŴN )T , R̂ = (R̂−N , R̂1−N , ..., R̂N )T (2.7)

To help integrate numerically the result, a pseudo-time derivative is added:

V
∂Ŵk

∂τk
+ ikωV Ŵk + R̂k = 0, k ∈ [−N,N ] (2.8)

The term ikωV Ŵk seems to be a supplementary source term to the transport equations. There-

fore the method consists in the simultaneous resolution of the system of 2N+1 steady equations.

These equations are not independent due to the non linearity of the operator R(W ): indeed R̂k
cannot be computed directly from Ŵk, but only from the residuals in the time domain R(W ) for

di�erent time steps in the period.

A short overview of the NLFD method consists in:

• The Fourier coe�cients of the conservative variables Ŵk are known for the iteration q.

• The conservative variablesW (t) are calculated with the Inverse Discrete Fourier Transform,

assuring the coupling of all the steady equations.

• The residuals R(t) are calculated.

• The Discrete Fourier Transform is applied to the residuals and R̂k are obtained.

• At this point it is possible to make the convergence iteration, starting from the �rst item

of the list, calculate the Fourier coe�cient of the conservative variables at the iteration q,

Ŵ q+1
k

A continuous going back and forth to the frequency domain in needed here.

2.2 Resolution in the time domain

An alternative is the Time Spectral Algorithm, that proposes to solve the governing equations

in the time-domain, considerably gaining on the computational cost required to transform back
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and forth to the frequency domain. The method is also easy to implement in an existing solver

in the time domain as elsA without having to deal with complex arithmetic.

For these purposes the Time Spectral Method has been introduced, or Harmonic Balance Tech-
nique, that in this discussion will denote the same method, to solve the steady equations in the

time domain.

Hall et al. [5] proposed to apply a IDFT on the 2N + 1 equations 2.8, and the same number of

equations in the temporal domain is obtained. Time is now discretized, and the new equations

correspond to uniformly spaced instants into the period:

t = (t0, t1, ..., t2N )T (2.9)

(2.10)

hence t is the discrete, steady-state period, de�ned over 2N + 1 time instances, and can be

conceptualized as well as a vector of length 2N + 1.

It is chosen to take the instants starting from zero, with regular intervals, making true the useful

relationship:

tj
T

=
j

2N + 1
(2.11)

It is applied an Inverse Discrete Fourier Transform to the 2N + 1 equations 2.3, and the same

number of equations in the time domain is obtained. The Fourier coe�cients of R and W can

be obtained by DFT this way:

Ŵ ≈ εεεW (2.12)

R̂ ≈ εεεR (2.13)

where the bold characters denote the concatenation operator of time instants and harmonics:

W = (W0,W1, ...,W2N )T , R = (R0, R1, ..., R2N )T (2.14)

and εεε is the matrix corresponding to the discrete Fourier transform operator:

εn,k =
1

2N + 1
e

−2πikn

2N + 1 , ε−1
n,k = e

2πikn

2N + 1 (2.15)

Substituting into the 2N + 1 equations 2.5 the approximation of complete amplitudes Ŵ and R̂

in eq. 2.13, and coming back in the time domain via IDFT, R̂ becomes again the exact operator

R for bijection of IDFT and the �rst term becomes a source term coupling all instants.

εεεR(W) + iωVKεεεW = 0 (2.16)

R(W) + iωV εεε−1KεεεW = 0, (2.17)

R(W) + iωV εεε−1KεεεW = 0 (2.18)
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The term iωεεε−1Kεεε is identi�ed as the time-spectral operator which, after multiplied, gives the

source term coupling all the instants

S = DtW = iωεεε−1KεεεW ≈ ∂W

∂t
(2.19)

Gopinath et Jameson [6] explicit the source term developing the matrix formulation of Hall et
al. in eq. 2.19 for each instant.

The �nal system to solve in the time domain is:

R(W) + VDtW = 0 (2.20)

that, after adding a pseudo-time derivative τ for the numerical convergence, becomes:

V
∂W

∂τ
+ R(W) + VDtW = 0 (2.21)

Being each of the 2N + 1 steady equations to solve, independent one from each other (for one

iteration step), computational power can be saved by solving each instant separately (and at the

end of the iteration coupling them updating the source term). For the n − th instant the �nal

equation is:

V
∂Wn

∂τn
+R(Wn) + V Sn = 0, 0 ≤ n < 2N + 1 (2.22)

with Wn the conservative variables at the nth instant and Sn the source term, S = DtW =

(S0, S1, ..., S2N )T , at the n−th instant which couples all the instant, being W = (Wn=1,Wn=2, . . . ,

Wn=2N+1).

The operator Dt is a time discretization scheme, centered and high order.

The formulation of the time-spectral operator matrix, in an easy form to implement computa-

tionally, is derived in appendix A; it is an antisymmetric matrix, with the null main diagonal,

and dimensions (2N + 1)× (2N + 1). All the work will be based on the time-spectral operator

derived for an odd number of instants. In fact the time-spectral matrix for an even number of

instants turns out to be unstable due its two zeros eigenvalues.

Dt(i, j) =


2π

T

1

2
(−1)i−j csc

[
π

2N + 1
(i− j)

]
if i 6= j

0 if i = j

(2.23)

Hence the TSM method consists in solving 2N + 1 steady relations in the time domain, with a

source term that couples all the instants. According to the Nyquist-Shannon sampling criterion,

2N + 1 evenly-spaced time instants allow to capture the N th harmonic of the fundamental

frequency at most. Consequently, the TSM computations will be classi�ed according to the

number of instants 2N + 1, or to the number of harmonics potentially captured N . In the �gure

below the principle of TSM is described: starting from a null motion condition, a set of steady

problems corresponding to the sampled instants is solved at each q iteration. When the whole

process has converged, all the solutions (variables, �uxes and coe�cients) reach the value of the

corresponding instant in an unsteady computation.
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Figure 2.2: Principle of TSM - example with z-coe�cient

2.2.1 Example of e�ciency of the time spectral matrix

It is shown how powerful the time spectral matrix is in approximating the time derivative,

depending on the complexity of the periodic function to approximate. Here the perfect approxi-

mation of the derivative of a sinusoidal signal (cosine) is shown, by only 3 instants, i.e. only one

harmonic.

w1 = ŵ1 sin(x) (2.24)

dw1

dt
= ŵ1 cos(x) (2.25)

Figure 2.3: Approximation of derivatives by time-spectral operator of the function w1

In order to be able to address more complex functions, it is su�cient to increase the number of

harmonics (and instants sampled), to have the right compliance between time-spectral results

and the analytical time derivative of the function.

To prove it, a more complex function (eq. 2.26) is chosen, which has eq. 2.27 as derivative.

w2 = ŵ2 · cos(2x) · sin(5x) (2.26)
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dw2

dt
= ŵ2 · (−2 sin(2x) · sin(5x) + 5 cos(2x) · cos(5x)) (2.27)

In �gure 2.4, the plot at the left shows how 9 instants (4 harmonics) are not enough to approxi-

mate in a satisfying way the derivative. While at the right a 15 instant sampling (7 harmonics) is

proposed, showing perfect compliance between the time derivative and the time-spectral deriva-

tive.

Figure 2.4: Approximation of derivatives by time-spectral operator of the function w2 with 9 and 15

instants (4 and 7 harmonics)





Chapter 3

Fluid mechanic equations - Euler

equations

In this chapter a more detailed explanation about the nature of the �uid mechanic equations

will be investigated, especially to �nally understand the nature of the conservative variables and

�uxes (residuals) used in the TSM equations, referred to the speci�c problem of a moving airfoil

with respect to the absolute frame of reference attached to the earth.

The case of Euler equations neglects the e�ects of the viscosity and thermal conductivity of the

�uid, which are included in the Navier-Stokes equations. A solution of the Euler equations is

therefore only an approximation of a real �uid problem. For some problems, like the lift of a thin

airfoil at low angle of attack, a solution of the Euler equations provides a good model of reality.

For other problems, like the growth of the boundary layer on a �at plate, the Euler equations

do not properly model the problem. In these cases, other models should be implemented to take

into account the viscous e�ects, as for examples the following:

• Direct Numerical Simulation - DNS, which solves all the scales of turbulence thanks to an

extremely re�ned mesh.

• Large Eddy Simulation - LES, which solves the scales of turbulence up to a certain threshold

below which several models can be exploited to shape turbulence in the unresolved scales.

• Reynolds Averaged Navier Stokes - RANS, based on a statistical approach to Navier-Stokes

equations.

Being the study case a thin airfoil at low angle of attack, the hypothesis of no detachment of

the boundary layer is realistically respected, and Euler equations are considered enough reliable

to catch the reality of the phenomenon, making a�ordable the cost of simulations in terms of

required memory and time.

Besides, the airfoil is in pitching motion, and the continuous change of frame of reference should

be taken into account in the equations.

Di�erent types of problem can be studied: from the �xed block formulation, in which no motion

is considered, to arrive to mobile block formulation, in which the airfoil is �xed and the mesh is

rigidly moving, and the Arbitrary Lagrangian Eulerian formulation, in which the airfoil is moving

and the mesh is deforming accordingly to the motion of the airfoil.

The solver will use the mobile block approach, but other choices will need to be done before, as

the frame of reference in which to express the equations of motion, absolute or relative, and the

17
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frame of reference in which to express the velocities, absolute or relative.

In order to study a �uid dynamic phenomenon, the �uid equations can be expressed in three

formulations:

• absolute velocity expressed in a absolute frame of reference RA: this is well suited for

example for the �ow around a model placed in a wind tunnel, while in the case of a

rotating body, the problem of the choice of both the frames of reference for the expression

of the vector quantities and for the physical principles of the �uid equations is raised.

• relative velocity expressed in a relative frame of reference RR: choosing a relative frame of

reference leaves the choice of the frame of reference used to measure the speed of the �uid.

The formulation of the laws of motion in a relative frame of reference can be advantageous

for example for a body in uniform translation and/or rotation, because the volume of the

�uid considered around the body is �xed in RR and it is independent of time, de�ning

though a steady problem. Concerning the frame of reference in which to express the

velocities, the most natural approach would be to use the same frame of reference as RR,
formulation usually used for turbomachinery internal �ow problems. On the other hand this

approach can become unsuccessful for large peripheral speeds, as in the case of helicopter

rotors or propellers, in which the too large coarsened cells, positioned far from the wall,

can reveal inappropriate to obtain a right �ow balance.

• absolute velocity expressed in a relative frame of reference RR: this is the most appropriate

formulation to describe the �ow �eld around an airfoil under a prescribed pitching motion.

In this case, in which the body is experiencing a steady motion (uniform translation and/or

rotation), the resulting problem is steady with respect to the moving frame.

A simulation aimed at such a computation, performed as a mobile block problem, uses an Eulerian

approach to the �uid motion, that is a problem with a rigid and �xed mesh. The model (the

airfoil in the case of this discussion) is �xed, while the computational domain, with its boundaries,

rotate rigidly, leading to a rotation of the inlet boundary conditions instead of a rotation of the

model itself. The general approach to perform such a computation is to attach a frame to the

body (body frame) and express the �uid equations of motion with respect to that moving frame,

called RR, and the velocities with respect to the absolute, inertial, frame of reference RA.

3.1 Absolute frame of reference formulation

The di�erential and integral forms of Euler equations are presented in this section.

The hypothesis of continuous medium allows us to consider an in�nitesimal element of constant

volume dV and of mass equal to δm = ρdV in the frame of reference RA.

The equations of conservation of mass, momentum and energy for the in�nitesimal volume of

the �uid, �xed into the space, permit to obtain the di�erential Euler equations Euler in the

conservative form. 

∂ρ

∂t
+∇ · (ρU) = 0

∂ρU

∂t
+∇ · (ρU⊗U) = ∇ · (−pI)

∂ρE

∂t
+∇ · (ρEU) = ∇ · (−pU)

(3.1)
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The passage to the integral form of the system of Euler equations is obtained by integration of

each of the di�erential equations over the volume V independent of time.

Applying the Green - Ostrograski theorem it is possible to rewrite the equations, being S the

interface surface of each computational volume V , transforming the volume integral of the second

term into a surface integral. Using the transport theorem and the the independence of V with

respect to time, the time derivative can be put out of the integral, due to the property of the

volume taken constant with respect to time.



∂

∂t

∫
V
ρdV +

∫
S
ρU · n dS = 0

∂

∂t

∫
V
ρU dV +

∫
S

(
ρU⊗U + pI

)
· n dS = 0

∂

∂t

∫
V
ρE dV +

∫
S

(
ρEU + pIU

)
· n dS = 0

(3.2)

The problem can be generalized this way. The generalized conservative form of the three con-

servative equations is:

∂W

∂t
+∇ · F(W) = 0 (3.3)

and applying the Green - Ostrograski theorem:

∂

∂t

∫
V

W dV +

∫
S

F(W) · n dS = 0 (3.4)

with the conservative variables and the convective �uxes expressed as:

W =


ρ

ρu

ρv

ρw

ρE

 , Fcx =


ρu

ρuu+ p

ρuv

ρuw

(ρE + p)u

 , Fcy =


ρv

ρuv

ρvv + p

ρwv

(ρE + p)v

 , Fcz =


ρw

ρuw

ρvw

ρww + p

(ρE + p)w


(3.5)

For a 2D problems de�ned in x and z directions, the equation 3.4 becomes:

∂

∂t

∫
S

W dS +

∫
δS

(Fcx dz + Fcz dx) = 0 (3.6)

where the volume has become a surface and the surface has become a length, and the conservative

variables and �uxes are:

W =


ρ

ρu

ρw

ρE

 , Fcx =


ρu

ρuu+ p

ρuw

(ρE + p)u

 , Fcz =


ρw

ρuw

ρww + p

(ρE + p)w

 (3.7)

Unfortunately these equations are valid for an absolute frame of reference, which if applied in

the case of study would lead to an unsteady motion that would not allow some simpli�cations

presented later.
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It seems necessary to introduce a rotation of the frame of reference to analyse a pitching airfoil

in a block mobile approach.

3.2 Relative frame of reference formulation

The general approach is to attach a frame to the moving body (often called the body frame)

and to express the �uid equations of motion with respect to that frame. When the body is

experiencing a steady motion (uniform translation and/or rotation) the resulting problem is

steady with respect to the moving frame. The general kinematics of a rigid body with respect

to a moving frame is here introduced.

Considered an absolute Galilean frame (also called absolute frame) of reference RA(O, e1, e2, e3)

(e = "earth") and a moving frame RR(O,b1,b2,b3) (b = "body"), both equipped with an

Euclidean Cartesian coordinate system, for any point M , the position vector can be expressed

in any of these frames with di�erent coordinates:

OM = x0 + xiei = x0 + x′ibi, i = 1, 2, 3 (3.8)

The transformation from ei to bi and vice versa is a rotation associated to the orthogonal matrix

R = bk ⊗ ek or equivalently Rij = eTi bj .

The rotated coordinate vector x′, independent of time, is related to x though the relations

x(t) = Rx′ and x′ = RTx(t).

It is supposed now that the moving block is animated with a uniform translation and is also

rotating steadily with an angular velocity vector ΩRR/RA . The location of a point M , with �xed

coordinates x′ in the moving frame RR, is written as:

OM(t) = OM0(t) + M0M = OM0(t) + x′ibi (3.9)

with OM0 the instantaneous position of the moving frame origin with respect to the absolute

frame. By de�nition, the velocity is given by:

Figure 3.1: Frames of reference, absolute (e1 − e2) and relative (b1 − b2)
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U =
dOM(t)

dt
=

dOM0(t)

dt
+ x′i

dbi
dt

(3.10)

U = UT
e + ΩRR/RA × x

′
ibi = UT

e + ΩRR/RA ×M0M (3.11)

U = UT
e + UR

e (3.12)

where UT
e =

dOM0(t)

dt
and UR

e = ΩRR/RA × x
′
ibi represent respectively the translational and

rotational speeds due to the motion of the frame.

In terms of absolute coordinates we can write the current position vector, in order to relate the

coordinates of ΩRR/RA
to the rotation matrix R:

OM(t) = x0(t) + R(t)x′ (3.13)

dOM(t)

dt
=

dx0(t)

dt
+

dR(t)

dt
x′ =

dx0(t)

dt
+

dR(t)

dt
RTx =

dx0(t)

dt
+
[
W

RA

]
x (3.14)

in which the skew matrix [W]RA =
dR(t)

dt
RT has been introduced.

Being R an orthogonal matrix, R RT = I and di�erentiating with respect to time gives

dR

dt
RT + R

dRT

dt
= [W] + [WT ] = 0 (3.15)

which shows that [W] is skew. De�ning ΩRR/RA = ωiei, then the skew tensor [W]RA can be

written as:

[W]RA =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


RA

(3.16)

Thus it is equivalent for the computation of the entrainment speed in rotation UR
e (t) to write

one of the following formulations:

UR
e = ΩRR/RA ×M0M = [W]x (3.17)

However in practice it is easier to use the angular velocity coordinates in the relative reference

frame RR. In order to do this it is necessary to rewrite UR
e (t) using the components of the

tensor [W] expressed in the moving coordinate frame RR. Recalling the expression of the

rotation velocity components in RA,

UR
e |RA =

dR(t)

dt
RTx = [W]RAx (3.18)

the components in the moving frame are obtained by right-multiplying by RT :

UR
e |RR = RTvRe |RA = (RT [W]RAR)RTx = [W]RRx′ (3.19)
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where the tensor coordinate transformation operation from basis vectors ei to basis vectors bi:

[W]RR = R[W]RART (3.20)

The components of the skew matrix [W]RR then de�ne the components of the pseudo angular

velocity vector ΩRR/RA
in RR.

Equations

The conservation equations of motions are now modi�ed with respect to the equations expressed

in the absolute frame of reference. We need to take into account the entrainment speed of the

domain, that is the speed to add due to the rotation of the computational domain, measured with

respect to the reference RA but expressed in RR, called Ue|RR . The absolute speed considered

is Ua|RR , that is the velocity of the �uid measured with respect to the frame of reference RA
but expressed in the relative frame of reference RR.

A constant in�nitesimal Cartesian element of volume dV|RR is considered �xed in the reference

RR, with mass equal to δm = ρ(OM(t), t) dV|RR in RR for which the conservation of mass,

momentum and energy are written in eq. 3.23.

The new convective �uxes for a 2D problem in eq. 3.6, become:

Fcx =


ρ(Ua|RRx − Ue|RRx)

ρUa|RRx(Ua|RRx − Ue|RRx) + p

ρUa|RRz(Ua|RRx − Ue|RRx)

(ρE + p)(Ua|RRx − Ue|RRx)

 , Fcz =


ρ(Ua|RRz − Ue|RRz)

ρUa|RRx(Ua|RRz − Ue|RRz)
ρUa|RRz(Ua|RRz − Ue|RRz) + p

(ρE + p)(Ua|RRz − Ue|RRz)

 (3.21)

Moreover the total derivative of ρ with respect to time ( dρ
dt ) introduces a term due to the absolute

displacement of the point M' with respect to RA and a term representing the unsteady nature

of the density �eld. This temporal derivation is also called convective derivative because it takes

into account the movement of the vector OM(t) even if it is considered �xed in the frame of

reference RR, it is denoted:

(
δρ

δt

)
|RR

=∇∇∇ρ ·Ue|RR +
∂ρ

∂t
(3.22)

The use of the convective derivative is used equivalently for the momentum and the energy.

For the complete derivation of the equations of motion expressed in the relative frame of reference

the reader is redirected to [7].

The system of Euler equations expressed in the relative fame of reference RR with the quantities

measured with respect to the absolute frame of reference RA, in the di�erential formulation, is:

(
δρ

δt

)
|RR

+∇∇∇ ·
(
ρ(Ua|RR −Ue|RR)

)
= 0(

δρUa|RR

δt

)
|RR

+∇∇∇ ·
(
ρUa|RR(Ua|RR −Ue|RR)

)
=∇∇∇ ·

(
−pI

)
−Ω|RR ×

(
ρUa|RR

)
(
δρE

δt

)
|RR

+∇ ·
(
ρE(Ua|RR −Ue|RR)

)
=∇∇∇ ·

(
−pI ·Ua|RR

) (3.23)
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To pass to the integral formulation, each of the di�erential equations is integrated on a volume

V �xed in RR and undeformable in time, using the transport theorem together with the diver-

gence theorem, and also exploiting the property of the null divergence of the entrainment speed

characterizing a solid rotation.

The system expressed in the integral conservative form is hence:

∂

∂t

∫
V
ρdV|RR +

∫
S
ρ(Ua|RR −Ue|RR) · n dS|RR = 0

∂

∂t

∫
V
ρUa|RR dV|RR +

∫
S
ρUa|RR ⊗

(
Ua|RR −Ue|RR

)
· n dS|RR =

= −
∫
S
pI · n dS −

∫
V

Ω|RR ×
(
ρUa|RR

)
· dV

∂

∂t

∫
V
ρE dV|RR +

∫
S
ρE ·

(
Ua|RR −Ue|RR

)
· n dS|RR = −

∫
S
pI ·Ua|RR · n dS|RR

(3.24)

As can be easily noticed, an additional source term of Coriolis acceleration appears on the right-

hand side of the momentum equations.

Inquimbert in [8] derives also the formulations of the problem expressed in the relative frame of

reference with relative velocity.

Another formulation, developed combining the two classical algorithms of continuum mechanics

used to describe motion, i.e. the Lagrangian description and the Euler one, is the Arbitrary
Lagrangian-Eulerian. This formulation was developed in order to make the most of advantages,

minimizing the drawbacks of both the methods. Here the mesh is not �xed any more, but the

airfoil moves and subsequently the mesh is deformed. A detailed description of ALE formulation

in given by Donea et al. [9].





Chapter 4

Solution methods of linear systems

Each TSM steady coupled equation constitutes a non-linear system to solve. Using implicit

methods we have to �nally solve linear systems, and several ways to do it are listed in the

following. The easy LU decomposition is used in the main code that has been implemented, but

in following updates of the code a more robust GMRES solver will be implemented (the reader

is readdressed to the book by Saad [10] for a detailed explanation of the method).

4.1 Direct solvers

4.1.1 LU decomposition

The problem to solve is the following, [11] : given an n × n matrix A, called coe�cient matrix
and a real n-vector b, called right hand side vector, the aim is to �nd the vector x belonging to

Rn called vector of unknowns, such that:

Ax = b (4.1)

The LU factorization decomposes the input matrix A into the product LU , with proper row

and/or column orderings and permutations, where L is a lower triangular matrix with diagonal

elements equal to one and U is an upper triangular matrix.

The LU factorization is performed transforming the starting system Ax = b to LUx = b, and

subsequently the problem is split in two problems:

{
Ly = b

Ux = y
(4.2)

In this case we are dealing with triangular matrices, L and U), which can be solved directly by

forward and backward substitution without using the Gaussian elimination process (however we

do need this process or equivalent to compute the LU decomposition itself).

With this method described previously, the factorization will fail when a 0 is found on the

diagonal of the matrix, leading to a division by zero. Also if elements of small magnitude are

on the diagonal, entries on the triangular factors will grow signi�cantly and the system may

diverge. Because of these problems, in order to make the factorization numerically more stable,

the pivoting method, i.e. the reordering of rows and/or columns are introduced.

25
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4.1.2 Incomplete LU decomposition

It consists in the use in the solution process of an approximate matrix Ã in place of the exact

matrix A, obtained with an LU factorization that takes into account two approximate matrices

L̃ and Ũ which, multiplied, give an approximation of the input matrix A ( [12]).

Ã = L̃Ũ ∼ A (4.3)

(4.4)

where in fact A is:

A = L̃Ũ + E (4.5)

(4.6)

and E is an error matrix.

The new problem to solve is:

Ãx = b (4.7)

{
L̃y = b

Ũx = y
(4.8)

This method is rather easy and inexpensive to compute, but on the other hand it could lead

to an approximation that is often too crude and may require too many iterations or may even

diverge.

In general, the more accurate the ILU factorization, the fewer the iterations required to converge,

but at the same time the computational cost of the whole solving process is increased, since the

factorization is closer to the exact LU.

In order to truncate L and U, �rst of all it is necessary to de�ne a �ll-in factor which is a measure

of the desired degree of the density of the matrices L and U and will damp to zero the elements

that satis�es a certain criterion of smallness (obviously the more terms are dropped to zero in

order to make the matrix sparser the more approximated is the matrix Ã and the solution x.)

4.2 Iterative solvers

The basic iterative methods used to solve large linear systems are based on relaxation of the

coordinates ( [10]). Starting with a given initial guess of the solution, these methods modify the

components of the approximate solution, one or a few at a time in a certain order, depending on

the method, until convergence is reached. Each of these modi�cations, called relaxation steps,

is aimed at decreasing to zero one or a few components of the residual vector. These techniques

are rarely used separately but combined with more e�cient methods as Krylov Subspace Method
(as the GMRES method - Generalized Minimal RESidual method), helped by preconditioning

techniques to speed up the convergence and improve the robustness.

Given the same problem as the one explained for direct solvers,

Ax = b (4.9)
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the aim is to �nd the �nal vector solution x in a way involving passing from one iterate to

the next by modifying one or a few components of the approximate vector solution at a time.

The most used criterion to achieve improvement over the iterations is the annihilation of some

components of the residual vector b−Ax.

The matrix A can be decomposed as:

A = D−E− F (4.10)

in which D is the diagonal of A (assumed to have all the diagonal entries non-zero), −E is the

strict lower part, and −F is the strict upper part.

Figure 4.1: Initial partitioning of matrix A

4.2.1 Jacobi method

One Jacobi iteration is aimed at the annihilation of the i-th component of the residual vector,

giving as a result the i-th component of the next approximation.

Thus starting from the problem:

(b−Axk+1)i = 0 (4.11)

and applying the proper splitting, the vectorial form of Jacobi iterative method is obtained:

xk+1 = D−1(E + F)xk + D−1b (4.12)

4.2.2 Gauss - Seidel method

In a similar way, the aim of a Gauss-Seidel iteration consists in annihilate the i-th component

of residual by correcting the i-th component of the residual, but this time by updating the

approximate solution immediately after the new component is determined.

Hence, while in Jacobi method it was su�cient to invert the diagonal matrix, simple to invert, now

not-strict upper and lower more complex matrices need to be inverted, giving more complexity

to the method but better convergence.

In the forward version of the method the order followed to update the solution is i = 1, 2, ..., n:

xk+1 = (D−E)−1(F)xk + (D−E)−1b (4.13)
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while the backward Gauss-Seidel corresponds to making the coordinate corrections in the order

i = n, n− 1, ..., 1:

xk+1 = (D− F)−1(E)xk + (D− F)−1b (4.14)

Performing a Symmetric Gauss - Seidel Iteration (SGS) consists in a forward sweep followed by

a backward sweep.

It is evident that the Jacobi and the Gauss-Seidel iterations are both of the form:

Mxk+1 = Nxk + b = (M−A)xk + b (4.15)

in which

A = M−N (4.16)

is a splitting of A, with M = D for Jacobi, M = D−E for forward Gauss-Seidel and M = D−F

for backward Gauss - Seidel.

4.2.3 Successive Over Relaxation method

The over relaxation method is based on a weight parameter ω, which can be chosen by the

operator depending on his needs (speed up the convergence or make more robust the system)

which is multiplied by the initial problem to solve:

ωAx = ωb (4.17)

The adopted decomposition of the matrix is:

ωA = (D− ωE)− (ωF + (1− ω)D) (4.18)

which is used in the recursion

(D− ωE)xk+1 = [ωF + (1− ω)D]xk + ωb (4.19)

As for the SGS, also in this method performing a Symmetric Successive Over Relaxation (SSOR)

method consists in a forward sweep followed by a backward sweep, leading to the two steps:

(D− ωE)xk+1/2 = [ωF + (1− ω)D]xk + ωb (4.20)

(D− ωF)xk+1 = [ωE + (1− ω)D]xk+1/2 + ωb (4.21)

4.3 Block Relaxation Schemes

Block relaxation schemes update a whole set of components at each time: instead of only one

component they update a whole set of components at each time, typically a sub-vector of the

solution vector, being indeed generalizations of the "point" relaxation schemes described above.
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It is shown below the partition of the matrix A, the right-hand side and the solution vector:

A =



A
11

A
12

A
13

. . . A
1p

A
21

A
22

A
23

. . . A
2p

A
31

A
32

A
33

. . . A
3p

...
...

...
. . .

...

A
p1

A
p2

. . . . . . A
pp


, x =


ξξξ1

ξξξ2

ξξξ3
...

ξξξp

 , b =


βββ1

βββ2

βββ3
...

βββp

 (4.22)

where b and x are partitioned into sub-vectors βββi and ξξξi compatible with the partitioning of A.

Similar to the scalar case, the block matrix A can be split as:

A = D−E− F (4.23)

with:

D =


A

11

A
22

A
33

. . .

A
pp

 , E = −


0

A
21

0

A
31

A
32

0

...
...

...
. . .

A
p1

A
p2

A
p3

. . . 0

 , F = −


0 A

12
A

13
. . . A

1p

0 A
23

. . . A
2p

0 . . . A
3p

. . .
...

0


(4.24)

The only di�erence with respect to the cases previously studied is that the meanings of D, E

and F have changed to their block analogues: thanks to these de�nitions all the three iterative

methods mentioned before can be generalized by substituting vectors to sub-vectors and matrices

to sub-block matrices.

Now the three generalized iterative procedures become:

• Block Jacobi

ξξξ
(k+1)
i = A−1

ii
((E + F)xk)i + A−1

ii
βββi (4.25)

• Block Gauss Seidel - forward and backward

ξξξk+1
i = ((D−E)−1(F)xk)i + (D−E)−1βββi (4.26)

ξξξk+1
i = ((D− F)−1(E)xk)i + (D− F)−1βββi (4.27)

• Block SOR

(D− ωE)ξξξ
k+1/2
i = ([ωF + (1− ω)D]xk)i + ωβββi (4.28)

(D− ωF)ξξξk+1
i = ([ωE + (1− ω)D]xk+1/2)i + ωβββi (4.29)





Chapter 5

Overview of elsA CFD code

The TSM external solver built in this work is based on the interaction with the elsA software,

for the extraction of residuals and Jacobian matrices.

Hence a short and general overview of the CFD code elsA, property of Onera, Airbus, Safran, is

presented.

elsA stands for ensemble logiciel de simulation en Aérodynamique, which means software platform
for Aerodynamic simulation.

5.1 Discretization models

The main space discretization models used in �uid mechanic numerical implementations are:

• Finite di�erences: based on the di�erential form of the motion equations, these schemes are

based on Taylor series development and the conservative variables are known on the points

of the mesh. These methods are not conservative, so particular treatments are needed to

transport the conservative variables.

• Finite volumes: based on the integral form of the motion equations, they average the

variables over a control volume. Surface integrals are obtained on the faces of each mesh

cell, and the �uxes through these surfaces allows the information to be transmitted from a

cell to another one. This method is intrinsically conservative.

• Finite elements: based on the integral form of the motion equations, they consist in �nding

an approximate solution of the exact one with a �eld de�ned over sub-domains chosen

among an arbitrary family of �elds (generally polynomials).

elsA uses a space discretization of the type �nite volumes, [13].

5.1.1 Finite volumes

Generalizing the problem to a 3D problem, in the �nite volumes approach the values of conser-

vative variables are computed at each cell center of volume V . The integral form of conservative

laws on a cell is:

∂

∂t

∫
V

W dV +

∫
V
∇ · F(W) dV = 0 (5.1)
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Applying the Green - Ostrograski theorem it is possible to rewrite the equation, being S the

interface surface of each cell:

∂

∂t

∫
V

W dV +

∫
S

F(W) · n dS = 0 (5.2)

De�ning W as the average of the conservative variables on a cell W = 1
V

∫
V W dV and intro-

ducing the residual R(W) =
∫
S F(W) · n dS on a cell, the equation becomes:

∂VW

∂t
+ R(W) = 0 (5.3)

Each cell has several interfaces, in the case of a 3D cell, there are 6 interfaces, that can appear

in the equation:

∂VW

∂t
+

6∑
k=1

Ffacek(W,Wi) = 0 (5.4)

where W is the vector of conservative variables in the cell of interest and Wi is the vector of

conservative variables in the neighbouring cells, chosen depending on the used stencil to discretize

the space.

5.1.2 Space discretization - ROE scheme

In order to explicit the �uxes on interfaces, an upwind Roe scheme is chosen in the elsA solver.

Considering the initial-value problem for a hyperbolic system of conservation laws, we seek

W(x, t) (1D formulation):

∂W

∂t
+
∂F

∂x
= 0 (5.5)

Roe describes a mechanism by which any algorithm developed for numerical solution of the linear

advection equation

∂W

∂t
+ a

∂W

∂x
= 0 (5.6)

can be generalized to the case of non-linear systems. He considers approximate solutions which

are exact solutions to an approximate problem

∂W

∂t
+ Ã

∂W

∂x
= 0 (5.7)

where Ã is a constant matrix that has to be chosen so that it is representative of local conditions.

De�ning two statesWL andWR of the space of the states, the numerical �ux FRoe is traditionally

de�ned by:

FRoe(WL,WR) =
Fc(WL) + Fc(WR)

2
− 1

2
|Ã|(WR −WL) (5.8)
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The matrix Ã = Ã(WL,WR) satis�es the following list of properties:

It constitutes a linear mapping from the vector space W to the vector space Fc

As WL →WR →W, Ã(WL,WR)→ A(W), where A(W) =
∂F

∂W

For any WL,WR, Ã(WL,WR)(WL −WR) = Fc(WL)− Fc(WR)

The eigenvectors of Ã are linearly independent

(5.9)

To discuss the construction of the Ã matrix in detail, the reader is referred to [14] and [15].

In our false 3D problem (that is actually 2D), the conservative variables W and the convective

�uxes Fc are as follows:

W =


ρ

ρu

ρv

ρw

ρE

 , Fcx =


ρu

ρuu+ p

ρuv

ρuw

(ρE + p)u

 , Fcy =


ρv

ρvu

ρvv + p

ρvw

(ρE + p)v

 , Fcz =


ρw

ρwu

ρwv

ρww + p

(ρE + p)w


(5.10)

Expliciting the problem, the A(Xav) matrix is the Jacobian of convective �uxes with conservative

variables which are an average of left and right cell.

Xav indicates the traditional Roe average, for X =
(
u, v, w, E+p

ρ

)

Xav =

√
ρLXL +

√
ρRXR√

ρL +
√
ρR

(5.11)

and ρ is calculated simply as:

ρ =
√
ρLρR (5.12)

5.2 Solution process - steady mean �ow solution

elsA has been built as a powerful CFD code, able to be accurate or robust depending on the

user selection of the numerical parameters. Choosing the robustness, so being able to perform

every simulation without encountering too many convergence problems, a lack in accuracy can

be faced, leading to slower convergence.

Here vectors and matrices are indicated as they were 1D, to lighten the notation.

As usual the steady problem to solve is:

R(W ) = 0

The approach elsA uses for solving this problem is an inexact Newton method, with a �rst order

implicit stage: (
V

∆τ
+
∂R

∂W

APP)
∆Wq = −R(Wq) (5.13)
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The Jacobian matrix is an approximation of the exact Jacobian matrix, which ensures diagonal

dominance and hence higher robustness, but at the same time slows the convergence because the

matrix is not the exact one.

The solution method adopted is incomplete LU-SSOR (only 2 or 4 iterations are performed).

On the other hand, the external solver implements an exact Newton method, with a �rst order

implicit stage. This time the Jacobian matrix to invert is the exact one, that can be �rst or

second order in space discretization.

(
V

∆τ
+
∂R

∂W

EXA)
∆W = −R(W q) (5.14)

The LU-SSOR solution method fails with the sti�er
∂R

∂W

EXA

because it consists in a too ill

conditioned matrix or it has bad properties. The failure of the pseudo Newton/Backward-Euler

method is maybe because the solution of the linear system is not converged enough, or too

converged. This is why only two approaches are feasible:

• direct solver LU

• iterative Krylov solver like GMRES with an ILU preconditioner

It is fundamental to remark that
∂R

∂W

EXA

never appears in a standard elsA steady mean �ow

solution. In order to get access to the exact Jacobian matrix the optimization module by elsA is

then used.

5.3 Solution process - optimization module

The objective in the optimization module is to solve the linearized system of discretized equations

around the steady con�guration. The steady problem solution satis�es:

R(W,X) = 0 (5.15)

where X is the �uid mesh.

Linearizing this residual with respect to a design parameter p (direct di�erentiation method)

gives the sensitivity equation, for each of the parameters:

∂R

∂W

dW

dp
= − ∂R

∂X

dX

dp
(5.16)

In elsA it is solved by implementing:(
V

∆τ
+
∂R

∂W

APP) d∆W

dp
= − ∂R

∂W

EXA dW

dp

q

− ∂R

∂X

dX

dp
(5.17)

which is the linearization of the steady mean �ow solution.

While the equation for the adjoint method (read section 10.1 in the chapter about optimization)

is, one for each constraint or objective function:
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(
∂R

∂W

)T
λ = −

(
∂J

∂Wb

dWb

dW
+

∂J

∂W

)T
(5.18)

which in elsA is implemented as:(
V

∆τ
+

(
∂R

∂W

APP)T)
∆λ = −

(
∂R

∂W

EXA)T
λq −

(
∂J

∂Wb

dWb

dW
+

∂J

∂W

)T
(5.19)

being J the objective or the constraint function (read chapter 10).

The Jacobian matrix (
∂R

∂W
) and its transpose are large, sparse, multi-banded matrices. Thus,

their inverse can not be computed by a direct method, at least for large 2D and 3D problems.

Some kind of iterative strategy has to be implemented. A classical strategy consists in solving

the linear system using a Newton-type or relaxation algorithm.

An approximate Jacobian, noted
∂R

∂W

APP

appears on the left hand side of the algorithm equation.

This matrix can be equal or very similar to the approximate Jacobian used as implicit matrix for

steady state computations with backward-Euler schemes. On the right-hand side of the algorithm

equation is the term that has to be driven to zero. The true exact Jacobian
∂R

∂W

EXA

appears in

that right hand side of the equation and the extraction of it is now available.





Chapter 6

Numerical implementation

In this chapter all the aspects concerning the numerical implementation of all the features are

clari�ed, and all the steps done in the building of the code are presented.

6.1 Numerical solution of the TSM system - Backward Euler

Here the bold notation will be used for the sake of clarity to indicate the concatenation of instants

(as in chapter 2), so in steady equations the notations for vectors and matrices is as they were

scalars (the actual dimensions are given by the mesh size, multiplied by 5 that is the number of

conservative variables).

Considering a non-deformable mesh, the dependence of the residual is only on the conservative

variables and not on the mesh, that is �xed, the non-linear system to solve for an unsteady case

is:

V
∂W

∂t
+R(W ) = 0 (6.1)

that in a steady case is reduced to:

R(W ) = 0 (6.2)

Adding a pseudo time derivative to help the convergence process, the di�erential equation become

a pseudo time marching equation of a physical steady problem.:

V
∂W

∂τ
+R(W ) = 0 (6.3)

The Backward Euler scheme consists in solving the previous system, introducing a dependency

on the current iteration of the residuals:

VW q+1 = VW q + ∆τR(W q+1) (6.4)

The residuals expression at the iteration q + 1 is obtained via Taylor's series:
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R(W q+1) = R(W q) +
∂R

∂W

∣∣∣∣q (W q+1 −W q) (6.5)

Hence the steady system to solve (without the source term that keeps into account the time

derivative) is the following:

V
∂W

∂τ
= −R(W q+1) (6.6)

VW q+1 = VW q −∆τR(W q)−∆τ
∂R

∂W

∣∣∣∣q (W q+1 −W q) (6.7)

V

∆τ
(W q+1 −W q) +

∂R

∂W

∣∣∣∣q (W q+1 −W q) = −R(W q) (6.8)(
V

∆τ
+

∂R

∂W

∣∣∣∣q)∆W = −R(W q) (6.9)

where q is the index related to the number of Newton iterations.

The solution is the vector ∆W = W q+1 −W q. At each iteration the solution W q is updated

with W q+1.

The �nal steady system is then:

(
V

∆τ
+

∂R

∂W

∣∣∣∣q)∆W = −R(W q) (6.10)

where ∆τcell =
CFL · 3

√
Vcell

||Ucell||+ acell
in the steady case.

For the case of a TSM computation, the equation to solve is:

R(W) + VDtW = 0 (6.11)

Applying again Backward Euler in the steady problem and adding the new source term the

system becomes:

(
V

∆τ
I +

∂R

∂W

∣∣∣∣∣
q)

∆W = −R(Wq)−VDtW (6.12)

In the TSM case the vector W gathers the conservative variables of all the 2N + 1 instants, and

the left hand side matrix to invert in order to solve the system is block diagonal.

As already written in equation 2.22, instead of solving the entire system in equation 6.12, it is

possible to solve it separately for each instant. By doing that, the matrix to invert will remain

the same dimensions of the Jacobian matrix of the single steady problem, instead of 2N + 1

times the dimensions of the initial matrix.

For each iteration q eq. 6.13 will be solved 2N + 1 times.
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(
V

∆τn
+
∂R(Wn)

∂W

∣∣∣∣q)∆Wn = −R(W q
n)− V Sn, 1 ≤ n ≤ 2N + 1 (6.13)

At the following q, the source term is updated and the process continues until a certain conver-

gence is reached.

In equation 6.12 a numerical choice can be made concerning the source term:

• dependence on the previous iteration q, S = VDtW
q

• dependence on the previous iteration q, S = VDtW
q+1

The �rst version of the code is implemented with the dependence on the previous iteration.

6.2 Explicitation of the source term - partially implicit TSM

The unsteady problem, expressed in the explicit form of the source term, i.e. in the case it

depends on the conservative variables calculated at the previous iteration, consists in:(
V

∆τ
I +

∂R

∂W

∣∣∣∣∣
q)

∆W = −R(Wq)−VDtW
q (6.14)

This is a partially implicit TSM implementation, because despite the implicitation of the numer-

ical method, the source term has not been implicited.

Since the beginning of the TSM chapter, the quantities conservative variables Wq and Rq have

been considered for simplicity as vectors of scalars, and the Jacobian matrix
∂R

∂W

∣∣∣∣∣
q

a simple

"mono-block" matrix.

But in fact Wq and Rq are vectors of vectors corresponding to each instant (one element per

mesh cell and conservative variable), and the Jacobian matrix is a block diagonal matrix with

the Jacobian matrix corresponding to each instant concatenated on the diagonal.

Naming the dimensions of the mesh Im = 256, Jm = 32 and Km = 1, and reminding that the

number of conservative variables is 5, the sizes of the sub-vectors for the nth instant are:

size(Wq
n) = (Im · Jm ·Km · 5)× 1 (6.15)

size(Rq
n) = (Im · Jm ·Km · 5)× 1 (6.16)

size

(
∂R

∂W

∣∣∣∣∣
q

n

)
= (Im · Jm ·Km · 5)× (Im · Jm ·Km · 5) (6.17)

Also the time spectral matrix has a di�erent shape, because it must have the same dimensions

as the Jacobian matrix.

Analyzing the problem from a strictly numerical point of view, we call dt the coe�cient matrix

that is a (2N + 1)× (2N + 1) matrix of the type:

dt =

 0 . . . dt 1,2N+1
...

. . .
...

dt 2N+1,1 . . . 0

 (6.18)
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and the block - time spectral matrix is:

Dt =


0 . . . Dt

1,2N+1
...

. . .
...

Dt
2N+1,1

. . . 0

 (6.19)

and the Dt
i,j

matrix is an identity matrix multiplied by the coe�cient dt i,j

Dt
i,j

=

dt i,j . . . 0
...

. . .
...

0 . . . dt i,j

 (6.20)

The block system to solve is shown below:


V

∆τ1
I + ∂R

∂W

∣∣∣
1

. . . 0

...
. . .

...

0 . . . V
∆τ2N+1

I + ∂R
∂W

∣∣∣
2N+1


q ∆W1

...

∆W2N+1

 =

−

 R1

...

R2N+1


q

−


0 . . . VDt

1,2N+1

...
. . .

...

VDt
2N+1,1

. . . 0


q W1

...

W2N+1


q

(6.21)

The nature of this problem allows to solve separately the 2N + 1 rows of the system above: in a

Newton q-iteration an independent set of 2N + 1 equations is solved independently, and at the

end of the iteration, the source term coupling the instants is updated, exchanging data among

the instants.

Besides a dependence on the pitching frequency (ω) and the number of harmonics (N) that the

case intends to study is added to the pseudo time step, turning it, after a stability analysis in

the frequency domain, into:

∆τcell =
CFL · 3

√
Vcell

||Ucell||+ acell +Nω 3
√
Vcell

(6.22)

In this case the time step is restricted for stability reasons. This formulation of the CFL implies

restrictions on the CFL number, since high frequency and/or a high number of sampled instants.

In fact it has been demonstrated in the following that the convergence of the method slows down

for increasing N and f .

This is the case of explicit methods, whose stability criteria on CFL number are very restrictive.

To improve stability and relax the constraints on the CFL number fully implicit schemes will be

introduced.

6.3 Algorithm of the external Python TSM solver

Once examined all the peculiar aspects of the Time Spectral Method:

• TSM backward Euler numerical scheme
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• Absolute velocity in the relative frame of reference

• Lower - Upper decomposition for the inversion of the Jacobian matrix

the algorithm expressing how the external python TSM solver is supposed to work is �nally

presented.

In order to solve the system, an interaction between the external python solver, in which the con-

servative variables (ρ, ρu, ρv, ρw, ρE) are computed, and the elsA code, from which the residuals

and the Jacobian matrix are extracted for each iteration, is needed.

The steps the solver performs, combined with elsA, are the following:

• The prescribed conditions are set:

� atmospheric in�nite state conditions p0
∞, p∞, q∞, T

0
∞

� Mach number M

� amplitude of the motion α̂

� pitching frequency f

� number of instants 2N + 1

� threshold of convergence tol

• The initial uniform �eld is computed by elsA, with the prescribed conditions, for a zero

angle of attack.

• The python script reads the �les written by elsA, and stores the initial conservative vari-

ables, the volumes of each cell (constant for the whole computation), and the mesh coor-

dinates and distances from the center of the mesh, to allow after the computation of the

entrainment speed.

• For each q-iteration a directory elsA_iter_q is created, in which 2N+1 inst_n subdirecto-

ries are created, to keep trace of all the steps. In each of these subdirectories every needed

extraction will be available (upper and lower pressure, �uxes, conservative variables with

coordinates for visualization, residuals, ...), it is su�cient to ask elsA for that.

• elsA is launched for 1 iteration with a very low CFL in order not to modify the �ow �eld,

but just to extract Jacobian and residuals for that particular condition. The launched

simulations will be a steady computation taking into account the entrainment speed (used

as a "trick" to simulate a forced motion) in absolute velocity - relative frame of reference
formulation. Depending on the instant to compute, the elsA simulations will have not only

di�erent angles of attack picked in the period (�g. 6.1), but also di�erent entrainment

speeds. The angular speed doesn't correspond to the only pitching frequency, but is indeed

the derivative of the angle of attack.
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Figure 6.1: Variation of the angle of attack during the period

Being the rotation applied to the y-axis, the normal axis to the plane of the airfoil, the

vector of the angular velocity Ω is constituted by only one component in the y-direction,
Ω = (Ωx,Ωy,Ωz) = (0,Ωy, 0)

α(t) = α0 + α̂ sin(ωt) (6.23)

Ωy(t) = α̇(t) = ωα̂ cos(ωt) (6.24)

Writing the pitching angular speed as ω = 2πf and the dependence of the n-th instant

on the period of oscillation T as t =
n

2N + 1
T =

n

2N + 1

1

f
(knowing that T =

1

f
), it is

possible to write the eqs. 6.24 in the following more operative way:

α(n) = α0 + α̂ sin

(
2π

n

2N + 1

)
(6.25)

Ωy(n) = α̇(n) = ωα̂ cos

(
2π

n

2N + 1

)
(6.26)

At the end of the iteration all the extractions will be available, but above all the residuals

�le and the Jacobian matrix �le.

• These �les are read and stored by the python script (Rq and ∂R
∂W

∣∣q), for each instant.

• The source term is computed from the vector of conservative variables at the previous

iteration q (for the �rst iteration the initial �eld is used) by multiplying the time-spectral

operator matrix of coe�cients with the conservative variables, for each instant n, where

di,j =
2π

T

1

2
(−1)i−j csc

[
π

2N + 1
(i− j)

]
:

Sqn =


S1

S2
...

S2N+1


q

n

= V


0 dt 1,2 . . . dt 1,2N+1

dt 2,1 0 . . . dt 2,2N+1
...

...
. . .

...

dt 2N+1,1 dt 2N+1,2 . . . 0




W1

W2
...

W2N+1


q

n

(6.27)
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• The norm of the TSM right hand side, i.e. what is supposed to converge to zero, is

computed from the residuals extracted by elsA R, the source term S, and the number of

cells of the mesh ncells as:

||RTSM ||n =

√√√√√√
ncells∑
i=1

(Ri + Si)
2
n

ncells
(6.28)

It is calculated for each of the instants, and the simulation stops only once all the 2N + 1

norms of residuals have dropped below the asked tolerance.

• Entrainment local speeds are computed:

ue = ΩΩΩ× r|x = Ωyz (6.29)

ve = 0 (6.30)

we = ΩΩΩ× r|z = −Ωyx (6.31)

taking into account the nature of the studied problem, i.e. an airfoil in pitching motion

around the aerodynamic center in the y- direction. The components of angular velocity in

directions x and z are null: Ω = (Ωx,Ωy,Ωz) = (0,Ωy, 0)

• Local speeds are computed starting from the conservative variables, together with the local

speed of sound as:

u =
ρuabs
ρ
− ue (6.32)

v =
ρvabs
ρ
− ve (6.33)

w =
ρwabs
ρ
− we (6.34)

a =

√
γ · (γ − 1)

ρ

(
ρEabs − ρ

u2
abs + v2

abs + w2
abs

2

)
(6.35)

(remembering that Eabs = e +
1

2
||U2

abs|| is the total energy dependent on the frame of

reference and e the internal one, independent of the frame of reference.)

• The local pseudo-time steps are computed from global CFL number, the dimension of the

cells, the speeds, the number of harmonics N and the pitching angular speed ω.

∆τ =
CFL · 3

√
V

||U ||+ a+Nω 3
√
V

(6.36)

• The term
V

∆τ
is added to the diagonal of the Jacobian matrix to help the convergence.

• The linear system is solved for each instant, to obtain as a result the increment of the

conservative variables ∆Wn:(
V

∆τ
+

∂R

∂W

∣∣∣∣q
n

)
·∆Wn = −Rqn − Sqn (6.37)

• The increment vector is added to the previous vector of the conservative variables:

W q+1
n = W q

n + ∆Wn (6.38)
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• A �le is written to gather all the variables at the new iteration step q + 1.

• The �le is copied to the directory of the new iteration q+1 and the process is repeated with

a restart from the new computed �eld (except of course for the calculations of the initial

�eld and of the constant quantities) until the desired degree of convergence is achieved.

The algorithm can be summed up in the main steps in the following map:

Figure 6.2: Algorithm of the external TSM solver, partially implicit method

6.4 Parallel computing

The serial version of the code, which consists in solving the linear system sequentially for 2N + 1

times, i.e. for each instant, is evidently slow in terms of CPU time. And the higher is the chosen

number of sampled instants, the higher is the CPU time of more or less a factor 2N + 1.

Nevertheless, the intrinsic nature of TSM, which presents 2N + 1 uncoupled systems to solve

and a �nal update at the end of each iteration, allows to split the problem in 2N + 1 problems,

also in terms of CPU computational e�ort.

This can be achieved thanks to the multiprocessing technique, and in particular to the multipro-
cessing module present in python [16].

The multiprocessing module allows the programmer to fully leverage multiple processors on a

given machine to take full advantage of a multi-core system. In the case of TSM the choice to
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split the problem in 2N + 1 cores is straightforward, in such a way that each processor solves

only one instant simultaneously.

Multiprocess works simply by creating a process object and then calling its start() method,

passing arguments to the functions to run in parallel. After using put() and get() to exchange

variables between the function and the main source code, the process is �nally complete with

the join() method.

In �gure 6.3 it is shown an example of the logics of multiprocessing for a simple function aimed

at building a list of n = 4 strings in a 4-core machine, showing the serial case and the parallel

one.

Figure 6.3: Exemple of multiprocessing computation

Analyzing the serial program from the CPU time point of view, two bottlenecks have been

isolated: the elsA iteration and the solution of the linear system that in a �rst release of the

code is achieved by a direct solver with LU decomposition, a very time spending procedure.

Hence it has been decided to compute in parallel the two bottleneck - blocks in order to dispatch

each instant computation to a single core.

• First bottleneck: the 2N + 1 1 iteration - computations by elsA are computed on 2N + 1

cores at the same time, giving in input to elsA the right instant, i.e. the right angle of

attack and rotation speed.

• Second bottleneck: the solution of 2N + 1 linear systems is computed simultaneously on

2N + 1 cores, using the residuals, the source term, and the Jacobian matrix related to that

instant.

After the second parallel computing step, the increment of the conservative variables is given to

the main script, since the TSM system is coupled by the source term and the instants are not

independent.
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Figure 6.4: Multiprocessing steps for the external python TSM solver for 3 instants

Unfortunately the CPU time cannot decrease by a factor 2N + 1 due to internal multiprocessing

of numpy and scipy python modules, that lead to interaction among the machine processors and

slow the process. Also other system processes, such as the operating system, are running in the

background. Thus, using for example 8 cores on a 8-cores machine, the last core doesn't have

enough capacity left to further increase the performance of the eighth process to a large extend.

By the way, a consistent amount of time can be saved by implementing the code in a multipro-

cessing window, estimated of 100% for a number of sampled instants of 3 (the expected 150%

is not possible to achieve due to the reasons expressed above); the performance increase is less

signi�cant when moving to 5 and 7 instants (and 5 and 7 processors). An increase of number of

instants cannot be performed in a local 8-core machine, but needs a cluster computation.
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6.5 Implicitation of the source term - fully implicit TSM

As previously mentioned, despite the straightforwardness of the partially implicit TSM formu-

lation, they present strong constraints in the rate of convergence, and the development of an

implicitation of the source term seemed necessary to relax convergence issues. Therefore in order

to improve the performances, it is useful to express the dependence of the source term on the

current iteration q + 1, as Sicot in [17], and the equation 6.14 is written di�erently as:

(
V

∆τ
I +

∂R

∂W

∣∣∣∣∣
q)

∆W = −R(Wq)−VDtW
q+1 (6.39)

The operator Dt is linear, and can be written in the following way:

Dt(W
q+1) = Dt(W

q) + Dt(∆W) (6.40)

leading to a coupling of the increments ∆W at all instants.

The new equation to solve is:

(
V

∆τ
I +

∂R

∂W

∣∣∣∣∣
q)

∆W + VDt∆W = −RTSM(Wq) (6.41)

where RTSM(Wq) = R(Wq)+Dt(W
q) is the same TSM residual as in the explicit formulation.

The left hand side matrix to invert is now non-diagonal and not block-sparse any more:


V

∆τ1
I + ∂R

∂W

∣∣∣
1

. . . VDt
1,2N+1

...
. . .

...

VDt
2N+1,1

. . . V
∆τ2N+1

I + ∂R
∂W

∣∣∣
2N+1


q ∆W1

...

∆W2N+1

 =

−

 R1

...

R2N+1


q

−


0 . . . VDt

1,2N+1

...
. . .

...

VDt
2N+1,1

. . . 0


q W1

...

W2N+1


q

(6.42)

The new shape of the left hand side matrix prevents us from treating separately each instant

because the coupling between instants is not relegated only to the right hand side, but is present

also on the left.

The �rst idea could be the treatment of the complete system, that would involve the inversion

of a really big and not block-sparse matrix.

This requires evidently a massive storage of data and memory consumption, which is not the best

strategy because it would limit the treatable number of instants and the speed of computation.

Another way can be found: a useful property applies the dt matrix (the coe�cient matrix,

reminded in the eq. 6.43): the (2N +1)× (2N +1) coe�cient matrix has the null main diagonal.

This allows the use of an iterative Block-Jacobi method, for the implicitation of the phase of the

source term.

dt =

 0 . . . dt 1,2N+1
...

. . .
...

dt 2N+1,1 . . . 0

 (6.43)
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It allows the implicit coupling term Dt∆W to be moved to the right hand side, leading to 2N+1

independent linear systems.

Recalling the block Jacobi presentation in chapter 4 for a linear system Ax = b, the left hand

side matrix is split and the following solution xk+1 is obtained as:

A = D−E− F (6.44)

xk+1 = D−1(E + F)xk + D−1b (6.45)

The TSM problem can be split in an analogue way:

A
TSM

=

D︷ ︸︸ ︷(
V

∆τ∆τ∆τ
I +

∂R

∂W

∣∣∣∣∣
)

+

−E−F︷ ︸︸ ︷
VDt

(6.46)

bTSM = −RTSM

(6.47)

xTSMk+1
= ∆Wk+1 =

(
V

∆τ∆τ∆τ
I +

∂R

∂W

∣∣∣∣∣
)−1

(−VDt)∆Wk +

(
V

∆τ∆τ∆τ
I +

∂R

∂W

∣∣∣∣∣
)−1

(−RTSM)

(6.48)

Figure 6.5: A - general system, at the left, and A
TSM

- TSM system, 3 instants, at the right

And an internal Jacobi step �nally consists in :

 V

∆τ
I +

∂R

∂W

∣∣∣∣∣
q

∆Wq
k+1 = −RTSM(Wq)−VDt∆Wq

k (6.49)

For every block - Jacobi step, a linear system has to be solved for kmax times with the usual

methods, that can be direct or iterative solvers (LU direct solver is currently used, but it will be

replaced by GMRES in the prosecution of the work).

At the end of the Jacobi iterations, when kmax is reached, the vector of solution of the conservative

variables for the external iteration q + 1 is computed as

Wq+1 = Wq + ∆Wq
kmax

(6.50)
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The initial vector of the increments for k = 0 is initialized at 0 for every q-iteration, ∆W 0 = 0.

It is evident that the minimum number of block-Jacobi iterations must be greater or equal to 2,

because the �rst block-Jacobi iteration corresponds to an explicit step.

Hence the solution algorithm, for each of the sampled instants, becomes:

inputs: Wq known from previous iteration q, kmax ≥ 2, ∆Wq
0 = 0

for k = 0 to kmax − 1:

solve

(
V

∆τ
I +

∂R

∂W

∣∣∣∣∣
q)

∆Wq
k+1 = −RTSM(Wq)−VDt∆Wq

k

obtain ∆Wq
k+1

compute the coupling term VDt∆Wq
k+1

update the increment ∆Wq
k = ∆Wq

k+1

end for

output: ∆Wq
kmax

update with the last increment Wq+1 = Wq + ∆Wq
kmax

In the parallel computing no consistent change is made: the parallel solution of the linear system

for each instants still remains, but the external Jacobi iterations are performed sequentially,

due to the impossibility to exchange data in a Multiprocessing approach. To speed up this

implementation, the use of Message Passing Interface to compute in parallel the instants will be

necessary.

6.6 Jacobian Matrix

A short overview of the structure of the Jacobian matrix extracted is presented, being it a key

factor in our equations. Plots of the stencil of the Jacobian matrix for one instant (or the steady

simulation) are presented in �g. 6.6 and 6.7.

At the left data are classi�ed under all ρ, after ρu and so on. (ρ1, ρ2, ..., ρNcells), (ρu1, ρu2, ...,

ρuNcells), (ρv1, ρv2, ..., ρvNcells), (ρw1, ρw2, ..., ρwNcells), (ρE1, ρE2, ..., ρENcells) (block of variable
ordering).

In order to facilitate the inversion of the matrix with a direct approach, it is recommended to

ensure a diagonal dominance. To do that it is su�cient to reorder the matrix per cell block, in
which data corresponds to the �ve variables for the �rst cell (ρ, ρu, ρv, ρw, ρE)1, then for the

second (ρ, ρu, ρv, ρw, ρE)2 along the i-curvilinear axis, then along the j-curvilinear axis up to

(ρ, ρu, ρv, ρw, ρE)Ncells (this reordered matrix is at the right in �g. 6.6 and 6.7.).

By the way no evident improvement in terms of computational time for the inversion of the

matrix was noticed. So the two orderings are basically equivalent for a direct solver. This

would't be true for iterative solvers.

The plots are referred to both the �rst order Jacobian matrix and the second order Jacobian

matrix. It is evident in the reordered plot the contribution of the neighbouring cells in the stencil,

which is just one for the �rst order matrix and two for the second order.
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Figure 6.6: Not reordered and reordered Jacobian matrix order 1

Figure 6.7: Not reordered and reordered Jacobian matrix order 2

Moving to the TSM problem with the coupling of several 2N + 1 instants, the matrix to invert is

composed of 2N + 1 diagonal blocks of the initial matrix, with the addition of the extra diagonal

terms due to the source term.

The shapes of the two matrices (only for second order matrix), not reordered and reordered, are

shown below for a 3 instants case.

Figure 6.8: Not reordered and reordered left hand side matrix for a 3 instants case - fully implicit



6.6. Jacobian Matrix 51

It is straightforward to notice that, increasing the number of sampled instants the matrix becomes

larger and larger, and this leads to memory problems already for a case with 5 instants. The

aim of the Block Jacobi method is indeed avoiding to invert such huge matrices.

Also, increasing the number of instants, the system loses the diagonal dominance property, and

this makes the matrix increasingly harder to invert.

Thanks to Block Jacobi is then possible to solve each step of the sub-iterations k separately

for each instant, that will be after coupled by the time-spectral matrix in order to perform the

following k + 1 iteration, and so on.





Chapter 7

Reference data

The validation of the model is subject to the comparison of results from the new external solver

with some reference data, that need to be chosen accurately.

Thus a preliminary study of test cases needs to be carried out. Several numerical computations

referred to the two chosen test cases will be performed by the CFD solver elsA using both the

formulations Block Mobile and ALE, and both the unsteady computation and the TSM (also

called here HBT ) computation. The results are compared also with the experimental data, and

these cross checks will allow to chose the reliable reference data to use to validate the model.

The NASA papers provide the distribution of the pressure coe�cient cp around the upper and

lower surface of the airfoil for the steady case, and the unsteady pressure coe�cient for the

unsteady case, consisting in a mean value, a real part and an imaginary part. In order to be

able to compare the results of the unsteady simulations performed using elsA, which returns

instantaneous values of the pressure p(t) at each position of the chord as output, computing the

unsteady pressure distribution over the wall is needed. In the following section a demonstration

of what has been implemented in a Fortran post-processing tool is provided.

7.1 Unsteady pressure calculation - Fourier Analysis

The elsA code is provided with an internal post-processing tool, which extracts the harmonics

of the pressure signal, only for the ALE formulation and not for the mobile block formulation.
Therefore it is necessary to build an external post-processing tool, able to compute the unsteady

pressure for both the cases, especially for the mobile block formulation, that will be validated

with the elsA's reconstruction of the unsteady signal available for ALE formulation.

7.1.1 Mobile block formulation

The simulation returns the instantaneous values of the pressure p(t) at each position of the chord

as output, and it has the function q(t) as input.

q(t) = α sin(ωt) (7.1)

with α and ω the amplitude and the frequency (pulsation) of the forced pitching motion. In this

case the initial phase is set to 0 in the elsA simulation).

It is necessary to specify that p̂ is not straightly pressure, but pressure transfer function (input
divided by output) at each x-coordinate, while p(t) is the local pressure at each x-coordinate.

53
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p̂ =
1
T

∫ t0+T
t0

p(t)e−iωt dt

1
T

∫ t0+T
t0

α sinωte−iωt dt
= (7.2)

=

∫ t0+T
t0

p(t)e−iωt dt∫ t0+T
t0

α sinωt(cosωt− i sinωt) dt
= (7.3)

=

∫ t0+T
t0

p(t)e−iωt dt∫ t0+T
t0

α
(
sinωt cosωt− i sin2 ωt

)
dt

= (7.4)

=

∫ t0+T
t0

p(t)e−iωt dt

−iα
∫ t0+T
t0

1−cos 2ωt
2 dt

= (7.5)

=

∫ t0+T
t0

p(t)e−iωt dt

−iαT2
= (7.6)

= i
2

α

1

T

∫ t0+T

t0

p(t)e−iωt dt (7.7)

= i
2

α

1

T

∫ t0+T

t0

p(t)(cosωt− i sinωt) dt (7.8)

Passing to the discrete formulation, one can replace the integral with the sum, by choosing a

time step ∆t and adding the terms of the sum for the j index from the initial instant t0 = n0∆t

to the �nal one t0 + T = (n0 + (2N + 1))∆t, with (2N + 1)∆t = T .

p̂ = i
2

α

1

(2N + 1)

n0+(2N+1)∑
j=n0

p(j)

(
cos

2πj

2N + 1
− i sin

2πj

2N + 1

)
∆t = (7.9)

= Re(p̂) + iIm(p̂) (7.10)

with:

Re(p̂) =
2

α

1

2N + 1

n0+(2N+1)∑
j=n0

p(j) sin
2πj

2N + 1
(7.11)

Im(p̂) =
2

α

1

2N + 1

n0+(2N+1)∑
j=n0

p(j) cos
2πj

2N + 1
(7.12)

7.1.2 Simulation using elsA with ALE implementation

The simulation returns the instantaneous values of the pressure p(t) at each position of the chord

as output, and it has the function q(t) as input:

q(t) = α cos(ωt+ φ) (7.13)

with α and ω the amplitude and the frequency (pulsation) of the forced pitching motion, and φ

the initial phase (set to π
2 in the elsA simulation).
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p̂ =
1
T

∫ t0+T
t0

p(t)e−iωt dt

1
T

∫ t0+T
t0

α cos(ωt+ φ)e−iωt dt
= (7.14)

=

∫ t0+T
t0

p(t)e−iωt dt∫ t0+T
t0

α cos(ωt+ φ)(cosωt− i sinωt) dt
= (7.15)

=

∫ t0+T
t0

p(t)e−iωt dt

α
∫ t0+T
t0

(cosφ cos2 ωt− sinφ sinωt cosωt− i cosφ sinωt cosωt+ i sinφ sin2 ωt) dt
= (7.16)

=

∫ t0+T
t0

p(t)e−iωt dt

α
(

cosφ
∫ t0+T
t0

1+cos 2ωt
2 dt+ i sinφ

∫ t0+T
t0

1−cos 2ωt
2 dt

) = (7.17)

=

∫ t0+T
t0

p(t)e−iωt dt

αT2 e
iφ

= (7.18)

=
2

α
e−iφ

1

T

∫ t0+T

t0

p(t)e−iωt dt = (7.19)

=
2

α
e−iφ

1

T

∫ t0+T

t0

p(t)(cosωt− i sinωt) dt (7.20)

Passing to the discrete formulation, one can replace the integral with the sum, by choosing a

time step ∆t and adding the terms of the sum for the j index from the initial instant t0 = n0∆t

to the �nal one t0 + T = (n0 +N)∆t, with N∆t = T .

p̂ =
2

α
e−iφ

1

T

n0+(2N+1)∑
j=n0

p(j)

(
cos

2πj

2N + 1
− i sin

2πj

2N + 1

)
∆t = (7.21)

=
2

α
e−iφ

1

2N + 1

n0+N∑
j=n0

p(j)

(
cos

2πj

2N + 1
− i sin

2πj

2N + 1

)
= (7.22)

=
2

α
(cosφ− i sinφ)

1

2N + 1

n0+(2N+1)∑
j=n0

p(j)

(
cos

2πj

2N + 1
− i sin

2πj

2N + 1

)
= (7.23)

= Re(p̂) + iIm(p̂) (7.24)

with:

Re(p̂) =
2

α

1

2N + 1

cosφ

n0+(2N+1)∑
j=n0

p(j) cos
2πj

2N + 1
− sinφ

n0+(2N+1)∑
j=n0

p(j) sin
2πj

2N + 1


(7.25)

Im(p̂) = − 2

α

1

2N + 1

cosφ

n0+(2N+1)∑
j=n0

p(j) sin
2πj

2N + 1
+ sinφ

n0+(2N+1)∑
j=n0

p(j) cos
2πj

2N + 1


(7.26)
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Figure 7.1: Comparison between internal and external post-processing tools - case low Mach number

7.1.3 Validation of the external post-processing tool

In order to validate the external tool aimed to the post-processing of data using the Fourier

analysis, a comparison between the one internal to elsA and the external one was made in �g.

7.1.

The two curves, relative to the real part of the unsteady pressure on the upper and the lower

surface of the airfoil, obtained by two di�erent tools, are completely superposed. Once the

post-processing tool has been validated, it is possible to use it, particularly in the Mobile block
formulation both in the URANS and in the HBT simulations.

7.2 Case 29 - Low Mach number

In this section the low Mach number simulations are post processed and the results are shown.

Figure 7.2: Comparison between Mobile Block and ALE formulation - HBT and URANS - low Mach

number case - mean pressure
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Figure 7.3: Comparison between Mobile Block and ALE formulation - URANS - low Mach number

case - real and imaginary part

Figure 7.4: Comparison between Mobile Block and ALE formulation - HBT - low Mach number case -

real and imaginary part
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Figure 7.5: Comparison between URANS and HBT formulation - mobile block - low Mach number

case - real and imaginary part

Figure 7.6: Comparison between Mobile Block and ALE formulation - HBT and URANS - upper

surface - low Mach number case - real and imaginary part

All the results seem in good accordance with the experimental data. In fact, the Mach number

being low in this case, the results are not so far from the experimental results in both the URANS

and HBT computations performed by elsA.

Anyway it is possible to notice some discrepancies of the HBT - mobile block formulation with

respect to the three other methods: this is evident in �g. 7.2 where all the mean pressure

distributions are superposed except for the HBT - mobile block. Before performing the high

Mach number simulations, we already know that the block mobile formulation in the HBT

solution by elsA has not been validated. Only HBT implementation with ALE formulation has

been.
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7.3 Case 55 - High Mach number

Before analyzing the results from the simulations referred to the high Mach number case, a worse

superposition with respect to the low Mach number, is expected, between the experimental data

and the numerical ones. The reason is evidently the impossibility to neglect in the Euler �uid

equations viscosity and conductibility. In fact in some cases Euler simulations provide rather

good results even for transonic regimes. Nevertheless the shock is most of time not located at

the same place as experiments. But in any case in the transonic regime the risk of non-negligible

e�ects of �uid viscosity is higher. The possibility to neglect viscosity and conductibility strongly

depends also on the incidence: high incidence can yield �ow separation even for subsonic cases.

Navier-Stokes simulations are then mandatory.

Figure 7.7: Comparison between Mobile Block and ALE formulation - HBT and URANS - high Mach

number case - mean pressure

Figure 7.8: Comparison between Mobile Block and ALE formulation - URANS - high Mach number

case - real and imaginary part
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Figure 7.9: Comparison between Mobile Block and ALE formulation - HBT - high Mach number case

- real and imaginary part

Figure 7.10: Comparison between URANS and HBT formulation - mobile block - high Mach number

case - real and imaginary part
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Figure 7.11: Comparison between Mobile Block and ALE formulation - HBT and URANS - high Mach

number case - real and imaginary parts

It is evident how the di�erences between numerical results and experimental data are stronger

for the real and imaginary part, than for the mean pressure.

Again, only the HBT - mobile block computation shows discrepancies also in the mean pressure

�eld (�g: 7.7). This is a signal of not reliability, because at least a perfect accordance between

the ALE and the mobile block HBT computation would be expected, treating them the same

problem.

Moreover the e�ects of neglecting the viscous and heat conduction e�ects are severe in the shock

area, i.e. the zone with strong discontinuities in the pressure �eld, capturing di�erently the

position and the entity of the discontinuity.

It is to be noticed also that, analyzing a more complex case, presenting a shock wave, the HBT

simulations di�er consistently from the unsteady ones. In fact the computations have been

conducted with the minimum number of instants 3 (so only one harmonic) and these are not

su�cient to reconstruct accurately the �eld of a complex �ow.

At the end of the reference data investigation, the unsteady mobile block is chosen as reference,

for several reasons:

• It is the standard reference computation used for numerical validations.

• In order to have completely consistent comparisons, a mobile block approach should be

used as reference. But the HBT elsA simulations in the mobile block formulation have not

been validated yet, then cannot be used as reference.

• The unsteady computation provides results for every instant in the last period, so it's not

necessary to perform di�erent reference simulations when the number of sampled instants

changes.

Since the TSM in its nature doesn't guarantee perfect accuracy for high Mach number cases with

a low number of harmonics, the validations will be done also with the HBT-ALE formulation.





Chapter 8

Results of the external steady solver

The �rst step in building the solver consisted in the development of a steady solver, that means

basically performing only one instant, without the computation of the source term.

The results in terms of rate of convergence and �eld with respect to elsA unsteady simulation

are shown in the following sections.

In the process of validation of the external solver, di�culties of convergence have been encoun-

tered for the high Mach number case.

8.1 Low Mach number - case 29

Di�erent CFL strategies must be used to compare elsA and the external solver, because of the

di�erent nature of the system to solve: while elsA solves the system using an approximation of

the Jacobian matrix of �rst order, the external solver uses the exact Jacobian matrix of second

order. (The order is referred to the order of the approximation due to the space discretization

scheme, which says that the error that is introduced by the approximation is proportional to the

grid spacing to the power of the order, �rst, second or above.)

Hence, even though the maximum CFL number is much lower when the external solver is used.

This is due to the fact that the second order matrix is harder to invert than the approximation

of the �rst order one. Nevertheless the convergence is improved because an exact matrix is used

in the implicit stage.

The best adaptive CFL strategy is shown in the following, that adopts a variable CFL number

from 50 to 100, which makes the residuals reach a decrease of almost 10 orders of magnitude in

31 iterations against the 3996 performed by elsA.
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Figure 8.1: Rate of convergence - elsA unsteady, CFL = 1000 - external solver, CFL from 50 to 100

Comparisons of the density �eld and vertical speed are shown: the resulting �elds are completely

superposed.

Figure 8.2: ρ �eld - comparison between the elsA steady solver and the steady external solver

Figure 8.3: u �eld - comparison between the elsA steady solver and the steady external solver



8.2. High Mach number - case 55 65

The same perfect coincidence of the numerical results by elsA and by the external solver are

shown also concerning the pressure distribution over the surface of the airfoil.

Figure 8.4: Upper and lower pressure coe�cients - comparison between the elsA steady solver and the

steady external solver

8.2 High Mach number - case 55

The �rst thing that has been noticed launching the �rst simulation with the high Mach number

is that steady external solver fails: even with a low CFL as 5, already tested for the low Mach

number case, after the 1st iteration, the computed �eld is not physical, with negative density in

some cells. It means that the Jacobian matrix in this case is sti�er and needs a very lower CFL

to be able to converge, not a�ordable in terms of practical computational time, especially for the

simple steady solver.

Therefore it is presented an owerview of the possible strategies adoptable in order to help the

convergence problem, also for the transonic case, that introduces non- linearities in the �eld

(data of the analyzed �ow �eld are in tab. 1.2).

8.2.1 Introduction of a relaxation factor

A �rst strategy, tried in order to relax the solution, has been the introduction of a relaxation

factor in the resolution process:

wk+1 = wk + α∆wk (8.1)

= wk + α(wk+1 − wk) (8.2)

= wk(1− α) + αwk+1 (8.3)

(8.4)

instead of the standard Newton process resolution:

wk+1 = wk + ∆wk (8.5)
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with very low CFL number CFL = 0.1 and relaxation factor α = 0.3, to test the e�ectiveness

of the method.

Figure 8.5: Residuals with CFL = 0.1 and α = 0.3 - relaxation strategy

Despite the low parameters, the simulation isn't able to converge.

8.2.2 Standard and directional CFL formulation

Another strategy has been tried, the directional CFL formulation for the computation of the

local pseudo time step.

The standard CFL formulation is the following:

∆τ =
CFL ·∆h
||U ||+ a

(8.6)

where the reference length ∆h is chosen as the cubic root of the volume of the cell

∆h =
3
√
V (8.7)

||U || is the norm of the local speed, computed as

||U || =
√
u2 + v2 + w2 (8.8)

and a is the speed of sound.

The directional CFL formulation used as possible strategy is:

∆t =
CFL ·∆h

ρ(n(I)) + ρ(n(J)) + ρ(n(K))
(8.9)

where ρ(n(k)) is the spectral radius of the Jacobian matrix associated with the convective �ux

in the direction n(k), and it is de�ned as:
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ρ(n(k)) = |n(k)
1 u1 + n

(k)
2 u2 + n

(k)
3 u3|+ a

√
(n

(k)
1 )2 + (n

(k)
2 )2 + (n

(k)
3 )2 (8.10)

The reference length used is still the cubic root of the volume and a is still the speed of sound.

Using this new formulation of CFL it is possible to relax the solution, because it takes into account

the direction of signal propagation. Indeed, using a CFL=1 the simulation with a standard CFL

fails after 5 iterations, while using the directional formulation of CFL the solution process is

relaxed.

In �g. 8.6 the behaviour of residuals using a standard CFL=1 and CFL=0.1, and a directional

CFL=1 is presented.

Figure 8.6: Residuals with standard CFL formulation, CFL = 0.1 and CFL =1, and directional CFL

formulation, CFL =1

The comparison with the standard CFL=0.1 has been made because in fact the new formulation

consists in decreasing the local CFL in cells. It can be noticed that, despite an improvement of

the solution with respect to the standard CFL cases, the strategy is anyway insu�cient to reach

an acceptable convergence (too many iterations with too low decrease of residuals).

Iteration n.1

The behaviour of the pseudo ∆τ has been investigated for the three cases after one iteration and

only the standard CFL=0.1 and the directional CFL=1 after 700 iterations, in order to see if

the shock has altered the ∆τ �eld, in terms of decrease in the proximity of the shock, where the

gradients are higher than in other zones.
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Figure 8.7: ∆τ distribution, comparison between standard and directional CFL formulation - CFL = 1

Figure 8.8: ∆τ distribution, comparison between standard and directional CFL formulation - CFL =

1 - zoom

The local time steps (CFL is constant everywhere) are evidently lower in the directional case

(the colours scale set is the same), but at the �rst iteration the shock hasn't been caught yet, as

expected.
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Figure 8.9: ∆τ distribution, CFL = 0.1, standard formulation, with zoom

Iteration n.700

The ∆t �eld at iteration n. 700 can be computed, to check if the shock has a�ected the ∆t

distribution.

Figure 8.10: ∆τ distribution, comparison between standard and directional CFL formulation - standard

CFL = 0.1 in the left and directional CFL = 1 in the right at the iteration n.700

The pseudo time step �eld is not adapted to the shock for any of the simulations, neither the

standard formulation strategy with a really low CFL number, nor the directional one.

Therefore we decided to keep the standard formulation, since the results with the directional one

simply consist in a decrease of the local time step, achievable also by decreasing the global CFL,

without introducing further complications.

8.2.3 Introduction of the �rst order Jacobian matrix

One main issue with Newton-like algorithms is the determination of the initial �eld (W0). This

algorithm would be more robust with respect to initialization if the �rst order Jacobian matrix is

used to start, and then the Newton algorithm using the second order one can be launched with

the solution of the �rst order one.
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Thus another possible strategy to relax the solution, in order to avoid the quick divergence

of the high Mach case, is to use for some iterations the exact Jacobian of spatial �rst order

discretization, instead of the second order matrix, harder to invert than the �rst order one, being

more dense.

First of all, it is found the maximum achievable CFL number to ensure convergence with the

�rst order Jacobian.

Figure 8.11: Residuals behaviour - comparison among di�erent CFL numbers with Jacobian order 1

From CFL=35 and more, the solution diverges. Therefore as maximum CFL for the �rst part of

the simulation (with Jacobian of �rst order) CFL=30 is chosen.

Besides it is possible to see a strong plateau for a residual of ' 10−4, which prevents the residual

from decreasing below this value.

In the validation process of the two matrices, consisting in performing the same simulation

inverting the two di�erent matrices, in the simulation with �rst order Jacobian a problem in the

wake arose. This behaviour is an explanation of the �nal stagnation of residuals.

Thus performing a complete simulation with the �rst order Jacobian matrix (called below JO1)

is not possible because its extraction has not been validated yet and possible bugs can remain,

but it is useful to give the solution the right direction for convergence, by relaxing the �rst steps'

solution and providing a closer initial guess for the Newton process with second order Jacobian

(called below JO2).

At this point it is necessary to restart the simulation with the second order Jacobian. The restart

is performed with a CFL=10, for 4 cases:

• 1 iteration with JO1 - switch to JO2,

• 3 iteration with JO1 - switch to JO2,

• 10 iteration with JO1 - switch to JO2, in a central point of the residual ramp

• 25 iteration with JO1 - switch to JO2, when the plateau is almost established
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Figure 8.12: Restart with Jacobian order 2 - di�erent restarting points (with zoom)

The main cause of the divergence problem experienced is evidently in the �rst step of the sim-

ulation: indeed applying the switch of the Jacobian matrix even after the �rst iteration the

simulation is able to reach convergence.

In order to understand the physics that are the basis of the numerical behaviour, the density

�elds after 1st, 3rd, 10th and 25th iteration are presented below:

Figure 8.13: Density �eld at iteration n.1 and n.3
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Figure 8.14: Density �eld at iteration n.10 and n.25

Neither after the �rst iteration nor after the third the shock has been properly captured, but

the �eld is already changing in both cases and the physics can be captured in a better way.

Because of the physical �eld, that is not completely resolved yet, these two cases present an

initial numerical plateau in the residuals after the restart (�g. 8.12), being the restart performed

from a �eld still very far from the solution.

On the other hand, in the third and last case the shock is present in the �eld, and the beginning

of the descent is straight for both the residuals.

It is decided to set the switch around the 10th iteration, since the �eld is already established (it

could be possible also to switch at the �rst iteration but this strategy wouldn't be conservative

enough, while switching too late would mean too many iterations using the �rst order Jacobian,

with the possibility to experience numerical divergence in the wake).

In the attempt to make the process case-independent, it is set a switch from the First order
Jacobian matrix to the Second order Jacobian matrix at the point when a decrease of the residual

of one order and three orders of magnitude are experienced.

In the switch point, also the CFL is switched from 30 to 10, as in the case presented before.

Figure 8.15: Switch point at res
resinit

= 0.1 and res
resinit

= 0.001
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The switching point in the �rst case is the 6th iteration, while in the second case the Jacobian

remains �rst order because of the high residuals.

Assumed the decrease of the residual of one order of magnitude as a good strategy, several tests

are done in order to increase the CFL of the simulation for the Jacobian order 2, to 20, 30, 40,

50 and to make the simulation faster.

Figure 8.16: Search for the highest a�ordable CFL number for restart with Jacobian order 2

A good convergence is obtained by all the CFL numbers tested (the peaks after the switch are

due to the rapid increasing of the CFL, avoidable by using a ramp between the two values), so

the best generalized strategy, in terms of maximizing the speed of the simulation and minimize

the utilization of the �rst order Jacobian matrix seems to be the switch from �rst order Jacobian

to second order Jacobian at the point in which the residual decreases of one order of magnitude,

switching also CFL to an higher one (CFL= 50 is chosen for second order Jacobian).

Now a comparison between the external steady solver (using the best strategy found) and elsA

steady solver (with a higher CFL=1000), is made in terms of residuals and pressure coe�cient

distribution.

Figure 8.17: Rate of convergence - elsA unsteady, CFL = 1000 - external solver, CFL from 30 to 50

switching the Jacobian matrix
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Figure 8.18: Upper and lower pressure coe�cients - comparison between the elsA steady solver and the

steady external solver

The external solver improved its convergence with respect to the elsA solution process, allowing

the simulation to reach the exact solution with the exact Jacobian matrix of second order after

only 61 iterations instead of more than 3000 with the steady elsA solver.

The validation of the convergence process is shown below.

Figure 8.19: ρ �eld - comparison between the elsA steady solver and the steady external solver

8.2.4 Incomplete factorization in the solution process - ILU

It is also possible to develop a di�erent strategy to avoid the extraction of �rst order Jacobian

during the solution process. An ILU factorization is proposed, with a �lling factor = 20, and a

dropping tolerance = 0.002 (read chapter 4).

The strategy used in the computation is an adaptive CFL number which increases from 1 to 10,

through a ramp from the iteration number 50 to iteration number 200.
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Figure 8.20: Comparison of the residuals behaviour with ILU approach in the external solver, and the

elsA steady solver

Also with the ILU factorization it's not possible to achieve a quicker convergence, by using high

CFL numbers, since it exploits only the second order Jacobian matrix, less robust than the �rst

order Jacobian, but using this method it is possible to avoid the use of this matrix.

Anyway, despite the convergence achieved by extracting only the second order Jacobian matrix,

this method won't be implemented in the steady and TSM codes because it is in fact an ap-

proximate solution method, comparable to elsA's one, which doesn't exploit the exact Jacobian

matrix for every iteration. Furthermore future releases of the code will implement the GMRES

iterative method, so it seems convenient for the moment to keep the direct solver as most simple

implementation, facing all the complications that a direct solver can encounter.





Chapter 9

Results of the external TSM solver

Once the results of the steady solver have been validated, it was possible to move to the proper

TSM solver. Three cases have been analyzed in this case, the case 29, the case 55 has been split

into a case with f = 10.8Hz and a case with f = 34.4Hz, because some convergence problems

have been met in the high frequency case.

Together with di�erent choices of the CFL strategy, also the behaviour of the convergence with

respect to the number of instants sampled has been analyzed.

In each section the results will be proposed as comparisons between the external computation

and elsA computation, divided in: the density �eld visualization, the wall pressure distribution,

the aerodynamic coe�cients at the given instants with the reconstruction over the period and

the convergence of the problem.

9.1 Low Mach number

In this section the resulting �elds of the external solver are compared to the unsteady simulation

by elsA. As expected in the low Mach number and low frequency case, the process leads to the

right solution without convergence issues.

9.1.1 Complete density �eld around the airfoil - three instants

The density �eld around the airfoil is shown below.

77
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Figure 9.1: ρ �eld at instant 1 - comparison between the external TSM solver and the elsA unsteady

solver

Figure 9.2: ρ �eld at instant 2 - comparison between the external TSM solver and the elsA unsteady

solver

Figure 9.3: ρ �eld at instant 3 - comparison between the external TSM solver and the elsA unsteady

solver
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9.1.2 Fields around the stagnation point - three instants

In this section, and only for this case, a zoom of the conservative variables ρ, ρu and ρw around

the stagnation point is presented for each instant, in order to show the identical �elds and validate

the solution.

ρ �eld

Figure 9.4: ρ �eld at instant 1 - around stagnation point - comparison between the external TSM solver

and the elsA unsteady solver

Figure 9.5: ρ �eld at instant 2 - around stagnation point - comparison between the external TSM solver

and the elsA unsteady solver
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Figure 9.6: ρ �eld at instant 3 - around stagnation point - comparison between the external TSM solver

and the elsA unsteady solver

ρu �eld

Figure 9.7: ρu �eld at instant 1 - around stagnation point - comparison between the external TSM

solver and the elsA unsteady solver

Figure 9.8: ρu �eld at instant 2 - around stagnation point - comparison between the external TSM

solver and the elsA unsteady solver
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Figure 9.9: ρu �eld at instant 3 - around stagnation point - comparison between the external TSM

solver and the elsA unsteady solver

ρw �eld

Figure 9.10: ρw �eld at instant 1 - around stagnation point - comparison between the external TSM

solver and the elsA unsteady solver

Figure 9.11: ρw �eld at instant 2 - around stagnation point - comparison between the external TSM

solver and the elsA unsteady solver
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Figure 9.12: ρ �eld at instant 3 - around stagnation point - comparison between the external TSM

solver and the elsA unsteady solver

9.1.3 Wall pressure

In the following, upper and lower pressure at each instant, and the reconstruction of the unsteady

pressure for the upper and lower part, are shown for 3, 5, 7 instants, comparing the unsteady

reference simulation by elsA and the results by the external solver.

As expected, comparing the wall pressure at the three instants, there is complete accordance

between unsteady results and TSM results by the external solver.

Figure 9.13: Upper and lower pressure at the 3 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver
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Figure 9.14: Upper and lower unsteady pressure reconstruction - 3 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

The accordance between real and imaginary parts of the unsteady pressure on the airfoil wall

means that the physics of the problem is well approximated by 3 instants, due to the linearity of

the problem with low Mach number and low frequency. It is expected that for a more complex

case, 3 instants won't be enough to represent completely the physics of the problem. By the

way, especially for the imaginary part near the leading edge (�g. 9.14 at the right), there is

a slight discrepancy in the peak at the leading edge that is higher for the TSM case than the

unsteady one. It is shown below how it is possible to eliminate this problem using 5 instants, so

2 harmonics.

Figure 9.15: Upper and lower pressure at the 5 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver
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Figure 9.16: Upper and lower unsteady pressure reconstruction - 5 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

Increasing the number of harmonics up to 3 (7 instants) the results are identical.

Figure 9.17: Upper and lower pressure at the 7 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver
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Figure 9.18: Upper and lower unsteady pressure reconstruction - 7 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

This means that the linear case 29 can be approximated in a satisfying way with 2 harmonics.

9.1.4 Aerodynamic coe�cients

In the following the plots of aerodynamic coe�cients are represented. In fact in the elsA extracts

it is possible to obtain the x-coe�cient Cx , the z-coe�cient Cz and the moment coe�cient Cm,

all expressed in body axis.

The coe�cient of interest are the lift coe�cient CL and the pressure drag coe�cient CDp , obtained

by simply rotating Cx and Cz in wind axis.

CDp = Cx cos(α) + Cz sin(α) (9.1)

CL = −Cx sin(α) + Cz cos(α) (9.2)

Figure 9.19: CL-α - reference unsteady solution, with TSM solution for 3, 5, 7 instants

In the �rst plot the transient that an unsteady computation faces before reaching the periodic
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steady state is evident, that is complete when the ellipses are completely superposed period by

period.

In the following plots only the last period of oscillation is presented, when it's sure that the

periodic steady regime has been reached. The unsteady reference simulation has been performed

for 8 periods, each of them split in 1000 time steps.

The three coe�cients are reconstructed via Fourier reconstruction, with 1, 2, 3 harmonics.

The Fourier reconstruction is performed applying the de�nition:

f(tn) = a0 +
N∑
k=1

[ak cos(ωtn) + bk sin(ωtn)] (9.3)

with f(tn) the reconstructed function at the tn instant, and tn = n∆t = n
2N+1 with n = 0, ..., 2N .

It is su�cient to solve a linear system knowing the discrete aerodynamic coe�cients (but of

course it's valid for each quantity), to �nd the Fourier coe�cients ak and bk. Once found them,

the continuous function is reconstructed.

Figure 9.20: CL, CDp
and CM vs. iteration (time) in the last period - reference unsteady solution, with

TSM solution with Fourier reconsrtuction for 3, 5, 7 instants

The accordance with the reference data is well respected for all the computations with 3, 5

and 7 instants for the CL, CD and CM coe�cients. Of course, since the drag coe�cient hasn't

a sinusoidal behaviour, the reconstruction with 1 harmonic is not su�cient, and at least 2

harmonics are required.
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9.1.5 Convergence

Being the linear low Mach number case, trying di�erent strategies for CFL number together with

the increase of the number of instants has been possible from the beginning, without introducing

extra strategies.

Starting from the explicit version of the code, the trend of the norm of the TSM residuals is

given below, using three di�erent CFL numbers, CFL=1, CFL=5, CFL=10, above which the

time steps become too large to assure convergence.

Figure 9.21: TSM residuals - CFL = 1, 5, 10 - 3 instants - explicit source term

By the way, time-spectral problems can still become di�cult to converge when the maximum

resolvable wave number becomes large, which occurs as the frequency of motion increases and/or

the number of time instants used is raised.

In fact the maximum resolvable wave number is inversely proportional to the minimum resolvable

wave length, deduced from the mesh size and the pseudo time step.

This comes from the Courant�Friedrichs�Lewy (CFL) condition, that is a necessary condition for

convergence while partial di�erential equations like Euler or Navier-Stokes are solved numerically.

The principle behind this condition is that if a wave is travelling across a discrete spatial grid, in

order to compute its amplitude at discrete time steps of a certain duration, this duration must

be less than the time taken by the wave to travel to neighbouring cells. As a consequence when

the grid size is reduced, the the maximum allowed time step also decreases. In our case the time

is not physical but numerical (the pseudo time).

Increasing the number of instants, the convergence is slowed down and severe constraints on the
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CFL number show up, observing that the CFL needs to be decreased in order to converge higher

harmonic computations.

A CFL=1 simulation is chosen to show the behaviour of the convergence, that becomes slower

increasing the number of instants. This is the maximum CFL a�ordable for partially implicit

method, indeed the simulations performed with 5 instants and 7 instants cannot reach conver-

gence with higher CFLs.

Figure 9.22: TSM residuals - CFL = 1 - 3, 5, 7 instants - explicit source term

For this purpose, the fully implicit formulation of the code was introduced. In the following the

CFL=5 case, that is the highest CFL a�ordable to converge with 7 instants, is shown for the

three cases with 3, 5 and 7 instants for both the partial and the full implicitation of the method.

Figure 9.23: TSM residuals - CFL = 5 - 3, 5, 7 instants - explicit and implicit source term

It is shown how the convergence in the fully implicit method is the same for the three harmonics,

so the CFL number and the rate of convergence are independent of the number of harmonics.

These results have been achieved thanks to the convergence of the second order Jacobian matrix

in the block Jacobi subiteration, in which the norm of the di�erence of the increments of the

conservative variables (the solution of the system) at two subsequent block Jacobi sub-iterations

k and k + 1 is driven to zero (||∆Wk+1 −∆Wk|| → 0 to allow convergence of the method with

the implicit source term).
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Figure 9.24: Convergence of Block Jacobi

The main goal of the implicitation needs to be remarked: it doesn't allow in every possible case

to increase the CFL number for a problem. Instead it prevents the convergence to be slowed

down due to the increasing of frequency or number of instants.

In fact, �g. 9.25 the behaviour for 3 CFL numbers (1,5,10) shows the convergence in both the

explicit and the implicit formulations of the source term: the rate of convergence is not changed

passing from one formulation to the other with the minimum number of instants.

Figure 9.25: TSM residuals - CFL = 1, 5, 10 - 3 instants - explicit and implicit source term

As a conclusion, it is plotted in the following the trend of residuals, comparing the best strategy

of the external solver, with CFL=5, with the TSM computation by elsA with CFL=1000. The

gain in terms of iterations is well evident, of one eighth.

As already remarked, the CFL numbers which it's possible to use in the external solver are way

lower than elsA's ones because elsA uses an approximation of the �rst order Jacobian matrix,

more robust and better conditioned than the second order one. By the way the more accurate

second order Jacobian matrix allows to reach much faster the convergence of the problem.
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Figure 9.26: Best convergence strategy for 3, 5, 7 instants - external TSM solver vs. elsA TSM solver

9.2 High Mach number - low frequency

As already mentioned, the case 55 has been split into to sub-cases, with two di�erent frequencies,

f = 10.8Hz (low frequency case) and f = 34.4Hz (high frequency case). This is due to the

convergence problems that the high frequency case has brought with it. This is the main reason

why it's been decided to try the strategy of the implicitation of the source term to help the

convergence of the problem without decreasing too much the CFL number.

9.2.1 Complete �eld around the airfoil - three instants

In this case the �eld is not well resolved utilizing only three instants, because of the introduction

of non linearities caused by the increase of the Mach number; so the comparison aimed at the

validation of the external solver is extended also to the TSM solver internal to elsA.

The only di�erence is in the visualization of the �eld, since elsA uses the ALE formulation and

it is the pro�le to be rotated and not the boundary conditions.

Only the density �eld is shown below.
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Figure 9.27: ρ �eld at instant 1 - comparison among the external TSM solver, the elsA TSM solver and

the elsA unsteady solver
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Figure 9.28: ρ �eld at instant 2 - comparison among the external TSM solver, the elsA TSM solver and

the elsA unsteady solver
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Figure 9.29: ρ �eld at instant 3 - comparison among the external TSM solver, the elsA TSM solver and

the elsA unsteady solver

9.2.2 Wall pressure

In the following, upper and lower pressure at each instant, and the reconstruction of the unsteady

pressure for the upper and lower part, are shown for 3, 5, 7 instants, comparing the unsteady

reference simulation by elsA, the TSM reference simulation by elsA and the results by the TSM

external solver.

The validation of the TSM external code is given by the perfect superposition of the results with

the results by elsA's TSM solver.
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Figure 9.30: Upper and lower pressure at the 3 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver

Increasing the Mach number, some di�erences arise in the area of the shock. These are more

evident and better highlighted in the plot of the unsteady pressure around the airfoil.

Figure 9.31: Upper and lower unsteady pressure reconstruction - 3 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

Increasing the number of instants up to 5, the unsteady pressure is better resolved also in the

area of the shock, as shown in �g. 9.33.
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Figure 9.32: Upper and lower pressure at the 5 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver

Figure 9.33: Upper and lower unsteady pressure reconstruction - 5 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

Increasing up to 7 instants the results are almost superposed to the unsteady ones.
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Figure 9.34: Upper and lower pressure at the 7 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver

Figure 9.35: Upper and lower unsteady pressure reconstruction - 7 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

9.2.3 Aerodynamic coe�cients

The CL coe�cient is illustrated in �g. 9.50 with respect to the angle of attack. The CL coe�cient

seems well resolved even with 3 instants, comparing it with the unsteady reference solution.
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Figure 9.36: CL-α - reference unsteady solution, with TSM solution for 3, 5, 7 instants

Presenting the reconstruction of the three aerodynamic coe�cients CL, CDp and CM , we can

notice again that CL and CM are sinusoidal signals, well resolved also with 3 instants.

Instead, the non sinusoidal pressure coe�cient cannot be reconstructed with 1 harmonic, and

moreover the results obtained by the TSM simulation with 1 harmonic are not even superposed

to the reference.

This means that also in this case 2 harmonics are the minimum number to approximate e�ciently

the problem.

Figure 9.37: CL, CDp
and CM vs. iteration (time) in the last period - reference unsteady solution, with

TSM solution with Fourier reconstruction for 3, 5, 7 instants
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9.2.4 Convergence

The best strategy for convergence in the case of high Mach number with low frequency for 3

instants is shown below, that is also in this case with a CFL=10, but this time helped by the

�rst iterations performed exploiting the �rst order Jacobian matrix.

Figure 9.38: TSM residuals - CFL = 10 - 3 instants - explicit source term

Also in this case the bene�ts given by the implicitation of the source term, in terms of relaxation

of the CFL constraints, have been useful to keep constant the CFL number while increasing the

number of instants, and keeping the same convergence behaviour.

For a computation with CFL=5, that is the maximum a�ordable CFL number for this case, the

simulations with 5 and 7 instants diverge with the explicit source term formulation. The full

implicitation relaxes the problem and allows convergence to all three simulations.

Figure 9.39: TSM residuals - CFL = 5 - 3, 5, 7 instants - explicit and implicit source term

The rate of convergence of the best CFL strategy for the external computation, CFL=5, compared

to elsA's TSM simulation with a CFL=1000, is illustrated below.
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Figure 9.40: Best convergence strategy for 3, 5, 7 instants - external TSM solver vs. elsA TSM solver

9.3 High Mach number - high frequency

This is the �nal case, which su�ers the strictest CFL constraints both in the external TSM solver

and in TSM performed by elsA. In fact at the end of the section a short demonstration of the

same behaviour due to a lack of robustness of the Block Jacobi full implicitation, is given for

both the solvers.

In future implementations of the code, only this case will be taken into account, being the hardest

to converge.

9.3.1 Complete �eld around the airfoil - three instants

For the sake of shortness, only the �nal density �eld for a 3 instants simulation is presented.

Also in this case, since the phenomenon is not linear and cannot be approximated properly with

one harmonic, the validation of the results must be compared also with the TSM by elsA.
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Figure 9.41: ρ �eld at instant 1 - comparison among the external TSM solver, the elsA TSM solver and

the elsA unsteady solver
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Figure 9.42: ρ �eld at instant 2 - comparison among the external TSM solver, the elsA TSM solver and

the elsA unsteady solver
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Figure 9.43: ρ �eld at instant 3 - comparison among the external TSM solver, the elsA TSM solver and

the elsA unsteady solver

This time the di�erence between the two TSM computations (performed by the external solver

and by elsA, completely identical) and the unsteady simulation are more consistent. In fact the

non linearities due to the transonic condition, are increased by the high fundamental frequency

of the motion. To resolve the �eld in an accurate way, a higher number of harmonics will be

needed.

9.3.2 Wall pressure

In the following, upper and lower pressure at each instant, and the reconstruction of the unsteady

pressure for the upper and lower part, are shown for TSM computations with 3, 5, 7 instants,

comparing the unsteady reference simulation by elsA, the TSM reference simulation by elsA and

the results by the TSM external solver.

The validation of the TSM external code is given by the perfect superposition of the results with

the results by elsA's TSM solver.
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Figure 9.44: Upper and lower pressure at the 3 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver

Figure 9.45: Upper and lower unsteady pressure reconstruction - 3 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

The �eld seems well solved everywhere but in the area of the shock. This means that only one

harmonic is not su�cient to solve completely the problem. The simulation has been re-performed

but this time with 5 instants.



104 Chapter 9. Results of the external TSM solver

Figure 9.46: Upper and lower pressure at the 5 instants - external TSM solver, elsA TSM solver and

elsA unsteady solvert

Performing again the Fourier analysis the improvement obtained increasing the number of in-

stants is evident.

Figure 9.47: Upper and lower unsteady pressure reconstruction - 5 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

Using seven instants the results are almost completely superposed to the unsteady ones.
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Figure 9.48: Upper and lower pressure at the 7 instants - external TSM solver, elsA TSM solver and

elsA unsteady solver

Figure 9.49: Upper and lower unsteady pressure reconstruction - 7 instants - external TSM solver, elsA

TSM solver and elsA unsteady solver - real and imaginary part

From this kind of analysis it is noticeable that 3 harmonics yield perfect superposition but 2

harmonics gives also very good results in approximating in a satisfying way the problem.

9.3.3 Aerodynamic coe�cients

As experienced in the previous two cases, the CL obtained by TSM is always (for 3, 5, 7 instants)

superposed to the reference computation, being sinusoidal, as also the CM .
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Figure 9.50: CL-α - reference unsteady solution, with TSM solution for 3, 5, 7 instants

On the other side there is again the pressure drag coe�cient that is not sinusoidal. First of all

the 3 instants computation cannot output coe�cients superposed to the reference ones. And

again, a sinusoidal, one harmonic reconstruction is not su�cient for the CDp . As already noticed

from the unsteady pressure analysis, the �nal case is not linear, and the minimum number of

harmonics required is 3.

Figure 9.51: CL, CDp
and CM vs. iteration (time) in the last period - reference unsteady solution, with

TSM solution with Fourier reconstuction for 3, 5, 7 instants
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9.3.4 Convergence

Even though the right solution is achieved in any case simply decreasing the CFL number, the

convergence of the method seems to be severely a�ected by the increase of the frequency. Indeed

choosing a CFL=1 a strong stagnation is experienced after a decrease of two orders of magnitude

of the residuals (nevertheless the right solution is already reached in this case). In order to have

a constant rate of convergence, and to make the simulation more reliable, a CFL=0.5 is needed.

Hence a similar e�ect to the increase of number of instants is experienced by increasing the

pitching frequency of the airfoil, since they have the same e�ect on the pseudo time step ∆τ , i.e.

decreasing ∆τ while increasing f and N .

Figure 9.52: TSM residuals - CFL = 1, 0.5 - 3 instants - explicit source term

Two alternative ways have been tested in order to help the convergence: the direct LU solver has

been replaced by the approximate direct solver ILU in the �rst case, and a complete simulation

exploiting the Jacobian of the �rst order in the second case.

None of the alternative methods seem to help the convergence.

In future works this constraint can be relaxed by the use of an iterative solver like GMRES, which

doesn't solve exactly the system at each iteration. A loss in the rate of convergence is expected,

but on the other hand the solver will become more robust and less inclined to convergence

problems.

By the way a maximum CFL=0.5 seems completely inadequate for practical issues, so a Block

Jacobi fully implicit implementation seems necessary.

Applying a CFL=1 to the partially implicit formulation, the same behaviour experienced in the

two previous cases is obtained (�g. 9.53): for higher number of harmonics the partially implicit

solver diverges, while the fully implicit formulation ensures a similar convergence for all the

three cases, that is moreover improved with respect to the explicit formulation with 3 instants,

preventing the residual from stagnating.
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Figure 9.53: TSM residuals - CFL = 1 - 3, 5, 7 instants - explicit and implicit source term

After the analysis on the high frequency and high number of harmonics case, the necessity of the

implementation of the implicit source term became relevant in order to be able to go further in

the following studies using this type of method.

Finally the improvements obtained thanks to the implicitation of the source term are shown,

allowing to solve the hardest test case with a CFL=2 for 3, 5, 7 instants, with a decrease of 7

orders of magnitude in about 1250 iterations, while elsA in 2500 with a CFL=10. This is an

important result, that shows the e�ectiveness of the second order Jacobian matrix, despite the

less robust direct solver is still used, penalized by a very low maximum a�ordable CFL number.

Figure 9.54: Best convergence strategy for 3, 5, 7 instants - external TSM solver vs. elsA TSM solver

9.3.5 Robustness problems: external code and elsA

As shown in the results section, the fully implicit TSM implementation relaxes the CFL con-

straints given by the partially implicit TSM, but still doesn't allow to completely make the

problem independent of the frequency and the number of harmonics.

elsA implements the same Block Jacobi full implicitation, and it is hence expected the same

robustness problems.

Given the higher sti�ness of the exact Jacobian matrix used in the external solver, as several

times has been repeated, comparing the TSM solver by elsA and by us is impossible in terms of

same CFL number. Indeed it is possible only to compare the "best" CFL strategies for the two
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solvers.

In �g. 9.55, the same divergence problems are faced by the external solver for a CFL=5, and by

the elsA solver for a CFL=50 while increasing the number of instants.

Figure 9.55: Divergence - external TSM solver and elsA TSM solver

Decreasing the CFL number to 2 for the external solver and to 10 for elsA (�g. 9.56), convergence

is ensured, and the convergence rate is approximately the same for the simulations performed

with di�erent instants.

Figure 9.56: Convergence decreasing the CFL number - external TSM solver and elsA TSM solver





Chapter 10

Shape optimization

In this last chapter, a �rst implementation of a steady shape optimizer is presented. Aerodynamic

shape optimization consists in looking for the shape, among a set of parametrized aerodynamic

shapes, that signi�cantly improves an objective function while satisfying a set of constraints.

In our case the objective function is the airfoil drag (pressure drag) under the constraints related

to lift: the aim of the process is the pressure drag coe�cient reduction, such that the lift coe�cient

doesn't drop below a certain threshold. This threshold is set to the lift coe�cient of the nominal

airfoil.

Before starting the discussion about the optimization process, it is necessary to de�ne pk as

the vector of design parameters at a certain step of the optimization algorithm k, and J as

the objective scalar functions, i.e. the functions that decide the optimization direction, or the

constraint function, that is the function which puts limitations in the optimization process. For

our purposes the objective function is drag - to minimize, and the constraint function is lift - to

keep above a prescribed value. Besides X denotes the coordinates of the grid.

10.1 Theoretical aspects

10.1.1 Aerodynamic shape optimization using numerical simulation

The objective is to solve the linearized system of discretized equations around the steady con�g-

uration.

The steady problem solution satis�es, for the Navier-Stokes equations:

R(W,X) = 0 (10.1)

By di�erentiating the discrete equation with respect to one of the design parameters pi, gives

the sensitivity equation:

∂R

∂W

dW

dpi
+
∂R

∂X

dX

dpi
= 0, i = 1, ..., Np (10.2)

That rearranging is:

∂R

∂W

dW

dpi
= − ∂R

∂X

dX

dpi
, i = 1, ..., Np (10.3)
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Computation of the gradient by the discrete direct di�erentiation method The ob-

jective scalar function J can be linearized as follows, and we can express the total derivative of

the objective function Jf with respect to one design parameter, depending on the mesh and on

the �ow �eld (the whole one and the one at the boundaries), J = J(W,Wb, X), using a direct

di�erentiation method:

dJf
dpi

=
∂Jf
∂X
· dX

dp
+
∂Jf
∂Wb

· ∂Wb

∂X
· dX

dpi
+

(
∂Jf
∂W

+
∂Jf
∂Wb

· ∂Wb

∂W

)
· dW

dpi
(10.4)

We can also express the total derivative of the functions with respect to the vector of design

parameters:

∇pJf =
∂Jf
∂X
· dX

dp
+
∂Jf
∂Wb

· ∂Wb

∂X
· dX

dp
+

(
∂Jf
∂W

+
∂Jf
∂Wb

· ∂Wb

∂W

)
· dW

dp
(10.5)

If we substitute the term
dW

dp
in the previous relations, the gradient of the objective and the

constraint functions is written:

∇pJf =
∂Jf
∂X
· dX

dp
+
∂Jf
∂Wb

· ∂Wb

∂X
· dX

dp
−
(
∂Jf
∂W

+
∂Jf
∂Wb

· ∂Wb

∂W

)
· ∂R
∂W

−1 ∂R

∂X

dX

dp
(10.6)

Computation of the gradient by the discrete adjoint method Another approach alter-

native to the tangent method is the adjoint method. Here it has been considered in a discrete

form (adjoint equation of discrete scheme) and not in a continuous form (discretization of the

continuous adjoint equations of the continuous �uid dynamics equations).

The equations of the adjoint method are introduced from the transposed of the relation 10.6.

∇pJTf =

(
∂Jf
∂X

dX

dp

)T
+

(
∂Jf
∂Wb

∂Wb

∂X

dX

dp

)T
−
(
∂R

∂X

dX

dp

)T ( ∂R
∂W

)−T (∂Jf
∂W

+
∂Jf
∂Wb

∂Wb

∂W

)T
(10.7)

reminding that the inverse of a transposed matrix is the transposed of the inverse matrix.

Hence when an adjoint method is chosen, the equation to solve, in which the adjoint vector λf
for the calculation of the gradient of the f th function of interest, is de�ned so as to eliminate the

terms involving the �ow sensitivity
dW

dp
, is:

(
∂R

∂W

)T
λf = −

(
∂Jf
∂Wb

∂Wb

∂W
+
∂Jf
∂W

)T
(10.8)

By using this formula for ∇pJf , we can rewrite it as:

∇pJTf =

(
∂Jf
∂X

dX

dp

)T
+

(
∂Jf
∂Wb

∂Wb

∂X

dX

dp

)T
+

(
∂R

∂X

dX

dp

)T
λf (10.9)



10.1. Theoretical aspects 113

or for the line form:

∇pJf =
∂Jf
∂X

dX

dp
+
∂Jf
∂Wb

∂Wb

∂X

dX

dp
+ λTf

∂R

∂X

dX

dp
(10.10)

For the derivation of the continuous adjoint equations with respect to a given objective function

is derived, before being discretized, the reader is referred to [18].

Let us note that the adjoint method requires the inversion of Nf (the number of functions to be

di�erentiated), while the direct di�erentiation method requires the solution of Np systems (as

many as control parameters). In the industrial applications of aerodynamic shape optimization,

the number of constraints is de�nitely lower than the number of shape parameters. The most

e�ective method is thus the adjoint vector method.

10.1.2 Optimization algorithm

The individuation of the sets of parameters to investigate during the optimization process consists

in the problem of �nding a local solution to the problem:

minimizing J(p), p ∈ Rn → ∇J(p) = 0 (10.11)

The method presented below is the Line search method, in which the computation of the following

vector of design parameters pk+1 is obtained by:

pk+1 = pk + αkSk (10.12)

where Sk is the vector called descent direction, which indicates the direction in which the choice of
pk+1 will head, and α is a scalar coe�cient called descent coe�cient which decides the magnitude

of the step to perform in the descent direction. This is not the algorithm that will be used in

the optimization performed by python, but it is the easiest to present clearly the optimization

subject.

It is convenient to point out the property that the slope dJ/dp∗ at αk must be zero (to minimize

the function J), being p∗ the solution, which gives:

∇JTk+1Sk = 0 (10.13)

From the expression of the derivatives of J along any line p(α), applying the chain rule, the slope

of J (= J(p(α))) is:

dJ

dα
=
∂J

∂p

dp

dα
= ∇JTS (10.14)

The concept of a descent method is associated with the property 10.13, a line search method

for which the slope dJ/dα is always negative at α = 0 unless pk is a stationary point. This

condition guarantees that the function can be reduced in the line search for some αk.

The choice of the descent direction gives the name to several algorithms. In this case the most

simple �rst-order iterative optimization algorithm for �nding the minimum of a function could

be used, the gradient direction, called also steepest descent.

The steps are taken proportional to the negative of the gradient of the function at the current

point, i.e. the chosen descent direction is Sk = −∇pJ , because we want to move against the

gradient, searching in the steepest descent direction, along which the objective function decreases

most rapidly.
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To justify this claim, Taylor's theorem is used (read [19]), which says that for any search direction

S and parameter α, we have:

J(pk + αS) = J(pk) + αST∇Jk +
1

2
α2ST∇2J(pk + tS)S, for some t ∈ (0, α) (10.15)

The rate of change in J along the direction S at pk is simply ST∇Jk (eq. 10.14). Thus direction
S of the steepest descent is the solution to the problem:

min
S

ST∇Jk, subject to ||S|| = 1 (10.16)

Since ST∇Jk =‖ S ‖‖ ∇Jk ‖ cos θ, where θ is the angle between S and ∇Jk, having ‖ S ‖= 1,

ST∇Jk =‖ ∇Jk ‖ cos θ, and the objective function is minimized when cos θ is equal to its

minimum value −1 at θ = π. Finally, the solution to 10.16 is:

S = − ∇Jk
‖ ∇Jk ‖

(10.17)

as previously anticipated. This direction is orthogonal to the contours of the function for example

in �g. 10.1.

Figure 10.1: Steepest descent direction for a function with two parameters

Unfortunately this method usually exhibits oscillatory behaviour, but for this simple case to

examine, it could be su�cient.

The new vector of design functions pk+1 is computed such that the objective function obtained

at the following step of the optimization process is lower than the previous one:

J(pk+1) < J(pk) (10.18)

Developing the inequality,

J(pk + αkSk) < J(pk) (10.19)

and linearizing it:

J(pk) + αk∇JTSk < J(pk) (10.20)

αk∇JTk Sk < 0 (10.21)

Knowing the descent property

∇JTk Sk < 0 (10.22)
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it is shown how αk must be positive.

Thus, ∇Jk is known, and only αk is unknown.

J(p(α)) is determined from several values of J computed for a set of α values, and from inter-

polation between those computed values.

A simple model to use to �nd αk is a quadratic model, in which the function is approximated

as a quadratic function and the problem consists though in minimizing a quadratic function. In

our case it is convenient to use a quadratic method which involves the value of the objective

function J , the drag coe�cient CD, at two points for di�erent choices of αk, and the relative

�rst derivatives dJ/dα.

Set J = J(pk + αkSk), and known the value of the objective function for two values of αk, αk1
and αk2 and the derivative in one of the two points, it is possible to interpolate to �nd a parabola.

It is straightforward to use αk1 = 0 (for which J(αk = 0) is known from the previous computation)

and its derivative
dJ

dαk
(αk1) = ∇JTk (αk1)Sk (for which ∇JTk (αk1) is again already known from

the previous iteration).

Better precision could be obtained through higher order approximations (spline, fourth order

etc.), but they would require more computations (each point require a complete computation of

CD with di�erent coe�cients αk). Found αk which minimize the approximate CD function, the

vector pk+1 is ready to perform from the beginning the process.

Figure 10.2: Minimization of the objective function - decrease of gradients

10.2 Solution algorithm

The following procedure will be repeated for all the k parameters pk that the optimizer will

suggest, until convergence is reached.

1. De�ned a vector of design parameters pk, an external python solid-surface generation mod-

ule, after parametrizing the surface with two Ferguson splines (appendix B), provides an

external mesh deformer with the new shape, i.e. the coordinates of the mesh points of the

solid surfaces S(p) and its derivative with respect to the design parameters
∂S

∂p
(p).

2. An external python volume grid deformation module computes the new volume mesh X(p)

and also the derivatives of the grid coordinates with respect to the design parameters, via

Inverse Distance Weighted deformation method (appendix C). The volume mesh corre-
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sponding to a new set of parameters is constructed by mesh deformation of the original

volume mesh
∂X

∂p
(p).

3. The external steady solver (or elsA for its shorter computational times in this development

phase), computes the aerodynamic �ow �eld variablesW (t) for iteration k in the same way

as has been done for the steady solver.

4. The optimization module by elsA, known the �eld W (p) and the derivative of the mesh
∂X

∂p
(p), computes the Jacobian matrix and the right hand side − ∂R

∂X

dX

dp
.

Besides the elsA opt module solves the linearized equation 10.3, and
dW

dp
, the derivative

of the �ow conservative variables - called sensitivity - is obtained (in following updates of

the optimizer this step could be performed externally by the python solver).

5. The external solver evaluates the objective functions Jf and their derivatives with respect

to the �ow �eld (cell-centered and boundary values) and mesh coordinates,
∂Jf
∂W

,
∂Jf
∂Wb

,

∂Jf
∂X

, with Jf = CDp , CL.

6. The elsA optimization module assembles the gradients, in order to compute the gradient

of the objective functions with respect to the design parameters
dCDp

dp
and

dCL
dp

.

7. The external solver, exploiting the scipy.optimize.minimize python module, using a Se-

quential Least SQuares Programming, implements a gradient based optimization, in which

it computes the following values of the design parameters pk+1. The process starts again

from point number 1, with the new set of design parameters.

8. The process is stopped, and the parameters which reduce the Pressure Drag Coe�cient

CDp keeping the Lift Coe�cient CL above a prescribed value are found, when the chosen

convergence criterion is reached.

10.2.1 Computation of the new mesh and its derivatives

After computing S(p) and
dS

dp
thanks to a Ferguson spline interpolation, these two quantities

are provided to the mesh deformation module.

In order to evaluate the new coordinates of the grid Xk+1 and the new sensitivities
dX

dp
, the

same method is used, the Inverse Distance Weighted method:

Xk+1 = Xk + δX (10.23)

dX

dp

∣∣∣∣
k+1

=
dX

dp

∣∣∣∣
k+1

+ δ
dX

dp
(10.24)

The increments δX, is given in eq. C.1, with δS, i.e. the displacements of the nodes on the

surface of the airfoil with respect to the initial surface, given as input.
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Simply changing the input into
dS

dp
, the output of the mesh deformation equation is δ

dX

dp
, that

is the increment of the sensitivity of the mesh with respect to the nominal one.

In �rst instance building a parametrized clone of the nominal shape of the NACA 64A10 is

required: starting from a random airfoil shape, a minimized residual based python optimization

is carried out, in order to approximate in the best possible way the initial shape (10.3). This

step is performed only once.

Figure 10.3: NACA64A10 airfoil initial parametrization starting from a random shape

10.2.2 Computation of the �ow �eld variables

The �rst equation to solve is the usual one for a steady �ow:

R(W ) = 0 (10.25)

which, applying backward Euler, becomes:

(
V

∆τ
+
∂R

∂W

)
∆W = −R (10.26)

The result of this �rst step is the solution vector of conservative variables of the steady problem,

then exactly the solution of the steady solver built in �rst instance.

10.2.3 Computation of the �ow �eld sensitivities

Obtained the �eld and the deformed mesh, it is necessary to compute the derivatives of the

conservative variables of this �eld with respect to the design parameters pi,
dW

dpi
for the tan-

gent/direct approach, or the adjoint vector λ for the adjoint approach.

This step is temporarily performed by elsA in the optimization module, restarting from the steady

mean �ow solution W (p) and providing the sensitivity of the mesh with respect to the design

parameters W (p) and
dX

dp
for the tangent/direct approach, and exploiting also the provided
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gradients of the objective and constraint functions (see following paragraphs) to solve the linear

system.

In next updates of the optimizer, the computation of
dW

dp
(or λ) will be external, thanks to the

possibility of the extraction of the Jacobian matrix
∂R

∂W
left to elsA as previously done for the

steady and TSM external solver, as well as the right hand side
∂R

∂X

dX

dp
.

The gradients
∂Wb

∂X
and

∂Wb

∂W
are computed internally in elsA, but the possibility to compute

them externally is not excluded.

10.2.4 Evaluation of the objective functions and their derivatives

To compute the gradients of the objective and constraint function with respect to the �ow �eld,

the �ow �eld at the boundaries and the mesh, a de�nition of
∂J

∂W
,
∂J

∂Wb
,
∂J

∂X
, that are still

unknown in equation 10.4, needs to be found.

• ∂J

∂W
Since in this case the objective functions J are lift and drag coe�cients, they don't depend

on the whole mesh and state vector, but only on the mesh and the state vector on the wing

surface.

∂J

∂W
= 0 (10.27)

• ∂J

∂Wb

Retrieving the formulation of the x and z coe�cients (x and z are the body axis, while CL
and CDp are expressed in wind axis).

Cx =

∫
S
p(n · dS)x

q∞ · Sref
(10.28)

Cz =

∫
S
p(n · dS)z

q∞ · Sref
(10.29)

the dependence of the x and z coe�cient on the �ow �eld conservative variables, consists in

a dependence only of the pressure on the conservative variables, because the term involving

the normal vector of the surface depends only on the mesh.

∂Cx
∂Wb

=

∫
S

∂p

∂Wb
(n · dS)x

q∞ · Sref
(10.30)
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∂Cz
∂Wb

=

∫
S

∂p

∂Wb
(n · dS)z

q∞ · Sref
(10.31)

In order to �nd the derivative of the pressure with respect to the conservative variables it is

necessary to express the pressure, p, in terms of combination of the conservative variables.

p = (γ − 1)

[
ρE − 1

2
(ρu2 + ρv2 + ρw2)

]
(10.32)

After some developments, the gradients of the pressure are written below:

∂p

∂Wb
=



∂p

∂ρ
∂p

∂ρu
∂p

∂ρv
∂p

∂ρw
∂p

∂ρE


b

=



1

2
(γ − 1)(u2 + v2 + w2)

−(γ − 1)u

−(γ − 1)v

−(γ − 1)w

(γ − 1)

 (10.33)

Concerning the projections in directions x and z of the normal vector to the surface mul-

tiplied by the surface of the cell itself n · dS is given by cross product. On the airfoil, four

points of the mesh (1,2,3,4) de�ne a cell interface, as in �g. 10.4.

Figure 10.4: Normal vector to a mesh cell interface

n · dS is obtained by the product 14× 23.

(n · dS)x =
1

2
[(y4 − y1)(z3 − z2)− (y3 − y2)(z4 − z1)] (10.34)

(n · dS)z =
1

2
[(x4 − x1)(y3 − y2)− (x3 − x2)(y4 − y1)] (10.35)
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Last thing to keep in mind is the necessity to rotate the drag and lift coe�cients gradients

to transform them from a body axis reference to a wind axis reference (as required by

elsA).

∂CDp
∂Wb

=
∂Cx
∂Wb

cosα0 +
∂Cz
∂Wb

sinα0 (10.36)

∂CL
∂Wb

= − ∂Cx
∂Wb

sinα0 +
∂Cz
∂Wb

cosα0 (10.37)

• ∂J

∂X
The derivative of J with respect to the mesh coordinates has an equivalent expression (it

was demostrated that
∂p

∂x
=
∂p

∂y
=
∂p

∂z
= 0):

∂Cx
∂x, y, z

=

∫
S
p
∂(n · dS)x

∂x

q∞ · Sref
,

∫
S
p
∂(n · dS)x

∂y

q∞ · Sref
,

∫
S
p
∂(n · dS)x

∂z

q∞ · Sref
(10.38)

∂Cz
∂x, y, z

=

∫
S
p
∂(n · dS)z

∂x

q∞ · Sref
,

∫
S
p
∂(n · dS)z

∂y

q∞ · Sref
,

∫
S
p
∂(n · dS)z

∂z

q∞ · Sref
(10.39)

The derivatives of the normal vectors with respect to the mesh coordinates, keeping in

mind the �gure 10.5 and the equations 10.34 and 10.35 are the following, for the x-vector:

∂(n · dS)x
∂x1

= 0,
∂(n · dS)x

∂y1
= −1

2
(z3 − z2),

∂(n · dS)x
∂z1

= +
1

2
(y3 − y2) (10.40)

∂(n · dS)x
∂x2

= 0,
∂(n · dS)x

∂y2
= +

1

2
(z4 − z1),

∂(n · dS)x
∂z2

= −1

2
(y4 − y1) (10.41)

∂(n · dS)x
∂x3

= 0,
∂(n · dS)x

∂y3
= −1

2
(z4 − z1),

∂(n · dS)x
∂z3

= +
1

2
(y4 − y1) (10.42)

∂(n · dS)x
∂x4

= 0,
∂(n · dS)x

∂y4
= +

1

2
(z3 − z2),

∂(n · dS)x
∂z4

= −1

2
(y3 − y2) (10.43)

and for the z-vector:

∂(n · dS)z
∂x1

= −1

2
(y3 − y2),

∂(n · dS)z
∂y1

= +
1

2
(x3 − x2),

∂(n · dS)z
∂z1

= 0 (10.44)

∂(n · dS)z
∂x2

= +
1

2
(y4 − y1),

∂(n · dS)z
∂y2

= −1

2
(x4 − x1),

∂(n · dS)z
∂z2

= 0 (10.45)

∂(n · dS)z
∂x3

= −1

2
(y4 − y1),

∂(n · dS)z
∂y3

= +
1

2
(x4 − x1),

∂(n · dS)z
∂z3

= 0 (10.46)

∂(n · dS)z
∂x4

= +
1

2
(y3 − y2),

∂(n · dS)z
∂y4

= −1

2
(x3 − x2),

∂(n · dS)z
∂z4

= 0 (10.47)
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The overall number of terms will be twice the number of nodes on the airfoil surface (193x2

= 386). It is noticeable that, being the space discretization a �nite volume approach, the

pressure is known in the cell centers, while the derivatives of the normal vectors with respect

to the grid coordinates are computed in each of the 4 vertices of each of the interfaces of

the cells over the airfoil surface.

Figure 10.5: Numerical grid for gradients computation

From a computational point of view, given i = 1 (so i + 1 = 2) and marking with F the

node at the interface y = 0 and � the node at the interface y = 1, the gradient of the

x coe�cient with respect to the mesh coordinates in the z-directions in the two nodes is

computed as:

(
∂Cx
∂z

)
nodeF

= pcell1

(
∂(n · dS)x

∂z4

)
cell1

+ pcell2

(
∂(n · dS)x

∂z2

)
cell2

(10.48)(
∂Cx
∂z

)
node�

= pcell1

(
∂(n · dS)x

∂z3

)
cell1

+ pcell2

(
∂(n · dS)x

∂z1

)
cell2

(10.49)

The same reasoning is valid for the other two directions and in an analogue way for the z

coe�cient (using the z-component of the normal).

Last thing to compute is the rotation of the gradients in a wind axis frame of reference, to

obtain the actual objective function CDp and constraint function CL:

∂CDp
∂x, y, z

=
∂Cx
∂x, y, z

cosα0 +
∂Cz

∂x, y, z
sinα0 (10.50)

∂CL
∂x, y, z

= − ∂Cx
∂x, y, z

sinα0 +
∂Cz

∂x, y, z
cosα0 (10.51)

10.2.5 Computation of the updated values of p

This step of the optimization algorithm is performed by the optimization module in python,

which, known the values of the drag and lift coe�cients and their gradients with respect to

the design parameters CDp , CL, ∇pCDp , ∇pCL, �nds as output of one step of the optimization

process the new set of design parameters pk+1.
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The python external optimizer uses a Sequential Least SQuares Programmingapproach. Sequen-
tial quadratic programming (SQP) is an iterative method for constrained non-linear optimization

problems ( [20] and [19]).

Considering the SQP methodology to non linear optimization problems (NLP) of the form (read

[21]):

minimize f(x) (10.52)

over x ∈ Rn (10.53)

subject to h(x) = 0 (10.54)

g(x) ≤ 0 (10.55)

where f : Rn → R is the objective function, the functions h : Rn → Rm and g : Rn → Rp
describe the equality and inequality constraints. SQP is an iterative procedure which models the

NLP for a given iterate xk, k ∈ N, by a Quadratic Programming (QP) sub-problem, solves that

QP sub-problem, and then uses the solution to construct a new iterate xk+1. This construction

is done in such a way that the sequence (xk)k∈N converges to a local minimum of the non-linear

problem, as k →∞.

In our case CDp is the objective function,the vector of the six parameters x ∈ R is:

p ∈ R6, p = [TAu , TAl , TBu , TBl , αb, αc] (10.56)

the inequality constraint is:

CL ≥ CLmin (10.57)

The whole process is summed up in the following �ow chart.

Figure 10.6: Optimization process algorithm
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10.3 Results

The shape optimization process is carried out on the airfoil NACA 64A10, in a transonic regime,

with an angle of attack of α = 1◦.

M = 0.796

p∞ = 133912 Pa

p◦ = 203321 Pa

q = 59395 Pa

α = 1◦

Table 10.1: Conditions for the optimization test case

The boundaries imposed in the optimization process to the six parameters are:

0.05 ≤ TAu ≤ 0.4

0.05 ≤ TAl ≤ 0.4

0.05 ≤ TBu ≤ 3

0.05 ≤ TBl ≤ 3

1 ≤ αb ≤ 30

−15 ≤ αc ≤ 15

The initial airfoil parametrization returns a clone wall surface with the following parameters and

aerodynamic coe�cients:

Initial CDp value 4.82164 · 10−3

Initial CL value 2.31423 · 10−1

Initial parameters

TAu
TAl
TBu
TBl
αb
αc

0.0913119

0.0913155

2.14342

2.14339

15.8717

−7.93587

Table 10.2: Initial airfoil parametrization and coe�cients

The CLmin = 2.31423 · 10−1 is the lift coe�cient of the nominal initial airfoil, that is chosen as

constraint.

In order to check the gradients computed by the interaction of the external solver and elsA, they

are compared by �nite di�erences at the �rst iteration of the optimizer:
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Finite di�erences Adjoint mode ..... Direct mode.....

. . .
∂CD
∂TAu

7.66351 · 10−2 7.02767 · 10−2 7.02759 · 10−2

∂CD
∂TAl

−3.42698 · 10−3 −3.91359 · 10−3 −3.91397 · 10−3

∂CD
∂TBu

1.74965 · 10−2 1.71265 · 10−2 1.71263 · 10−2

∂CD
∂TBl

−1.11892 · 10−3 −1.19655 · 10−3 −1.19663 · 10−3

∂CD
∂αb

4.03267 · 10−3 3.94100 · 10−3 3.94086 · 10−3

∂CD
∂αc

5.44220 · 10−3 5.28892 · 10−3 5.28886 · 10−3

. . .
∂CL
∂TAu

7.87137 · 10−1 7.56865 · 10−1 7.56831 · 10−1

∂CL
∂TAl

−5.53981 · 10−1 −5.53092 · 10−1 −5.53106 · 10−1

∂CL
∂TBu

1.62053 · 10−1 1.45485 · 10−1 1.45475 · 10−1

∂CL
∂TBl

−1.15664 · 10−1 −1.16509 · 10−1 −1.16512 · 10−1

∂CL
∂αb

7.73444 · 10−2 7.29992 · 10−2 7.29939 · 10−2

∂CL
∂αc

1.47271 · 10−1 1.40437 · 10−1 1.40434 · 10−1

Table 10.3: Finite Di�erences based check of gradients - Adjoint and Direct methods

After performing the optimization process, the results are in table 10.4.
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Convergence tolerance 10−7

∆p for gradient computation 10−4

Iterations 19

Function evaluations 44

Gradient computations 19

CPU time ∼ 2hours

Final CDp value 8.01731 · 10−4

Final CL value 2.31704 · 10−1

Final parameters

TAu
TAl
TBu
TBl
αb
αc

0.117169

0.175912

1.29071

1.22150

15.9975

−7.38225

Table 10.4: Optimized airfoil parametrization and coe�cients, with computational features

The pressure drag coe�cient has decreased of 6 times, keeping the lift coe�cient above the initial

value. A slight asymmetry is introduced in the shape of the airfoil, especially in the front part

(10.7). The upper surface, as expected, has become �atter than the lower one, useful to smooth

and/or delete the discontinuity that a transonic regime brings with it.

Possibly because of both the too restrictive Ferguson splines' parametrization of the airfoil, and

the mixing of length and angles in optimization process, the camber, driven by the the angles

αb and αc did not change consistently. The optimization process mostly lead to an expected

thinning of the airfoil surface.

Figure 10.7: Initial and optimized shape
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Figure 10.8: Initial and optimized computational mesh

In fact, as shown in �g. 10.9 and �g. 10.10 the initial shock wave present with the nominal

airfoil is suppressed for the optimized shape.

Figure 10.9: Wall pressure around the initial and optimized airfoil
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Figure 10.10: Density �eld around the initial and optimized airfoil

The optimization history is illustrated in �g. 10.11: the drag coe�cient drops to almost the �nal

minimum value in only 7 iterations, but with a decrease of the lift coe�cient, that is not allowed.

The following iterations are necessary to stabilize the lift coe�cient.

Figure 10.11: Optimization history, coe�cients CDp
and CL

Observing the optimization history of the six parameters in �g. 10.12, the two angles αb and

αc, together with the magnitudes of the trailing edge tangent vectors TBu and TBl , seem well

stabilized.

Instead, the optimization process for the magnitudes of the leading edge tangent vectors TAu
and TAl has not stabilized yet.
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Figure 10.12: Optimization history, parameters TAu
, TAl

, TBu
, TBl

, αb, αc.

As observed for the optimization history of the parameters, also the gradients of the objective

function CDp with respect to the parameters αc, αb, TBu , TBl follow the expected behaviour,

that is a decrease of the gradient in absolute value during the optimization process (�g. 10.2).

On the other hand, the gradients of CDp with respect to the parameters TAu and especially TAl
changes sign and don't properly stabilize to the minimum value, but by the way they indicate

the right optimization path, that leads to a decrease of the pressure drag coe�cient of 6 times

in only 19 iterations.
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Figure 10.13: Optimization history, CDp
gradients:

∂CDp

∂TAu

,
∂CDp

∂TAl

,
∂CDp

∂TBu

,
∂CDp

∂TBl

,
∂CDp

∂αb
,
∂CDp

∂αc
.





Chapter 11

Conclusion and perspectives

11.1 TSM external solver

The main aim of the work was developing a TSM external solver written in python, based on

the exchange of data between the external solver and the CFD solver elsA.

The aim has been achieved, the solver has been validated by checks using both the unsteady
simulations and the TSM simulations by elsA. Moreover it has been improved by computing in

parallel the instants, leading to a consistent saving of time, and by fully impiciting the TSM

method, gaining in terms of robustness.

In terms of rate of convergence, a gain in terms of iterations with respect to elsA's TSM solver to

obtain the same residuals decrease has been also demonstrated, despite the use of a direct solver

put severe constraints on the CFL number. Because of the di�erent nature of the Jacobian matrix

exploited in the external solver and the one exploited in elsA, making comparisons between the

two at the same CFL number is impossible, but comparisons can be done analysing the best

CFL strategy for each one.

The presented work was a �rst implementation of the TSM solver, on which many further

improvements will be added during the prosecution of the project.

A �nal remark about the Time Spectral Method is that, despite the great saving of time they

can bring with it with respect to unsteady classical methods, it is not universally well adapted to

every kind of application: in fact if a highly non-linear case is treated, a high number of harmonics

needs to be performed. This leads to a loss of all bene�ts of TSM, because the computation

becomes less robust, longer and much more expensive, and a classical unsteady computation can

still be the right option.

11.1.1 Limitations

As mentioned several times in the report, a lack of robustness has been experienced. This is due

to two di�erent reasons:

• One is linked to the nature of the exact Jacobian matrix of second order, that is more

dense than an approximated Jacobian matrix or an exact Jacobian matrix of �rst order.

This means that this kind of matrix is sti�er than the one exploited by elsA in the steady

mean �ow solution process, and thus in the inversion of the second order exact Jacobian

matrix only low CFL numbers can be a�orded, especially if a direct solver is used.

131
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• The second reason is linked to the nature of the Time Spectral Method implemented using

the fully implicit TSM. Even if the robustness is increased with respect to the partially
implicit TSM with the explicit source term, this method still su�ers divergence while

increasing both the number of harmonics and the frequency (also elsA, which implements

the same method su�ers this kind of divergence).

Another limitation due to the use of a direct solver is in the mesh size: a direct solver involves

storing the whole matrix (in a sparse mode in our case) and directly inverting it. It is easy to

understand that increasing the size of the mesh, the size of the Jacobian matrix will increase

exponentially and memory problems can be faced.

Moreover, being this one a �rst implementation, it is not very e�cient from an IT point of view:

the simulations have been launched in local, with strong limitations in the use of processors, and

the exchanging of data (residuals and Jacobian matrix from elsA to the external solver, and the

restart �eld from the external solver to elsA) was carried out by writing and reading �les. This

has enormous costs in terms of CPU time.

11.1.2 Perspectives

The �rst improvement to add will be a new resolution strategy for linear systems: a Generalized
Minimal Residual Method solver with an ILU preconditioner. This iterative solver, together

with an e�cient preconditioner, is both much robust than the direct solver, and less memory

storage expensive, because the Jacobian matrix is not fully stored in memory. This �rst new

implementation is necessary to solve problems with higher mesh sizes, and also it is expected

to solve or at least relax the constraints due to the initial sti�ness of the matrix, being this a

solver that does not require diagonal dominance of the Jacobian. The use of GMRES as the

linear solver is expected to make time spectral method more robust and e�cient, allowing it to

be applied to a greater subset of time-accurate problems, including those with a broad range of

harmonic content, that would further increase the sti�ness of the matrix making impossible the

use of direct solvers.

Moreover a new formulation of the problem will be adopted, in order to avoid dependence on

frequency and number of instants. A wave-number independent preconditioner that mitigates

the increased sti�ness of the time-spectral method when applied to problems with large resolvable

wave numbers will be developed, as Mundis and Mavriplis suggest [22].

From the IT e�ciency point of view, the exploitation of elsA's modularity through an in memory

pointers approach is already on going. This will highly speed up the exchange between elsA and

the external solver.

Also cluster computations have been recently allowed, after compiling the adapted elsA version

on the ONERA cluster, leading, for the moment, to the possibility to launch several and faster

computations. In the future the cluster computations will be mandatory, because a Message

Passing Interface (MPI) implementation will be developed for multi-block meshes. This means

that the simulations will be much faster because to a �rst level of parallel computing (instants),

a second one (the blocks) will be added.

Finally the code will move to the implementation of RANS equations, and on a supercritical

airfoil, adding new non-linearities and di�culties.
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11.2 Optimization

Even if a shorter period of time has been dedicated to the development of an external python

steady optimizer, the results obtained are very promising: despite the initial development phase,

a decrease in pressure drag of a factor 6 has been achieved in few iterations.

11.2.1 Limitations

This is not properly a limitation, but an incomplete implementation: the optimizer developed is

a steady optimizer, while the �nal goal is the building of an unsteady optimizer.

Other proper limitations to be improved soon are the airfoil parametrization that is too restric-

tive and cannot face accurately all kinds of shape, and the implementation in a black-boxed

python function that does not permit to handle easily all setting parameters and function and

gradient evaluations which leads to redundant expensive computations. In fact in the current

implementation a steady solution with the mesh computed with the new parameters is performed

each time CDp , CL, ∇CDp and ∇CL are computed, since the ordering python recalls function

and gradient computations in not known a priori but depends on the solution algorithm. This

is really time expensive and useless.

11.2.2 Perpectives

A new airfoil parametrization will be required when di�erent airfoils will be treated, especially

the supercritical ones, for which the parametrization performed using two Ferguson splines proves

inaccurate.

Also a smarter implementation able to save redundant steady computations will be necessary,

with a check of the steady computation already performed with the current set of parameters,

which would easily reduce consistently computational time.

Concerning the steady optimizer, the step which computes the sensitivity of the conservative

variables with respect to the parameters
dW

dp
will be performed externally extracting, as already

done for the steady and TSM solver, the Jacobian matrix from elsA. The quantities
∂Wb

∂W
and

∂Wb

∂X
, that are temporarily computed internally by elsA can be computed externally in the python

optimizer, leaving to elsA only the �nal assembly of gradients.

But the ultimate aim of the whole work is the development of an unsteady optimizer: the

TSM solver will be implemented in the optimizer, and will solve externally the Np (number of

parameters) sensitivity equations for a TSM problem:

∂R

∂W

dW

dpi
= − ∂R

∂X

dX

dpi
−Dt

dW

dpi
, i = 1, ..., Np (11.1)

The unsteady optimization process will be carried out with the average of the 2N + 1 (number

of instants for TSM) pressure drag coe�cients over the period as objective function to minimize,

and the average of the 2N + 1 lift coe�cients over the period as constraint function.

The solution process of the sensitivity TSM equation will be identical to the approach adopted

for the TSM mean �ow solver, by substituting the unknowns and the right-hand side with their

sensitivities.

A supercritical airfoil will be then optimized, implementing a RANS mean �ow simulation.
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Appendix A

Evaluation of the time derivative

As mentioned in chapter 2, in TSM time is sampled, as (t0, ..., t2N ) and the conservative variables,

dependent on time, are sampled as well as the corresponding values to the sampled instants:

W = (W (t0),W (t1), ...,W (t2N ))T = (W0,W1, ...,W2N )T (A.1)

Naik [23] derives the formulation of the time-spectral matrix.

Reminding the Fourier Transform applied to the conservative variables as:

Ŵ(k) =
1

2N + 1

2N∑
j=0

W(j)e−
2πikj
2N+1 (A.2)

and applying the sampling in a similar way to the Fourier coe�cients:

Ŵ = (Ŵ−N , Ŵ1−N , ..., ŴN )T (A.3)

the formulation of the solution vector W can be developed as follows, de�ned over the discrete

frequencies k:

Ŵ(k) = [εεεW]k =
1

2N + 1

2N∑
j=0

W(j)e−
2πikj
2N+1 =

1

2N + 1

2N∑
j=0

W(j)e−
2πiktj
T (A.4)

(The notation [ ]k means the k-th line of the product matrix-vector.)

Since derivatives need to be expressed in the time domain, it is possible to take the expression

back to the time domain, by using the Inverse Discrete Fourier Transform εεε−1 of Ŵ:

W(j) = [εεε−1Ŵ]j =
2N∑
k=0

Ŵ(k)e
2πikj
2N+1 =

N∑
k=−N

Ŵ(k)e
2πikj
2N+1 =

N∑
k=−N

Ŵ(k)e
2πiktj
T (A.5)

The switch of the frequencies is done in order to satisfy the Nyquist Criterion, which states that

the frequency at which the original signal is sampled, fs, must be greater than or equal to twice

the largest frequency present in the signal's spectrum, fmax, i.e. fmax ≤
fs
2
.

When violating this criterion, the reconstruction of the signal will be an alias of the original.

Since W may be conceptualized as a set of 2N + 1 sampled values spanning a single period,

the e�ective sampling rate is fs =
2N + 1

1 period
. Applying the Nyquist criterion, the maximum
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admissible discrete frequency is given by:

fmax =
2Nmax + 1

1 period
≤ (2N + 1)/(1 period)

2
→ fmax = 2Nmax + 1 ≤ 2N + 1

2
(A.6)

(These frequencies are not to be confused with the frequencies of the pitching motion.)

In general, for odd 2N + 1 the Nyquist Criterion is satis�ed by translating the frequency domain

from {0, 1, ..., 2N} to {−N,−N + 1, ..., N − 1, N}, while even case should be treated separately.

Coming back to the derivation of the time-spectral matrix, taking the IDFT of the DTF of a

signal, the original signal W(l) is returned (the index j is replaced by the index l for the sake of

clarity)

εεε−1Ŵ = εεε−1εεεW = W −→ [εεε−1Ŵ]j = [εεε−1εεεW]l = W(l) (A.7)

By applying eqs. A.5 and A.7, the value W(l) at one instant tl is now in a form that can be

di�erentiated:

W(l) =
N∑

k=−N
Ŵ(k)e−

2πiktl
T (A.8)

The time derivative, as function of time, is obtained as follows:

∂W(l)

∂t
=

∂

∂t

N∑
k=−N

Ŵ(k)e
2πiktl
T = (A.9)

=
2π

T

N∑
k=−N

ikŴ(k)e
2πiktl
T = (A.10)

=
2π

T

N∑
k=−N

ik

(
1

2N + 1

N∑
k=−N

W(j)e−
2πiktj
T

)
e

2πiktl
T = (A.11)

=
2π

T

1

2N + 1

N∑
k=−N

2N∑
j=0

ikW(j)e−
2πiktj
T e

2πiktl
T = (A.12)

=
2π

T

1

2N + 1

N∑
k=−N

2N∑
j=0

ikW(j)e
2πik

(
tl
T
−
tj
T

)
= (A.13)

=
2π

T

1

2N + 1

N∑
k=−N

2N∑
j=0

ikW(j)e
2πik(l−j)

2N+1 = (A.14)

=

2N∑
j=0

[
2π

T

1

2N + 1

N∑
k=−N

ike
2πik(l−j)

2N+1

]
W(j) = (A.15)

=
2N∑
j=0

Dt(l, j)W(j) (A.16)

where:

Dt(l, j) =
2π

T

1

2N + 1

N∑
k=−N

ike
2πik(l−j)

2N+1 (A.17)

This signi�cant result shows that the time derivative of the discrete periodic solution W is found

by simply multiplying by an operator matrix:

∂W

∂t
= DtW (A.18)
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The derivation of the operator matrix Dt, is applicable only when the number of time instants

is odd (that is why it is preferred in this discussion to de�ne N as the number of harmonics and

2N + 1 as the number of time instances).

Renaming a group of variables in the complex exponential; χ =
2π

N
(l − j) the operator matrix

can be simpli�ed:

Dt(l, j) =
2π

T

1

2N + 1

N∑
k=−N

ike
2πik(l−j)

2N+1 = (A.19)

=
2π

T

1

2N + 1

N∑
k=−N

ikeikχ = (A.20)

=
2π

T

1

2N + 1

N∑
k=−N

∂

∂χ
eikχ = (A.21)

=
2π

T

1

2N + 1

∂

∂χ

N∑
k=−N

eikχ = (A.22)

=
2π

T

1

2N + 1

∂

∂χ

N∑
k=−N

e(iχ)k (A.23)

It is possible now to recognize the summation as a geometric series and solve it.

N∑
k=−N

(
eiχ
)k

=

(
eiχ
)−N {1− (eiχ)[N−(−N)+1]}

1− eiχ
= (A.24)

=

(
eiχ
)−N [

1−
(
eiχ
)(N+N+1)

]
1− eiχ

= (A.25)

=

(
eiχ
)−N [

1−
(
eiχ
)(2N+1)

]
1− eiχ

= (A.26)

=
e−iNχ

[
1− eiχ(2N+1)

]
1− eiχ

= (A.27)

=
e−iNχ − e−iNχei(2N+1)χ

1− eiχ
= (A.28)

=

(
e−

iχ
2

e−
iχ
2

)
e−iNχ − ei(N+1)χ

1− eiχ
= (A.29)

=
e−i(

2N+1
2 )χ − ei(

2N+1
2 )χ

e−
iχ
2 − e

iχ
2

= (A.30)

=
−2i sin

(
2N+1

2 χ
)

−2i sin
(χ

2

) = (A.31)

=
sin
(

2N+1
2 χ

)
sin
(χ

2

) (A.32)

The result can be placed back into the original derivation to give:
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Dt(l, j) =
2π

T

1

2N + 1

∂

∂χ

N∑
k=−N

e(iχ)k = (A.33)

=
2π

T

1

2N + 1

∂

∂χ

sin
(

2N+1
2 χ

)
sin
(χ

2

) = (A.34)

=
2π

T

1

2N + 1

sin
(χ

2

) (
2N+1

2

)
cos
(

2N+1
2 χ

)
− sin

(
2N+1

2 χ
) (

1
2

)
cos
(χ

2

)
sin2

(χ
2

) (A.35)

Some terms can be simpli�ed independently as follows:

sin

(
2N + 1

2
χ

)
= sin

[
2N + 1

2

2π

2N + 1
(l − j)

]
= sin [π(l − j)] = 0 (A.36)

cos

(
2N + 1

2
χ

)
= cos

[
2N + 1

2

2π

2N + 1
(l − j)

]
= cos [π(l − j)] = (−1)l−j (A.37)

because

cos [π(l − j)] =

{
1 if(l − j) is even
−1 if(l − j) is odd

(A.38)

These simpli�ed expressions can be substituted back into the equation A.35:

Dt(l, j) =
2π

T

1

2N + 1

sin
(χ

2

) (
2N+1

2

)
cos
(

2N+1
2 χ

)
− sin

(
2N+1

2 χ
) (

1
2

)
cos
(χ

2

)
sin2

(χ
2

) = (A.39)

=
2π

T

1

2N + 1

sin
(χ

2

) (
2N+1

2

)
(−1)l−j

sin2
(χ

2

) = (A.40)

=
2π

T

1

2
(−1)l−j

1

sin
(χ

2

) = (A.41)

=
2π

T

1

2
(−1)l−j csc

(χ
2

)
= (A.42)

=
2π

T

1

2
(−1)l−j csc

[
π

2N + 1
(l − j)

]
(A.43)

The derivation of the time spectral operator matrix is complete and this form of the matrix

is now easier to implement computationally, as an antisymmetric matrix, with the null main

diagonal.

Dt(l, j) =


2π

T

1

2
(−1)l−j csc

[
π

2N+1(l − j)
]

if l 6= j

0 if l = j
(A.44)



Appendix B

Airfoil parametrization

Non-uniform rational basis spline (NURBS) is a mathematical model commonly used for gener-

ating and representing curves and surfaces. It o�ers great �exibility and precision for handling

both analytic (surfaces de�ned by common mathematical formulae) and modelled shapes. The

shape of the surface is determined by control points. Control points are always either connected

directly to the curve/surface, or act as if they were connected by a rubber band. Depending

on the type of user interface, editing can be realized via control points, which are most obvious

and common for Bézier curves, or via higher level tools such as spline modelling or hierarchical

editing.

An easy implementation of airfoil parametrization can be performed with two Ferguson splines,

[24], whose simplicity lies in the fact that a signi�cant amount of shape control can be exercised

without having to introduce further interpolation points between the end points of the curve: it

is possible here to simply adjust the tensions and the directions of the end-point tangents.

Figure B.1: Shape parameters

A Ferguson spline is a curve r(u) (with the parameter u ∈ [0, 1]), connecting two points r(0) = A

and r(1) = B in such a way that its tangent has a given value at these end points: dr/du|u=0 =

TA and dr/du|u=1 = TB. We de�ne the curve as the cubic polynomial

r(u) =
3∑
i=0

aiu
i, u ∈ [0, 1] (B.1)
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We �nd the four sets of numbers required to de�ne the curve by setting the endpoint conditions:

A = a0 (B.2)

B = a0 + a1 + a2 + a3 (B.3)

TA = a1 (B.4)

TB = a1 + 2a2 + 3a3 (B.5)

Rearranging in terms of the vectors:

a0 = A (B.6)

a1 = TA (B.7)

a2 = 3[B−A]− 2TA −TB (B.8)

a3 = 2[A−B] + TA + TB (B.9)

Substituting back into B.1 we obtain:

r(u) = A(1− 3u2 + 2u3) + B(3u2 − 2u3) + TA(u− 2u2 + u3) + TB(−u2 + u3) (B.10)

or in matrix form:

r(u) = [1 u u2 u3]


1 0 0 0

0 0 1 0

−3 3 −2 −1

2 −2 1 1




A

B

TA

TB

 (B.11)

In the implementation of the parametrization, 6 parameters are given as input, TAu , TAl , TBu ,

TBl , αc and αb (it is necessary to remark the di�erence between the notation TA and the bold TA:

the �rst is the magnitude of the end tangent vector, so the parameter set as input, the second is

the vector with the two components in x and z direction of the same end tangent vector.)

A = [0, 0] (B.12)

B = [1, 0] (B.13)

TAu =
[
TAu cos

(
−π

2

)
, TAu

∣∣∣sin(−π
2

)∣∣∣] (B.14)

TBu = [TBu cos (−(αc + αb)) , TBu sin (−(αb + αc))] (B.15)

TAl =
[
TAl cos

(
−π

2

)
, TAl sin

(
−π

2

)]
(B.16)

TBl = [Tbl cos (−αc) , Tbl sin (−αc)] (B.17)

The leading edge end-point tangents must be vertical on both surfaces to ensure �rst-order

continuity, their magnitudes can be used to control the shape of the nose of the airfoil and the

boat tail angle and the camber, together with the curvatures of the rear sections of the two

surfaces are controlled by the tangents at the trailing edge.

Ferguson curve parametrization scheme would be unable to reproduce airfoils with multiple in�ec-

tions or relatively �at portions of either surfaces, like, for instance, supercritical airfoils. In fact,

in following developments of the optimization code on a supercritical airfoil, the parametrization

will change to a more �exible one.

In order to compute the sensitivities, it is su�cient to derive analytically the parameters with

respect to each parameter (6 sensitivities will be obtained).
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To better understand the weight that these parameters have in the shape of the airfoil, the six

parameters are modi�ed of the 50% (increased). The resulting shapes are illustrated below:

Figure B.2: TA upper and TA lower parameters.

Figure B.3: TB upper and TB lower parameters.

Figure B.4: αb and αc parameters.

At a �rst impression it is obvious how changes in TAu and TAl have not great in�uence in the

shape (low sensitivities), and that changes in TBu and TBl need to act jointly to have in�uence

on the middle and rear sections.





Appendix C

Mesh deformation

The mesh deformation method adopted in the code is based on the Inverse Distance Weighting
method.

An analytic deformation of the points (indicated as P) of the mesh which don't belong to the

aeroelastic interface Γw (indicated as W), that basically consists in the wall surface, or to the

external boundary of the �uid domain Γb (indicated as B), is realized ( [25]).

Knowing the surface displacements δS(W ) from the NURBS module, the displacement vector

δX(P ) of a �uid point can be expressed as:

δX(P ) = η

∫
W∈Γw

1

||x(W )− x(P )||c
δS(W ) dS∫

W∈Γw

1

||x(W )− x(P )||c
dS

= η

∑
W∈Γw

1

||x(W )− x(P )||c
δX(W )

∑
W∈Γw

1

||x(W )− x(P )||c
(C.1)

where ||x(W ) − x(P )|| is the distance between surface points W and data points P , and c is a

power parameter that in our code is tuned to c = 4.

β = 1 (C.2)

κ = 0.15 (C.3)

dw = min(||x(W )− x(P )||) (C.4)

db = min(||x(B)− x(P )||) (C.5)

x(B) are the nodes corresponding to the boundaries, and x(W ) are the nodes corresponding to

the wall surface.

η = e
−κ
(
dw
db

)β
(C.6)

η is an attenuation factor, varying from 0 to 1, and allows to ensure a physical weighting of

displacements depending on the relative position of the current with respect to the aeroelastic

interface and the external boundaries. dw and db correspond respectively the minimal distance

between the current point and the wall, and between the current point and the boundaries.

The c coe�cient is chosen greater than 2. The coe�cients κ and β are working parameters,

tuned by the user.
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