Building Information Modeling for Construction Management
Testing interoperability and procedures for a healthcare facility in Moncrivello

Candidato
Emmanuele Iacono

Relatore
Prof.ssa Anna Osello

Correlatore
Ing. Matteo Del Giudice

Dicembre 2018
Efficiency is doing better what is already being done

P. F. Drucker
Acknowledgements

First of all, I would like to thank my supervisors Prof. Anna Osello and Eng. Matteo Del Giudice for having guided me through these intense months with their patience and their experience. Thanks also to all the people working at the Drawing TO the Future office and all the other students I met there, sharing this amazing experience with me. Thanks to Prof. Massimiliano Lo Turco for having introduced me to BIM for the first time and for having transmitted this profound interest for it to me through his lessons.

Thanks to my family, for supporting me every day since the first day, to all my friends and colleagues, and to all the people I met during these years, each one of you has somewhat contributed shaping the person that I am today.

Thanks to Tushari, for her constant support through the years, for her endless patience even during my hardest times, and especially for her infinite love, which kept me from falling apart. You mean everything to me.

Thanks to Music, for being a relief whenever I needed it the most, and thanks to all the people and bands I have had the honor to play music with, during these years. Thanks to Flamestrike and Locus Animae, for being second families, made of wonderful people.

Thank you all.
The research carried out for this thesis aims to study the applicability of the BIM methodology to the Construction Management discipline. In particular, the present work is focused on the case study of a healthcare facility for people affected by Alzheimer's disease.

The work is divided into different phases: at first, a study has been carried out on different classification systems of building components, in order to assess the potential and criticality of each one and their respective compatibility within the BIM tools used. These codes are meant to be used to produce 4D simulations of the construction site to verify potential interferences. In addition, the production of executive documentation is tested through the interoperability between BIM and CAM technologies. Lastly, building data and parameters from the executive model are exported for the life cycle Facility Management of the structure, using the COBie database exchange standard.

The final objective of the present thesis is to draw from this case study a working method and a series of strategies that can be applied as general procedures, looking for the most efficient practices and thus avoiding possible repetitiveness of operations and redundancy of information.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>5</td>
</tr>
<tr>
<td>Abstract</td>
<td>7</td>
</tr>
<tr>
<td>Contents</td>
<td>9</td>
</tr>
<tr>
<td>Index of Figures</td>
<td>11</td>
</tr>
<tr>
<td>List of acronyms and file formats</td>
<td>15</td>
</tr>
<tr>
<td>Section A Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 1 Building Information Modeling</td>
<td>21</td>
</tr>
<tr>
<td>1.1 What is BIM</td>
<td>23</td>
</tr>
<tr>
<td>1.2 Why BIM</td>
<td>26</td>
</tr>
<tr>
<td>1.3 BIM standards and regulations</td>
<td>29</td>
</tr>
<tr>
<td>1.3.1 International BIM standards</td>
<td>29</td>
</tr>
<tr>
<td>1.3.2 Italian BIM standards</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 2 Construction Management</td>
<td>39</td>
</tr>
<tr>
<td>2.1 What is Construction Management</td>
<td>41</td>
</tr>
<tr>
<td>2.2 BIM and Construction Management</td>
<td>43</td>
</tr>
<tr>
<td>2.2.1 BIM and CM in the R&D</td>
<td>45</td>
</tr>
<tr>
<td>2.2.2 BIM and CM in the current AEC industry</td>
<td>49</td>
</tr>
<tr>
<td>2.2.3 Project delivery methods</td>
<td>54</td>
</tr>
<tr>
<td>Chapter 3 The Trompone case study</td>
<td>63</td>
</tr>
<tr>
<td>3.1 The Trompone healthcare facility</td>
<td>65</td>
</tr>
<tr>
<td>3.2 BIM for healthcare</td>
<td>67</td>
</tr>
<tr>
<td>3.3 The BIM4Health research group</td>
<td>70</td>
</tr>
<tr>
<td>3.4 The new CDAI project</td>
<td>72</td>
</tr>
<tr>
<td>Section B Methodology</td>
<td>75</td>
</tr>
<tr>
<td>Methodology scheme</td>
<td>77</td>
</tr>
</tbody>
</table>
INDEX OF FIGURES

Figure 1: the ‘n’ dimensions of BIM 25
Figure 2: data loss in the building life cycle 27
Figure 3: the MacLeamy diagram 28
Figure 4: BIM Maturity Levels as illustrated by the ‘BIM B/555 Roadmap’ 31
Figure 5: LODs of a window according to the UNI 11337-4:2017 36
Figure 6: LODs of a foundation according to the UNI 11337-4:2017 38
Figure 7: example of a Gantt chart 42
Figure 8: comparison between the PMBOK knowledge areas and BIM activities 45
Figure 9: the use of laser scanning on site as a model checking tool 47
Figure 10: City Point Phase II’s discipline models that needed to be coordinated 50
Figure 11: City Point Phase II coordination model 50
Figure 12: LiRo’s 18-month effort to transform 2D paper data into an intelligent BIM model 51
Figure 13: East Side Access’ massive infrastructural BIM model 52
Figure 14: Adult Behavioral Healthcare Center’s discipline models to coordinate 53
Figure 15: basic scheme of the Design-Bid-Build delivery method 55
Figure 16: basic scheme of the Multi-Prime delivery method 56
Figure 17: basic scheme of the Construction Manager at Risk delivery method 57
Figure 18: basic scheme of the Design-Build delivery method 58
Figure 19: efficiency in delivery methods comparison 59
Figure 20: basic scheme of the Integrated Project Delivery method 61
Figure 21: the Trompone sanctuary and healthcare facility 65
Figure 22: the new-built Healthcare House 66
Figure 23: Queen Silvia Children’s Hospital in Gothenburg 67
Figure 24: University College London Hospitals’ Proton Beam Therapy Center 68
Figure 25: the old warehouse, where the CDAI is placed, highlighted in red 72
Figure 26: the new CDAI and its therapeutic garden’s project 74
Figure 27: scheme of the methodology applied for this thesis 77
Figure 28: BS 1192’s CDE basic structure 81
Figure 29: BS 1192’s example of the last checks and data transfers in the CDE 83
Figure 30: ‘Condivisione_1’: first sharing strategy scheme 86
Figure 31: ‘Condivisione_2’: second sharing strategy scheme 87
Figure 32: list of all the models and their internal links
Figure 33: list of the first sharing strategy federated models and their links
Figure 34: list of the second sharing strategy federated models and their links
Figures 35-36-37-38: the different groups of source models used in the sharing strategies
Figures 39-40: the federated models of the first and the second sharing strategies
Figures 41-42-43-44: Axonometric view of the CDAI discipline models
Figures 45-46: the new ‘Steel’ ribbon in Revit® 2019
Figures 47-48-49-50: Some examples of the steel connections modeled in Advance Steel®
Figures 51-52-53: the attempt at resolving the three-beam-to-column connection issue
Figure 54: the Advance Steel® document manager with all the detail .dwg files produced
Figure 55: example of the assembly detail of a steel column and its connections
Figure 56: example of a steel connection detail between a column and four beams
Figure 57: the ‘Synchronization’ dialog window with all the changes traced
Figure 58: the ‘Synchronization’ changes report produced by the tool
Figures 59-60: the issue with the roof node, and the later attempt to partially fix it
Figures 61-62: the errors showing up when trying to save the model
Figure 63: the dialog box asking to specify and change all the steel profiles
Figure 64: the concrete foundation’s rebar modeling operation
Figure 65: rebar visualization settings as an instance parameter
Figure 66: operation on the hierarchy and appearance of material layers
Figures 67-68-69-70: the set of tools used to produce the 2D detail views
Figure 71: detailed callout section of the foundations
Figure 72: detailed callout section of the wall-floor junction
Figure 73: detailed callout section of the wall-roof junction
Figure 74: UniFormat example from the Autodesk Classification Manager’s database
Figure 75: MasterFormat example from the Autodesk Classification Manager’s database
Figure 76: Uniclass P3 example from the Autodesk Classification Manager’s database
Figure 77: OmniClass 21 example
Figure 78: classification conversion scheme
Figure 79: comparison table of the four international classification systems studied
Figure 80: UNI 8290 example
Figure 81: results of the classification study based on the five criteria previously exposed
Figure 82: a parallel coordinate graph showing a graphical restitution of the study
Figure 83: classification test on an exterior wall
Figure 121: construction simulation: end of all construction activities

Figure 122: setting of the clash detection between the architectural and structural models

Figure 123: clash detection results

Figures 124: clash detection report exported as .html file

Figure 125: the temporary works’ masses modeled in Revit®

Figure 126: the temporary works’ masses imported in the Navisworks® coordination model

Figure 127: the temporary works (in yellow) appearing during the construction simulation

Figure 128: setting of the time-based clash detection between the temporary works’ masses

Figure 129: time-based clash detection results

Figure 130: time-based clash detection exported as .html file

Figure 131: the COBie Extension main functions

Figures 132-133-134: examples of the COBie plugin’s ‘Setup’ settings

Figures 135-136: example of the schedules and parameters created after the plugin’s ‘Setup’

Figure 137: the COBie plugin ‘Modify’ window

Figures 138-139-140: examples of the COBie plugin’s ‘Modify’ settings

Figures 141-142: example of COBie instance and type parameters after the ‘Modify’ settings

Figure 143: the COBie project parameters

Figure 144: the COBie plugin ‘Export’ window

Figure 145: the part of the script which writes the codes from the ‘Task ID’ parameter

Figure 146: the entire COBie AssetIdentifier writing Dynamo script

Figures 147-148: before and after the AssetIdentifier Dynamo compilation

Figure 149: the COBie spreadsheet columns’ color coding

Figure 150: the COBie spreadsheet ‘Introduction’ worksheet

Figure 151: the COBie spreadsheet ‘Floor’ worksheet

Figure 152: the COBie spreadsheet ‘Type’ worksheet

Figure 153: the COBie spreadsheet ‘Component’ worksheet
List of Acronyms and File Formats

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>Architecture, Engineering and Construction</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modeling / Management</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standards Institution</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Drafting / Design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer Aided Manufacturing</td>
</tr>
<tr>
<td>CBS</td>
<td>Cost Breakdown Structure</td>
</tr>
<tr>
<td>CDAI</td>
<td>Centro Diurno per malati di Alzheimer Integrato (Integrated Daily Center for Alzheimer care)</td>
</tr>
<tr>
<td>CDE</td>
<td>Common Data Environment</td>
</tr>
<tr>
<td>CI/SfB</td>
<td>Construction Index / Samarbetskommittén för Byggnasfrågor</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>CM</td>
<td>Construction Manager</td>
</tr>
<tr>
<td>CM@R</td>
<td>Construction Manager at Risk</td>
</tr>
<tr>
<td>COBie</td>
<td>Construction Operations Building information exchange</td>
</tr>
<tr>
<td>CPIC</td>
<td>Construction Project Information Committee</td>
</tr>
<tr>
<td>CSC</td>
<td>Construction Specification Canada</td>
</tr>
<tr>
<td>CSI</td>
<td>Construction Specification Institute</td>
</tr>
<tr>
<td>DB</td>
<td>Design-Build</td>
</tr>
<tr>
<td>DBB</td>
<td>Design-Bid-Build</td>
</tr>
<tr>
<td>D. Lgs.</td>
<td>Decreto Legislativo (legislative decree – normative text)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>FM</td>
<td>Facility Management</td>
</tr>
<tr>
<td>GMP</td>
<td>Guaranteed Maximum Price</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>H&S</td>
<td>Health and Safety</td>
</tr>
<tr>
<td>iBIM</td>
<td>Integrated Building Information Modeling</td>
</tr>
<tr>
<td>IFC</td>
<td>Industry Foundation Classes</td>
</tr>
<tr>
<td>IFD</td>
<td>International Framework for Dictionaries</td>
</tr>
<tr>
<td>IPD</td>
<td>Integrated Project Delivery</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>LOD</td>
<td>Level of Detail / Development</td>
</tr>
<tr>
<td>MEP</td>
<td>Mechanical, Electrical and Plumbing</td>
</tr>
<tr>
<td>MP</td>
<td>Multi-Prime</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NBS</td>
<td>National Building Specification</td>
</tr>
<tr>
<td>OBS</td>
<td>Organization Breakdown Structure</td>
</tr>
<tr>
<td>PAS</td>
<td>Publicly Available Specification</td>
</tr>
<tr>
<td>PM</td>
<td>Project Management</td>
</tr>
<tr>
<td>PMBOK</td>
<td>Project Management Book of Knowledge</td>
</tr>
<tr>
<td>PtD</td>
<td>Prevention through Design</td>
</tr>
<tr>
<td>RFI</td>
<td>Request for Information</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio-Frequency Identification</td>
</tr>
<tr>
<td>RSA</td>
<td>Residenza Sanitaria Assistenziale (Healthcare Assistance Residence)</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>UNI</td>
<td>Ente nazionale italiano di unificazione (Italian national institute of unification)</td>
</tr>
<tr>
<td>VDC</td>
<td>Virtual Design and Construction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
<tr>
<td>.dwg</td>
<td>Autodesk® Autocad® and Advance Steel® drawing format</td>
</tr>
<tr>
<td>.html</td>
<td>Hypertext markup language</td>
</tr>
<tr>
<td>.mpp</td>
<td>Microsoft Project file</td>
</tr>
<tr>
<td>.nwc</td>
<td>Autodesk® Navisworks® cache file</td>
</tr>
<tr>
<td>.nwf</td>
<td>Autodesk® Navisworks® file</td>
</tr>
<tr>
<td>.rvt</td>
<td>Autodesk® Revit® model file</td>
</tr>
<tr>
<td>.smlx</td>
<td>Steel markup language (Autodesk® Advance Steel® exchange format)</td>
</tr>
</tbody>
</table>
Section A
Introduction

Contents

Chap. 1 Building Information Modeling
Chap. 2 Construction Management
Chap. 3 The Trompone case study
CHAPTER 1
BUILDING INFORMATION MODELING

Keywords: BIM, nD modeling, BIM standards, Level 2 BIM, LOD
1.1 **What is BIM**

After a decade since the first publication of the well-known "BIM Handbook", by the authors Eastman, Teicholz, Sacks and Liston [1], the topic of BIM (Building Information Modeling) seems to have been discussed and studied enough to be easily implemented in the AEC industry, therefore there should not be any necessity of explaining what BIM is and what it means. This may be true to some extent, however, there is a considerable difference in the development and implementation of such processes among different countries around the world [2], and the same applies to the general awareness of the potential of BIM modeling, which renders the explanation of its meaning far from being unnecessary.

Quite acutely, both John Eynon [3] and Brad Hardin and Dave McCool [4] define designing with BIM as the process of constructing a building *twice*, once virtually and then physically. Reviewing the building before construction allows owners, contractors, and especially designers, to focus on any possible issue, risk and clash between structure, architecture and systems before encountering those issues directly on the construction site, which means saving a massive amount of money and work effort. In fact, speaking of efficiency and savings, those were already being massively reported years ago, when BIM was barely starting to be implemented in the industry [5]; these were already important driving factors.

Also to consider is the fact that despite 3D visualization and coordination being the most evident and common use of BIM [6], there
Building Information Modeling for Construction Management

is a lot more than that to evaluate. As the multiple meanings of the acronym suggest, it is not just about the model itself, but also about the management of it [7]. In fact, the management of information about the building is what stays at the core of the process which BIM stands for. This easily extends to design reviewing, energy efficiency evaluation, structural analysis, scheduling, logistics, cost estimating, construction coordination, quantity take-off, safety management, data analysis, facility management, and many more activities related to the life cycle of a building.

Regarding this large amount of activities and processes linked to BIM, Imriyas Kamardeen [8] introduces the concept of ‘nD modeling’, stressing even more the fact that there could virtually be an infinite number of dimensions representing the designed building. Along with the usual 2D and 3D modeling, indicating respectively two-dimensional plans, elevations and sections, and three-dimensional volumetric views of the building (or parts of it) in its entirety, Kamardeen goes further and defines 4D, 5D, 6D, 7D and even 8D representations. Starting from 4D, he explains four-dimensional modeling as the process of linking the volumes of the project with time schedules: this creates a real-time simulation of the construction of the building, which can be very useful to look for potential interferences and clashes on the construction site, and avoid those clashes during the different phases of the construction process, producing better site layouts and improving productivity. 5D, on the other hand, is defined as the ability to integrate each element of the model with cost information, saving up a lot of time and facilitating the process of producing cost estimates and quantity take-offs for the construction site. The author then goes on with 6D, which he determined being the association of the building information model with the facility management discipline. Therefore 6D BIM works as a detailed database of information describing every aspect
and characteristic of the building that can be updated anytime changes are made to the actual real building, so that real-time monitoring of its conditions is made possible. Explaining 7D modeling Kamardeen talks about sustainability, meaning that this kind of representation revolves around energy evaluation, carbon targets and other environment-friendly design strategies. Finally, he defines 8D Building Information Modeling as the possibility of linking building and site information with health, safety and security matters, making it easier for PtD experts to evaluate risks on the construction site and avoid or prevent hazards. Although Kamardeen stops here, it is clear that nD BIM could be extended to other dimensions and applications, rendering the ‘n’ potentially unlimited.

Figure 1: the ‘n’ dimensions of BIM
1.2 Why BIM

Having briefly explained what BIM means and what Building Information Modeling refers to as far as processes and methodology, what it is even more interesting and useful to know is why it is important to adopt and implement BIM and how its adoption helps improve design processes and management.

One of the most evident reasons is that the current processes used to design and construct buildings often generate unexpected cost increases and delays during both the design phase and the construction phase, not to speak of the many errors that occur due to poor or no communication between the various professionals involved and the documents that they produce [9]. This is because of the traditional approach to buildings construction and delivery methods, which are based on paper communication, silos-like subdivision of disciplines [10] [11], and unnecessary repetition and rewriting of information. These are not sustainable business models for the AEC industry anymore, now that with Building Information Modeling it is possible to produce cost estimates, energy or structural analyses, or quantity take-off schedules without the need of manually copying or re-inputting information, or even worse, the need to replicate drawings for each discipline or design phase from scratch. These iterative activities have always been potential sources of mistakes and misinterpretation, causing errors, data loss, delays and waste of money. The specific issue of the loss of data and information during traditional delivery processes is illustrated in Figure 2.
Moreover, those discipline-specific analyses often happen to be carried at the end of the design phase, when most of the important changes are more difficult to realize, which means that they are also more expensive and time-consuming to perform. On the other hand, what BIM allows designers to do is to elaborate and produce documentation that updates itself anytime changes are made to the model which that documentation is associated to. This is not just an enthusiastic statement made by some passionate BIM advocate, but rather a well-known trend observed in the industry. The clearest way to see and understand it is by taking a look at the MacLeamy Design Effort/Effect curve in Figure 3.

Note that in the MacLeamy diagram the curve on the left refers to IPD, which stands for Integrated Project Delivery (the specific topic of IPD and BIM will be discussed later), but since the processes of Building Information Modeling require an integrated approach to work properly, the curve can easily be applied to it as well. On one hand, what the diagram shows is that integrated delivery methods require an intense and rapid increase in work effort during the first stages of the design phase, compared to the traditional
delivery methods, in which the effort increases slower, but peaks later, when construction documentation needs to be produced. However, on the other hand, the early peak in the effort needed when applying integrated design means that the cost of changes, which predictably raises overtime, is significantly reduced, while the ability of applying those changes is higher.

Still, note that despite the diagram shows a different building process subdivision compared to the Italian building phases, the rules and concepts of it could fit the Italian building process as well.
1.3 BIM STANDARDS AND REGULATIONS

1.3.1 International BIM standards

The advantages, opportunities and savings of using BIM processes are so evident that a large number of countries around the world has already begun to integrate Building Information Modeling and implement it in their current industry standards and their tendering procedures policies.

There is currently a plan for publishing the first international BIM standards later this year 2018, and there are two further ones to be released in early 2020 [14]. It is said that these new standards will substitute the previous BS 1192 and PAS 1192 standards, published by the BSI and currently used and applied in the UK. These new standards will be labeled as the BS EN ISO 19650 ‘Organization of information about construction works – Information management using building information modeling’ series, divided in four distinct parts (so far): BS EN ISO 19650-1 ‘Concepts and principles’, and BS EN ISO 19650-2 ‘Delivery phase of assets’, which will replace respectively the current BS 1192-1 and PAS 1192-2. These two first parts of the new BS EN ISO 19650 are under development at the moment, and are set to be released in late 2018. At the same time, the two additional parts of the same international BIM standards are scheduled for 2020 and are currently in progress. Those will be BS EN ISO 19650-3 ‘Operational phase of assets’, and BS EN ISO 19650-5 ‘Specification for security-minded building information modeling, digital built environments and smart asset management’, which will replace respectively the current PAS 1192-3 and PAS 1192-5. These new international standards are meant to be a reference
point and a landmark for the use of BIM in the AEC industry and clarify the present normative fragmentation among the many national regulations, in advantage of the whole global construction industry.

Another fundamental international standard about BIM is the IFC standard: the acronym stands for ‘Industry Foundation Classes’, and it is basically an open file format that should allow the exchange of information among different licensed software, facilitating the interoperability between them. This standard is regulated by the ISO 16739:2013 and is carried on by buildingSMART, an international organization for the standardization of BIM information, as a neutral product data set for the collection of information about the building during its life cycle. In fact, IFC is a set of file formats, each with its own specific features and uses [15].

Until the adoption of the international BIM standards, the BS 1192 and PAS 1192 standards published by the BSI remain valid in Great Britain, while also being kept as references outside the UK. This country has been one of the leaders in the field, being among the first countries to make the use of BIM for government projects mandatory for any firm willing to take part in tenders. This is because of the introduction, in 2011, of targets for the capital costs reduction in the public sector by 20%, for faster delivery, and for the reduction of carbon emissions by 50% by 2019 [16]. A large number of aspects were considered to achieve those targets, and it is clear that the use of BIM was considered one of the key components in the strategy. Moreover, to achieve the 20% reduction of procurement costs, part of the Government’s Construction Strategy, since 2016 BIM Level 2 (Figure 4) has been made mandatory for all centrally-procured construction projects, which means that the entire AEC industry was quickly forced to adapt not to be left behind in the process [17]. This already had the result of positively
increasing the awareness about BIM and its adoption raised from 48% in 2015 to 54% in 2016, and this number is only expected to rise significantly in current and future years.

![Figure 4: BIM Maturity Levels as illustrated by the ‘BIM B/555 Roadmap’][18]

What substantially is ‘Level 2 BIM’ is briefly but quite eloquently illustrated in the ‘B/555 Roadmap’ published by the BSI, which explains the different stages of information modeling and data management in construction projects, from simple CAD to an auspicious total integration of BIM in shared web-based platforms. The B/555 Roadmap therefore presents four different so-called ‘Maturity Levels’ of BIM evolution through time, with all of the current and future normative standards that regulate the building production and management throughout all of those. The four levels are described as follows:

- **Level 0**: ‘Unmanaged CAD probably 2D, with paper (or electronic paper) as the most likely data exchange mechanism’;
- **Level 1**: ‘Managed CAD in 2 or 3D format using BS 1192:2007 with a collaboration tool providing a common data environment, possibly some standard data structures and formats. Commercial data managed by standalone finance and cost management packages with no integration’;

- **Level 2**: ‘Managed 3D environment held in separate discipline ‘BIM’ tools with attached data. Commercial data managed by an ERP. Integration on the basis of proprietary interfaces or bespoke middleware could be regarded as ‘pBIM’ (proprietary). The approach may utilise 4D programme data and 5D cost elements’;

- **Level 3**: Fully open process and data integration enabled by IFC/IFD. Managed by a collaborative model server. Could be regarded as iBIM or integrated BIM potentially employing concurrent engineering processes’ [19].

Despite Level 3 BIM being out of reach for now, this is the ausplicable ultimate goal of the AEC industry for future years, as it could provide a new way of creating and sharing building data throughout the whole industry, and provide contractual framework that could help develop a truly co-operative working environment [20].

Finally, another important international standard worth mentioning is COBie (Construction Operations Building Information Exchange). This is meant to be a standard format for building documents handover, being it one of the most confused phases in the building process, when paper and electronic information about the constructed building has to be collected and handed to the owner and the future facility magers.

With the aim of making this procedures easier and more efficient, COBie has been developed by Bill East and the United States Army Corps of Engineers as a template for said operation, back in 2007 [21]. This way,
all building information are entered in a spreadsheet at the moment when they are created or made available during the design and the construction phases, so that at the end of the project, the spreadsheet will contain all the building data that the owner will need, and the spreadsheet format makes these data easier to exchange, not depending on third-party BIM software [22].

To this day COBie is actually regulated by the BS 1192-4 ‘Collaborative production of information. Part 4: Fulfilling employer's information exchange requirements using COBie - Code of practice’, last updated in 2014 [23], and still used internationally as an operation information exchange standard.

1.3.2 Italian BIM standards

After a number of countries have already introduced laws and standards to make BIM mandatory for public projects, in recent years Italy published its first regulations too.

On the 19th of April 2016, the new construction contracts law was approved, named D. Lgs 50/2016, ‘Codice dei contratti pubblici’. This legislative decree was meant to adjust all regulations concerning the public contracts, not only in construction, and to do so by introducing or implementing new tools and practices allowed by the latest technologies. In particular, this new law introduces the concept of information modeling for buildings and infrastructure, stating that ‘the design of public works is structured, according to three levels of subsequent technical insights, in technical and economic feasibility project, definitive project and executive project and is intended to ensure [...] the rationalization of design activities and the related checks through the progressive use of electronic methods and tools specific such as modeling for construction and infrastructure’
Then later it goes on by stating: ‘contracting authorities may request for new construction works as well as for recovery, redevelopment or variations, primarily for complex jobs, the use of the specific electronic methods and tools referred to in the paragraph 1, letter h). These tools use interoperable platforms by means of non-proprietary open formats, in order not to limit competition between technology providers and the involvement of specific projects among the designers. The use of electronic methods and tools can be required only by contracting stations equipped with adequately trained staff’ [25].

What the article introduces, for the first time in Italy, is that for public construction, requalification and renovation, the contracting authorities proposing the contract can ask bidders and future contractors to produce all of the design documents via information modeling, and this can also be a selection criterion. This means that in the future, firms that would want to keep running in the industry will have to adopt BIM modeling, otherwise they will soon inevitably get out of the market.

As a factualization of the D. Lgs 50/2016, another decree, the ‘D. M. 560/2017’, published on the 1st of December 2017, and called ‘BIM Decree’ soon after its publication, states, in its Article 6, all the deadlines for the mandatory adoption of information modeling for public contracts, starting from January 2019 for any construction contract above 100 million Euros, then dropping the value along the years, until January 2025, after which all construction contracts below 1 million Euros will be mandatorily requested in BIM as well [26].

Finally, in 2017 a new UNI standard was published (and some other of its parts are in the way of being published soon), the UNI 11337, which regulates anything about BIM in the Italian industry. In particular, the fourth
Section A: Introduction

part, UNI 11337-4 ‘Evoluzione e sviluppo informativo di modelli, elaborati e oggetti’ ['Evolution and informative development of models, documents and objects'], regulates the informative content and development of BIM elements, using the term LOD as ‘Level of Development’, as the international standards suggest, and explicitly specifying what kind of geometrical and information content each category of element needs to have, at each stage of the project process. However, this Italian UNI differs in the naming of every LOD step. In particular, UNI 11337-4 names LODs by letters instead of numbers, which makes it clearer and easier to manage.

UNI’s LODs are listed from the least detailed and least informative, with the letter A (which could correspond to the international LOD 100), to the most developed and up-to-date with the actual physical building, which is labeled with the letter F (and corresponds to the international LOD 500), with the addition of LOD G relating to an as-built model as well, but when used for the life cycle management and maintenance of the building.

The following are some examples of LODs of different categories of building elements, as described by UNI 11337-4.

<table>
<thead>
<tr>
<th>LOD</th>
<th>Geometry</th>
<th>Object</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Architectural element represented by a 2D symbol</td>
<td>2D graphic</td>
<td>Approximate positioning</td>
</tr>
<tr>
<td>B</td>
<td>Geometric representation of the vertical or pseudovertical architectural opening with approximate shape, dimension and position</td>
<td>Opening in a 3D solid</td>
<td>- Simple size geometries; - Dimensions; - Thermo-acoustical needs definition; - Material definition</td>
</tr>
<tr>
<td></td>
<td>LOD</td>
<td>Description</td>
<td>Level of Detail</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>C</td>
<td>Vertical or pseudovertical architectural element represented by a 2D symbol 2D graphic - Approximate positioning</td>
<td>Composite 3D solid</td>
<td>- Number of wings; - Glass type; - Opening type; - Acoustical transmission design performance; - Thermal insulation values design performance; - Component definition</td>
</tr>
<tr>
<td>D</td>
<td>Vertical or pseudovertical architectural element represented with correct shape, dimensions and position. All physical elements that make the fixture and the accessory components are represented</td>
<td>Complex 3D solids</td>
<td>- Accessory components; - Shutter type; - Finishes; - Construction details; - Components detail without references to single products</td>
</tr>
<tr>
<td>E</td>
<td>Vertical or pseudovertical architectural element represented with correct shape, dimensions and position. All physical elements that make the fixture and the accessory components are represented. Specific material supplier data and finishes are specified</td>
<td>Complex 3D solids</td>
<td>- Acoustical transmission with actual fixture's value as declared by the supplier; - Thermal insulation's actual value as declared by the supplier; - Supplier's assembly sheets; - Components detail with the single product of a specific manufacturer; - Assembly information; - Support material; - Technical sheets</td>
</tr>
<tr>
<td>F</td>
<td>Mounted window fixture of a specific manufacturer. As LOD E (surveyed)</td>
<td>Window fixture</td>
<td>- Maintenance manual; - Classification (UNI 8290, CSI, etc.); - Product certifications; - Approval certificate</td>
</tr>
<tr>
<td>G</td>
<td>Window fixture. New interventions: as LOD F (with updates). Maintenance and management on existing elements: as LOD C or D (starting from)</td>
<td>Window fixture</td>
<td>Maintenance date</td>
</tr>
</tbody>
</table>

Figure 5: LODs of a window according to the UNI 11337-4:2017 [27]
Section A: Introduction

<table>
<thead>
<tr>
<th>LOD</th>
<th>Geometry</th>
<th>Object</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Horizontal or pseudo-horizontal linear structural element represented by a 2D symbol</td>
<td>2D graphic symbols</td>
<td>- Approximate positioning</td>
</tr>
<tr>
<td>B</td>
<td>Horizontal or pseudo-horizontal linear structural element represented by a sketched extrusion solid</td>
<td>3D solid</td>
<td>- Supposed materials; - Standard rebar incidence</td>
</tr>
<tr>
<td>C</td>
<td>Horizontal or pseudo-horizontal linear structural element represented by a solid having calculated dimensions according to the technical regulations</td>
<td>Complex 3D solid</td>
<td>- Calculated materials; - Calculated rebar incidence</td>
</tr>
<tr>
<td>D</td>
<td>Horizontal or pseudo-horizontal linear structural element represented by a solid having dimensions equal to real ones. All rebar is modeled into the correct position</td>
<td>Complex 3D solids</td>
<td>- 3D rebar; - Construction details</td>
</tr>
<tr>
<td>E</td>
<td>Horizontal or pseudo-horizontal linear structural element represented by a solid having dimensions equal to real ones. All rebar into the correct position, specific material and rebar supplier data and casting management are included</td>
<td>Complex 3D solids</td>
<td>- Casting management; - Rebar bending lists; - Eventual prefabricated rebar cages production</td>
</tr>
<tr>
<td>F</td>
<td>As LOD E (surveyed)</td>
<td>Complex 3D solids</td>
<td>- Test certificates; - Maintenance plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>New interventions: as LOD F (with updates). Maintenance and management on existing elements: as LOD C or D (starting from)</td>
<td>Complex 3D solids</td>
<td></td>
</tr>
</tbody>
</table>

- Maintenance/substitution date;
- Maintenance subject;
- Intervention type

Figure 6: LODs of a foundation according to the UNI 11337-4:2017 [28]
CHAPTER 2
CONSTRUCTION MANAGEMENT

Keywords: WBS, Gantt, PMBOK, Project Delivery Methods, IPD
2.1 What is Construction Management

To summarize briefly, Construction Management is the discipline that handles the building during the final phase of the project before handing over to the owner. This implies arranging material schedules, construction operations, sequence of activities, crew organization, health and safety, construction site designing, cost and time management, verification of installations, update documentation, and all those practices that make possible the physical realization of buildings.

This means that CM is what is necessary to transform a design into a real structure, and sometimes the activities of a construction manager begin a lot earlier than expected, potentially even from pre-design. Among the activities and tools of the construction manager, there are the very known and useful so-called ‘breakdown structures’: these structures help subdivide and deconstruct the project in smaller, manageable packages. The main example of breakdown structure is the WBS, namely the Work Breakdown Structure: it is a hierarchical structure in which bigger elements, such as macro-categories, main building disciplines, or major deliverables, are divided into smaller ones, in an iterative process, until elementary components or activities are covered. Other examples of similar structures are Cost Breakdown Structure and Organization Breakdown Structure.

Moreover, since the CM will almost certainly have to deal with time and cost management, another very useful Project Management tool that will help them dealing with the design and construction phases of a project
is the **Gantt chart**. This particular type of graph shows all the activities of a project, just like a WBS, but representing them as horizontal bars placed along a timeline, so that one can see at the same time the activity itself, its duration, its start and finish date, and all the material and human resources (that can be written above the bar) needed for the completion of each task. This type of representation allows the PM (or, in this case, the CM) to keep trace of the costs of each activity and task along the life of the project, since resources can be assigned to tasks, and cost can be assigned to each resource employed. In a BIM working environment this becomes the management of 4D and 5D dimensions of the information model, which are the most important in construction.

![Example of a Gantt chart](image-url)
2.2 BIM AND CONSTRUCTION MANAGEMENT

Since BIM is an increasingly renowned set of methods, tools and processes, it has many similarities with the discipline of Project Management, and in particular with the construction scope. This means that the two can easily have processes in common and thus the integration of BIM in construction works could take advantage of those known and already experience-validated methods.

As already stated in previous chapters, there is a number of specific design and construction activities that can be strongly enhanced if applied with the use of Building Information Modeling. To quickly recap, the main ones are, as usual [2]:

• **Clash detection**: visually checking interferences among the different plans and models of various disciplines by looking at real time simulations;

• **Constructability**: the advantage of having a virtually built structure to verify means and possibility of construction and promote possible issues into RFIs;

• **Structural or energy analysis**: using tools and plugins to verify structural and energy performances can validate an information model for those disciplines, or highlight changes to make, in a more efficient way;

• **4D and 5D**: by linking the information model to time and cost schedules it is possible to obtain almost instantaneously simulations of the construction and cost estimates for the building;

• **Quantity take-off**: since it is possible to associate cost information to the elements of the model, and the model itself can be represented
as a database, it is easier to produce quantity take-offs for procurement procedures;

- **Element based models**: the information model is made-up of multiple elements combined together, so that breaking down the model into each one of them results in better management in favor of the whole project;

- **Integration, collaboration and communication**: each member of the design and construction team can work on the information model to view, revise, change and update the elements and information of the building, and all their effort is gathered into that single comprehensive model.

All of these activities that are made possible with the use of BIM, have at least some correspondence with the so-called ‘knowledge areas’ of the Project Management Book of Knowledge (PMBOK), which applies them to Project Management procedures. Integration management has basically the same meaning and function as in BIM; project scope management and breakdown structures like WBS, OBS and CBS can apply to BIM the same way, due to the already exposed possibility of deconstructing the model; project cost and time management areas of PMBOK are very similar to the possibilities offered respectively by 5D and 4D BIM; constructability does not have a direct correspondence but construction risks mitigation handles similar issues; quality processes and issue analysis act similarly to the clash detection procedures of BIM tools; procurement management is what quantity take-offs make possible, and which BIM largely facilitates; finally, the human resource management area of PMBOK can be dealt with in the same way that team building and collaboration apply in integrated building processes [3]. As stated by Saeed Rokooei, from the University of Nebraska-Lincoln, Nebraska, «in spite of the extensive framework of
project management, BIM can be presented as a main and effective concept corresponding to project management knowledge areas» [4].

Figure 8: comparison between the PMBOK knowledge areas and BIM activities [5]

2.2.1 BIM and CM in the R&D

Given the fact that BIM applies quite well to the discipline of PM, and especially Construction Management, and also that Building Information Modeling can be easily considered in fact a managerial tool [6], the strive for fully implementing and combining the two together is significant. Interoperability is always the main focus, and all the tools and new uses of BIM in construction rely on this concept. This is basically because during the construction phase, there is a massive generation of building records and documentation, i.e. schedules, construction methods, cost data, change orders, daily reports, construction site photos, shop drawings, and
more [7], and with all these records there is the need to collect and access information the most efficient way that is possible, without the risk of losing data or bad communication between people or software.

As far as site coordination is concerned, for instance, technologies are being developed for RFID (Radio Frequency Identification) tags to be placed on building components, which any worker on site can scan with a handheld device to view its related information. A further implementation of said technology is the association of GPS location information to the component, which means that a construction manager could at any time verify the location of any element of the building and updating the BIM model so that it can always be up-to-date with recent construction activities [8].

A great effort is also being made for the full integration of BIM tools in the construction site, also to subvert the belief that information modeling is something confined to the office. The use of software like Autodesk® BIM 360 Field® or Bentley® Field Supervisor® are examples of that [9]. With similar tools it is possible to share, with all the professionals involved in construction, updates and reports about construction site progress, including commissioning, quality, safety, and other documentation, and the whole platform is made to be used from computers, tablets, or other internet and e-mail compatible devices.

Moreover, in general the adoption of Cloud-based solutions is what the R&D is trying to improve in favor of the industry, to the point that Cloud-BIM models are considered to be the most likely evolution of current BIM practice, so that we can easily expect it be the next generation of BIM programs [10]. There is a number of different options for Cloud-BIM, depending on what is the service that hosts the model. In particular,
current ones can be software-based, platform based, infrastructure-based (in which the used is given not only the Cloud service but also computer and network infrastructure), and lastly, completely private servers and networks. In addition, there are currently studies on how to implement open source Cloud-BIM technologies and tools [11].

Among the practices that can occur on-site, one that results being very useful alongside with other server-based procedures is **in-field laser scanning**. It can be employed multiple times during construction, to continuously monitor the progress of the building realization, providing accurate information for installation verification and as-built BIM modeling, which could also include, for instance, MEP systems that will be covered later with floors, walls, and surface finishes [12]. Once acquired and updated, the laser-scan-based as-built information model could then be used for FM purposes [13]. Other than that laser scanning during construction helps manage systems installation, with some researches showing that this type of on-site verification and coordination can even save weeks of rough-in activities that may be caused by excessive design approximation [14].

![Figure 9: the use of laser scanning on site as a model checking tool](image)
Health and safety (H&S) is another important issue in construction, being the site one of the most dangerous work places in the industry. To this day, it is not wrong to say that there is not enough innovation about H&S in construction sites, with issues usually managed through traditional methods, even in project already done with the use of BIM [16]. Therefore researchers are trying to develop tools and rulesets that workers can adopt on-site, avoiding the traditional lack of collaborative approach to H&S and the excessive (and not always reliable) manual observation, which too often ends up being inefficient, labor-intensive and error-prone [17]. An example of this implementation is the translation of normative texts into software rule checks for semi-automatic verification of safety plans and correct installation of temporary works like scaffoldings, valances or railings [18]. More in general, there is a number of professionals trying to develop BIM guidelines for construction site design and level of development of temporary construction works, both for construction site pre-design and construction site execution design, in order to align these disciplines with others already regulated as of BIM representation [19].

Finally, another interesting researched area of improvement of current construction management practices is that of **WBS elements coding for simulation and clash detection**. In particular, J. Park and H. Cai [20] developed a system of element coding based on OmniClass™, MasterFormat™ and UniFormat™, that allows designers and contractors to univocally identify each one of the building components in the BIM model, mainly for scheduling and database reference purposes.
2.2.2 BIM and CM in the current AEC industry

There is a large number of firms and companies around the world that have already fully applied and implemented the processes of Building Information Modeling to real cases, and in particular the West-Coast-based LiRo Virtual Design & Construction (VDC) Group is a great example of that, being at the forefront of these new integrated process applications, with many successful CM with BIM projects completed.

City Point Phase II, Brooklyn, New York

One of these successful case studies is the completion of the City Point, a $430 million project of a mixed-use group of buildings for both retail and housing, located in Downtown Brooklyn, New York, and contracted with DBB (more information on DBB and other delivery methods in the following chapters). The large project was a composite of three different projects: a five-storey retail podium, and two residential towers above it, respectively of 35 and 45 floors. The Phase II buildings were all designed by different teams, and the construction was contracted to different builders as well. The LiRo VDC Group was brought in because of the need of an information model to be generated from 2D CAD drawings, to better manage the complex and articulate completion of the three buildings [21].

First, the team started with modeling an LOD 300 architectural model to be a reference for major clash and issue resolution with the MEP systems models that each qualified subcontractor was mandated to model. Then meetings were scheduled with all the main modeling representatives of each team, to review and resolve those major clashes. The results were quite fundamental: the retail ceilings needed to be lowered to make way for systems, mechanical rooms had to be added to the building to serve
those retail spaces, and this operation required the partial redesign of the building systems of the podium. Clearly, this whole review process made it easier to optimize the design and to ease up the following construction phases [23].

After this design phase, the construction phase required at least an LOD 400 modeling for construction documentation, so again each subcontractor was assigned to their system to model it adequately [25]. Interference detection was made possible by compiling the architectural, structural and MEP models into one complex model using the Autodesk®
Revit® software, and then the full .rvt file was used to generate an Autodesk®
Navisworks® file to identify the clashes. The resolution of any interference
located in the coordination model was then done by doing weekly
team meetings [26]. The implementation of BIM in the construction
coordination of this massive project brought huge value to it, enormously
reducing costs and making it possible to build the podium and the two
towers almost without delays and important unexpected changes during
physical construction.

East Side Access, Manhattan, New York

Another important example of good application of BIM methods to
Construction Management was the so-called ‘mega-project’ of excavation
and refurbishment of giant train tunnels for the East Side Access of the
East Side subway in New York, expanding between Queens and Manhattan.
In this case the LiRo Group was asked to join the team ten years after the
project had already started. This is because of the magnitude of the project,
with an overall budgeted cost of $10 billion. The East Side Access program
management team realized that the use of BIM in this massive project
could be of massive help for the processes of planning and coordination,
especially because the project was split into a number of multiple contracts
and subcontracts, making it even harder to have perfect communication
and coordination.

Figure 12: LiRo’s 18-month effort to transform 2D paper data into an intelligent BIM model [27]
Initially, the VDC team had to spend the first year and a half collecting 2D documentation and virtually building the general information model. Since the size of the project was unusually huge, the BIM construction was split and broken down to nearly fifty Revit models, one for each single facility, which were then combined, having a shared global coordinate system, into an omni-comprehensive federated model [28].

With the main structure model being then completed successfully, a systems model was also produced, to review any other possible issue and to visualize routes and accesses for equipment installation. In fact, a lot of other CM products were made once having completed the full BIM model: 3D point-cloud scans were used to integrate the project model with an existing conditions model, the 4D simulation was run in real time during team meetings for risk management reviews to immediately detect and discuss issues, the information model was also used to produce logistics documentation and constructability studies, and even a 3D-printed model of a section of a cavern was made to prototype the precast concrete construction system that was planned to be used [29].

BIM helped improve the delivery and rendered everything more efficient and sustainable for each contractor and team.
Lastly, a final example of well-delivered integration of BIM in Construction Management in the real construction industry is the Adult Behavioral Health Center at the Bronx Psychiatric Center. The project is a four-storey healthcare building organized in four wings, and it is the main facility on the campus of the Bronx Mental Health Hospital. This was part of a massive modernization of the whole hospital, with a $77 million budget and DBB-type contracting delivery. This was a pilot for its kind for the LiRo VDC Group, being one of the first projects in which they adopted BIM methods for construction [31].

During the construction phase the design intent model was updated with all the changes that were proposed from time to time, and clash analyses were run to check any eventual interference. A critical element in this project was that since it was one of the first of its kind, even the BIM software and tools employed were still in an embryonic phase, so that for instance Autodesk® Revit® in 2010 did not have the capability to show some particular kind of duct insulation, because it was added in later versions of the software [32].

Figure 14: Adult Behavioral Healthcare Center's discipline models to coordinate [33]
After the bid the contractor itself was responsible for producing a BIM implementation plan for the management of the project. However, the contractor did not have a good experience of VDC and BIM, and in fact ended up creating models with the wrong coordinate system, resulting in errors that were discovered too late to be fixed, because it would have been too expensive to do so, and because during the transition between design and construction the CM team did not have access to the new models to check. Despite similar difficulties, the project managed to go on well, and an accurate MEP systems verification was possible on Autodesk® Navisworks®, as well as a construction coordination schedule [34].

2.2.3 Project delivery methods

As seen before, Building Information Modeling can be considered as a very useful tool for those who work in the construction field. However, this comes with a catch: it takes the right processes in place to be able to bring benefits to the project, whereas if combined with old methods of working, success is very likely to be inhibited, and users will just get frustrated and discouraged from continuing to work with BIM [35]. There are currently various delivery methods used on projects, some of them will work better when applied to a smaller scale, some others will allow better performances on larger scale projects. Similarly, some project delivery methods will fit perfectly in scenarios where BIM is needed, while some others will not fit well with the new methods and practices of Building Information Modeling. As an example, various delivery methods of the English-speaking world will be presented, and then they will be compared to the Italian alternatives.
Design-Bid-Build (DBB)

DBB is maybe the most common and most used of all the delivery methods in the United States. This is because of the nature of the method itself, which consists in the owner having the advantage of an open competition phase, followed later by a number of separate bid and construction phases. The owner initially works with the designer on the project, based on the owner's requirements, then the owner selects the constructor through a phase of bidding, and finally when the constructor is selected and the contract is made, physical construction begins [36].

Although being one of the most prevalent model for project delivery, **DBB does not allow a proper integration with BIM processes**. The nature of the method itself inhibits any chance of early involvement of the builders during the design phase, which would allow discussing and understanding of constructability issues that may occur during construction. Of course, the use of BIM could be able to add a little value to DBB, but not enough to appreciate its full potential [37].

Figure 15: basic scheme of the Design-Bid-Build delivery method
Multi-Prime (MP)

The Multi-Prime model is actually just a slight variation of the DBB delivery model. In MP, the owner deals with multiple contractors that will physically build the designed project. This means that the owner becomes a sort of ‘main contractor’, while all the different contracted builders act as sub-contractors. However, it is typical for the owner to procure a general contractor and also main contractors for each of the structural, architectural, mechanical, electrical and plumbing disciplines [38].

The MP model presents almost the same challenges of DBB when it comes to collaboration issues. The fact that the owner sometimes takes the role of a general contractor renders the decision-making process less cooperative and less collaborative, because it does not rely on equality, which is the main driver of integration in project delivery [39]. In addition, another difficulty of Multi-Prime is the separation of the contracts, which the owner negotiates separately. This fact causes a potentially disjoined team that could bring to poor communication and incoherence in establishing common processes and performance requirements.

![Figure 16: basic scheme of the Multi-Prime delivery method](image-url)
Construction Manager at Risk (CM@R)

The Construction Manager at Risk is a delivery method similar to Design-Bid-Build: the main difference is that in CM@R the contractor is involved earlier in the process, during the design phase, breaking someway the linearity of the traditional process. During design, the owner and the contractor agree on a guaranteed maximum price (GMP), which is where the ‘risk’ part affects the CM [40]. By doing so, the CM@R process lends itself well to integration, because the builder has then a high interest in delivering the construction on time, otherwise they will lose any profit. This means that, with CM@R, the builder can give useful construction advice to the designer and to the owner before the construction phase actually begins. The earlier the contractor is involved in the design phase, the more valuable the project becomes [41].

However, CM@R is not free form challenges: the owner still has to deal with two separate contract negotiation, and this could bring, like in Multi-Prime, to incoherent or ambiguous assumptions of responsibility. On a final note, to fully leverage the use of BIM, the owner, the design team members, and the contractor must have a common vision on how Building Information Modeling will be used in the project, so a commonly-agreed BIM scope documentation is strongly recommended.

Figure 17: basic scheme of the Construction Manager at Risk delivery method
Design-Build (DB)

Design-Build is probably the simplest and one of the best project deliveries in terms of coordination and team-based working strategies. In DB, the owner usually transfers all design and construction risks to one contractual entity that coordinates both phases. Designers and builders are forced to work together towards a common interest, otherwise they will both suffer the consequences of failed planning and coordination [42]. Design-Build also has the benefit, from the owner’s point of view, of not having the risk on themselves; this is because of the fact that the designer and the constructor work together under the same contract, therefore they bear the risk for not collaborating towards the common goal. However, if the design-construct entity happens to cooperate well, the benefit to the project is massive: in fact, DB works in such a way that the builder does not have to wait for the entire construction design documentation of the building to begin the physical construction phase. Instead, the design can be delivered incrementally, this way allowing the builder to start building what has already been released, and while these first construction activities take place, the designer is working on the following section of the building until it can be delivered to the constructor, and so on.

![Diagram of Design-Build delivery method](image)

Figure 18: Basic scheme of the Design-Build delivery method
Design-Build is conceived to be faster and cheaper, because design and construction overlap [43]. The only main challenge in DB for implementing BIM is that usually in this delivery method the owner is involved during the first design phases, when they have to set the main project requirements and budget limitations, but after that the owner’s decision-making power becomes less and less relevant. As a result, potential project improvement opportunities tend to be minimized overtime [44]. DB also requires trust-based working and it is not very used for public contracts yet, but apart from that, it is one of the fittest delivery method for BIM, promoting collaboration and teamwork from the beginning of the project until its end, with many advantages, as shown in Figure 19.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Design-Build vs. Design-Bid-Build</th>
<th>Design-Build vs. CMAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit cost</td>
<td>6.1% lower</td>
<td>4.5% lower</td>
</tr>
<tr>
<td>Construction speed</td>
<td>12% faster</td>
<td>7% faster</td>
</tr>
<tr>
<td>Delivery speed</td>
<td>33.5% faster</td>
<td>23.5% faster</td>
</tr>
<tr>
<td>Cost growth</td>
<td>5.2% less</td>
<td>12.6% less</td>
</tr>
<tr>
<td>Schedule growth</td>
<td>11.4% less</td>
<td>2.2% less</td>
</tr>
</tbody>
</table>

Figure 19: efficiency in delivery methods comparison [45]

Integrated Project Delivery (IPD)

Finally, the most recently developed delivery method is Integrated Project Delivery. This one is a method that was conceived and developed with full BIM application in mind. IPD is very similar to Design-Build, because it requires collaboration and integration among the different actors working on the project. The main differences between Integrated Project Delivery and the other delivery methods exposed previously are early involvement and risk sharing. While DBB and CM@R, for instance, do not expect any kind of collaboration between designers and constructors, those being separate contracted entities, and often competing to win the owner’s design choices, in IPD, even more than in DB, all the actors of the
project are strictly required to work in team since day one. This includes also, if possible, the final facility manager (if this is not the owner himself).

Moreover, if in DBB and CM@R the risk is on the owner’s shoulders, and in Design-Build the design-builder entity own the risk, in Integrated Project Delivery, on the contrary, the risk is fully and equally shared among all the participants, which are also under the same contract and totally share the scope and requirements of the entire project [46]. However, together with the shared risk, comes also the shared reward of a successful project, so that each and every actor takes equal credit for well-delivered teamwork.

It is easy to understand why IPD and BIM are a winning combination when compared to other project delivery methods and processes. Still, IPD may require a change of mentality by the team members: a more open perspective and a strong willingness to try to think outside of the box, and outside the ‘comfort zone’ of already proven tools and practices [47]. Despite being a very recent contracting method, IPD has progressively made its way into the AEC industry anyways. In particular, it is reported to have been successfully adopted in the East and West coasts in the United States, and it is interesting to note that many of those successful IPD projects were for the Healthcare sector [48].

Once the shift in the mentality of the team is made, benefits become evident. The owner has the chance to share and illustrate their view and intentions to the whole team, allowing all the other participants of the project to improve the owner’s expected outcomes. Builders, on the other hand, can contribute with their construction experience in the field early enough during so that costs of change and constructability-related issues can be significantly reduced. Finally, designers benefit from early involvement of
constructors as far as accurate cost estimates and pre-construction clash resolution are concerned, pulling backwards the effort peak, which adds value to the project, because it renders the construction phase faster and less expensive, so that waste of money and time are reduced nearly to zero [49]. IPD is the project delivery method that works best when applied to BIM tools and processes, as stated in the official IPD Guide published by AIA in 2007: «Certainly integrated projects are done without BIM and BIM is used in non-integrated processes. However, the full potential benefits of both IPD and BIM are achieved only when they are used together» [50].

Figure 20: *basic scheme of the Integrated Project Delivery method*

The Italian construction contracts scenario

While there is a number of alternatives for best or worst BIM application for building contracts in the English-speaking AEC industry, the Italian situation is quite different. As far as the public construction is concerned (which is the ambit of 2016 and 2017 Italian regulations on BIM), there is no such thing as any kind of integrated procedure. Projects for public administrations or institutions are always based on some sort of public competition or bid, in which the contracting authority calls for a tender for the realization of a project, and a number of construction companies place their offers, among which the most profitable and sustainable one is selected, and the company is contracted for the job.
The procedures and structure of the tenders may vary slightly, and can be summarized as follows [51]:

- Open procedure
- Restricted procedure
- Negotiated competitive procedure
- Competitive dialogue
- Partnership for innovation

Despite the fact that each one of these various procedures may seem very different from the others, those differences, although being notable, are in fact quite irrelevant in terms of applicability of Building Information Modeling. All of the procedures above could be more or less associated with DBB or similar methods, in which design and construction are two very separate stages of the building process, and where often designers and contractors do not even communicate to one another. This of course makes BIM implementation a bit harder, but not totally out of reach, as seen before. If other types of project delivery will not be introduced and regulated soon in the Italian construction industry, BIM application could initially cause more frustration than efficiency, because benefits for stakeholders may take longer than elsewhere [52]. This does not mean that BIM is not suitable with the Italian AEC industry: improvements may be less evident, but there will certainly emerge overtime.
CHAPTER 3

THE TRUMPONE CASE STUDY

Keywords: RSA Virgo Potens, BIM for Healthcare, CDAI
3.1 The Trompone Healthcare Facility

The project around which this thesis develops is located in the Trompone sanctuary, a religious and healthcare complex in Moncrivello (VC), in Piedmont, Italy. This center had its origin in the 1560s, after an alleged apparition of the Holy Mother to a woman, Domenica Millianotto, who was hunchbacked, epileptic and stutterer, and who apparently was completely healed right after said vision. Due to this fact, between 1562 and 1568 a first portion of the sanctuary was built, the so-called ‘Rotonda’, and later between 1600 and 1659 the three-nave church was completed. The complex was called ‘Trompone’ after the homonymous dialect term which refers to a cut tree trunk, and that therefore referred to the place where the Holy Mother was seen.

The sanctuary was given to the Turin’s Franciscan religious order to be managed for 180 years, and then for other 40 years to the Cistercian Monks; during that time the building was let open for pilgrims needing a temporary accommodation. Between the 1880s and the 1890s two more buildings were added to the structure, constructed in a neoclassical style and having the function of a Seminary, which was kept as its function until

Figure 21: the Trompone sanctuary and healthcare facility [1]
October 1970, when the Archbishop Albino Mensa gave the entire complex to Luigi Novarese, who was the founder of the ‘Silenziosi Operai della Croce’ ['Silent Workmen of the Cross']. Under Luigi Novarese's order management the sanctuary became a residential and rehabilitation center for disabled people (the actual RSA). The Trompone complex is still operating under that same function, and in fact, for that reason in 2006 a new building was erected and open with the purpose of becoming the Healthcare House, while at the same time in 2011 works for the restoration of the late Seminary began, aiming at transforming that structure in a Healthcare Residence for people in vegetative condition, people affected by severe neurological pathologies, and emergency medical service [2]. In addition, since 2006 the new structure hosts a degree course in Occupational Therapy, which is included among the Italian healthcare degree courses. The course was introduced and added to the facility functions because of a lack of professionals in said discipline, despite having in Piedmont a strong need of them all around the Regional territory [3].

Figure 22: the new-built Healthcare House [4]
3.2 BIM FOR HEALTHCARE

Since the case study of the present work deals with the building of a structure inside of a healthcare facility, it seems fundamental to explain what BIM has to offer to the healthcare industry in particular, and what could be the benefits of it.

BIM brings benefits to many sectors and, indeed, as already explained before, it is the most efficient way to design, build and deliver a building at the moment, with substantial reduction of time, costs, interferences and issues in general. This, if applied to the healthcare sector, is even more true, and in fact, healthcare is the industry that could benefit the most from the use of BIM [5], especially if it is considered that the crucial importance of time, costs, performance requirements and quality control can mean a matter of life or death for a healthcare facility [6].

Figure 23: Queen Silvia Children’s Hospital in Gothenburg, for which design and construction with the use of BIM was essential [7]
Because of the extreme complexity of health facilities, where hundreds or thousands of rooms must be kept under strict control [8], the use of information models entails the possibility of studying, simulating and managing such complexity. In a hospital it becomes of fundamental importance to keep under control the mechanical, electrical and plumbing systems of the building, the distribution of materials, the flows of patients and medical personnel, and the **mutual interactions** between all these [9]; moreover, this control can be carried out during the entire life cycle of the structure, starting from the design to the facility management, and can therefore involve all the stakeholders of the structure, owners, architects, engineers, contractors and subcontractors, suppliers, hospital administrators and staff, and even medical personnel [10].

Figure 24: University College London Hospitals’ Proton Beam Therapy Center, also modeled and managed using BIM for its particular complexity [11]

Using Building Information Modeling tools and methodologies to the healthcare sector, it is also possible to perform virtual walkthroughs, virtual prototypes, or produce ‘what if’ scenarios for clients and administrators [12], as well as being able to control the design and construction of **highly**
complex environments, such as operating rooms, complete with all the technical appliances needed, that can be hundreds per room, with all the power outlets, special air-filtering systems and strict space air-conditioning requirements, as well as assessing the displacing and performance of the special medical equipment, such as MRI machines [13], or even the issue of constantly needing to upgrade the medical equipment during the facility fruition [14].
3.3 The BIM4Health Research Group

In the late 2017, around the Trompone sanctuary and the healthcare facility a series of initiatives were taken, with the aim of requalifying a number of portions of the religious building for healthcare purposes. The objective was to design a series of new multi-functional facilities using the latest BIM technologies and methods in an experimental, shared and integrated environment, allowing the involvement of every actor in the process [15]. These initiatives were coordinated by the Department of Structural, Building and Geotechnical Engineering (DISEG) of Politecnico di Torino, and in particular by the researchers and the students of the ‘Drawing TO the Future’ office, in the DISEG department, this way testing a series of interoperability studies for the use of Building Information Modeling for healthcare facilities [16].

After a large-scale survey campaign done with drones and photogrammetry, a point cloud of the whole complex had been produced. Then the first team of thesis students began modeling the facility, subdividing the entire building into smaller portions, and recombining it later in a shared federated file, along with new projects for the requalification and enlargement of the present structure [17]. The new construction projects made by the students revolved around four main themes: the design of the new ‘Four Seasons Garden’ with the consequent redevelopment of the North RSA park, a new winter garden adjacent to the RSA building, a greenhouse located in the garden next to the sanctuary, and finally a daily healthcare center for people affected by the Alzheimer
disease, the CDAI, about which the present thesis work develops a re-
examination and a follow-up.

The original team of students shared the models in a CDE (Common
Data Environment) made up on purpose, using Dropbox®, in which every
model was visible by anyone and all of them were linked together into
various federated models. However, each one of the students had a different
modeling purpose for their thesis, including developing tools and methods
for interoperability in Construction Management for the winter garden
and the greenhouse, generating an energy model of the sanctuary building
for the cost optimal analysis for the RSA, running simulations for energy
evaluations in the greenhouse, and testing model interoperability and
visualization in the Virtual and Augmented Reality for the daily healthcare
center for Alzheimer.

Since then, other students have also joined the BIM4Health research
group and have therefore contributed to the overall renovation project for
the Trompone complex, each one with a specific competence and a specific
set of objectives and goals to reach. This makes BIM4Health a very active
group, which always feeds and renews itself through time, and thanks both
to the shared CDE and the continuous exchange of ideas and skills among
all the people taking part in it, any previous or consolidated experience and
goal is continuously shared and used to progress even more in the research
by those who will come after.
3.4 The new CDAI project

The building which the present work is about comes from the project of one of the previous BIM4Health theses. It is a healthcare facility that functions as a ‘day hospital’ [18], hosting assistance and rehabilitation programs for people affected by Alzheimer’s disease. In particular, the project aims at the realization of a CDAI (Centro Diurno per malati di Alzheimer Integrato), namely a structure for the treatment of patients affected by this disease, but working only during the day, and therefore intended for people with a certain degree, albeit reduced, of independence [19]. Within this building there are activities of neuro-spatial orientation, reading, music therapy, social activities in small groups, manual activities, and orthotherapy [20].

Figure 25: the old warehouse, where the CDAI is placed, highlighted in red [21]
The CDAI develops at the end of the West arm of the Trompone complex, and will replace an existing building used as a warehouse, reduced to a poor state of conservation, of low historical value, and of which the demolition was planned [22]. The new structure is therefore destined to become the new extension of the West arm, which currently houses the convent of the nuns.

Being the formal extension of the pre-existence, the volume of the new building takes up the section and the depth (6 meters), in addition to developing on two floors and forming an L-shaped sleeve, in order to accommodate all the functions required by the current legislation regarding day care centers, as well as to have a larger surface of the building exposed to the South [23]. The building is supported by a steel frame structure that is joined on a shallow inverted T concrete foundation. The exterior walls are dry-mounted using sandwich panels in which the insulation is placed between panels of OSB, and the whole wall is held together by a wooden frame. Moreover, for all the external walls a ventilated panel structure has been conceived, in order to reduce the thermal load in summer [24]. To make the most out of the sunlight, the opaque structure is cut, at the center and at the short end of the L, by glazed bodies, which cover multiple functions: the central cut is intended to be the main entrance, at double height, in addition to becoming a point of visual continuity between the North RSA garden and the new garden of the CDAI designed to the South of the new structure [25]. The second cut, however, also at double height, has been placed at the end of the building’s sleeve, and will host a small greenhouse for orthotherapy that will be carried out throughout the whole year [26].
Finally, at the South of the new center for Alzheimer’s patients, the realization of a **therapeutic garden** has been planned, in which patients can follow sinuous paths suited to their condition, without edges and points that signal a net beginning and end, in order to reduce the sense of discomfort and inadequacy of the patient who could eventually not reach these points. Furthermore, it presents several thematic areas into which carry out different activities. There are therefore a pergola that signals the entrance, a zen garden with different floors and a fountain with water features, an area for exercise, an indoor area where people can rest, and an aromatic garden [27].

![Figure 26: the new CDAI and its therapeutic garden’s project](image-url)
SECTION B

METHODOLOGY

CONTENTS

CHAP. 4 Sharing Strategies
CHAP. 5 Detailing
CHAP. 6 Classification and simulation
CHAP. 7 COBie
Methodology Scheme

Figure 27: scheme of the methodology applied for this thesis
Chapter 4

Sharing Strategies

Keywords: CDE, BS 1192, worksharing, federated models
4.1 The BIM4Health CDE

In order to collaborate in the best way within the same shared environment, the BIM4Health research group created, at the beginning of the Trompone complex project, a Common Data Environment within the Dropbox® platform, with the objective, as briefly explained in the previous section, to foster collaboration, the exchange of information, and make the most of the possibilities offered by the worksharing methods of Revit® software, used by all the participants in the research project.

![Diagram of CDE structure](image)

Figure 28: BS 1192’s CDE basic structure [1]
The CDE was created based on the specifications of the **British standard BS 1192:2007**, which proposes the structuring of a data sharing environment in which to operate, and its correct use and control in order to allow a work team to collaborate and encourage everyone’s contribution in the most efficient way possible.

The British Standard 1192 divides the CDE into four sub-environments, each intended to contain a certain type of information and update level of them, and regulates the requirements of the progressive steps that data must make to be transmitted and transferred from one environment to another. The first folder should be called ‘**Work In Progress**’, and contains temporary files on which the different team members work, independent of each other, but whose updates remain visible to everyone. The quality of the material loaded into Work In Progress must be periodically checked and it is a duty of the team that works on it to periodically perform these checks [2].

Subsequently, the BS 1192 standard introduces the ‘**Shared**’ folder: it contains the files that have passed a major quality control and that have therefore been judged suitable to be shared with the rest of the participants in the worksharing environment [3]. The material that is loaded in Shared becomes available to all team members to be used for control and reuse operations as background information in later parts of the project. However, it remains important that Shared does not contain duplicate information in order to avoid confusion and misuse of the CDE. Therefore, any subsequent use of the files contained within Shared must take place outside this folder, with files downloaded and placed in other locations [4].

The next folder described by the British Standard is that relating to the ‘**Published Documentation**’, namely the container of all files and data that
have undergone a formal review and verification, and have consequently been approved as definitive, becoming in fact contractual material [5]. It is also clear that any duplicated information should be removed and replaced with the most updated information.

Finally, the last folder defined by BS 1192 is the one called ‘Archive’. This contains all the data and files that arrived at the end of the project, once both the design and construction phases have been completed. This way, Archive becomes a real repository of information on the erected building, thus forming a historical database of it [6], usable for each operation of the subsequent life cycle of the building, for operations management, maintenance, and legal documentation of every operation carried out on the structure, up to the end of its use life.

Figure 29: BS 1192’s example of the last checks and data transfers in the CDE [7]
Among other things, the British Standard is not the only regulation that deals with establishing guidelines for the creation and management of CDEs, but also the corresponding Italian legislation UNI 11337-5 deals with them, specifying that such sharing environments must maintain certain accessibility requirements, traceability of the data flow, support of all types of formats and data, information retention and guarantee of security and discretion of the CDE, with objectives, among others, of coordination automation, transparency of information, and above all, reduction of redundancy and duplication of such information [8].

The BIM4Health research group tried to follow all these indications in the structuring of the CDE and its use. What resulted was a shared environment divided exactly into the four folders described above. A folder named ‘1_WIP’, in which to load the temporary files of each participant, and on which each member of the research team worked independently; a subsequent folder named ‘2_SHARED’, in which to upload the files submitted for an initial check, to be used by the other participants as a basis for further work; a folder named ‘3_PUBLISHED’, in which to transfer all the files and models that are formally approved; finally, a folder named ‘4_ARCHIVED’ in which to store the history of the definitive models of the projects for the Trompone complex.
4.2 Adjustments to the Sharing Strategies

The sharing strategy adopted previously by the other students had some major flaws, so while working on the CDE projects for the Trompone healthcare complex, there was the need of fixing those flaws. The previous method of organizing the folders and the files within the CDE’s ‘Shared’ folder made use of two different sharing strategies, which were conceived differently because of supposed diverse use of the models. The two had been differentiated by giving them respectively a number 1 and 2.

The first one was organized by discipline, which means that every project model, previously subdivided into an architectural, a structural and an MEP model, was combined with the other projects by discipline. A federated model for each one of those three disciplines had been created and contained attachment links to all of its discipline’s models of each different project. This type of model and file management created three discipline-based federated model, called respectively ‘MF_ARCH’, ‘MF_STRUT’, and ‘MF_MEP’ for the architectural, the structural and the MEP combined files. Finally, those three discipline-driven models were then linked together into a unique and total federated model of the whole Trompone complex’s projects. This particular strategy did not show any serious problem, though some of the links needed to be fixed anyways.

The second sharing strategy, on the contrary, was not discipline-based, but project-based. This meant that the single discipline models of each project were linked together into federated models of each single projects,
Condivisione dei modelli

Nel modello C è visibile il progetto B, ma non quello A

Nel modello C è visibile sia il progetto B che quello A

Stato di avanzamento della modellazione in data 06_2018

Tipologia di file:
- .rvt
- .rcs
- .rcp

Tipologia di collegamento:
- Link per associazione (Attachment)
- Link per sovrapposizione (Overlay)

Importazione della nuvola di punti nel modello .rvt

Nuvole di punti .rcs o .rcp

M ������ �� �� ��

(RS: Architettura, Struttura, MEP, Topografia)

Figure 30: ‘Condivisione_1’: first sharing strategy scheme [9]
so, for instance, the Rosato’s greenhouse, with its architectural, structural and MEP models, was re-combined back into a single greenhouse federated model, and the same applied to the Dusi’s and Montaldo’s project files. In the end, the federated project models were linked together into another total federated model of the Trompone complex, different from the one of the first sharing strategy. This second one was a way more flawed strategy, having some internal and external important issues left (by accident) unresolved by the previous students.
To possibly make things clearer, every single one of the linked files in the ‘modelli da linkare’ [‘models to link’] folder was opened and checked, to avoid any possible internal issue. What was found was that some of the internal links, namely the structural model of a project linked inside of the architectural model of the same project for checking purposes, or other similar cases, were linked by attachment instead of being linked by overlay. This however had the consequence of having circular links in the federated models, because attachment links make the linked model visible in any other subsequent link, which was necessary for external linking of the single models to the federated ones, but in no way desirable for internal links between single models. This problem was fixed by reloading every internally linked file from scratch.

Another issue encountered inside of the ‘Shared’ folder was that all the previous linking work was based on a wrong assumption: that ‘once a model is linked to a federated one, it cannot be linked to any other federated file’ [11]. This created the false need of having two separate folders for the two sharing strategies, which resulted in having duplicates in the second created folder, which had been eloquently named ‘modelli da linkare 2’ [‘models to link 2’]. To overcome this fundamental flaw every model in ‘modelli da linkare 2’ was opened and each link was checked, both internally (by overlay, between single models) and externally (by attachment, to the federated files). In the end, all the links in the federated models of the second sharing strategy were unloaded from the duplicated folder and completely reloaded from the original models’ folder. This finally allowed the deletion the second models’ folder (the duplicated one).

This process of fixing the CDE issues took long time but it was absolutely necessary for a correct working between modelers in the digital
environment, because this way confusion and possible incorrect updating of the models was, if not completely avoided, at least significantly reduced, having then just one folder in which load and update models. Moreover, this operation ‘cleaned’ the CDE, and especially the Shared folder, returning it to respecting the standards of non-duplication and non-redundancy of information required by both the BS 1192 and the UNI 11337-5.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model's internal links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer_ARC</td>
<td>Alzheimer MEP</td>
</tr>
<tr>
<td></td>
<td>Alzheimer_STR</td>
</tr>
<tr>
<td></td>
<td>Convento</td>
</tr>
<tr>
<td></td>
<td>ndp_alzheimer</td>
</tr>
<tr>
<td></td>
<td>Parco per tavola</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>Serra ARC</td>
</tr>
<tr>
<td></td>
<td>Topografia Trompone</td>
</tr>
<tr>
<td>Alzheimer_MEP</td>
<td>Alzheimer_ARC</td>
</tr>
<tr>
<td>Alzheimer_STR</td>
<td>/</td>
</tr>
<tr>
<td>Convento</td>
<td>/</td>
</tr>
<tr>
<td>Giardino_ARC</td>
<td>/</td>
</tr>
<tr>
<td>Giardino_MEP</td>
<td>Giardino_ARC</td>
</tr>
<tr>
<td>Giardino_STR</td>
<td>Giardino_ARC</td>
</tr>
<tr>
<td>Giardino_TPG</td>
<td>Giardino_ARC</td>
</tr>
<tr>
<td>Giardino_SDF</td>
<td>ndp_giardino</td>
</tr>
<tr>
<td>Giardino_TPG</td>
<td>Giardino_ARC</td>
</tr>
<tr>
<td>Giardino_TPG</td>
<td>Giardino_STR</td>
</tr>
<tr>
<td>Masse</td>
<td>ndp_costr+contesto</td>
</tr>
<tr>
<td>Masse NDP</td>
<td>ndp_costr+contesto</td>
</tr>
<tr>
<td>Masse URB</td>
<td>ndp_costr+contesto</td>
</tr>
<tr>
<td>Parco</td>
<td>/</td>
</tr>
<tr>
<td>RSA</td>
<td>ndp_giardino</td>
</tr>
<tr>
<td></td>
<td>ndp_RSA</td>
</tr>
<tr>
<td>Serra_ARC</td>
<td>Serra_STR</td>
</tr>
<tr>
<td>Serra_MEP</td>
<td>Serra_ARC</td>
</tr>
<tr>
<td>Serra_STR</td>
<td>Serra_ARC</td>
</tr>
<tr>
<td>Serra_TPG</td>
<td>Serra_STR</td>
</tr>
<tr>
<td>Topografia Trompone</td>
<td>Masse ndp_costr+contesto</td>
</tr>
</tbody>
</table>

Figure 32: list of all the models and their internal links, after the adjustments
Condivisione_1 folder links

<table>
<thead>
<tr>
<th>Federated Model</th>
<th>Model's internal links (all by attachment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF_Arch</td>
<td>Alzheimer_ARC</td>
</tr>
<tr>
<td></td>
<td>Giardino_ARC</td>
</tr>
<tr>
<td></td>
<td>Giardino_TPG</td>
</tr>
<tr>
<td></td>
<td>Serra_ARC</td>
</tr>
<tr>
<td></td>
<td>Convento</td>
</tr>
<tr>
<td></td>
<td>Parco</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
</tr>
<tr>
<td></td>
<td>Topografia Trompone</td>
</tr>
<tr>
<td>MF_Strut</td>
<td>Alzheimer_STR</td>
</tr>
<tr>
<td></td>
<td>Giardino_STR</td>
</tr>
<tr>
<td></td>
<td>Serra_STR</td>
</tr>
<tr>
<td>MF_MEP</td>
<td>Alzheimer_MEP</td>
</tr>
<tr>
<td></td>
<td>Giardino_MEP</td>
</tr>
<tr>
<td></td>
<td>Serra_MEP</td>
</tr>
<tr>
<td>CENTRALE</td>
<td>MF_Arch</td>
</tr>
<tr>
<td></td>
<td>MF_Strut</td>
</tr>
<tr>
<td></td>
<td>MF_MEP</td>
</tr>
</tbody>
</table>

Figure 33: list of the first sharing strategy federated models and their links, after the adjustments

Condivisione_2 folder links

<table>
<thead>
<tr>
<th>Federated Model</th>
<th>Model's internal links (all by attachment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alzheimer_ARC</td>
</tr>
<tr>
<td></td>
<td>Alzheimer_STR</td>
</tr>
<tr>
<td></td>
<td>Alzheimer_MEP</td>
</tr>
<tr>
<td>G</td>
<td>Giardino_ARC</td>
</tr>
<tr>
<td></td>
<td>Giardino_STR</td>
</tr>
<tr>
<td></td>
<td>Giardino_MEP</td>
</tr>
<tr>
<td></td>
<td>Giardino_TPG</td>
</tr>
<tr>
<td>S</td>
<td>Serra_ARC</td>
</tr>
<tr>
<td></td>
<td>Serra_STR</td>
</tr>
<tr>
<td></td>
<td>Serra_MEP</td>
</tr>
<tr>
<td>CENTRALE</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>Convento</td>
</tr>
<tr>
<td></td>
<td>Parco</td>
</tr>
<tr>
<td></td>
<td>RSA</td>
</tr>
</tbody>
</table>

Figure 34: list of the second sharing strategy federated models and their links, after the adjustments
Section B: Methodology

Figures 35-36-37-38: the different groups of source models used in the sharing strategies

Figures 39-40: the federated models of the first and the second sharing strategies
Figure 41: final worksharing structure in the ‘Shared’ folder of the CDE
Section B: Methodology

[Diagram with nodes labeled Masse, ARC, STR, MEP, Giardino, ARC, STR, MEP, and connecting lines labeled 'Condivisione 1', 'Condivisione 2', Attachment Link, Overlay Link, etc.]

[Text boxes and labels: 'Modelli da linkare' ('Shared folder’s models'), 'second sharing strategy', 'first sharing strategy', etc.]
Chapter 5
Detailing

Keywords: Construction details, steel connections, rebar modeling, 2D LOD enhancement
5.1 Detailing for Construction

One of the operations that needed to be carried out for the construction management of the CDAI building was to produce detailed drawings of the building. In fact, this operation was necessary because it is likely to be fundamental, in the final stages of the design phase, to define the characteristics of the structure that will be built. It is therefore appropriate to deal with all the operational problems that, until then, the designer has not set, such as the details of the junctions between the structural elements, the correct stratigraphy of the infills and internal partitions, the auspicable lack of interference between elements of the project belonging to different disciplines such as structure and systems, and provide all the material that can be requested by the builders to physically realize the project.

This operation was in this case more difficult and delicate than normal, due to the fact that the BIM model of the CDAI had been produced by Dusi with another objective and another use of the model in mind: the visualization of the building in virtual reality. This meant having to reverse engineer the entire building, in order to be able to trace the basic design intentions of the designer, as well as to be able to understand and define in a clearer way the details of the structural and architectural elements constituting the building, which had been modeled with a level of development that generated multiple critical points and interferences.
5.2 Steel Structure Detailing

Having to prepare the building’s model for construction management, simulation and time and material schedule, it was necessary to review it, element by element, in order to be sure to have a construction-ready information model. For instance, since the project was divided into three sub-models, one for each main discipline involved in the design process, architectural, structural and MEP, the first step was to check that there were no clashes or interferences between the different discipline models. Clearly, clashes were present and some errors needed to be fixed, the reason being that Dusi had modeled the building with a completely different objective and use of said model in mind.

Since the purpose of her model was navigability and explorability for VR, the main concern was having enough surface detail for real time rendering, visibility of the main elements and exterior and interior layers. Architectural elements like walls, floors, windows and doors, were mostly modeled as a LOD C elements, or rarely as almost LOD D elements. Despite the fact that this level of architectural development may be sufficient for construction schedule and simulation, it could be implemented for additional information in order to be manageable for quantity take-offs and material scheduling.

On the other hand, the structural model was in poor conditions, having been modeled just for coordination tests in the CDE. The level of development of beams and columns was also LOD C, but the layout of
the structural frame, especially on the sloped roof, was almost random, with beams used as purlins, placed using the ‘beam system’ tool, having overlapping geometry and being often out-of-axis against the main structure.

Lastly, just like the structural model, the MEP one was also just an approximate model, made with the only purpose of testing if the coordination strategies were properly working. In this last discipline’s BIM file only the terminals had been modeled, no duct, pipe or electrical conduit were present, but since the MEP modeling would have been almost a separate thesis work, no additional detail or adjustment was made to said model.

Figures 42-43-44: Axonometric view of the CDAI discipline models, after the detailing operations
In order to prepare the construction details needed for the work, a good interaction and coordination between the architectural and the structural models was to achieve, leaving aside the MEP model for the previously explained reasons. Since there was a need for 2D detail sections, and the models were divided by discipline, the decision was to create a **ground-sky 1:50 section** in the federated model, and operate changes in the separate discipline files if needed, then produce some **1:20 callouts** from those, to eventually add bi-dimensional parametric detail components. This way, the expected result was to have better detailed discipline models, as well as a useful and readable federated file for non-designers requiring just 2D construction details and a comprehensive view of the built structure in its entirety.

First, to adjust the numerous structural BIM model issues, after a preliminary operation of alignment of the position of all the structural columns to their grid, then Autodesk® Advance Steel® was used, one reason being that the construction technique chosen by Dusi for the CDAI was a steel structural frame with concrete foundations. In fact, this software allows the structural designer to intelligently operate on beam and column steel profiles, add purlins, railings, and connections between said elements. The purpose of its usage for the CDAI structural model was to be able to **generate and to edit steel connections**, with both welds and bolts, multiply them by copying each connection anywhere else was needed, and to do all of this work faster and in a more efficient way compared to going through the same kind of process inside of Autodesk® Revit®, which, on the other hand, makes this sequence of operations slower and less intelligent, even when trying to do this on the newest version of the software, Revit® 2019, which has a new dedicated ribbon for steel connections.
As far as interoperability is concerned, the process of elaborating the steel structure outside of Revit® was not as flawless as expected, and also quite painful and a little time consuming, especially on the way back from Advance Steel®, A preliminary operation was conducted on Revit® itself, by trying to optimize the structure for the correct export and operation on connections. This included the substitution of each one of the elements of the entire structure, which was modeled using profile families from the Italian family library, with profile families and types as similar as possible taken from the UK library, and in particular from the ‘Europe Specific’ steel families folder. The reason of this substitution was that in order to have the Advance Steel® connections recognized back in Revit®, an extension called ‘Steel Connections’ was installed, and said extension only connects steel profiles that come from certified families. This fundamental operation guaranteed the correct functioning of the steel connections in Advance Steel®, because the software relies on certified profiles to work properly.

Despite having completed this preliminary process, import issues emerged anyways afterwards. Using the ‘Export’ command on the ‘Advance Steel plugin for Revit’ ribbon, a .smlx file was generated and saved outside of Revit®. Once inside Advance Steel®, the same .smlx file was imported through the ‘Import’ command of said software. Before being able to model steel connection on the imported structure, after the import the software showed an unexpected issue with the concrete foundation profile, not being able to find and load the right one, and therefore asking to substitute

Figure 45: the new ‘Steel’ ribbon in Revit® 2019
it with a similar profile chosen from its internal library. Even after this operation, the concrete foundation profile was not showing correctly, being upside-down, so, in the end, it was decided to ignore the concrete foundation and keep the one already modeled in Revit®, with its certified profile newly substituted shortly before.

![Figure 46: the Advance Steel® import warning about the concrete foundation](image)

![Figure 47: the issue with the wrongly placed concrete foundation profile](image)

However, after a bit of struggle with the profiles switching, the software itself works well and it is able to create and multiply steel connections quite easily. The chosen connections for the CDAI structure were a combination of **bolted or welded steel plates**. Anywhere possible and likely, bolts were preferred, due to the easier and faster process of
mounting them on site. For the foundations, the columns were welded to steel plates, anchored with bolts to the concrete foundations below. This way the columns and the plates can be welded in the factory plant before leaving for the construction site, while the bolts only will be put in place on site. For connections between beams and columns, bolted bent plates were chosen, again to make the on-site assembly faster. The same applies for connections between primary and secondary beams, with the exception of welded stiffeners on both sides of said connections.

Roof beams were a bit harder to connect, again due to the fact that Dusi’s structural model was made approximately, with little interest in the actual technical feasibility and physical constructability of the building. In particular, a number of issues showed up when trying to generate a connection with three beams and a single column bearing those three, located where the two slopes of the roof form a 90-degree angle. This node was subdivided in three different types of connections, one for each beam.
reaching the column. The two sloped beams forming a horizontal 90-degree angle with the column were connected respectively via a plate bolted to the beam and welded to the column, and vice versa for the other, in order not to interfere one another during assembly on site. On the other hand, the sloped beam in the middle was connected via cutting and welding – this was the simplest way of performing that kind of intersection.

Within Advance Steel® it was also possible to produce assembly detail drawings as individual .dwg files for both the industrial production of the steel profiles and their eventual pre-welded junctions, and the on-site assembly. This way the software makes it very easy to supply the production chain with clear and specific information about the fabrication of possible out-of-standard profiles that could be requested by the designer to the steel profile supplier. This includes exact dimensions, number and diameter of every bolt hole needed, count and specifics of every bolt and every plate required for the assembly of each connection, and so on. In fact, this could be the first step in a BIM-to-CAM sort of interoperability workflow, in which Advance Steel® stands for the middle step, before feeding the model into a CAM software like Autodesk® Inventor® or similar ones, that are in fact widely used for CAM and CNC applications.
Section B: Methodology

Figure 54: the Advance Steel® document manager with all the detail .dwg files produced

Figure 55: example of the assembly detail of a steel column and its connections

Figure 56: example of a steel connection detail between a column and four beams
After all the connections were modeled in Advance Steel® and all the steel detail drawings were produced, the structural steel model was exported, again in the .smlx format, to be later loaded in Revit®. However, there could be two ways of re-importing the .smlx model, one through the ‘Synchronization’ command and one through the simple ‘Import’ command. The first option seemed the most convenient at first, because it should have simply considered the changes made to the model in Advance Steel®, and apply those changes in Revit®. Unfortunately, this turned out being the least convenient, because despite the exchange tool did recognise the steel profiles and made also an accurate list of all the changes and all the elements deleted or added to the structure, the synchronization would made the model so difficult and slow to use that it could not even be saved anymore.

On the other hand, the import worked well, despite the need of manually deleting all the steel elements in the Revit® model before importing the Advance Steel® steel structure to avoid duplicates. This operation created a more usable model, so this was the definitive way chosen.

When re-importing the structural model in Revit®, the most intricate node, the one on the intersection of the roof slopes, could not be recognized; in fact, not one of its connections elaborated in Advance Steel® was generated. For this reason, the two bolted-welded plate connections were re-modeled again in Revit®. However, operating an angled cut on the middle beam was not as simple and straightforward as in the other software, and in the end, said beam was left uncut, this way generating an unwanted clash.
Section B: Methodology

Figure 57: the ‘Synchronization’ dialog window with all the changes traced

Figure 58: the ‘Synchronization’ changes report produced by the tool

Figures 59-60: the issue with the roof node, and the later attempt to partially fix it
Lastly, another issue encountered when re-importing the steel structure model was that Revit® did not recognize the steel profiles of the .smlx file, so after the ‘Import’ command, a window asking to specify at what family and type each profile belonged appeared. This problem made also impossible to load any cladding modeled in Advance Steel®, because the software considers cladding as ‘beam’ profiles, and there were obviously no beam types with a cladding profile inside Revit®.

Despite the mentioned critical points, overall Advance Steel® made it a lot easier to produce detail drawings and enhance the general level of detail and development of the structural model of the CDAI, so to this day it represents a necessary step in the workflow for the production of a construction information model.
5.3 Detailing in Revit

5.3.1 Rebar modeling

Once the steel model with all its right connections was imported and adjusted back inside of Revit®, the only remaining issue to fix was the foundations. The way they had been designed and modeled before was to have them as inverted T beams made of concrete, running from column to column. For detailing purposes and to improve the LOD for construction, it was decided to add modeled steel rebar, and to adjust the height of the whole foundation to a proper level. The depth of the foundations was around -2.4 meters below ground level, which may have been almost correct for pile-cap foundations, but in this case, the excessive depth allowed the steel columns to have direct contact with ground, which is absolutely to avoid in any case. The best and easiest way to adjust this simple height problem was to raise the level of the base of the foundation so that no steel part touched the ground around the structure. Once this was done, the rebar modeling could begin, and for this purpose the tools found in Revit® were absolutely sufficient for that work. Three types of rebar were used, bent steel bars, straight steel bars, and stirrups which have the function of containing the steel bars and keeping them in place.

The great advantage found in modeling the rebar instead of placing them as simple profiles in 2D views was that this way they are kept parametric, they are considered belonging to their own concrete foundation beam, and their quantities can be exactly calculated, this way avoiding approximate estimates based on the percentage of concrete, which is a
good way of calculating steel rebar in a preliminary design phase, but it is not recommended for construction calculations.

Of course modeling each rebar had its problems, such as not being able to copy bars from a concrete beam to another, due to the already mentioned fact that steel bars in Revit® belong to the beam they are modeled in. Moreover, the default visualization settings for rebar allows them to be visible through concrete in any 3D, section or elevation view, and this is not always desirable, so it is necessary to change this setting for each instance of rebar present in the model, being the rebar visualization an instance parameter. Lastly, obviously modeling every steel rebar (and also, having already modeled each steel connection) made the CDAI structural model a lot harder to work in, since after every kind of operation done to the model, the software will automatically re-calculate every connection and structural junction from the beginning, which dramatically slows down the entire process.

Figure 64: the concrete foundation’s rebar modeling operation
5.3.2 2D detailed views

Despite the attempt to approach the constructive model trying to make a total modeling of the building, complete with its details and construction elements, it was clear that it was not possible to proceed in this way if not up to a certain limit. This limitation is given by both an increasingly excessive size of the model, which makes it slower and more computer-performance-consuming, and the current limits of the BIM modeling, at least as far as the Revit® software is concerned.

An additional problem that was encountered during the definition of constructive details was that of the working method chosen in principle by the BIM4Health team. In fact, it was decided to proceed using links on federated models not only to bring together the various projects, but also by subdividing the individual projects into the three disciplines of architecture, structure, and MEP. However, this working method made some of the most useful two-dimensional details on Revit® unusable, such as the ‘cut profile’ function: in fact, this command, which would allow to operate layer wrapping details, joints, and improve the appearance and the general technicality of a detailed section, however, requires that the ‘profile’ that one wants to edit, i.e. the selected stratigraphy, belongs to the model on which you are operating, and is therefore not usable to modify, in the current model, a layer of an element in a linked model. Having to make some details in which both the structural and the architectural models were visible, one possibility became that of making detailed views on the architectural model, linking the structural model instead, instead of making the detail views in the federated CDAI model, which was the initial intention.
On the other hand, however, the linking of the structural model within the architectural one has brought with itself a series of difficulties. In fact, as explained before, within the structural file it was decided to physically model all the rebar constituting the reinforcement of the inverted T concrete foundations. This modeling activity was motivated by the will to test the possibility of having both accurate three-dimensional information regarding the positioning of each single bar or stirrup, and the possibility of obtaining, at the information level, a real data on the area and the position of the reinforcements. The tools present in the Revit® software were useful and more than sufficient to obtain this type of result, as already illustrated.

Rebar modeling was particularly interesting and useful for the study of the workflow, however, once out of the structural modeling environment, in order to return to the architectural model in which to link the structural one with the modeled reinforcement to be used to improve the detail of both the model and the single views, an important obstacle in the visualization of these was brought up. In fact, as a default setting, in Revit® all the reinforcement rebar remains visible in every view even through the concrete material in which they have been positioned. For each view, however, there is the possibility, as an instance parameter of the rebar, to adjust this type of displaying by activating or deactivating their visibility through the materials, for each individual reinforcement steel bar and for each individual view. This however became impossible to do within the federated model, as the visibility settings of the rebar are only accessible within the structural one, and therefore only apply to the views in said model, and it is therefore not possible to do this adjustment of settings to a model other than the one in which the reinforcements have been modeled.
In the end, the most favorable solution was to produce detailed views in the architectural model, linking the structural one, and reducing the ‘view range’ of the sections involved up to the exclusion of all possible foundation beams in projection, so as not to incur in the issue of displaying the rebar through the beams. This however greatly limits the possibility of making visible, in the section, the projection of certain spaces and rooms of the architectural model, so the issue remains partially unresolved for now.

To produce the architectural details requested, a set of default Revit® tools have been used. The first step was to make sure that the hierarchy of all the wall, floor and roof layers matched correctly, in order to have the right overlapping of them in every section view.

Then, the appearance of each material was also checked, to make sure that every layer had not only the right material, but also the right visualization.

The final step was to operate on single 1:20 callout detail sections by adding both 2D detail elements to the views and adjusting unions,
overlapping of layers and masking by using commands like ‘Cut profile’, which can be found under the ‘View’ ribbon, and ‘Filled Region’, ‘Masking Region’, ‘Detail Component’, ‘Repeating Detail Component’ and ‘Insulation’, which can be found under the ‘Annotate’ ribbon.

The final result was a series of 1:20 callout sections in which the LOD was enhanced, despite this way not having the same increasing in the level of development also in the entire model, which however is a very common scenario.

Figure 66: operation on the hierarchy and appearance of material layers

Figures 67-68-69-70: the set of tools used to produce the 2D detail views
Section B: Methodology

Figure 71: detailed callout section of the foundations

Figure 72: detailed callout section of the wall-floor junction

Figure 73: detailed callout section of the wall-roof junction
CHAPTER 6
CLASSIFICATION AND SIMULATION

Keywords: Classification systems, 4D BIM, Clash detection
6.1 Classification systems

Classification systems are used in the AEC industry since even before BIM was introduced in said industry, and are fundamental because of their main objective: to identify in the most clear way any building component, so that all the actors involved in a project can exchange information about every element of the building just by communicating a series of digits, and this is especially important when relating to time schedules or quantity take-offs, in which every component of the designed structure need to be univocally described.

However, so far, one of the ways to codify building components for identification during work planning, clash detection, site simulation, quantity take-off and in situ lists and schedules has been that of associating them with a code originating from the combination of acronyms representing different types of information about them. These codes are often created on an arbitrary basis and can most often be traced to a structure of this kind: AA_BB_CC_XX_YY ZZ [1] [2] [3], where each portion of the previous code represents a set of numbers or letters from which data and properties of a component can be derived, like type of discipline, type of building, structure, elevation, area, category of the element, product, and so on, up to a possible progressive number for installation. The difficulty in using a similar system is that for each project one can find themselves adopting a new code that has been redone from scratch because the previous one may not be suitable. It also becomes more difficult (and sometimes more susceptible of error, misinterpretation or misunderstanding) to be able
to communicate this code to all the actors involved in the project, since the code itself was created on an arbitrary basis. This means that, to avoid problems of communication and understanding among the professionals involved it is necessary to have a common base, which remains stable, that is knowable and interpretable in a univocal way by anyone and that, possibly, remains as standard for each project, always adoptable and equal to itself.

However, this is not the only way of doing such kind of identification operations. In fact, to facilitate the task of establishing an unambiguous and stable coding over time for each building component, one could use national and international classification systems that disarticulate and prioritize into a hierarchy each technological element of the building or of the activity linked to that element. These hierarchical systems are all based on the ISO 12006-2:2015 ‘Building construction – Organization of information about construction works – Part 2: Framework for classification’ international standard. As the name recalls, this norm regulates the development of building elements classifications, defining a framework of requisites for titles and information required given a range of possibilities and information object classes, according to specific subdivisions such as by function, form, activity, element, product, etc., also illustrating how those classes and sub-classes are related one another, so this makes it fundamental for an optimal building information management. This set of guidelines for building break-up systems regards any phase of the life cycle of a facility, from briefing, through design, construction, maintenance, until final demolition occurs, and can be applied to both building and civil engineering [4].
Many national and international classification systems are based on ISO 12006-2:2015. For example, the UNI 8290 is a standard valid in Italy, which breaks down the building by technological units, subdividing them according to three levels of hierarchy, for a total of just over a hundred codes of individual items [5].

This kind of coding, which tends to be quite ‘generic’ in some ways, may be fine and work well in the case, for example, of a preliminary design, when the information about the project and the subdivisions and distinctions of the various components are not yet so clear-cut and the levels of detail and development of the model are not advanced yet. However, it becomes more difficult to adopt a generic codification such as that of the UNI 8290 in the case of much higher design levels and in more advanced phases of the building process.

For this reason, it is possible to resort to the use of other classification systems of building components, ones that reach a higher level of subdivision or that disarticulate the building according to different logics. These include the international classification systems published by the CSI (Construction Specification Institute) such as UniFormat™ and MasterFormat™; then, in the United Kingdom there is also the Uniclass™ system, developed by the CPIC (Construction Project Information Committee), which is articulated in various tables representing different ways of classifying the construction; finally, a further classification system that tries to bring all the previous ones together is OmniClass™, divided into different tables catalogued according to the type of disarticulation used and with a code that refers to the classification systems that it tries to trace, so as to have an almost perfect parallelism with them. The latter is
also partially incorporated into the type properties of BIM software such as Autodesk® Revit®, although its use, as will be explained later, is very limited.

6.1.1 Classifications overview

Aiming at trying to identify each element of the CDAI project with the code of a particular classification system, a study was carried out to find what the features, flaws, opportunities and limitations of a certain number of classification systems was. They were compared based on a series of criteria that were established before, and aimed at the specific subject of Construction Management, which was the main focus of the present thesis.

CSI's UniFormat™

One of the possible classifications that can be used for the hierarchization of the information model of the building is the so-called UniFormat. It is a classification system developed by the American Institute of Architects (AIA) between 1973 and 1989, and modified in successive reworkings up to the UniFormat II version. The latest version, UniFormat 2010, dating back a little less than a decade ago, is the result of the general review carried out by the CSI and the CSC [6].

UniFormat is characterized by a general framework that makes it suitable to be used for applications such as cost control, preliminary project description, and rough programming. This is because the standard organizes information about the project around functional systems and elements, and this makes it an excellent tool for estimators who have to draw up preliminary estimates of the preliminary project [7], as well as being a system used by most universities and applicable to all phases of a building’s life cycle [8].
This system of breaking-up of the building has a **hierarchical structure on four levels**, the first of which is subdivided into nine different categories distinguished by a letter, while the successive ones are characterized by a pair of numbers; the last level was recently introduced during the updating of the classification, an update that allows UniFormat to find perfect correspondence with the table 21 of the OmniClass, which greatly facilitates the exchange of information between actors who are aware of at least one of the two. In addition, the fact that UniFormat is organized by functional elements means that the work results, including materials, products and activities, are not taken into consideration, making it compatible with another system, MasterFormat, which proceeds precisely for work results, and which can potentially be adopted as a further level of detail of the UniFormat [9].

Figure 74: UniFormat example from the Autodesk Classification Manager’s database

CSI’s MasterFormat™

Proceeding, another possible coding system is that offered by **MasterFormat**, also developed and perfected in the USA and Canada by the CSI and the CSC throughout the second half of the 20th century. The last version of MasterFormat dates back to 2004, and, just like the coding
described above, it also tries, in its last form, to trace the OmniClass [10] and thus provide a common ground for the exchange of information on the project.

MasterFormat is organized by **work results**, which can be absolutely fundamental to codify the elements of a building to a level of detail and development greater than the classic subdivision by technological elements typical of UniFormat and UNI 8290. This is one of the reasons for which MasterFormat was initially conceived for the internal organization of design manuals, and only later its use was extended to projects, specifications, product information, and specifications [11].

The hierarchical structure of the MasterFormat system closely resembles that of other codings, such as the UniFormat, as it is also structured by levels and sub-levels, in which each component of a given level has a progressive enumeration. At each level is associated a pair of digits, and as you proceed along the various sub-levels, additional pairs of numbers are added to the code, separated by a space. At the first level there were originally 16 different categories, expanded up to 50 with the latest version of 2004 [12].

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
<th>MasterFormat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Requirements</td>
<td>01 00 00</td>
</tr>
<tr>
<td>2</td>
<td>Administrative Requirements</td>
<td>01 00 30</td>
</tr>
<tr>
<td>3</td>
<td>Project Management and Coordination</td>
<td>01 00 31</td>
</tr>
<tr>
<td>4</td>
<td>Project Coordination</td>
<td>01 00 31 13</td>
</tr>
<tr>
<td>5</td>
<td>Facility Services Coordination</td>
<td>01 00 31 14</td>
</tr>
<tr>
<td>6</td>
<td>Contractual Coordination</td>
<td>01 00 31 15</td>
</tr>
<tr>
<td>7</td>
<td>Project Meetings</td>
<td>01 00 31 19</td>
</tr>
<tr>
<td>8</td>
<td>Preconstruction Meetings</td>
<td>01 00 31 19 10 13</td>
</tr>
<tr>
<td>9</td>
<td>Site Mobilization Meetings</td>
<td>01 00 31 19 10 16</td>
</tr>
<tr>
<td>10</td>
<td>Progress Meetings</td>
<td>01 00 31 19 10 20</td>
</tr>
<tr>
<td>11</td>
<td>Pre-installation Meetings</td>
<td>01 00 31 19 10 25</td>
</tr>
<tr>
<td>12</td>
<td>Project Web Site</td>
<td>01 00 31 23</td>
</tr>
<tr>
<td>13</td>
<td>Electronic Communication Protocols</td>
<td>01 00 31 26</td>
</tr>
<tr>
<td>14</td>
<td>Construction Progress Documentation</td>
<td>01 00 32</td>
</tr>
<tr>
<td>15</td>
<td>Scheduling of Work</td>
<td>01 00 32 00</td>
</tr>
<tr>
<td>16</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 01</td>
</tr>
<tr>
<td>17</td>
<td>Scheduling of Work</td>
<td>01 00 32 02</td>
</tr>
<tr>
<td>18</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 03</td>
</tr>
<tr>
<td>19</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 04</td>
</tr>
<tr>
<td>20</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 05</td>
</tr>
<tr>
<td>21</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 06</td>
</tr>
<tr>
<td>22</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 07</td>
</tr>
<tr>
<td>23</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 08</td>
</tr>
<tr>
<td>24</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 09</td>
</tr>
<tr>
<td>25</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 10</td>
</tr>
<tr>
<td>26</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 11</td>
</tr>
<tr>
<td>27</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 12</td>
</tr>
<tr>
<td>28</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 13</td>
</tr>
<tr>
<td>29</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 14</td>
</tr>
<tr>
<td>30</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 15</td>
</tr>
<tr>
<td>31</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 16</td>
</tr>
<tr>
<td>32</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 17</td>
</tr>
<tr>
<td>33</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 18</td>
</tr>
<tr>
<td>34</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 19</td>
</tr>
<tr>
<td>35</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 20</td>
</tr>
<tr>
<td>36</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 21</td>
</tr>
<tr>
<td>37</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 22</td>
</tr>
<tr>
<td>38</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 23</td>
</tr>
<tr>
<td>39</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 24</td>
</tr>
<tr>
<td>40</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 25</td>
</tr>
<tr>
<td>41</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 26</td>
</tr>
<tr>
<td>42</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 27</td>
</tr>
<tr>
<td>43</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 28</td>
</tr>
<tr>
<td>44</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 29</td>
</tr>
<tr>
<td>45</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 30</td>
</tr>
<tr>
<td>46</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 31</td>
</tr>
<tr>
<td>47</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 32</td>
</tr>
<tr>
<td>48</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 33</td>
</tr>
<tr>
<td>49</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 34</td>
</tr>
<tr>
<td>50</td>
<td>Construction Progress Schedule</td>
<td>01 00 32 35</td>
</tr>
</tbody>
</table>

Figure 75: MasterFormat example from the Autodesk Classification Manager's database
NBS’ Uniclass™

On the other hand, in the United Kingdom the Uniclass system was developed by the National Building Specification (NBS) and promoted by the CPIC. This type of classification, whose full name is ‘Unified Classification for the Construction Industry’, was published for the first time in 1997, and updated over the years up to the last version, strongly revisited, dated 2015 and called ‘Uniclass 2’ [13]. Lately, there has been a lot of work aimed to update again and implement the standard with new tables that will replace those that are considered obsolete to this day [14].

Originally this classification system was designed to replace CI/SfB standards (Construction Index / Samarbetskommitten for Byggnasfragar, a Scandinavian classification system[15]), which were, until then, those used to provide the basis of WBS structures [16]. On the other hand, the Uniclass 2015 was designed to be a sort of British response to ISO 12006-2 [17] and adapt to the new uses of classifications, aimed at the practice of design and construction in BIM environment.

Uniclass 2015 is structured as a hierarchical faceted system, sometimes with references to an enumeration system [18]. For this reason it is divided into different tables (fifteen in the first versions of the standard, eleven in the most recent), each of which represents a ‘facet’, i.e. a different strategy of categorizing and decomposing the building. Each of these tables is defined by a letter or pair of letters, and its subsequent further layers are synthesized by pairs of numbers, as already encountered in other coding examples. Being a faceted system, each element can be described by several combinations of codes, depending on the taxonomy that is used (activities, spaces, elements, products, work results, systems, etc.). Finally, each table is constituted in such a way as to leave room for
possible additions concerning new developments that follow the natural progress of technology and industry [19].

![Figure 76: Uniclass Pr example from the Autodesk Classification Manager's database](image)

CSI's OmniClass™

Another widely adopted and rapidly growing coding system in its use is **OmniClass**. The first version of this standard dates back to 2006 [20], published by the CSI and the CSC and widely used especially in North America, to the point of being integrated into the National BIM Standards in the United States. This specification, in the same way as the previous ones, has undergone a series of modifications and additions, up to its current version, published between 2012 and 2013.

The OmniClass system is a **hierarchical faceted system**, like Uniclass, and refers to it both for the general decomposition in tables and in some of its contents. In fact, it is the American equivalent of the British Uniclass [21]. In addition, it also refers directly to the MasterFormat and UniFormat systems [22] for two of the tables contained therein. This coding has been conceived and realized with the aim of making it adoptable for each phase of development of a project along its life cycle and for every aspect of it,
and to understand all the destinations of a work and all levels of detail of it, whether it concerns materials, documentation, construction systems, or other.

OmniClass is divided into **fifteen different tables**, each representing an aspect of the project, including entities by function and by form, spaces by function and by form, elements, work results, products, phases, etc. Each level of this has been translated with a pair of numbers, separated by a space, and separated with a dash by a two-digit number which precedes them, representing the number of the table in use. In particular, Table 21 (Elements) incorporates the structure and coding of the UniFormat system, with the difference that the latter is more compact, and that the first level of the hierarchy is represented by a single capital letter instead of a pair of digits. In the same way, table 22 (Work Results) corresponds to the MasterFormat, with the same method of conversion of the codes used for UniFormat. The same applies to the British Uniclass, with the OmniClass 11 table corresponding to the Uniclass En table, the OmniClass 13 table corresponding to the Uniclass SL table, and so on with correspondences between OmniClass 21 and Uniclass EF, OmniClass 22 and Uniclass WR,
OmniClass 23 and Uniclass Pr, OmniClass 34 and Uniclass C. Being a hierarchical faceted classification system, just like in the case of Uniclass, for this reason each element can be coded by combining the codes assigned for each table together, and thus constitute a complex definition of it. There is however a side note which is the fact that compared to Uniclass tables, OmniClass has some minor deficiencies in terms of items and codes [23].

![Classification conversion scheme from the Autodesk Classification Manager's database](image)

Figure 78: classification conversion scheme from the Autodesk Classification Manager's database

<table>
<thead>
<tr>
<th>Classification systems</th>
<th>OmniClass</th>
<th>MasterFormat</th>
<th>UniFormat</th>
<th>Uniclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country of origin</td>
<td>North America</td>
<td>North America</td>
<td>North America</td>
<td>UK</td>
</tr>
<tr>
<td>Produced by</td>
<td>CSI and CSC</td>
<td>CSI and CSC</td>
<td>CSI and CSC</td>
<td>CPic and NDS</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td>English</td>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>Purpose and properties</td>
<td>Organization, sorting and retrieval of product information for all objects in the built environment in the project life cycle.</td>
<td>A master list for organizing construction project results, requirements, products and activities. Mostly used in biditize and specifications.</td>
<td>For arranging construction information, organized around the physical parts of a facility known as functional elements mainly used for cost estimates.</td>
<td>For all aspects of the design and construction process. For organizing library materials and structuring product literature and project information</td>
</tr>
<tr>
<td>Grouping principle</td>
<td>faceted</td>
<td>hierarchical</td>
<td>hierarchical</td>
<td>faceted</td>
</tr>
<tr>
<td>Organization and taxonomies</td>
<td>15 inter-related tables categorized by number and name. Each combination of Table 21, Table 22 & Table 23 allows for classifying a product precisely.</td>
<td>One table with a series of six numbers and name. Level one with 50 divisions (2095 versions) each is made up of level two, level three, and sometimes level four numbers and titles for more detailed areas of work results.</td>
<td>One table with alphanumeric designations and titles in five levels: level one in nine categories separated by their special function. Level 2 separates them into constituent parts, level 3, 4 and 5 further subdivide them.</td>
<td>The division among facets is based on the alphabet in 11 tables and within each facet by decimal scale up to 6 digits. Table 8, J, K and L can be used for classifying product models.</td>
</tr>
</tbody>
</table>

Figure 79: comparison table of the four international classification systems studied [24]
Finally, there is the classification system of building components of the Italian legislation, namely **UNI 8290**, published in September 1981 [25] from the UNI ('Ente nazionale italiano di unificazione' - Italian National Institute of Unification). It appears to be simpler and less disarticulated than the corresponding US and British classifications, having just over one hundred entries, unlike the other international classifications, which range mostly between eight hundred and eight thousand items each. The standard also specifies that the decomposition adopted is intended to be used for residential construction.

UNI 8290:1981 breaks up the building on **three hierarchical levels**. The first, more general, is that of the ‘classes of technological units’: these are the most general level of the decomposition, and indicate the generic function of the coded element. These classes are eight: structure, shell, internal partition, external partition, service supply system, security system, internal equipment, and external equipment. The second sub-level is that of the so-called ‘technological units’, which are sets of technical elements responding to a specific characteristic of the generic function of belonging. An example of this level of the hierarchy can be that of the ‘service supply system’ class: this contains the following nine technological units: air conditioning system, sanitary system, liquid disposal system, aeration disposal plant, solid waste disposal system, plant of gas distribution, electrical system, telecommunications system, and fixed transport system. The voices of these first two levels aim to represent functions aimed at satisfying the needs of users [26]. Lastly, the last level is that of the ‘classes of technical elements’, i.e. products that represent a complete or partial response to the functions of the technological units of the above level.
An example can be the technological unit of the electrical system, which is subdivided into the following four classes of technical elements: power supply, connections, electrical equipment, distribution networks and terminals.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strutture</td>
<td>2</td>
</tr>
<tr>
<td>1.1</td>
<td>Strutture di fondazione</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Strutture di fondazione dirette</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Strutture di fondazione indirette</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Strutture di elevazione</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Strutture di elevazione verticali</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Strutture di elevazione orizzontali ed inclinate</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Strutture di elevazione spaziali</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Chiusura</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Strutture di contenimento verticale</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Strutture di contenimento orizzontali</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Chiusura verticale</td>
<td>3</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Pareti perimetrali verticali</td>
<td>4</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Infissi esterne verticali</td>
<td>4</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Chiusura orizzontale inferiore</td>
<td>3</td>
</tr>
</tbody>
</table>

![Figure 80: UNI 8290 example from an Autodesk Classification Manager’s custom-made database](image)

6.1.2 Classifications comparison

After a deep overview of all these national and international classification systems, a comparison was made, based on a series of criteria previously established. These criteria were:

- Taxonomy
- Compatibility
- Integration
- Legibility
- Reversibility

Here following are these five criteria explained and illustrated in their scales and values, as well as a final comparison of all the classifications based on said criteria.
Taxonomy

The ‘taxonomy’ criterion basically means the main subdivision principle of the classification system. This considers the fact that each system breaks down the building according to different logics, so that the WBS that each classification virtually produces is unique.

‘Taxonomy’ therefore assumed the following values:

- **E**: the classification system is using a subdivision by ‘Elements’, meaning that the instances of the code are sorted based on a unitary functional class. This was the case for UniFormat, OmniClass 21, Uniclass E/F, and UNI 8290.

- **WR**: the classification system is using a subdivision by ‘Work Result’, meaning that the instances of the code are sorted based on the completion of the activity needed to obtain them. This was the case for MasterFormat, OmniClass 22, and Uniclass WR.

- **PR**: the classification system is using a subdivision by ‘Products’, meaning that the instances of the code are sorted based on the unitarity of factory or site semi-finished elements. This was the case for OmniClass 23 and Uniclass Pr.

Compatibility

‘Compatibility’ was meant to tell how well the classification system fits the use and needs for Construction Management purposes using BIM applications.

‘Compatibility’ assumed the following values:

- **0**: no compatibility with Construction Management using BIM procedures. No classification was found having this issue, probably because these type of systems are specifically meant to be used in construction.
Integration

‘Integration’ addresses how Revit® or third-party plugins manage to implement the codes within the software’s parameters. Revit®, for example, has a series of built-in hierarchical type parameters that are based on text files (which can be edited or substituted) and allow the used to assign a certain value to said parameters based on the hierarchy of the text file used as a source. These parameters are ‘OmniClass Number’, which uses a text file based on the OmniClass classification, divided into its numerous tables (this parameter however, only exists as a loadable family type parameter, so unfortunately system families can not have a OmniClass Number parameter, which is a very heavy limitation); ‘Assembly Code’, which is by default based on UniFormat II, but the source text file can be edited or substituted in order to feed this parameter with the UniFormat 2010 classification; ‘Keynote’, which is another hierarchical type parameter which can be fed with any kind of scheme desired, so if a classification system is translated into a formatted text file, this can be used as a source for the assignment of a classification code via keynote.

1: poor compatibility with BIM and CM due to too generic or too specific classes. This was the case for OmniClass 23, Uniclass Pr, and UNI 8290.

2: good and sufficient compatibility with BIM and CM, though having the same code for some different BIM object types. This was the case for UniFormat, OmniClass 21, and Uniclass E/F.

3: optimal compatibility with BIM and CM, with more specific classes allowing more differentiation among BIM object types. This was the case for MasterFormat, OmniClass 22, Uniclass WR.
The ‘Integration’ criterion assumed the following values:

0: no availability of the classification and total absence of tools aimed at the integration of their codes within the BIM model. This was the case only for Uniclass WR, since there were publications available for its theoretical study, but no complete table of such classification was found available.

1: possibility of integrating the classification in Revit® through manual scripting or compiling operations, due to the absence of predefined tools aimed at such task. This was the case for UNI 8290, because no tool was found including said classification into its databases, and so the production of any hypothetical source file for a Revit® parameter would have been long and time consuming, since a text file for it should have been manually compiled.

2: possibility of integrating the classification in Revit® by using external tools. This was the case for MasterFormat, Uniclass E/F, and Uniclass Pr, since the Autodesk® Classification Manager for Revit had those classification systems among its databases.

3: predisposition to the integration of the classification code by partial Revit® parameters’ availability. This was the case for all the OmniClass tables studied, because of the previously mentioned partial integration of the OmniClass type parameter into the loadable families.

4: predisposition to the integration of the classification code by total Revit® parameters’ availability. This was the case for UniFormat, because not only it was included in the Classification Manager’s database, but also the Revit®’s Assembly Code parameter had the UniFormat classification available as a default source for all of the family types of the software, despite being an obsolete version that needed some work to be updated.
Legibility

This criterion was simply meant to evaluate the compactness and legibility of the code, aiming at a better and easier manageability of it.

'Legibility' assumed the following values:

0: excessive and/or unnecessary code articulation, which makes its reproduction and management less practical. This was the case for all the OmniClass and Uniclass, because the fact that they are faceted classifications makes their codes more articulated, despite being it necessary for their purpose.

1: sufficiently legible, compact and informative classification code. This was the case for MasterFormat, having a shorter code but with couples of digits separated by a simple space, which could lead to confusion if coupled with other coding systems.

2: perfectly legible and easily manageable code at the same informative content level. This was the case for UniFormat and UNI 8290, since they have a very compact and clear code, despite having also (at least UniFormat) a very articulated hierarchical structure.

Reversibility

Finally, this last comparison criterion was used to determine if a classification can be converted into another. Based on the possibility of converting the classification code from one to another with a similar taxonomy was seen as a positive feature, because it makes the classification of the building component more flexible to possible changes of strategy or impositions in the working environment.
The ‘Reversibility' values were simply:

N: the classification code does not have any common subdivision logic with other classifications with a similar taxonomy. This was the case for OmniClass 23, all Uniclass tables and UNI 8290.

Y: the classification uses the same subdivision logic of other classification systems with a similar taxonomy, therefore a conversion between the two could be easily possible, if needed. This was the case for UniFormat, MasterFormat, OmniClass 21 and OmniClass 22, having perfect convertibility among them as already shown in Figure 72.

Results

Here following are the results of the study, as well as a series of classification tests made on sample BIM elements, to verify what kind of information about the object each classification is able to communicate.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Taxonomy</th>
<th>Compatibility</th>
<th>Integration</th>
<th>Legibility</th>
<th>Reversibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>E</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>WR</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>Y</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>E</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>WR</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>PR</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Uniclass EF</td>
<td>E</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>WR</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>PR</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>N</td>
</tr>
</tbody>
</table>

Figure 81: results of the classification study based on the five criteria previously exposed
Figure 8.2: A parallel coordinate graph showing a graphical restitution of the study results.
Walls: Basic Wall: Muro Esterno 35.5 cm prog

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>82010.20</td>
<td>Exterior Wall Construction</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>04 20.00</td>
<td>Unit Masonry</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>2.1.1</td>
<td>Exterior Vertical Walls</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21-02 20 10 20</td>
<td>Exterior Wall Construction</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22-04 20 00</td>
<td>Unit Masonry</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23-13 35 21 17</td>
<td>Metal Framed Structural Walls</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 25.10</td>
<td>Walls</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr. 20 93 52</td>
<td>Masonry walling units</td>
</tr>
</tbody>
</table>

Figure 83: classification test on an exterior wall

Walls: Curtain Wall: vetrate prog

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>82020.30</td>
<td>Exterior Window</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>08 44 13</td>
<td>Glazed Aluminium Curtain Walls</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>2.1.2</td>
<td>Exterior Vertical Fixtures</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21-02 20 20 30</td>
<td>Exterior Window Wall</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22-08 44 13</td>
<td>Glazed Aluminium Curtain Walls</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23-13 33 27 11 13</td>
<td>Metal Framed Curtain Wall</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 25 10</td>
<td>Walls</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr. 20 76 51 02</td>
<td>Aluminium curtain wall frame sections</td>
</tr>
</tbody>
</table>

Figure 84: classification test on a curtain wall

Windows: Finestra due ante secco: Finestra due ante con persiane 210x165

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>82020.10</td>
<td>Exterior Operating Windows</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>08 59 00</td>
<td>Wood Windows</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>2.1.2</td>
<td>Exterior Vertical Fixtures</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21-02 20 20 10</td>
<td>Exterior Operating Windows</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22-08 52 00</td>
<td>Wood Windows</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23-17 13 15 23</td>
<td>Wood Casement Windows</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 25 30</td>
<td>Doors and windows</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr. 30 59 98 96</td>
<td>Wood window units</td>
</tr>
</tbody>
</table>

Figure 85: classification test on a window

Floors: Floor: Solaio interpiano_prog

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>81010.20</td>
<td>Floor Decks, Slabs, and Toppings</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>05 31 13</td>
<td>Steel Floor Decking</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>2.2.1</td>
<td>Floors</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21-02 10 10 20</td>
<td>Floor Decks, Slabs, and Toppings</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22-05 31 13</td>
<td>Steel Floor Decking</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23-17 13 15 13</td>
<td>Metal Structural Floor Decks</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF.30 20</td>
<td>Floors</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr. 35 31 06 55</td>
<td>Multi-layer flooring</td>
</tr>
</tbody>
</table>

Figure 86: classification test on a floor
Mechanical Equipment: M_Ventilconvettore - Verticale: 113 LPS

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>D000.10</td>
<td>Supply Air</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>23.31.13</td>
<td>Constant Air-Volume Units</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>3.1.4</td>
<td>(Air Conditioning) Distribution and Terminals</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21.04.30.60.10</td>
<td>Supply Air</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22.23.36.13</td>
<td>Constant Air-Volume Units</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 65.80</td>
<td>Air Conditioning</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr_70.65.03.29</td>
<td>Fan coil units</td>
</tr>
</tbody>
</table>

Figure 87: classification test on a fan coil

Ducts: Rectangular Duct: Raggio gomiti / Giunti

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>D005.50</td>
<td>HVAC Air Distribution</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>23.31.13.13</td>
<td>Rectangular Metal Ducts</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>3.1.4</td>
<td>(Air Conditioning) Distribution and Terminals</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21.04.30.60.50</td>
<td>HVAC Air Distribution</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22.23.31.13</td>
<td>Rectangular Metal Ducts</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23.33.49.13.13</td>
<td>Square Ventilation Ducts</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 65.80</td>
<td>Air Conditioning</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr_30.59.96.92</td>
<td>Ventilation ducts</td>
</tr>
</tbody>
</table>

Figure 88: classification test on a ventilation duct

Structural Columns: H-Wide Flange-Column: HE160B

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>B1010.10</td>
<td>Floor Structural Frame</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>05.12.23</td>
<td>Structural Steel for Building</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>1.2.1</td>
<td>Vertical Elevation Structures</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21.02.10.10.10</td>
<td>Floor Structural Frame</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22.05.12.23</td>
<td>Structural Steel for Building</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23.35.13.11</td>
<td>Columns</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 20.30</td>
<td>Columns</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr_20.85.16.84</td>
<td>Stainless steel structural columns</td>
</tr>
</tbody>
</table>

Figure 89: classification test on a steel column

Structural Framing: Precast-Inverted Tee: 1200 IT 900

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UniFormat</td>
<td>A1010.30</td>
<td>Column Foundations</td>
</tr>
<tr>
<td>MasterFormat</td>
<td>03.31.00</td>
<td>Structural Concrete</td>
</tr>
<tr>
<td>UNI 8290</td>
<td>1.1.1</td>
<td>Direct Foundation Structures</td>
</tr>
<tr>
<td>OmniClass 21</td>
<td>21.01.10.10.30</td>
<td>Column Foundations</td>
</tr>
<tr>
<td>OmniClass 22</td>
<td>22.03.31.00</td>
<td>Structural Concrete</td>
</tr>
<tr>
<td>OmniClass 23</td>
<td>23.13.28.13.11</td>
<td>Column Bases</td>
</tr>
<tr>
<td>Uniclass E/F</td>
<td>EF 20.05</td>
<td>Substructure</td>
</tr>
<tr>
<td>Uniclass WR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Uniclass Pr</td>
<td>Pr_20.85.13.35</td>
<td>Concrete ground beams</td>
</tr>
</tbody>
</table>

Figure 90: classification test on a concrete foundation
6.1.3 Classification adoption and assignment

Once the classification system and the most suitable coding to be used was established, it was necessary to proceed with the association of the codes. First of all, it was necessary to decide whether to proceed assigning the codes by category, by family, by type or by instance. Given the genericity of the Revit® categories, it was not possible to proceed by category. Besides that, even proceeding by family was to be excluded, due to the fact that a single family may not have the same level of distinction and disarticulation to which the coding system adopted arrives. Proceeding by type proved to be the best solution for the association of codes, since types reach a level of detail suitable for the differentiation of individual products. On the other hand, the level of the instance was used for any assignment of progressive numberings for the installation and assembly order.

For the choice of the code it was decided to use a combination of UniFormat, MasterFormat (both of these two for each type), and a progressive numbering for single instances. UniFormat was chosen for its strong similarity with the type of subdivision of the Italian UNI 8290 standard (despite being a lot more detailed), for the disarticulation by elements, and, having the same hierarchical parity, for its exact correspondence with Table 21 of OmniClass, but being more compact and readable than the latter. The MasterFormat system was later added to the coding, as it follows a rule of breaking up the building by products, and therefore sometimes became a useful additional detailing of the previous code. Like the case of the UniFormat system, also as far as MasterFormat was concerned, there was an OmniClass table, table 22, which had perfect code matching with it. However, again, it was chosen to opt for the first one due to the higher compactness and legibility of the code.
The first step was to associate both codes separately. For this purpose, the **Assembly Code** was used as the parameter in which insert the UniFormat 2010 information, using an edited version of the original UniFormat II text file as a source, and then compiling the parameter via a material schedule, which was the easier and faster way to operate.

Figure 91: UniFormat association using the material schedule and a 3D view as a reference

Figure 92: the Assembly Code source settings
Then, the MasterFormat classification was also associated, this time using the **Keynote** parameter, and using a formatted text file made on purpose for said classification. Again, for the association another instance of material schedule was created in Revit®, and the correct MasterFormat code was assigned to each family type present in the schedule.

Figure 93: the Assembly Code source text file for the UniFormat 2010 classification

Figure 94: the UniFormat hierarchical structure inside the Assembly Code parameter
Figure 95: the Keynote source settings

Figure 96: the Keynote source text file for the MasterFormat classification

Figure 97: the MasterFormat hierarchical structure inside the Keynote parameter
Unfortunately, since the material schedule does not include all the families and types present in the model, a final check needed to be done in order to make sure that no building element was left behind. For this purpose, a series of simple view filters was created in order to reveal in a dedicated view all the model elements that had not any classification yet. What was found was that among the architectural, structural and MEP models, the material schedules did not include the following families (to which for this reason the codes were consequently manually added using the filters):

- wall, floor and roof layers (which was not so important in this case, but may have been in another scenario)
- pads
- curtain wall mullions
- railings
- trees and plants
- topography surfaces (which does not have any type parameter)
- structural connections
- rebar

After having found all the elements that were missing their UniFormat and MasterFormat codes, the final step could be carried on, which was the creation of a couple of shared text parameters for every instance of each model, and then the combination of all three codes together, which was done through Dynamo scripts, as it will explained in the following paragraph.
6.1.4 Dynamo scripts

The Dynamo plugin present in Revit® was used because of its flexibility, and the possibility of using the same script to perform the same series of operations in any subsequent project later. A series of Dynamo scripts was created, each one with its specific purpose.

Code combination

The first one was meant to create a ‘Progressive’ and a ‘Task ID’ text parameters. ‘Progressive’ was a text parameter made of two digits, and which by default was set to ‘00’ for every instance of the models. The intention was to edit and change this number only when needed for specific reasons, such as having the same exact combined code for different activities. This was the case of, for example, ground floor interior partitions and first floor interior partitions: since the interior walls had all the same characteristics, they had the same type, which resulted in the same activity code. For this reason, and for any other similar scenario, the ‘Progressive’ parameter was
changed to ‘01’ on one of the two activities, and the instances belonging to said activity were changed accordingly.

Figure 99: the entire code combination Dynamo script
The first portion of the script takes the 83 Revit® model categories and for each category takes all the elements in the current models belonging to those categories, making a complete list of them.

The second portion of the script creates the ‘Progressive’ and the ‘Task ID’ text parameters in the current model.
The third portion of the script collects the respective values of the Assembly Code, the Keynote and the Progressive parameters of every instance of the model.

![Diagram showing Assembly Code, Keynote, and Progressive parameters collection]

Figure 102: Assembly Code, Keynote and Progressive values collection

The final portion of the script combines the values of the three parameters collected for each model element, separated by an underscore, and feeds those values into the ‘Task ID’ parameter of each instance of the model. This way every element of the model gets its own final activity code. Another small group of script components keeps the count of all the unique codes created.
Another objective of the classifications study was to create a series of matrices in which insert the codes of each classification system, ordered by Revit® category, so that for future works there could be a reference document from which to start applying the classification to other BIM models, and maybe also automate even more this process.

To make these matrices, another couple of Dynamo scripts were produced, one for UniFormat and one for MasterFormat. The script uses the Classification Manager databases as an input data, and then re-elaborates it in order to produce the desired classification matrix.
Section B: Methodology

Figure 105: the entire UniFormat classification matrix Dynamo script
The first portion of the UniFormat classification matrix creation script is used, again, to make a list of all the model categories, but this time what is produced from it is a list of category IDs, that will be used in the third portion of the script to look for the categories associated to the classification codes in the Classification Manager database.

Figure 106: categories and category IDs collection

The second portion of this script reads from the Classification Manager database spreadsheet.

Figure 107: reading from the Classification Manager's database spreadsheet
Section B: Methodology

The third, and most intense portion of the script, is subdivided into 83 groups, one for each model category. Each group looks for a specific category ID inside the spreadsheet, and restitutes all the codes and their description that respond to a certain ID.

Figure 108: example of a group of components that look for a specific category in the spreadsheet

Finally, the last part of the script writes the results of the search into a new spreadsheet, where this way the classification matrix is created. Both the code and its description are written down in the new spreadsheet.

Figure 109: UniFormat code writing on the new spreadsheet
Figure 110: UniFormat code description writing on the new spreadsheet

Figure 111: the resulting UniFormat classification matrix produced through the Dynamo script
The same identical process was done for the production of a classification matrix of the MasterFormat classification system. What changed in the script was the source spreadsheet of the Classification Manager, and the final output, which was written into the same spreadsheet file of the previous script, only in a different sheet.

The main critical point of these matrices is that they are based on a partially flawed database, so the automation of the code association is still far from being reached. In fact, the Classification Manager database considers some codes as if they belong to the wrong (or partially wrong) Revit® category. One example of this is with curtain walls: the Classification Manager considers them as ‘walls’, referencing to the Revit® category of the curtain wall system, but totally forgetting that curtain panels or curtain mullions are also separate categories.
Figure 113: the entire MasterFormat classification matrix Dynamo script
6.2 Construction simulation

Once every element of the three BIM models had its own activity code, expressed through the ‘Task ID’ parameter, the real management of the project could be carried out. For this purpose a WBS was made, containing all the element codes of the CDAI building, and also every other activity needed for the construction site planning.

Based on the WBS, a Gantt chart with the time schedule of the construction was also produced, using Microsoft Project. Inside this software it was possible to create a time schedule with all the activities planned in the WBS, create a custom column in which to write the corresponding activity code created through the ‘Task ID’ in Revit® and written in the WBS, add the necessary milestones for the various stages of the project construction, and save the .mpp file.

On the other hand, from Revit® the architectural, structural, and MEP models of the CDAI were all exported through the ‘Navisworks 2018’ interoperability tool, which can be found under the ‘Add-Ins’ ribbon. This operation saved a .nwc file of each model, and with this format it was possible to import said models into Navisworks®.

In this software the architectural .nwc model was opened, and then the other models were merged to the same file through the ‘Append’ command. The RSA and the sanctuary models were also imported as .nwc files in Navisworks®, to give the CDAI simulation some context. Then, the whole merged Trompone model was later saved as a .nwf file, the native
file format of the software. It is important to note that the .nwf format does not save any geometry, but saves a reference to the .nwc files, just like a federated model file. This is important because if any change happens to one of the files, it is easy to update the Navisworks® model, but re-exporting the .nwc from Revit® and then refreshing the .nwf file.

This way, the model was ready for the construction operations simulation and the clash detection.

6.2.1 Time schedule simulation

To simulate the construction of the CDAI project, the .mpp file previously produced in Microsoft Project was imported in Navisworks® as a source file for the time schedule data.

Then, a rule was created to make possible the association of the model elements to their activity time. This was possible because of the presence, both in the model parameters and in the Microsoft Project’s time schedule, of the ‘Task ID’ field, with all its different codes for the building elements.

This automatic association worked partially, because both the RSA and the sanctuary did not have an activity code, and just needed to stay in place during the whole simulation. The same issue appeared for the topography and all the pads, for two different but linked reasons: the topography had the ‘Task ID’ shared parameter, but it was empty, because it did not have any type parameters, not even the Assembly Code and Keynote parameters, in which insert the classification codes. On the other hand, pads needed also to be associated manually, because they had their Assembly Code and Keynote type parameters, but could not have any shared parameter.
Section B: Methodology

After all the needed elements of the model had their time association, the last operation was to set the type of activity in the Navisworks® ‘Timeliner’, choosing between ‘construct’, ‘demolish’, or ‘temporary’.

Once all of this had been done, the simulation of the building construction could be run.

Figure 114: creation of an association rule for the activity code

Figure 115: application of the created association rule
Figure 116: manual association of the RSA and the sanctuary models

Figure 117: setting of the type of activity (construct, demolish, temporary)

Figure 118: construction simulation: demolition phase
Section B: Methodology

Figure 119: construction simulation: first floor structural frame phase

Figure 120: construction simulation: first floor exterior walls erection phase

Figure 121: construction simulation: end of all construction activities
6.2.2 Clash detection

Physical clash

The second test that was done in Navisworks was the clash detection. For example purposes, a hard clash detection between geometries was set, testing the interferences between the architectural and the structural model.

The clash setting was very straightforward, and after the analysis, the software found approximately 1300 clashes. Clearly the problem was that not every clash found was ‘real’: in fact, the majority of the interferences found were between the steel structure and the pre-existing warehouse that needed to be demolished. Other than that, the clashes found were for the majority between steel columns and walls or between steel beams and floors of roofs, which is to expect, given the fact that the steel structure was meant to keep inside those elements.

The results of this clash detection were exported as a .html report, for which Navisworks® exported also a folder with reference pictures of every single one of the found clashes.

Overall, the ‘Clash Detective’ works very well and turns out to be one of the most useful tools to review and verify interferences between model elements. In fact, clash detection is one of the most used BIM functions in the industry, as exposed in the introductory section of the present thesis.
Section B: Methodology

Figure 122: setting of the clash detection between the architectural and structural CDAI models

Figure 123: clash detection results

Figures 124: clash detection report exported as .html file
Time-based clash

The last test that was carried out through the use of Navisworks® was a further clash detection, this time done on a time basis, in order to assess any interference in the construction site between different temporary works whose development was expected in contemporary.

As an example, an interference analysis was performed between the mounting activity of the opaque exterior walls and the construction of the curtain walls. To do this, the masses that represented the ideal size of these activities were first modeled in Revit®. In particular, the assembly of the walls was represented with masses shaped according to the dimensions that the relative temporary works would have occupied, namely the scaffolding. On the other hand, the curtain wall construction activity was represented with masses that occupied the total dimensions of the built curtain wall.

Subsequently a .nwc file was exported from Revit® and imported on Navisworks®, containing the geometries of the work masses, which were then associated, in the ‘Timeliner’, with the corresponding activities, and the type of activity was set to ‘Temporary’, so that these geometries would appear at the beginning of the relative workings and disappear once they were finished. The clash detection was therefore set with the geometry of the scaffolding against the geometry of the curtain wall, and was finally set the ‘Link’ between the ‘Clash Detective’ and ‘Timeliner’.

The verification of interference found only one clash, on the South side, in the period in which these activities were contemporaneous, thus highlighting, in an extremely clear and precise manner, what were the critical points of the construction site that needed to be resolved before of the beginning of the works on site.
Section B: Methodology

Figure 125: the temporary works’ masses modeled in Revit®

Figure 126: the temporary works’ masses imported in the Navisworks® coordination model

Figure 127: the temporary works (in yellow) appearing during the construction simulation
Figure 128: setting of the time-based clash detection between the temporary works’ masses

Figure 129: time-based clash detection results

Figure 130: time-based clash detection exported as .html file
Keywords: COBie, Facility Management
7.1 COBie Extension for Revit

As a final stage of this work, it seemed useful to test the capabilities of the COBie format. This, as already mentionend in previous chapters, is an exchange format regulated by the BS 1192-4, and to a certain extent does something very similar to what IFC does, which is enabling and facilitating the exchange of information about the project between different users. The main difference is that COBie does this under the form of a spreadsheet [1]. COBie is specifically meant for Facility Management, and its delivery should be at the final stage of the construction, wrapping up all the information about the project and synthesizing it all inside a multiple-sheet spreadsheet, in which building data can later be accessed and edited according to the maintenance and management operation done to the building during its life cycle. So, it seemed useful to test the transfer of project information to COBie after all the Construction Management operations on the CDAI models were done, as an ending phase of the present work.

This was done throught the ‘COBie Extension for Revit’, a plugin made available by Autodesk®. The plugin itself has a very simple, clear and straightforward interface, mainly divided into three different functions: ‘Setup’, ‘Modify’, and ‘Export’.

Figure 131: the COBie Extension main functions
The ‘Setup’ window is used to adjust the main settings for the plugin, write a contact list, set how the plugin should work and the type of parameters and data that the plugin will have to manage.

After the setup is finished, the COBie plugin will automatically create a series of COBie schedules, COBie type parameters, COBie instance parameters, and COBie project parameters. These parameters will all be left blank by the plugin until the next step of the COBie settings is entered.

Figures 132-133-134: examples of the COBie plugin’s ‘Setup’ settings

Figures 135-136: example of the schedules and parameters created after the plugin’s ‘Setup’
Section B: Methodology

The second setting window of the plugin is ‘Modify’. Here the user can access the zone manager, set the elements of the model that will be exported, and edit a series of information that will be later automatically added to the parameters and schedules that were previously created.

Figure 137: the COBie plugin ‘Modify’ window

Figures 138-139-140: examples of the COBie plugin’s ‘Modify’ settings
Figures 141-142: example of COBie instance and type parameters after the 'Modify' settings

Figure 143: the COBie project parameters (note that some of these were manually compiled)
Finally, after having set every option of the COBie plugin, and after having manually compiled some of the newly-created parameters, namely the project COBie parameters of the model, the last step of the procedure is on the ‘Export’ window of the plugin.

This last window is very straightforward in its settings, the user will select which of the worksheets to create in the exported spreadsheet, and will set a location and a file name, and finally hit ‘Export’.

Figure 144: the COBie plugin ‘Export’ window
7.2 Spreadsheet generation and overview

Before the final spreadsheet export, an important operation was done, in order to make the classification coding adopted for the Construction Management phase to pass through and be included in the COBie spreadsheet. This operation was to use a Dynamo script to write the code compiled previously in the ‘Task ID’ parameter inside one of the newly created COBie instance parameters of the building model elements.

The parameter called ‘COBie.Component.AssetIdentifier’ was chosen, because it was thought to be the fittest one to communicate this kind of information to the FM.

A simple Dynamo script was created, which simply collected all the elements belonging to the usual 83 model categories, and then at first read the ‘Task ID’ instance parameter, and after that wrote each code read into the respective ‘COBie.Component.AssetIdentifier’ instance parameter of every model element considered.

Figure 145: the part of the script which writes the codes from the ‘Task ID’ parameter
Figure 146: the entire COBie AssetIdentifier writing Dynamo script
After the COBie parameter was compiled correctly, the model was finally ready to be exported into the COBie spreadsheet.

An important note is that the plugin does not recognise any element present in linked models, so doing the export operation in the federated file was not working. For this reason another file was created, in which the architectural and MEP models of the CDAI were merged. The structural model was not merged because the presence of the steel connections made the model too slow to be used, since for every small operation Revit® would calculate every single connection again from start.

Another issue encountered was that by merging the models into one single BIM model, the phases disappeared and so the warehouse and the CDAI were overlapping in the same place at the same ‘time’. For this reason, in the merged model the warehouse was manually deleted, so that the COBie plugin could export the information only on the remained-existing building after the end of the construction phase.

Figures 147-148: before and after the AssetIdentifier Dynamo compilation
The COBie spreadsheet has a very specific color coding for each column of each sheet, indicating if the information inserted in those fields are required, required if specified, or other similar requisite.

Figure 149: the COBie spreadsheet columns' color coding [2]

Figure 150: the COBie spreadsheet ‘Introduction’ worksheet, containing general information about the project
Figure 151: the COBie spreadsheet ‘Floor’ worksheet, containing information about the model levels.

Figure 152: the COBie spreadsheet ‘Type’ worksheet, containing information about the model elements’ type (note the ‘Category’ column, containing the previously set Assembly Code with the UniFormat classification).

Figure 153: the COBie spreadsheet ‘Component’ worksheet, containing information about every instance of the model (note the ‘AssetIdentifier’ column, containing the previously set ‘Task ID’ activity code).
SECTION C
Conclusions

Contents

Chap. 8 Results and future developments
Men are generally incredulous, never really trusting new things unless they have tested them by experience

N. Machiavelli
8.1 Results

Many results have been achieved while carrying out this thesis, even though many critical points and difficulties still remain unresolved. The initial objective was to be able to study an efficient workflow to carry out a number of Construction Management activities, and to be able to draw methods that could be applied to other scenarios, in a similar way (albeit radically different) to an industrial process, in which the techniques taken in one case can be repeated on others so as to streamline the whole process, and make it stronger thanks to the lessons learned previously.

In particular, with regard to the sharing strategies, having made the necessary corrections to the Common Data Environment has made it possible to share the BIM models and the progress of the various projects in a more fluid and error-free manner, without any repeated information and synchronization issues of updates between the different folders containing duplicate files, and greater clarity in the methods and how to share such models among the participants.

Regarding the work of reverse engineering and preparation of the CDAI model for construction, one of the fundamental problems was the lack of initial collaboration between the designer and the construction manager. This difficulty was essentially due to the different times in which the two operations were carried out, and also, when there was a contemporaneity between them, the impossibility of being able to make changes to the CDAI models for two different disciplines at the same time, and this has further
slowed down the process and made it more difficult. In fact, however, this was also good because the approach (even if partially imposed) was very similar to a hypothetical scenario of the Italian AEC industry, in which, at least in the case of a public procurement contract, there is almost never the possibility that the designer and builder will work together since the initial phases of the project. On the contrary, as already mentioned in the introductory parts of this thesis, **an ideal scenario would be a collaborative one**, in which all the stakeholders are involved from the beginning of the project and such project proceeds according to an integrated type of delivery method, which, however, it is far from being applicable in Italy.

For model detailing operations, given the difficulty of working on structural connections directly in Revit, **the interoperability** between the latter and Advance Steel **proved to be fundamental**, despite the flaws in the exchange of data between one software and the other: in spite of everything, **this exchange has allowed to increase the LOD of the whole structural model**, and not only of single views, thus bringing a considerable benefit to the process in its entirety. On the other hand, the work of detailing performed on Revit has had its limits, due both to a weighting of the model, and to an impossibility (for now) to get to model each element, something that may not even be required. In conclusion, it was positive to be able to increase the LOD of the modeled building, and increase, where required, the LOD of individual views, and this seems to be a right way to proceed given the current state of the technology used.

As a last observation, with regard to the classification systems and the way of coding the building components, which was by far the most important contribution of all the work done, it is clear that for the moment we are far from having a type of coding sufficient to meet the needs of
any discipline. In short, for now there is no univocal way to classify the elements, but everything depends on the use of the model. On one hand, there are limits given by the current tools made available to those who must operate these classifications. On the other hand new faceted systems like OmniClass or Uniformat, specifically designed to respond to a large number of needs, result uncomfortable and not very flexible to be used efficiently within a BIM environment in which to create or set up a parameter for each type of coding to be adopted. For now there is not a single solution, but the workflow studied in this thesis has aimed to find a satisfactory point of compromise to this temporary lack.

Achieved results

Overall, to summarize briefly, these have been the results achieved with the present work:

- better worksharing organization and clearer sharing and updating system in the BIM4Health CDE;
- BIM model conversion from VR to Construction Management compatibility and increased overall LOD of said model, on both the geometrical and informative content;
- deeper understanding of the current classification systems used worldwide, and definition of a compromised temporary solution for classificating BIM model elements for construction management purposes;
- creation of a database of classification codes for future developments;
- efficient collection of model information and building legacy documentation obtained using the COBie standard.
8.2 Future developments

From here on, many things can still be improved, despite the efforts made for this work. The research is still proceeding and waiting to arrive at a BIM Level 2 or even Level 3 and perfectly integrate it in the contemporary industry, so many unresolved critical points can still be studied and improved.

Regarding the sharing strategies of the Common Data Environment, a possible study of a further strategy was born observing how many new thesis students work, or have worked, on the same case studies of the previous ones, especially regarding the winter garden and the greenhouse. The hypothesis carried out for a third sharing strategy is to use a single model for each of these case studies, in which periodically load each single advancement as a ‘design option’, thus being able to have all the variants available in the same model of the same project proposed by several designers. This hypothesis is still the subject of study and evaluation.

Moreover, at the end of this work, it will perhaps also be time to transfer the models on which the work is finished from the ‘Shared’ folder to ‘Published’, finally reporting them as final approved models.

Also with regard to the operations of detailing a lot can still be done. A big step forward has already been done with the addition of the ‘Steel’ ribbon on Revit® 2019, but this is still not enough. The ideal would be to make more flexible changes to the connections already within Revit®, so as to avoid the risk of wasting time and information during the exchanges between one
software and another. On the other hand, as already mentioned above, the opportunities that Advance Steel® offers towards the automation of CAM production processes are already the subject of numerous researches, and the potential of these tools is still far from being definitively discovered.

A useful step forward that could still be done in Revit® could be to improve the management of detail elements, ideally so that the information and properties of these elements added to individual views may somehow affect the whole project, improving the information content.

Finally, even with regard to the classification systems, improvements could still be made. In particular, it could be very useful to be able to study a unique classification system that is totally compatible with the families and types included in Revit® (or the equivalent categories present in other parametric BIM modeling software). In addition to this, even the code matrices produced during the present work can still be improved and implemented, in order to become the basis of new association databases or to be the starting point for a better automation of the association process, through scripts or other types of automatism.

Overall, there is still a long way to go, but many have the desire to follow it and make it easier for those coming later. Research is still far from over.
List of Software and Plugins Used

<table>
<thead>
<tr>
<th>Software/Plugin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autodesk Revit</td>
<td>Used for BIM modeling and detail production</td>
</tr>
<tr>
<td>Autodesk Advance Steel</td>
<td>Used for steel connections modeling and assembly drawings</td>
</tr>
<tr>
<td>Autodesk Navisworks Manage</td>
<td>Used for 4D construction site simulation and clash detection</td>
</tr>
<tr>
<td>Autodesk Steel Connections [Revit extension]</td>
<td>Used for compatibility purposes when re-importing the Advance Steel model into Revit</td>
</tr>
<tr>
<td>Autodesk Dynamo [Revit plugin]</td>
<td>Used for script production for classification matrices and code compilation and combination</td>
</tr>
<tr>
<td>Autodesk Classification Manager for Revit [Revit plugin]</td>
<td>Used for initial classification tests and for its classification databases as source for the scripts</td>
</tr>
<tr>
<td>Autodesk COBie Extension for Revit [Revit plugin]</td>
<td>Used to set and create the COBie parameters in Revit and to export the compiled COBie spreadsheet</td>
</tr>
<tr>
<td>Microsoft Excel</td>
<td>Used to read and write all the spreadsheets produced</td>
</tr>
<tr>
<td>Microsoft Project</td>
<td>Used for the production of the Gantt chart and time schedule</td>
</tr>
</tbody>
</table>
REFERENCES

SECTION A - INTRODUCTION
CHAPTER 1 - Building Information Modeling

CHAPTER 2 - Construction Management

[5] Ibid.

[6] Ibid., p. 94.

[9] Ibid., p. 228.

[17] Ibid., p. 455.

[18] Ibid., pp. 456-460.

[26] Ibid., pp. 60-65.

[29] Ibid., pp. 96-97.

[42] Ibid., p. 47.

[46] Ibid., p. 62.

[47] Ibid., p. 63.

Ibid., p. 20.

CHAPTER 3 - The Trompone case study

[20] Ibid., p. 52.

SECTION B - METHODOLOGY

CHAPTER 4 - Sharing Strategies

[1] British Standards Institution “BS 1192:2007 “Collaborative production of architectural, engineering and construction information - Code of practice””, Figure 1.

[2] Ibid., 4.2.2.

[3] Ibid., 4.2.3.

[4] Ibid.

[5] Ibid., 4.2.4.

[6] Ibid., 4.2.5.

[7] Ibid., Figure 8.

[10] Ibid., p. 103.

CHAPTER 6 - Classification and simulation

[7] Ibid.

[19] Ibid., p. 35.

[21] Ibid.

[26] Ibid.

CHAPTER 7 - COBie

BIBLIOGRAPHY

Books and articles:

Guidelines, standards, and normative texts:

British Standards Institution “BS 1192:2007 “Collaborative production of architectural, engineering and construction information - Code of practice””.

Construction Project Information Committee “Uniclass™”.

Construction Specification Institute “MasterFormat™”.

Construction Specification Institute “OmniClass™”.

“D. Lgs 50/2016 “Codice dei contratti pubblici”“.

“D. M. MIT 560/2017”.

“UNI 11337-4:2017 “Edilizia e opere di ingegneria civile - Gestione digitale dei processi informativi delle costruzioni - Parte 4: Evoluzione e sviluppo informativo di modelli, elaborati e oggetti””.

“UNI 8290:1981 “Edilizia residenziale - Sistema tecnologico - Classificazione e terminologia””.

Online resources:

ATTACHMENTS