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Summary

The purpose of this work is the study of the behavior of the internal flow in
screw compressors. Screw compressor performances are affected mostly
by  the  tooth  profile  which  is  fully  defined  in  Section  5.  In  particular,
parameters  as  sealing  line  and  blow  hole  area  must  be  minimized.
Unfortunately  profile  curves  and  geometrical  parameters,  such  as
undercutting limits,  are usually not available in the literature due to the
need of manufacturing companies to protect their know-how and so it is
difficult  to  find  validation  test  cases.  Since  screw compressor  are  very
complex machines which involves either moving and fixed parts, the CFD
study of their behavior is difficult  because it  is necessary to generate a
suitable time-dependent grid which fully describes the change in shape of
the control volume. This problem is overcome with the innovative strategy
presented on this  work.  It  is  based on a penalization method,  which is
discussed  in  Section  2,  integrated  in  a  Discontinuous  Galerkin  spatial
discretization described in Section 3.
The proposed approach is applied on various standard test cases in order to
evaluate its reliability and accuracy, deeply argued in Section 6.  After that
the flow in 2D roots and screw compressors are investigated respectively
in  Section  7 and  8.  The  goal  is  to  compare  results  obtained  from
simulation,  such as flow rate and power,  with the data available in the
literature. In particular, the mass flow is compared with results available in
literature showing good qualitative agreement. However, the difficulty to
find  both  geometrical  and  experimental  data  in  the  literature  for  2D
configurations  makes  it  impossible  to  perform  a  direct  validation.
Conclusions and further developments are reported in Section 9.
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Chapter 1 - Introduction

Chapter 1 - Introduction

A volumetric compressor is a mechanical device which aims to increase
the pressure of the working fluid by reducing its volume. It is contained into a
casing, which together form a working chamber whose volume depends only
on the angle of rotation. Depending on the flow direction, it may be used either
for expansion or compression. They can be divided in two class of compressor:
positive displacement and dynamic. The focus of this work will be on the first
type, in particular on screw compressors. In fact they have many advantages
over  other  positive  displacement  types.  Firstly,  all  moving parts  rotate  and
hence can reach much higher velocity, in opposition of reciprocating machines.
Secondly,  the  contact  forces  within  them  are  low,  which  make  screw
compressor more reliable than vane machines. Thirdly, and less know, unlike
the reciprocating, scroll and vane machines, all sealing lines of contact which
define the limit of the compressing chamber, decrease in length as the size of
the working chamber decreases and the pressure within rises, this minimizes
leakages  from  chamber  during  the  compression  process  [1].  Screw
compressors  are  composed  by  two  matched  rotating  positive-displacement
helical-screws which compress reducing the space in which air is trapped. This
type of machines are characterized by high reliability, ease of operation, low
vibration,  high  adaptability  and  the  ability  to  transport  various  mixture  of
fluids. They are widely used in many continuous commercial and industrial
applications such as food processing, medicine manufacturing, air conditioning
and  refrigeration.  Their  pressure  outlet  can  reach  8  Mpa  and  the  typical
absorbed power is between 2.2 kW to over 890 kW. Each type of application
has particular constraints such as efficiency, size, cost, purity of the gas treated
or flow rate. For instance in refrigeration processes, compressors operate for
long period and must  have higher  efficiency as possible,  or,  in  case of  air
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Chapter 1 - Introduction

compressor,  in  particular  for  mobility  applications,  efficiency  may  be  less
important than size and cost. 

Three  types  of  screw  compressor  are  commercially  produced:  Oil
Flooded, Water flooded and Dry type. As the names suggest, the oil flooded
compressor is cooled down with oil as refrigerant and the water flooded one is
cooled down with water.  If  a particular valuable gas is treated,  a dry type,
without refrigerant, may be required in order to have not contaminants. They
all have both advantages and disadvantages. The dry screw compressor can not
exploit the injection of oil or water to reduce the leak of compressed air. In
order  to  overcome this  issue,  the  rotor  velocity  must  increase.  This  led  to
higher noise value  and, since there is not a coolant, the discharge temperature
reaches 300°C or higher.  Oil  flooded type compressor are characterized by
lower speed of rotation since the rotor gaps can be sealed by oil. Furthermore,
the provided compressed gas has lower temperature since it is cooled by oil.
Unfortunately, the use of oil makes hard and costly to maintain and requires
environmental  measures.  The  water-flooded  oil-free  screw  compressor,
injecting water as refrigerant, removes disadvantages of both oil-flooded and
dry  type  screw  compressor  since  a  coolant  is  present  in  order  to  reduce
temperature at the outlet and the fluid is not contaminated. In fact water in the
outlet stream can be collected by a condenser  [2].

Since this type of machine is widely used, there is an increasing demand
for  performance  improvements  such  as  flow  rates,  operating  pressures,
reducing  pollution  and  increasing  efficiency.  These  issues  are  solved
improving  tools  provided  by  the  computational  fluid  dynamics  (CFD).
Nowadays CFD is used in most of engineering and scientific areas in order to
predict physical quantities involved in a specific process. CFD simulations are
based on the numerical solution of the conservation law of mass, momentum
and energy for a determined case study. The standard way to numerically solve
governing equations is the use of the Finite Volume Method (FVM). 

Internal  unsteady  flows  in  screw  compressor  were  considered  of
secondary  importance  for  long  time,  but  the  increasing  demand  for  more
accurate prediction flows in various types of devices led to spend many efforts
in order to improve and overcome many mathematical problems. This work
was done especially  for  internal  flows  within  moving boundaries  basically
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Chapter 1 - Introduction

because the ability to predict quite accurately flows in screw compressor can
give many advantages to manufacturers. FVM has been used to  solve these
types  of  problems,  as  demonstrated  by  Peric  (1985),  Demirdzic  and  Peric
(1990) and Demirdzic and Muzaferijia (1995).  Unfortunately, as far as FVM
is applied to internal flows with moving domain, there are two basic issues
which  make  their  resolution  really  difficult.  First,  the  flow inside  a  screw
machine can vary remarkably because of the complex geometry.  Second, it
may be a problem substituting such domain with a computational grid of good
quality which allows sufficiently accurate and reliable calculation. 

The first approaches which describe screw compressors by CFD methods
did not give good results because of the inability to generate a  suitable enough
grid  for  complex  geometries.  The  deadlock  was  over  when  analytical
transfinite interpolation with adaptive mesh was used to automatically map an
arbitrary screw machine  [3]. Basically an algebraic approach can be used to
calculate the interior points of the grid through transfinite interpolation, which
is a multivariate interpolation procedure. The approach is simple and it can be
able to generate quickly a grid. However, if the region has a complex shape,
generated cells can be very narrow so that cells can overlap or overcome the
boundary limits. Algebraic methods are able to generate a screw compressor
mesh of a desired quality, if it is used in conjunction with boundary adaptation
and procedure to obtain orthogonal grids [4].

Analytical transfinite interpolation is completely explained by Kovacevic
in  [3].  The  presented  method  was  then  implemented  in  a  grid  generation
program called SCORG- Screw Complessor Rotor Geometry Grid generator.
This  software  provides  a  mesh for  both  moving and stationary  part  of  the
machine  and  performs  direct  integration  in  commercial  CFD  codes.
Unfortunately SCORG is a software which is not of public domain.

In this work the use of a method capable of solving the CFD equations
without  particularly  constraints  on  the  used  grid  will  be  investigated.  This
method,  at  least  ideally,  is  able  to  solve  CFD  problems  which  involve
complex-moving geometry without particular requirement on the used mesh. It
is  Discontinuous Galerkin Method with penalization terms to reproduce the
effect of the body.
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As far as CFD simulation are concerned, widely adopted grids are mainly
of two types:  body-fitted grids and embedded grids. The first one, as the name
suggests,  fits  perfectly  with  the  boundaries  of  the  body  and  the  external
borders  of  the  domain.  This  means  that,  most  of  the  time,  following  the
boundaries  led to  the creation  of  deformed elements characterized  by poor
value of  skewness angle, smoothness and aspect ratio. The second approach
consists on the creation of grids which match up only the external boundaies of
computational domain and which includes bodies, so they are not described
directly by the mesh. Particular attention must be given to elements near the
boundaries of the body. In this way, the bodies result immersed inside a large
mesh. However, the main issue of this type of grid is the proper setting of the
boundary  conditions  and  the  boundaries  themselves.  The  adoption  of
embedded grids is also known as immersed boundary method (IBM) [5].

In this work IBM is adopted because it simplifies the issues related to the
mesh, particularly when dealing with moving bodies and changing of control
volumes,  and  because  it  makes  wall  boundary  treatment  easier  when
penalization method is used to enforce the boundary conditions.

The  choice  of  the  physical  model  which  describes  properly  the  real
phenomena  under  investigation  is  the  main  concern  in  a  CFD simulation.
Specifically, the adopted method should be a trade of between computational
cost and accuracy in terms of reproducing the physical of studied phenomena.

In  the  following  the  physical  model  adopted,  the  space  and  time
discretization will be treated.
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2.1 - Navier-Stokes equations

The  model  chosen  to  describe  the  flow  inside  screw  compressors  is
described by the compressible Navier-Stokes equations. As reported in [6], the
adimensionalized equations can be written as follows:

∂ρ

∂ t
+ ∂
∂ x j

(ρu j)=0 (2.1)

∂
∂ t
(ρu i)+

∂
∂ x j

(ρui u j)=−
∂ P
∂ x i

+
1

R eref

∂ τ i j

∂ x j
(2.2)

∂E
∂ t
+ ∂
∂ x j

(u j(E+P))=
1

(R eref )
∂
∂ x j

[ui τ i j−q i] (2.3)

The heat flux qi is described by the Fousier law: qi=−
γ

(γ−1)
μ

Pr
∂T
∂ x i

. 

The heat conductivity λ is expressed in terms of dynamic viscosity μ and
the Prandtl number Pr . Both heat conductivity  λ and dynamic viscosity μ are
assumed constant.  If  necessary,   the  Sutherland’s  law,  which describes  the
variation of dynamic viscosity with temperature,  can be easily activated. As
far as the shear-stress tensor τi  j  is concerned, the Boussinesq approach is used
and, assuming the Stoke’s hypothesis for bulk viscosity, it results in

τi j=2μ [S i j−
1
3

∂uk

∂ xk

δi j]  

where Si j is the mean strain rate tensor:

S i j=
1
2 (
∂ui

∂ x j

+
∂ u j

∂ x i
)
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In  order  to  enhance  the  no-slip  boundary  condition  inside  the  solid
bodies,  a  penalization  method  [5] was  adopted.  The  basic  idea  beside  the
penalization  method,  or   Brinkman-Navier-Stokes  equations,  is  to  consider
solids as porous media with a really small permeability. A level set function Φ
identifies  boundaries  and allow to describe the motion of  solid  bodies  [7].
More in detail, imagine a computational domain Ω in which solid bodies Si are
immersed. The compressible flow is situated around bodies in Ωf as shown Fig.
1.

Given the condition of:
u=uSi  on ∂Si

u=uf on ∂Ωf

the problem of fluid-solid interaction can be described by compressible N-S
equations  together  with  the  proper  Dirichlet  and  Neuman  conditions  on
temperature.  The  velocity  assumes  two  different  values  according  to  the
position of computational domain considered:  uf  in the fluid and  uSi in the

Figure 1: Schematic representation of the computational domain
Ω=Ωf∪ΩS . Si represents a solid domain and Γ=∂Ω represents

the solid boundary.
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solid bodies. In order to satisfied the no-slip condition this two values must be
equal on Γ.  A penalization term is used to extend the velocity field inside the

solid bodies in order to impose a rigid motion inside the solid. Setting 1
η≫1

where  η  is  the  penalization  parameter,   and  calling  χSi
the  characteristic

function of the solid  Si, the compressible N-S equation with penalization has
the following form:

∂ρ

∂ t
+ ∂
∂ x j

(ρu j)=0 (2.4)

∂
∂ t
(ρu i)+

∂
∂ x j

(ρui u j)=−
∂ P
∂ x i

+
1

R eref

∂ τ i j

∂ x j

+
1
η∑

i=1

NS

χS i(ρui−ρui , Si) (2.5)

∂E
∂ t
+ ∂
∂ x j

(u j(E+P))=
1

(R eref )
∂
∂ x j

[ui τ i j−q i ]+
1
η∑

i=1

N S

θSi χSi ρ (ϵ(T )−ϵ(T Si
))+

+
1
η∑

i=1

NS

χ
Si ρ (ρui−ρu

i ,Si )u j

(2.6)

with  ε(T)=cvT .  Remember that  η is considered as an adimensionalized
time. 

The derivation of this system of equation is reported in  [5].  Since the
penalization factor is a very large number, the difference between the required
temperature and the fluid temperature at the wall is the main contribution of
the energy equation near the solid boundary. In this way, if θSi=1 is set,  the

Dirichlet condition on temperature can be easily imposed. Instead, if θSi=0 is

set,  homogeneous  Neumann  boundary  condition  on  temperature  (adiabatic
condition) can be imposed. 

The way in which the previous system of equations is discretized and
integrated affect  the choice  of  the penalization  factor  value (1/η).   In  fact,
ideally it must be the larger as possible in order to have a better results given
by penalization method, but  effectively is  related to the mesh size and the
integration method.
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The factor χSi is defined starting from the level set function ΦSi . The

level set is initialized as the distance with sign between a generic point of the
grid  and  the  nearest  point  of  the  solid  boundary.  In  this  way  ΦSi results

positive outside the solid and negative inside Si. The factor χSi is defined as:

 

χSi={
1 if Φ

Si≤0

0 if ΦS i>0 (2.7)

If the body is moving, ΦSi has to satisfy the following equation:

 

∂ΦSi

∂ t
+(ui , Si

∂ΦSi

∂ x i

)=0 for x i∈Ωf (2.8)

which represents the transport of the level set function.

In this case, since  ui , Si is a rigid motion, the level set function  ΦSi

remains always a signed distance.

0
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Chapter 3 - Discontinuous  Galerkin
spatial discretization

The  discontinuous  Galerkin  method  (DGM)  merges  the  main
advantageous characteristics of both finite elements (FEM) and finite volume
(FVM) methods.  In  particular,   it  is  based  on numerical  fluxes  which  use
piecewise  polynomial  (from  FEM)   but  discontinuous   (from  FVM)
approximations which allow to reach high order of accuracy. It can also deal
with  discontinuities  in  solutions  or  steep  gradients  such  as  in  solutions  of
convection-diffusion  equations  dominated  by  convection.  However,  the
method used in DGM to obtain high-order accuracy in space discretization is
different  from FV methods.  Indeed,  in  FV methods the  mean value of  the
conservative variables in  the cell  is  available  for  the reconstruction.  So,  in
order  to  reach  high-order  reconstruction,  many neighbouring cells  must  be
used when working with FVM. Instead in DGM many degrees of  freedom
(DOFs) are introduced in the cell. This method simplifies the reconstruction
because all needed information is already contained in the cell.

 This method can also easily handle unstructured grids, which give an 
advantage in this work in which complex geometries are studied. 

For more information on DGM see, [8] and [6].
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3.1 - Variational approach 

The physical model considered with DG space discretization in 2D for
the vector U of conservative variables can be written as follow:

 

∂U
∂ t
+
∂F
∂ x
+
∂G
∂ y
=Q (x , y )T∈Ω⊂R2 , t∈R0

+¿
(3.1)

 

where U is the conservative variable vector, F and G contain the advection and
the viscous fluxes and Q is a generic source term. In this case Q is the vector 
which contains the penalization terms:

 

Q=
1
η∑

i=1

NS

χSi(
0

ρu−ρuSi
Sref T ref

uref
2 θSiρ(ϵ(T )−ϵ(T S i))+ρ(u−uSi)⋅u) (3.2)

 

 Assuming that Ω is subdivided in a set of  non-overlapping cells Ωe, 
consider a generic element  Ωe. Consider also the functional space Vh defined 
as 

V h={v∈L2
(Ω): v|Ωe

∈Pp
(Ωe) ∀Ωe∈Th} .

Vh approximates the solution in  Ωe with a space polinomial Pp
(Ωe ) of 

degree up to p. The main feature is that no continuity constraints are required 
across the element edges  in the space Vh and the order p of reconstruction can 
vary in each element. Defining Ψi the basic functions of Vh, the numerical 
solution uh, which belongs to Vh , can be written as a linear combination of the 
basic functions:
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uh(x , t)=~u⋅Ψ=∑
i=1

N e

~uiΨi (3.3)

Equation 3.3 is then substituted in 2.4, 2.5, 2.6 to obtain the residual Rh 
defined as:

Rh=
∂uh

∂ t
+
∂Fh

∂ x
+
∂Gh

∂ y
−Q .

The DGM requires that the projection on the Vh space of the residual 
integral on Ωe is null:

∫
Ωe

Rh νdxdy=∫
Ωe

∂uh

∂ t
νdxdy+∫

Ωe

∂Fh

∂ x
νdxdy+∫

Ωe

∂Gh

∂ y
νdxdy−∫

Ωe

Q νdxdy=0 ∀ν∈V h(3.4)

Deriving by parts, the weak form of the DG discretization can be found:

∫
Ωe

∂uh

∂ t
ν dxdy+∫

∂Ωe

( F̂h nx+Ĝh ny )νds−∫
Ωe

(
∂ν
∂ x

Fh+
∂ ν
∂ y

Gh)dx dy−∫
Ωe

Q ν dx dy=0 (3.5)

where ∂Ωe is the boundary curve of the element, nx and ny are the component of
the unit normal vector which points outward the element. In order to perform 
the integral on ∂Ωe , the fluxes F̂h and Ĝh at the interface of the 

neighbouring cells must be known. Their contributions are calculated 
separately following the procedure described in [6].

Equation 3.5 must be valid for ∀ν since the equation is valid for all Ne  
functions which define the element basis. Setting for example ν=Ψ i with

1≤i≤N e  , Ne equations  can be  obtained and used in order to describe the 

evolution in time of the Ne  solution coefficients inside the cell  Ωe.
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∫
Ωe

∂uh

∂ t
Ψ iΨ j dxdy+∫

∂Ωe

( F̂h nx+Ĝh ny )Ψ j ds−∫
Ωe

(
∂Ψ j

∂ x
Fh+

∂Ψ j

∂ y
Gh)dx dy+

−∫
Ωe

QΨ j dx dy=0 1≤ j≤N e

(3.6)

That system can be written in compact form introducing the mass matrix 
[M] of the element defined as:

[M(i j )]=∫
(Ωe)

ΨiΨ j dx dy (3.7)

[M ]
∂~u
∂ t
=−∫

∂Ωe

( F̂h nx+Ĝ hn y)Ψ ds+∫
Ωe

( ∂Ψ∂ x
Fh+

∂ Ψ
∂ y

Gh)dx dy+∫
Ωe

QΨ dx dy (3.8)

which is the discontinuous Galerkin semidiscrete formulation which describes 
the evolution in time of the degree of freedom of the element. 

For mapping, choice of the basis, recovery method and further 
information, the reader can consult  [6].
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Chapter 4 - Time discretization

Recalling equation  3.8,  the system of  equation for  all  elements in  the

domain is described by:

[M ]
d~u
dt
=−R (~u) (4.1)

where [M ] is the diagonal global mass matrix, ~u is the global vector 

of degrees of freedom and R(~u ) is the global vector of residuals which is 

derived by the boundary and volume integrals of the last equation of the 

previous chapter.

Considering a general convection-diffusion problem, the stability limits 

are computed separately in each cell and defining CFL, c, κ, He and pe as 

respectively the stability coefficient, maximum signal speed, diffusivity 

coefficient and element characteristic size and order, results that:

Δ t d=CFL
H e

2

κ(2 pe+1)
(4.2)

Δ t c=CFL
H e

c (2 pe+1)
(4.3)

After that, the minimum time step of all domain cells is identified and 

used as global time step.

13
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Now, a new notation is introduced in order to to simplify the further 

discussion. In particular, a reference problem which is described by ordinary 

differential equations in considered:

du
dt
=L(u) (4.4)

4.1 - Explicit Runge-Kutta methods

A first order accuracy for time integration is reached using the Forward
Euler method:

un+1
=un

+Δ t L(un
) (4.5)

Since using this method some problems containing discontinuities give 
spurious oscillations in results connected to time integration, a two and three 
stages Total Variation Diminishing Runge-Kutta (TVD RK) were implemented
[9]. 

Second-order two stages TVD-RK can be written as follow:

u(1 )=un
+Δ t L(un

) (4.6)

un+1
=

1
2
un
+

1
2
u(1)+

1
2
Δ t L(u(1)) (4.7)

Instead the third-order three stages TVD-RK has the form:

u(1 )=un
+Δ t L(un

) (4.8)

u(2)=
3
4
un
+

1
4
u(1)+

1
4
Δ t L(u(1)) (4.9)
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un+1
=

1
3
un
+

2
3
u(2)+

2
3
Δ t L (u(2)) (4.10)

In all simulation performed a second-order accuracy in time is reached, so
the second order TVD-RK is used in body fitted simulations of this work. In 
order to reach higher order accuracy in time integration, see [6].

4.2 - Implicit method

Also the implicit Backward Euler (BE) method was used in this work,
specificly concerning in test cases performed with IB method. Recalling the
equation 

[M ]
d~u
dt
=−R (~u)

The BE formulation can be obtained linearizing the previous equation, 
resulting 

[M ]
~un+1

−~un

Δ t
=−(R(~u )n+[J ](~un+1

−~un
)) (4.11)

where [J ] is the jacobian matrix and [M ] , as said, is the global mass 
matrix. It is a block diagonal matrix. A single block is obtained by an element 
mass matrix. Instead, the jacobian matrix is a block sparse matrix which is 
defined by the derivatives of the residuals with respect to the degree of 
freedom:

J i j=
∂R i

∂~u j

 .

The equation can be written in compact form in order to evidence the 
linear system given by

( 1
Δ t
[M ]+[ J ])(~un+1

−~un
)=−R(~un

) (4.12)

[A](~un+ 1
−~un

)=−R(~un
) (4.13)
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which must be solved at each time step since ~u must be updated. Here, ~u

is the global vector of degrees of freedom which has size M∑
i=1

nele

N i  , where M,

nele, and Ni are respectively the number of governing equations, the element 
number and the number of degrees of freedom in i-element [6].
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Chapter 5 - Profile generation

5.1 - Roots’ profile generation

Among positive displacement lobe machine,  roots  blowers are the oldest  in
used. In fact, they are used since 1860. Roots compressor are the precursor of screw
compressor since they pump fluid with two meshing rotors. The differences between
roots  and screw compressor  are  in  profile  shape,  number  of  lobes  and the  axial
geometry.  In  fact,  roots  compressor  are  not  twisted  in  axial  direction  as  screw
compressors. This reflects on the direction of compression: roots compressors pump
fluid in transversal direction unlike screw compressors which pump fluid in axial
direction.

Typical  roots  blower  has  cycloidal  rotors  constructed  starting  from
hypocicloidal and epycicloidal curves. A rotor which contains two lobes is generated
starting from circles having one-quarter the diameter of the larger. Instead, real roots
blower  have  more  complex geometries  to  improve  the  efficiency.  Since  the  two
rotors have to maintain a clearance between them, a single stage root blower can
work in a limited pressure ratio range.

Roots rotor’s profile used in this work is represented in Fig. 2.Profile points are
obtained by extrapolation from  a vector image of a two-lobe roots profile of public
domain which can be found in [10]. Points are extracted with the software [11]. After
that,  inter-axis  length  is  calculated  and  profiles  are  adimensionalized  using  that
length. 

17
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5.2 - Historical development of screw compressors’
profile

Rotor  profile  of  the  screw  compressor  affects  significantly  their
performances. Habitually a tooth profile is generated starting from different
types of curve for main rotor and then conjugate curves are generated on the
gate rotor. 

First appearance in literature of a screw compressor  dates back in 1939
by the patent of  Alf Lysholm [12]. It was produced and commercialized by
Svenska Rotor Maskiner (SRM), a Swedish company. It kept under industrial
secret their design techniques and parameters.  Consequently, since profiling
parameters  were not  know, few developments  on screw compressor  profile
design  were  carried  out  in  Europe  and  U.S.A.  Most  of  publications
unfortunately  were  limited  in  numeric  parameters  since  the  authors  were

18
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employees in compressor producing company who did not want to share their
knowledge.

Opposite  to this  company politics,  three textbooks on screw machines
were  published  in  Russia.  Here,  there  was  the  need  to  develop  design
procedures from the beginning,  since there were not patent  regulation with
European and American companies. Sakun (1960) [13] fully described a rotor
profile  generation  with  circle,  ellipse,  and  cycloid,  and,  most  relevant,  a
consistent  representation of  profile characterized by geometrical  asymmetry
properties, called later SKBK. An envelop approach is used in this book in
order to generate the tooth profile. Andreev (1961) [14] repeated what Sakun
made before concerning profile development giving his contribution adding
manufacturing and tooling information . Two decades after, in 1977, Amosov
et  al.  [15] resumed  Sakun’s  work  improving  it  with  his  own  contribution
consisting on the presentation, for the first time in the public literature, of a
reproducible  method  in  order  to  generate  the  classic  Lysholm’s  SMR
asymmetric profiles. This book was translated into German and English where
possible.

 Two textbooks on screw machines were published in Germany.  Rinder
(1979) [16] used gear theory to reproduce the SMR asymmetric profile. Konka
[17] gave  his  contribution  disclosing  some  engineering  aspects  of  screw
compressors, but his profiling procedures are not simple reproducible. Rinder’s
book was also  translated in  English.  There  are  two textbooks published in
English which handle some aspects of screw compressor:  O’Neil  (1993)  [18]
concerning industrial compressor, and Arbon (1994)  [19] treating rotaty twin
shaft compressor, but none of them gives sufficient indication of rotor profiling
procedures, neither generally. There are not many compressor manufactures’
handbooks on screw machines and brochures which give useful information on
them are either classified or available only under licensing. At the beginning of
the century,  Xing (2000)  [20] published in Chinese a practical  textbook on
screw compressors, and in 2005 and 2006, Stosic et al.  [4] published a more
comprehensive  handbooks  on  screw machines  only  which  deal  with  many
aspects of them, but also in this case, the profiling process is poor of details. 

 As profiling is concerned, a large number of licensees are present. The
SMR in 1952 symmetric profile by Nilson [21], 1979, asymmetric profile by
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Shibbie [22], Astberg [23] in 1982 with “D” and Ohman (1999) [24]  with “G”
profiles are typical examples, but also other profiles developed by companies
were also very successful. All profile described are , without doubt, generate
by  valid  procedure,  but  insufficient  data  are  given in  order  to  make  them
reproducible in easy manner. [25]

In his textbook  [4], Stosic described a pair of rack-generated rotors in
order reduce Rinder’s  profile large blow hole area.  Stosic’s  rotor  profile is
generated  starting  from  several  curves  given  in  a  general  implicit  form:

ax p
+byq

=1 .  This generated rotor is the first which can be used to improve
rotor  profile  performances.  Unfortunately,  details  about undercut  limits  and
numeric parameters are not publically available. In fact parameters such as  a,
b, p and q in previous equation in implicit form are not well defined enough
for rotor profile modification. Therefore, Wu et al.[26] describe a rack profile
method  with well defined parameters and equations in explicit forms from
Stosic’s  patent  [27],  known  also  as  “N”  profile,  to  generate  a  pair  of
conjugated rotors which can be easily modify in order to improve compressor
performance.

Unfortunately  [26] contains  wrong  parameters,  since  it  notices  that
undercut  limit  in  male-profile  parameters  is  overcome.  The  work  of,  [28],
contains wrong explicit equations and parameters, since the basic rack profile
can not be even drawn.  These errors surely are due to mistake in typing. The
following section provides the exact equations and parameters through which
the profile, used in this work, has been generated, resuming and correcting the
work done by Wu et al. [28].
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5.3 - Mathematical model

5.3.1 - Explicit equation of rack generator

The fundamental parameters from which the tooth profile is constructed
are the center distance between rotor axes  Ac, the lobes number of male and
female rotors z1 and z2 , the inner radii of the male and female rotors rd1 and rd2,
and the outer radii of the male and female rotors  ro1 and  ro2. Others relevant
parameters are the normal circular pitch Wn and the total tooth height (ha+hd). 

As shown in Fig. 1, the addendum ha, the dedendum hd, and the normal
circular pitch Wn can be determined by the following equations:

r p1=z1 Ac /(z1+z2)

r p2=z2 Ac /(z1+ z2)

21

Figure 3: Rack and its functional parameters [28]
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ha=r p1−rd 1=ro 1−r p2

hd=ro 1−r p 1=r p 2−r d 2

W n=W t cosβ=(2π r p 1/z1)cosβ=(2π r p2/ z2)cosβ

where β is  the helix angle at the pitch circle,  Wt is  the transverse circular
pitch, and  rp1 and  rp2   are the pitch radii respectively of the male and female
rotors.  The  generator  curves  r (θ) are  listed  in  Table  1.  The  unit  normal
vector  n(θ) of  the  curve  segments  can  be  derived  from  the  following
equation:

n(θ)=
k×∂θ r (θ)
|k×∂θ r (θ)|

where k is the unit vector of the z-direction defined as k=(0, 0, 1)T. 

Table 1: Explicit equations of  the normal rack [26]

Rack

Segment Type Explicit equations Range

AB Circular arc
r1={ x1(θ)=−ρ1 sin θ

y1(θ)=ha−ρ1(1−cos θ)

0≤θ≤π
2
−un

BC Straight line

r2={
x2(θ)=x1(

π
2
−un)−θsin un

y2(θ)= y1(
π
2
−un)−θcosun

0≤θ≤t
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CD Normal 

equidistant 

trochoid r3={
x3(θ)=[K1(θ)−

κK 1(θ)

√K1(θ)
2
+K 2(θ)

2
−( p+r p2θ)]cosβ

y3(θ)=K 2(θ)−
κ K2(θ)

√K 1(θ)
2
+K2(θ)

2

C x=x2(t)/cosβ

C y= y2(t)

ut=arctan (tan un/cosβ)

K1(θ)=(C x+ p)cosθ+κ cos(ut+θ)+(C y+r p2)sinθ

K2(θ)=−r p2−(C x+ p)sinθ−κsin (ut+θ)+(C y+r p2)cosθ

0≤θ≤ζ

DE Normal 

equidistant 

trochoid r 4={
x4(θ)=[K3(θ)+

τK3(θ)

√K3(θ)
2
+K 4(θ)

2
+(r p1θ−p−r p2ζ)]cosβ

y4(θ)=K4(θ)+
τK4(θ)

√K2(θ)
2
+K4(θ)

2

Dx=x3(ζ)/cosβ

D y= y3(ζ)

hx=Dx−
τK1(ζ)

√K1(ζ )
2
+K2(ζ)

2

hy=D y−
τK2(ζ )

√K1(ζ)
2
+K2(ζ )

2

0≤θ≤η
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K3(θ)=( p+r p 2ζ+hx )cos θ−(r p 1−hy)sinθ

K4(θ)=r p 1−( p+r p 2ζ+hx )sinθ−(r p 1−hy )cosθ

EF Circular arc
r5={x5(θ)=−δ+hd sinθ

y5(θ)=−hd−cosθ

0≤θ≤γ

FG Bias ellipse
r6={x6(θ)=(ex−eb sinθ)cosμ−(ey−eacos θ)sinμ−δ

y6(θ)=(e y−ea cosθ)cosμ−(ex−eb sinθ)sinμ

θ1≤θ≤θ2

GH Straight line

r7={
x7(θ)=x8(

π
2
−νn)−θsin νn

y7 (θ)= y8(
π
2
−νn)−θcos νn

0≤θ≤s

HI Circular arc
r8={ x8(θ)=x9(d)+ρ2sinθ

y8(θ)= y9(d)−ρ2(1−cos θ)

0≤θ≤π
2
−νn

IJ Straight line
r 9={x9(θ)=−W n+θ

y9(θ)=ha

0≤θ≤d

According to Fig. 1, the 11 rack parameters, ρ1, ρ2, un, νn, t, s, κ, τ, d, γ, 
and ea, are defined on the normal-rack segments. The parameters ρ1 and ρ2, 
which represent the radii of the circular arcs AB and HI, respectively, are used 
to define the tooth top-land shape of the female rotor. Parameters un and νn, 
which represent the normal pressure angles on the high- and low-pressure 
sides, respectively, are used to adjust the direction of sealing near the pitch 
circle. Parameters t and s, which represent the length of the straight lines BC 
and GH, respectively, are used to modify the length of the involutes of the 
rotor profiles. Parameters κ and τ, which represent normal equidistances of the 
trochoids CD and DE, respectively, are used to adjust the radii of the rotor 
tooth flanks on the high-pressure side.  Parameter d, which represents the 
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length of the straight line IJ, is used to adjust the tooth thickness of the female 
rotor. Parameter γ is used to define the protection arc on the tip of the male 
rotor. Finally, parameter ea is the major radius of the bias ellipse FG that 
determines the curvature and contact length of the tooth flank on the low-
pressure side. In addition, the consecutive curve segments are smoothly 
connected; that is, the unit normal vector n and the position vector r are the 
same at the connecting points:

{ni=ni+1

r i=r i+1

, i=1−8 (5.1)

The eight unknowns p, ζ, η, δ, μ, ex, ey, and eb can be solved using the 
above equations with the following predetermined parameters: the center 
distance, the number of lobes, the diameters of the outer circles the diameters 
of the inner circles and the 11 profile parameters. The dataset of parameters 
listed in Tables 2 is used to generate the profile [28].

Table 2: Input data of designed screw rotors [28]

No. Item Symbol Example Units

1 Lobe number of 
male rotor

z1 5 -

2 Lobe number of 
female rotor

z2 6 -

3 Center distance 
between rotor axes

Ac 80.02 mm

4 Outer radius of 
male rotor

ro1 56.5475 mm

5 Outer radius of 
female rotor

ro2 44.8112 mm

6 Inner radius of rd1 35.2088 mm
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male rotor

7 Inner radius of 
female rotor

rd2 23.4725 mm

8 Helix angle at 
rotor pitch circle

β 46.0 deg

9 Length of rotor L 183.068 mm

Table 3: Design data of the normal rack [28]

No. Symbol Example Units

1 ρ1 1.675 mm

2 ρ2 3.255 mm

3 un 6.291 deg

4 νn 17.776 deg

5 t 0.8 mm

6 s 0.878 mm

7 κ 1.323 -

8 τ 1.983 -

9 d 0.8 mm

10 γ 0.718 deg

11 ea 35.1459 mm

12 Wn 31.7509 mm

13 p 9.5974 mm

14 ζ 0.5671 -

15 η 0.5095 -

16 δ 11.1190 mm

17 μ -0.0331 rad

18 ex 0.3187 mm
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19 ey 14.9764 mm

20 eb 19.2518 mm

21 θ1 -0.0181 -

22 θ2 1.0511 -

5.1.2 - Rack-generated rotor profile

As shown in Fig. 2, the lobe profile of male rotor is generated by normal 
rack in transverse plane of the rotor. The rack locus can be derived in 
coordinate system  S1,, which is rigidly attached to the male rotor, as given in 
the following:

27

Figure 4: Coordinate systems applied to
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male rotor={xm(θ ,ϕ1)=(xc−sc)cosϕ1−( yc−r p 1)sin ϕ1

ym(θ ,ϕ1)=(xc−sc)sin ϕ1+( yc−r p 1)cos ϕ1
(5.2)

female rotor={x f (θ ,ϕ2)=(xc−r p2ϕ2)cosϕ2+(r p2+ yc )sin ϕ2

y f (θ ,ϕ2)=(r p2+ y c)cos ϕ2−(xc−r p2ϕ2)sinϕ2
(5.3)

where Φ1 is the rotation angle of the male rotor, Φ2=z1Φ1/z2 is the rotation 
angle of the female rotor, sc=rp1 Φ1 is the rack displacement, and the position 
vector in the rack coordinate system Sc can be represented as

 r c=[ xc , yc ]=[(xh+δ)/cosβ , yh] . 

The relationship between the profile parameter θ  and the rotation angle 
Φ  can be found by the so-called equation of meshing in the theory of gearing
[29]. At the tangent point between the rack locus and the tooth profile of the 
male rotor, the common normal vector nh should be perpendicular to the 
relative sliding velocity between the rack and the male rotor Vc1. Thus, the 
equation of meshing for the male rotor is as follows:

f m1=(θ ,ϕ1)=nh(θ)⋅V c 1(θ ,ϕ1)=−nxh yc+n yh(xc−r p1ϕ1)=0 (5.4)

where the relative velocity between the rack and the male rotor ca be written as
V c 1=− ycω1 i+(xc−r p 1ϕ1)ω1 j in the coordinate system Sc, and ω1 is the rotation

speed of the male rotor.
The equation of meshing for the female rotor can be written as follows:

f m2=(θ ,ϕ1)=nh(θ)⋅V c 2(θ ,ϕ2)=nxh yc+n yh(r p 2ϕ2−xc)=0 (5.5)

28



Chapter 5 - Profile generation

where the sliding velocity between the rack and the female rotor ca be written 
as V c 2= ycω2 i+(r p 2ϕ2−xc)ω2 j in the coordinate system Sc and  ω2 is the 

rotation speed of the female rotor.
From meshing equation of male rotor 5.4, Φ1 is founded and substituted 

in the “male rotor”-equations  5.2 to obtain the male rotor profile equation in 
the following form:

{xm=(nxh/n yh) yc cos ϕ1+(r p1− y c)sinϕ1

ym=(nxh /nyh) y c sinϕ1−(r p1− yc)cos ϕ1

, ϕ1=
nyh xc−nxh yc

nyh r p1
(5.6)

Similarly, Φ2 is founded from the female meshing equation 5.5 and 
substituted in the “female rotor”-equations 5.3 to obtain the female rotor 
profile equation in the following form:

{ x f=(nxh /nyh) yc cosϕ2+(r p2+ yc)sinϕ2

y f=−(nxh/n yh) yc sinϕ2+(r p2+ yc)cosϕ2

, ϕ2=
nyh xc−nxh yc

nyh r p2
(5.7)

For further details as sealing line, blow hole area or undercut limits  see
[26], [28], [30].
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Chapter 6 - Validation test case

In order to check the accuracy and reliability of the used numeric method,
some test cases were performed. In particular we considered the flow around a
circular  cylinder:  both  periodic  conditions  and  impulsive  acceleration  are
investigated at Re=100. 

6.1 - Circular cylinder in cross flow

Among papers involving compressible flow around circular cylinder at
low-Re regimes,  [31] and [32] give useful information about references of old
results and recent ones obtained with newest numerical method. Since in this
work discontinuous Galerkin (DG) method is used, [31] was taken as reference
for result comparisons. 

This test  case is  characterized by Re=102 and M=0.2 in far-field.  The
domain is composed of a circular boundary, as described in [31]. The far-field
distance  form the  body is  equal  to  50 cylinder’s  diameters  with cylinder’s
diameter equal to 1.

Two types of simulations were carried out. The first solves the problem
applying  the  simple  Navier-Stokes  equations  with  body fitted  mesh.  Three
simulations were performed in this way. The domain was discretized with an
unstructured  body  fitted  mesh,  each  of  them was  refined  with  respect  the
previous one. Mesh is finer around the cylinder and along its wake in order to
capture  better  the  occurrence  of  the  well  known  vortex  shedding.  The
refinement is proportional to the characteristic length which characterizes each
grid.
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The  second  adopts  immersed  boundary  technique  which  uses  the
penalization  method.  Also  in  this  case  three  simulation  were  carried  out
reducing  linearly  the  characteristic  length  of  the  mesh  element.  In  such  a
simulation the domain is no more composed by two circumferences as before
but only by a single circumference of 50D since embedded grid is used. In fact
we are applying penalization and so the cylinder is no more defined by the
mesh but by the level set. Domain is discretized with an unstructured mesh
with mesh refinement where cylinder is supposed to be and its wake, as before.
Furthermore, an explicit time integration was used in body fitted simulations
with  a  CFL=0.3,  instead,  as  far  as  immersed  boundary  simulations  are
concerned,  an implicit  integration method is  used by setting CFL=50. This
choice was done considering the oscillation period of the Lift coefficient of
simulation  with  BF  mesh.  In  fact  CFL was  set  to  50  in  order  to  have  a
significant  number of point in each Lift  oscillation,  in particular  almost 50
points in each oscillation period, in order not to lose information. This was
done because of the stiffness of the penalization terms which can introduce
strong limitation on the time step size. 

In simulation concerning penalization method, the penalization factor was
fixed η=0.01 since smaller values are not allowed by mesh size constraint.

In this way, six simulation were performed and compared one by one,
since characteristic length, number of points along the boundary of cylinder
(2000  points)  and  along  the  wake  (1000  points)  are  the  same.  The  only
difference is that the cylinder in IB simulation is also meshed up. The figure
below shows the six different meshes. 

Since  all  simulations  require  a  lot  of  time  in  order  to  reach  periodic
oscillations in drag and lift coefficient, a Mach number equal to 1.1*M∞ was
set  as  initial  boundary  condition  on  the  top  of  cylinder.  In  this  way  the
transient part is decreased significantly and the Von Karman vortex shedding
develops quickly.  
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Table 4: Mesh used in the test case simulations on fixed cylinder

Immersed boundary mesh Body fitted mesh
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Results comparisons were made with Strouhal number  St and mean drag
coefficient CD. 

The Strouhal number (St) is related to vortex shedding. It is calculated as
following :

St=
f D
u

where f,  u,  D are adimensional quantities and correspond respectively to the
frequency  of  shedding,  the  velocity  of  the  free  stream  and  the  cylinder
diameter.

Adimensional  diameter  D,  as  mentioned  before,  is  equal  to  1,  the
adimensional velocity is 0.2357. The adimensional frequency is calculated on
10 cycles of oscillation of the Lift coefficient CL  defined as

 CL=
FL

1
2
ρ∞u∞

2 D
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where FL,  ρ∞, u∞, D are respectively force acting on cylinder in perpendicular
direction with respect the flow which changes in time, adimensional density of
the far-field equal to 0.9803, adimensional velocity of the far-field equal to
0.2357, adimensional diameter of cylinder equal to 1.

When  the  periodic  regime  is  reached,  the  frequency  is  evaluated  as

f=
10

t2−t 1

. A typical trend is shown below.

The mean drag coefficient is a measure of the drag forces acting on the
cylinder. It is calculated as 

CD=
FD

1
2
ρ∞u∞

2 D
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Figure 5: Oscillation of Lift coefficient
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where FD, ρ∞, u∞, D are respectively the force acting on cylinder in parallel
direction  with  respect  the  flow,  adimensional  density  of  the  far-field,
adimensiona velocity of the free stream, adimensional diameter of cylinder.

Also CD varies in time as CL and after it has reached periodicity, the mean

value is calculates by a numerical integral average as C̄D=

∑
t1

t2

CD (t i)(t i−t i−1)

t2−t1

where CD(ti) is the value of CD at the time ti. The typical trend of CD when
periodicity is reached is shown below.

Note that there is an amplitude oscillations which seems periodic.  This
could be due to the fact that the domain is not infinite and so the flow around
the cylinder is influenced by the position of the  external boundaries and so the
solution shows this kind of oscillation.
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Chapter 6 - Validation test case

The domain was meshed with Gmsh. The main feature of the generated
mesh is the characteristic length (lc) by which element size can be controlled.
Starting from lc=20 it has been divided by a factor 2 twice. 

The Table 5 summarizes the results obtained in terms of St and CD.

Table 5: Strouhal number and Drag coefficient obtained by the six simulation

carried out in relation with the characteristic length used at Re=100 and

M=0.2

Cylinder characteristic

length

Body fitted Immersed

Bounday method

lc St CD St CD

20 0.159 1.343 0.153 1.288

10 0.162 1.343 0.160 1.309

5 0.163 1.335 0.162 1.325

A list  of  values  of  St  and  CD is  reported  below  which  are  used  to
demonstrate that the code gives consistent results.

Table 6: Experimental results in literature for circular cylinder at Re=100

Authors Average CD St

Norberg [33] - 0.164

Tritton [34] 1.26 0.157-0.164

Wieselsberger [35] 1.43 -

Williamson [36] 1.33 0.160-0.164

Canuto [32] 1.36 0.165

Ferrero [31] 1.33 0.163

36



Chapter 6 - Validation test case

It is possible to see that the result obtained with the presented method are
in agreement with data available in literature. Especially, they fit  very well
with results obtained by Ferrero et al. Since the numerical method presented in
this  work  is  based  on  the  one  presented   by  Ferrero  and  the  geometrical
features of domain are almost the same, results in [31] are taken as reference
values. So, a convergence study was performed and the results are reported
below.
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Figure 7: Convergence of St over the characteristic length



Chapter 6 - Validation test case

38

Figure 9: Logarithmic trend of error on St

Figure 8: Convergence of CD over characteristic length
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It  can  be  noted  that  body  fitted  simulations  converge  faster  than  IB
simulations and they reach more accurate results than IB ones. This behavior is
due to the fact that while in BF simulations the integral of FD and FL can be
easily  calculated  since  the  boundary  is  well-known  and  smooth,  in  IB
simulation it can not be done since the numerical grid has not smooth cylinder
boundary.  So,  the integral  is  performed using the level  set  whose accuracy
depends on the mesh size.  In particular,  the force on the body with the IB
approach is computed by performing a volume integral of the penalized term
which appears in the momentum equation.  This leads to approximations in
defining the cylinder shape on the numerical grid. Below is shown that the
finest is the grid the more regular will be the shape of the cylinder.
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Figure 10: Logarithmic trend of error on CD
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Figure 11: Level set defining the cylinder in the first IB simulation
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Figure 12: Level set defining the cylinder in the second IB simulation
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Figure 13: Level set defining the cylinder in the third IB simulation
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6.2 - Flow past an impulsive started cylinder 

This test case is a good benckmark to investigate the behavior of flows
with moving bodies.  Furthermore,  an  analytical  solution exists  in  literature
([37])  for  very  short  time  and  Koumoutsakos  and  Leonard  [38] widely
investigated this type of flow. Unfortunately, the available reference solutions
refer to  for incompressible flows and none benchmark exists for compressible
flow in any Reynolds range. For these reasons, the IB results are compared
with the body fitted results which are chosen as reference.

Convergence  of  solution  have  been investigated  using the  IB method.
Simulations  are  carried  out  on  three  different  meshes  reducing  the
characteristic  length  from  lc=15  to  lc=5.  In  this  case  an  implicit  time
integration method was used with CFL=20. 

Furthermore,  a  convergence  analysis  in  which CFL is  reduced with  a
fixed spatial mesh is also performed. In particular three different simulations
were performed also in this  case with an implicit  time integration method,
fixing  CFL=50, 20,  10 and adopting the finest  mesh used in the previous
convergence study, with lc=5. In all simulations the penalization factor was set
to η=0.01 .

This test can be though as the reciprocal to the flow past a cylinder. In
fact,  if  in  case  of  the  cylinder  in  cross  flow,  the  body  was  fixed  and  the
surrounding  fluid  was  moving,  in  this  case  the  opposite  occurs:  the
surrounding fluid is still  and the cylinder moves through the fluid with the
same velocity as the fluid did in the previous test case, thus ubody=0.2357. For
this reason and, as mentioned before, the fact that there are not in literature
references for this case study with compressible flows, the body fitted results
are used as reference. Specifically, the comparisons were performed with the
finest BF simulation.  

43



Chapter 6 - Validation test case

6.2.1 - Convergence study refining the mesh with fixed CFL

It can be note in Fig. 14 that as far as the characteristic length is reduced,
the solution converge to the finest solution. Also a reduction of amplitude of
oscillation occurs since the mesh elements size is reduced, oscillations are due
to the motion of the cylinder through the mesh: the larger the mesh elements,
the higher the amplitude. In fact, as said before, the cylinder is approximated
in  the  numeric  grid  by  the  level  set.  If  the  elements  have  a  big  size,  the
cylinder  has  a  non-uniform profile  so  the  integrals  of  CD and  CL contain
numeric errors. Furthermore this non-uniform boundary changes in time as the
cylinder moves, so the integral oscillates during the simulation. In this sense, if
the mesh is refined, the shape of cylinder is smoother and so the integral (and
CD and CL with that) is more regular. 

The larger  oscillations  with  the  coarse  mesh  are  due  to  the  fact  that,
keeping fixed the CFL condition, the time-step size is related to CFL limit and

the  element  size  as  CFL=
c Δ t
Δ x

.  In  particular, if  CFL  is  fixed,  ∆t  is
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Figure 14: Convergence of solution of an impulsive started cylinder with respect to
characteristic length and time step (CFL=20)
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proportional  to  ∆x.  Hence,  if  ∆x  decreases,  ∆t  decreases  too.  Since  ∆t
decreases, the cylinder will do more steps in a fixed time interval (which in
this case is 5 [T]) and all parameters will be calculated  more times than the
previous case. This leads to have more values in the fixed time interval which
translates in smoother behavior.

As result of this study, we verify that the IB solution converges to the BF 
solution when the mesh is refined and the time step size is reduced.

6.2.2 - Convergence in time reducing time step size with fixed 
mesh

As it can be noted in Fig. 15, even if  Δx is fixed, Δt changes directly if
CFL  changes.  All  the  effects  described  about  amplitude  and  number  of
oscillations in Fig. 14 are still present. 
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Figure 15: Convergence of Solution of an impulsively started cylinder with respect
to CFL condition (lc=5)
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Main result of this study is that as Δt decreases, the solution becomes

closer to the reference one, as expected. 

6.2.3 - CD comparison at Re=550

BF simulation was performed with an explicit time integration scheme
with CFL=0.3, instead, as far as IB simulation is concerned, CFL=10 was set.
Furthermore, the finest mesh of characteristic length equal to 5 was used both
for BF and IB simulstions.

The  available  solution  in  the  literature  (in  yellow)  refers  to
incompressible flow, so the comparison, theoretically, can not be done. But,
since M=0.2, an attempt can be done. Basically three features of BF and IB
simulations  are  not  in  line  with  the  reference  solution:  the  steepest  initial
gradient in CD , the delay in CD drop and the minimum value reached after that.
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Figure 16: Comparison between BF with fixed cylinder, IB with impulsive started cylinder and
well-known solution in literature



Chapter 6 - Validation test case

Since a compressible flow is investigated, these differences could be simply
explained.  If  M<0.2-0.3  and  the  flow  is  quasi-steady  and  isothermal,  the
effects of compressibility are negligible, but affect anyway the solution, as can
be seen in Fig. 16. So, the effect of compressible flow are translated in a delay
in drag coefficient drop, in a lower value of it reached at the beginning and a
steepest gradient with whom CD drops. Since in literature there are not data of
such a test case which deals with compressible flows, this result can be helpful
for further and future insights.

47



Chapter 7 - 2D Roots compressor simulation

Chapter 7 - 2D  Roots  compressor
simulation

7.1 - Assumptions

This simulation aims to test the code on a roots compressor  of which
physic phenomena can be well approximate in 2D since the fluid inside these
type of machines moves in transverse direction without relevant phenomena
occurring in axial direction. The purpose of this 2D simulation is to show the
ability of the code to deal with moving boundaries.

The main idea of this test is to simulate the behavior of the code to deal
with moving boundary of relative simple geometry used in compression field.
Main issues are found on setting an initial and boundary condition to avoid
back flow. 

As first approach to this test, the physical model used to investigate the
phenomena  is  the  Navier-Stoke  equations  which  are  solved  without  any
turbulence model  while  the Reynolds of  the flow suggests  the presence of
turbulent phenomena. In fact, the Reynolds number is defined as 

R e=
ρV p Rp
μ

where  ρ is the density of air at inlet conditions (assumed Standard conditions),
Vp rotor pitch velocity, Rp is the rotor pitch diameter.

Working conditions are 8600 rpm as rotors speed velocity and pressure
ratio equal to 1.

From profile data, male pitch diameter Rp  is chosen equal to 0.0423 mm.
Since the male rotor speed is 8600 rpm, which is equal to 900.6 rad/s,  Vp =
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38.1 m/s. As far as air is concerned, ρ and μ are respectively 1.16 kg/m3 and
1.8 10-5 m2/s. With this data the Reynolds number is estimated approximately
to be 104000. 
The simulation was performed under the following assumptions:
1. the flow is characterized by subsonic regime
2. inertia and gravity effects are negligible
3. there are not other fluid inside, as cooling oil or water
4. the  leakages  to  the  outside   and  radial  leakages  are  ignored  during
compression
5. a  simplified  Navier-Stokes  computation  is  performed  without  a
turbulence model
6. a simplified 2D simulation is performed

7.2 - Inlet/outlet boundary conditions approach

7.2.1 - Mesh and level set

Roots  profiles  are  characterized  by  two  or  few  more  curves.  In  fact,  as
previously reported in Section  5.1, lobes are created starting from  epicycloid and
hypocycloid which are relatively simple to describe analytically. So, the level set can
be easily computed. However, a different method to compute the level set is used
since the final goal is to describe screw compressor geometry which is characterized
by a more complex shape. The method used to calculate the level set is explained in
detail in Section 8.2.1.
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In the Fig. 17, the used mesh is presented. The penalization factor is fixed
to η=5⋅10−4 while the CFL=0.3 with an explicit time discretization method. 
The penalization factor can not be smaller since it is related to the mesh size. 
Smaller mesh size requires higher computational time, so a compromise is 
done between accuracy and computational cost.
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Figure 17:  Mesh of domain considered and level set which defines the roots 
compressor profile
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7.2.2 - Boundary conditions 

The proper boundary conditions must be imposed to inlet and outlet in order to
reach the  periodic  functioning of  roots  compressor.  In  fact,  main features  of  the
internal flow can be investigated only if the initial transient flow is overcome. 

Total pressure and total temperature are imposed at inlet respectively equal to 1
and  1.  In  fact,  the  code  deals  with  adimensionalized  quantity  with  respect  to
reference quantities which are listed in Tab.  7. Since the flow is   supposed to go
from left  to  right,  it  agrees  to  the  reference x-direction.  The  inlet  requires   two
boundary condition according to characteristic line theory in subsonic regime. Static
pressure is set equal to 1 at outlet since only one boundary condition is required, as it
can be seen in Fig. 18.

Domain walls are adiabatic imposing the Neumann condition and the no-slip
condition is set through penalizing the momentum equation as N-S equation requires.
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Figure 18: Boundary condition according to characteristics theory at inlet 
and outlet of the roots compressor
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7.2.3 - Back flow problems

The used boundary conditions are not able to allow the achieving of periodic
conditions.  In  fact,  the  solution  is  not  physical  when back flow verifies.  Taking
negative the flow entering in the system and positive the flow which exits from the
control volume, it can be seen in Fig. 19 that back flow occurs at T=10.6.

Since the flow at outlet is inverted, the velocity is opposite to the reference
direction, so the solution of the Riemann problem changes according to Fig. 20.

Two boundary condition now are required to the outlet while the code imposes
one condition, so the solution is no more physical. 

Among the various strategies which could be adopted in order to avoid back
flow, inlet and outlet boundaries are substituted by two tank large enough to allow
the flow to reach periodic conditions, as described in the following.
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Figure 19: Roots compressor flow rate plot at inlet and outlet of domain
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7.3 - Two tanks simulations

Since back flow occurs when boundary condition in Section 7.2.2 are applied, a
different  approach  in  order  to  reach  periodic  condition  is  adopted.  The  idea  is
simulate roots compressor between two tanks at adimensionalized pressure equal to
1  in order to move fluid from one tank to another. In fact, in this way the domain has
not any inlet or outlet. 
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Figure 20: Back flow occurring at inlet at T=10.6. Zoom on outlet of roots compressor.
New solution of Riemann problem. Pseudocolor legend describes the x-component of

velocity.
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7.3.1 - Mesh 

This  time,  a  finer  mesh  was  used  and  so  η=5 10  −4 was  set  as  penalized⋅
coefficient. Also in this case, a CFL=0.3 was used.
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Figure 21: Numerical grid with two tanks and roots compresor in the middle
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7.3.2 - Two tanks simulation

Inlet and outlet mass flow rate at interface  x=±1 are computed each time
step since periodicity is reached. Power absorbed by roots compressor is computed

starting from the forces acting on the rotors.  It is calculated as 

∫
Ωmale

F⋅̄udΩm+ ∫
Ω female

F⋅̄udΩf

where  ū is the velocity vector inside the solid. These integrals correspond
also to the integral of the source term of the energy equation.
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Figure 22: Zoom on roots compressor
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Remembering the reference for mass flow rate taken positive if it leaves
the control volume (Fig. 22) and negative if it enters in the roots compressor,
results are summarized in Fig. 23.

It  can  be  noted  that  after  about  T=30  the  solution  becomes  periodic.
Adimensional  values  for  inlet  and  outlet  mean  flow  rate  are  respectively
0.0299 and 0.0282. An error of 5.5% is present in outlet mean flow rate with
respect the mean inlet flow rate. That suggests that even if periodicity seems to
be reached, somewhere inside the control volume of roots compressor there is
a sink of mass which absorbs the missing flow rate at the outlet.  

After further investigation it is found that, as it can be seen in Fig. 24 and
Fig. 25 , the density of rotors is increasing. Specifically, rotor density is 
increasing  at  the  interface  where  pressure  increases.  Pressure  acts  like  the
driving force both to pump the fluid in the outlet tank and to push some fluid
inside the rotors. Since the density is increasing in the rotors, it can be asserted
that rotors absorb mass and do not release it, so act like a mass sink.  
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Figure 23: Input and output mass flow rate of roots compressor between two tanks
at pressure equal to 1 and rotational speed of 8600 rpm
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Figure 24: Density of roots rotors at T=0

Figure 25: Density of roots rotors at T=160
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This phenomena can be explained taking into account  two main error
carriers. The first contribution to the error is related to the presence of moving
solid boundaries.  In fact,  as the solid moves through the mesh elements,  a
numeric error is present in results due to the approximated integrals computed
at the solid boundary. Since the rotors keep moving through the mesh, the error
shows some cumulative effects. This phenomena is seen also in the test case
regarding  the  impulsive  started  cylinder  manifesting  as  the  amplitude
oscillations in the solution of CD. The solution will be more similar to the BF
simulation  results  and  the  amplitude  of  oscillations  lower  as  the  mesh  is
refined, but oscillation in solution remain.  

The second contribution is related to the numeric method used. In fact,
the  main  idea  of  the  penalization  method  is  consider  the  solid  as  porous
medium. The lower the penalization factor η the lower the porosity of the solid
bodies. So, as porous bodies, the rotors can absorb mass from surrounding.
This sink effect reduces as  η decreases. A further consideration regarding the
penalization  method is  that  penalization  is  applied only  to  momentum and
energy equation. 
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Chapter 8 - 2D  Screw  compressor
simulation

8.1 - Assumptions

After  the validation of  the method in the cylinder  flow,  a preliminary
study  of  flow  in  a  screw  compressor  is  performed.  The  flow  in  a  screw
compressor  is  characterized  by  3D  phenomena  because  the  moving  rotors
force the fluid to move in the axial direction.

The preliminary 2D simulations performed in this work represent a proof-
of-concept: their purpose is to show the ability of the numerical method to deal
with moving complex geometry. However, the 2D simulations cannot describe
the axial displacement of the fluid trapped in the cavity defined by the two
rotors. For this reason, the simulations presented in the following represent just
a  first  numerical  step  to  discover  some problems  related  to  this  flow (for
example  the  definition  of  proper  initial  and  boundary  conditions  to  avoid
reverse  flow).  Also  the  physical  model  is  simplified:  the  Navier-Stoke
equations are solved without any turbulence model while the Reynolds of the
flow suggests the presence of turbulent phenomena.

This preliminary study represents a first step towards more detailed future
3D studies.

Assumption made in this case are the same of the roots compressor test
case, which are listed below for more clarity.
1. the flow is characterized by subsonic regime
2. inertia and gravity effects are negligible
3. there are not other fluid inside, as cooling oil or water
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4. the  leakages  to  the  outside   and  radial  leakages  are  ignored  during
compression
5. a  simplified  Navier-Stokes  computation  is  performed  without  a
turbolence model
6. a simplified 2D simulation is performed

First of all, the main concern results in Reynolds number definition. As
reported  by  Guerrato  [39],  the  Reynolds  number  for  screw  compressor  is
defined as 

R e=
ρV p Rp
μ

where   ρ is  the  density  of  air  at  inlet  conditions  (assumed  Standard
conditions), Vp is the male rotor pitch velocity, Rp is the male pitch diameter.

In order to have a comparison as closest to reality as possible with data in
literature [40], a male rotor speed of 8600 rpm is chosen. A screw compressor
profile with 5/6 lobes was used with compression ratio equal to 2, since the
purpose of this test is to simulate an industrial application of it.

From profile data, male pitch diameter  Rp  is equal to 56.65 mm. Since
the male rotor speed is 8600 rpm, which is equal to 900.6 rad/s,  Vp = 50.9 m/s.
As far as air is concerned, ρ and μ are respectively 1.16 kg/m3 and 1.8 10-5

m2/s.  With  this  data  the  Reynolds  number  is  estimated  approximately  to
185000. 

8.2 - Inlet/outlet boundary conditions

8.2.1 - Mesh and level set

The screw compressor geometry is adimensionalized using as reference
length  Ac which,  as  reported in Section 5,  is  the distance between the two
rotors.

Since the shape of the profile is complex, a simple analytic level set, such
as in case of a circular cylinder, is no more usable. So, a level set is computed
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numerically  by  discretizing  the  body  with  a  finite  number  of  points.  The
computation is based on the signed external product.  First of all, the distances
between the generic mesh point and all  the points which describe the solid
boundary are computed and the minimum is identified and so the point of the
boundary (S) nearest to the mesh point is considered (P). Profile points are
defined in counter clock-wise. After that, two vector are defined: the ‘profile
vector’ and  ‘distance vector’.  The fist is given by the vector which goes from
the preceding point of profile (R) to the point S, which is the nearest to the
mesh point P.   and the vector which goes from the mesh point considered (P)
to the nearest one of the compressor profile (S) . In this way two vectors are
properly defined. Now, defining the external product as

c=a×b .

The sign of the z-component will define if it is an internal or external
point. In particular, if it is negative, as in case of c=a×b ' , the point will be
inside  the  solid  boundary.  If  it  is  not,  it  is  an  external  point.  Then,  the
minimum signed distance of the mesh point is allocated in order to reconstruct
the  compressor  profile  which  results  the  locus  of  mesh  points  which  has
distance equal to zero. The internal points are given by those points whose
have negative distance and external points are defined by a positive distance.
A simple scheme is shown below:
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the only requirement of this approach is that a sufficiently fine sampling
of  the  level  set  is  performed:  in  this  work  the  distance  between  two
consecutive profile points is chosen as 10-5.
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Figure 26: Schematic representation of the internal product to define the sign of the
distance calculated by the level set
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In the Fig. 27, the used mesh is presented. The penalization factor is fixed
to η=5⋅10−4 while the CFL=0.3 with an explicit time discretization method.
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Figure 27: Mesh of domain considered and level set which defines the
screw compressor profile 
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Table 7: Adimensionalized quantities

Adimensionalized 

quantity

Formula Value

pref - 105 Pa

Lref - 80 mm

Tref - 300 K

ρref - 1.16 kg/m3

μref - 1.8 10-5 m2/s

R - 287 J/kg/K

uref √(RT ref ) 293.4 m/s

tref Lref

uref

2.17 10-4 s

ωref 1
t ref

3663 rad/s

8.2.2 - Boundary conditions

It  is  acknowledged that periodic conditions are not reached in case of
roots compressor test imposing inlet-outlet boundary conditions but, since a
new test with different working conditions is investigated, they represent the
natural set of BCs if periodic state would be achieved.

Results obtained will be used to make mass flow rate comparison with
results  in  literature,  specifically   with  results  in   [40].  As  far  as  inlet  is
concerned,  total  pressure  and  total   temperature   are  imposed  respectively
equal  to  1  and  1  (since  is  adimensionalized  temperature).  Two  boundary
conditions are required because of the solution of Riemann problem applied on
inlet boundary. The fluid goes from left to right and, according to reference,
the fluid velocity is positive. So, the solution of Riemann problem is  outlined
in Fig. 28 according to subsonic regime assumption. Since two characteristics
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are entering in domain, two boundary conditions are required in order not to
violate the physics.

Instead, considering the Riemann solution at outlet, only one boundary
condition is required since only a characteristic line is entering in domain. So,
the static pressure outlet is imposed to change as a ramp from 1 to 2  in two
rotations of male compressor, so

p(t)={
1 t< πω

1+1⋅
(t− πω )
π
ω

π
ω≥t>

2π
ω

2 t≥
2π
ω

where p, ω, t are adimensionalized quantity with respect reference quantities in
Table 7.

Each wall was set to be adiabatic with the Neumann condition and the no-
slip condition is imposed to the momentum equation  near the solid boundary,
as required by use of N-S equations. 
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Figure 28: Boundary conditions according to Characteristic theory at inlet and
outlet of the screw compressor
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8.2.3 - Back flow problems 

Unfortunately, this boundary condition is not able to make the simulation
reach a periodic condition.  In fact a back flow occurrence can verify, as in
roots  compressor  case.  So,  the  solution  is  no  more  physical.   Inlet  flow
entering in  domain is  taken negative and outlet  flow which goes out  from
domain is taken negative. With this agreement, the occurrence of back flow
verifies at T=0.61 as it can be seen in Fig.29.

In this condition, the fluid velocity is negative since the flow goes locally 
from right to left.  So, the velocity is negative and the solution of Riemann 
problem, should change according to Fig.30.

 
Only  one  boundary  condition  is  now required  at  inlet  while  the  code

imposes  two  conditions  at  inlet  and  so  the  results  can  not  be  considered
physical.

 An attempt of decreasing the gradient of the pressure ramp was made
doubling the delay of pressure rising. Unfortunately,  the same result  comes
out.  The  easiest  way  to  solve  back  flow  problem,  avoiding  non-physical
results, is the same approach used in roots compressor simulation. So, screw
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Figure 29: Flow rate plot at inlet and outlet of the screw compressor
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compressor  is  located  between  two  tanks  at  different  static  pressure,  as
described in next sections.

 

8.3 - Two tanks simulations

As  mentioned  before,  the  first  tested  approach  in  order  to  reach  the
periodic conditions can give problems due to back flow, so a different method
was investigated. The idea behind the following approach, as previously said
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Figure 30: Back flow occurring at inlet at T=0.61. Zoom on inlet of the screw
compressor and solution of Riemann problem. Pseudocolor legend describes the x-

component of the velocity vector.
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in roots compressor test case, is to simulate the compressor between two large
pressurized tanks. In this way the computational domain does not contain any
inlet  or outlet.  The aim is transport air  from the low pressure tank to high
pressure tank. The pressure on the left tank was set to 1,  instead, the pressure
on the right tank was imposed equal to 2, according to non-dimensionalization
of parameters.

8.3.1 - Mesh

 
This time, a finer mesh was used and so η=5⋅10−4 was set as penalized

coefficient. Also in this case, a CFL=0.3 was used.
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Figure 16: Numerical grid with two tanks and screw compressor in the middle



Chapter 8 - 2D Screw compressor simulation

8.3.2 - Results

Each time step the flow rate at inlet and outlet and the power absorbed by
the screw compressor are computed. Specifically, inlet and outlet mass flow
rate are computed at x=±1 interfaces. The power is calculated starting from
the forces acting on rotors. It is calculated as 

∫
Ωmale

F⋅̄udΩm+ ∫
Ω female

F⋅̄udΩf
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Figure 17: Zoom on screw compressor
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where ū is the velocity vector inside the solid. These integrals correspond 
also to the integral of the source term of the energy equation.

Since the comparison was made between screw compressor with 3/5 and
5/6 lobes and the same speed of 8600 rpm, is expected that in the time required
for a full rotation respectively 3 and 5 oscillations in flow rate occur. The flow
rates at  inlet  and outlet  are  also different  since,  excluding the fact  that  the
comparison  was  done  with  a  computed  flow  rate  involving  a  3D  screw
compressor model, there are more lobes in rotors and the space available for
air is reduced and so the flow rate which can be provided is lower.  

Remembering that the inlet flow rate is negative when it  enters in the
control volume of the screw compressor and the outlet flow rate is positive
when it leaves the control volume, results obtained are summarized in Fig.31
and Fig. 32.
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Figure 31: Input and output mass flow rate of screw compressor between pressurized tank
with rotational speed of 8600 rpm and pressure ratio equal to 2
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It can be noted that initially the output flow is totally negative. This is due
to the fact that the pressure inside the compressor was initialized equal to 1
until x=1. So a huge back-flow occurs immediately at outlet. The oscillations
almost stabilize after T=30 but their amplitude is still decreasing and it will
continue until the whole air contained in tank 1 is transported in tank 2, when
the mass flow rates oscillation decrease to 0, but, since the tanks are larger, an
interval in which the flow rate is stable is expected.
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Figure 32: Zoom on flow oscillations when periodicity is almost reached



Chapter 8 - 2D Screw compressor simulation

Comparing 2D simulation results in Fig. 32 with the reference in Fig. 33,
it can be noted that the mass flow rate trend computed with the 2D simulation
is similar to the one computed with a 3D model. The mean mass flow rate in
input and output of the reference are respectively 0.134 and 0.137 kg/s.  

However, the inflow and outflow mean mass rates are not equal like Fig.
32 suggests. In fact, the inlet and outlet adimensional flow rates of the last 5
periods are respectively 0.0105 and 0.0139. 
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Figure 33: Reference mass flow trend in 3/5  screw compressor with male rotor
speed of 8600 rpm and pressure ratio equal to 2 [40]
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Figure 34: Density of rotors at T=0
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This result may led to a the wrong observation that somewhere in the 
control volume there is a mass source, but it is not. In fact, the mean values of 
inlet and outlet the mass flow rate integrated from T=0 to the final time are 
respectively 0.0122 and 0.0076. So, as expected from results of roots 
compressor test, there is a mass sink and the mass conservation law is not 
broken. The mean flow rates of the last 5 periods are different since the 
periodic condition are not fully reached. In fact, it can be observed that if the 
roots compressor test ends at T=160, the screw compressor simulation ends 
earlier, at T= 66. Both simulation have been carried out with the same 
computational resources and the same time deadline, and, as expected, screw 
compressor test requires more computational time to reach the same simulation
time since deals with more complex geometry which requires more number of 
profile points with respect to the roots lobe profiles. 

 Density is increasing inside the rotors as can be noted by comparing Fig.
34 with Fig. 35. 
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Figure 35: Density of rotors at T=66
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This behavior is encountered also in roots compressor simulation, but is
now enhanced by higher outlet pressure and mainly by another phenomena
which takes place. Tooth which match together, as it can be seen in Fig.  36,
can trap air. In fact during rotation, the air gap between the two tooth reaches
high pressure while progressively the gap reduces until rotors match perfectly
and the gap disappears. This means that air is entering in rotors, rising up in
this  way  its  density.  This  phenomena  is  not  observed  in  roots  compressor
simulation because roots lobes are always in contact and there is not formation
of air gaps between them. This phenomena of air trapping which occurs is
nothing but the compression in axial direction due to a volume chamber of
screw compressor  which disappears.   

 So, as far as screw compressor is concerned, the density rising in solid
bodies  are  due  to  the  lack  of  a  term  which  penalizes  density  in  mass
conservation equation, the relative high porosity of the solid and an additional
sink phenomena due to the fact that  the compression process can not be fully
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Figure 36: Phenomenology of density increasing
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described in 2D. All these phenomena explain why the mass flow rates are so
small compared to the reference one.  

The occurrence of this phenomena reflects on power calculation. In fact,
since the rotors density is increasing during the process, energy  storage occurs
in rotors which rotate at constant speed. So, since the mass is increasing while
the velocity remains constant, the kinetic energy of male and female rotors is
increasing. So, the solid bodies act like a sink of mass and energy.
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Chapter 9 - Conclusions  and  future
developments 

This work represents  a preliminary study to investigate the flow field in
roots and screw compressors by means of penalization techniques. The results
put in evidence that penalization methods work well on canonical test cases
like  for  example  the  flow  around  a  circular  cylinder.  However,  several
problems were encountered when dealing with roots and screw compressors.
First  of all, back flows problems were observed when inlet/outlet boundary
conditions are used: a possible solution, based on the use of two large tanks, is
proposed. Furthermore, some problems related to the permeability of the solid
bodies  were  observed:  in  particular,  the  simulations  show that  the  density
inside the rotor changes in time. A possible solution could be the introduction
of a particular penalization term also in the mass equation, following [41].

 Finally,  turbulence  phenomena  were  not  properly  modelled  in  this
preliminary  work:  future  work  should  be  related  to  the  selection  of  valid
turbulence models like for example URANS or LES approaches. Furthermore,
the extension to 3D is essential for screw compressors in order to describe the
axial displacement of the fluid.
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Appendix A

Physical model variables

E Total energy (internal+kinematic) per unit volume

F, G Physical fluxes

u Generic conservative variable

M∞ Freestream Mach number

p Pressure

Pr Prandtl number

Q Source term in heat equation

Reref Reference Reynolds number obtained by adimensionalization

Re∞ Freestream Reynolds number

S Entropy

Si j Mean strain rate tensor

T Temperature 

u,v Cartesian component of velocity

γ Specific heat ratio

μ Dynamic viscosity

ν Kinematic viscosity

λ Heat conductivity

τi j Laminar stress tensor

ρ Fluid density

Profile variables

β pitch helix angle of rotor

δ distance from centre line to point A (Fig. 3)

ε given tollerance
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Φ rotation angle

γ included angle of circular arc EF

η upper parametric limit of trochoid CD

κ normal equidistance of trochoid CD

λ pitch lead angle of rotor 

μ slanted angle of ellipse FG

θ curve parameter of rack

θ1 , θ2 lower and upper parameter limits of ellipse FG

ρ1 radius of circular arc AB

ρ2 Radius of circular arc HI 

τ normal equidistance of trochoid DE

ω rotation speed

ζ upper parametric limit of trochoid DE

Ac centre distance between two rotors

d length of straight line IJ

ea major radius of ellipse FG

eb minor radius of ellipse FG

ex , ey coordinates of center point of elipse FG

fm equation of meshing

ha addendum of rack

hd dedendum of rack

k iteration number

L length of rotor screw part

m number of design variables 

p distance from point C1 to yh-axis (Fig. 3)

rd inner radius rotor

ro outer  radius rotor

rp pitch radius rotor

ri (xi, yi, zi) position vector in coordinate system Si

Si coordinate system i

s length of straight line GH

t length of straight line BC

u pressure angle in high-pressure side of the rack
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v pressure angle in low-pressure side of the rack

Vi sliding velocity in coordinate system Si

W transverse circular pitch of rack 

z tooth number of rotor

Subscrips

1 Male rotor

2 Female rotor
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