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Abstract

Ilaria ROBERTI

A pipeline for gene expression profiles analysis to predict
physical connections through the brain regions

The aim of this thesis is to perform an integrative analysis of gene expres-
sion and connectivity data using machine learning techniques. The imple-
mented algorithm is able to detect the connection’s degree between brain ar-
eas exploiting patterns of gene expression profiles. Brain is a complex machine
made up of more than 100 billion neurons grouped in many functional re-
gions that communicate to each other through electro-chemical signals. When
referring to brain, physical connectivity is meant as a pattern of anatomical
links constituted by the neuron’s axons and connected to the dendrites of post-
synaptic neurons. It is shown in literature that functional properties of neurons
and neuronal systems depend on neural connectivity patterns. Due to the cru-
cial role played by brain anatomical connectivity, scientists created and made
available a rising number of maps modeling axonal connections between brain
regions. Due to ethical issues, available human data are not detailed enough to
enable a significant and complete analysis, therefore whole mouse connectome
is studied and a lot of models have been designed. These connectivity models
have enabled scientific community to build investigation methods to detect
the existence of anatomical neural connections, features and correlations be-
tween intrinsic properties in the brain tissue. In this regard, the leading trend
is the hypothesis that gene expression influences physical brain connectivity
patterns at anatomical level. Gene expression is the process by which infor-
mation from a gene is used in the synthesis of a function gene product such
as proteins. Gene regulation gives the cell control over structure and function,
and is the basis for cellular differentiation, morphogenesis and the adaptability
of any organism. Gene expression can be evaluated for each gene in a sample
and represents an index of the gene’s activity. Many genes have shown spatial
patterns of expression in restricted brain areas. During this thesis, I imple-
mented a pipeline based on a machine learning technique able to learn from
gene expression data unexplored connectivity’s existence and intensity.
Materials:
In this study, I used gene expression and connectivity data available on the
Allen Mouse Brain Atlas (AMBA) resources combined with the connection’s
intensity reported on Brain Architecture Management System (BAMS) database.
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Allen Institute Mouse gene expression data consist of whole-brain in situ hy-
bridization (ISH) data that have been obtained from 24 m sections of 56-day
old C57BL/6J mice. For each gene, expression data are provided as grid data,
a 3D matrix representing mouse brain volume. Each item of the matrix is a
voxel, that stores gene expression quantified as energy level. Gene expression
data are provided at 200m resolution. The Allen Mouse Brain Connectivity At-
las comprises axonal projections labeled by rAAV that is a viral tracer injected
in a specific site and detected through two-photon tomography for more than
200 mouse brains’ regions in coronal section. When the viral tracer is injected
in a brain region, called source region, it produces axonal projections in sev-
eral target regions. In Allen Mouse Brain Connectivity database, more than
one injection site can be found for a region. Likely gene expression, connec-
tivity grid data is available for each injection site. Each element of the 3D
matrix is a voxel that contains a value representing the projection energy level
detected. Connectivity grid data are provided at 100m resolution. In the refer-
ence space created by AMBA to model the mouse brain, each cerebral region
is composed by several voxels. With the purpose to link grid data voxels to
a region, AMBA provides a structural annotation file at different resolutions.
Other information about neural circuitry were collected from BAMS. To date,
BAMS contains on the order of 45,000 reports of connections between differ-
ent gray matter regions in the rat. Even if AMBA’s data were retrieved from
mouse, some studies have demonstrated that mouse and rat’s brains share
anatomical features but at different dimension scales. BAMS provides an in-
teractive matrix that reports for each couple of brains’ regions the existence of
a connection and the intensity of this connection.
Method:
The first phase of the work was preliminary data downloading step. I have
obtained grid data for 3318 genes and 2333 injection sites for coronal section
from Allen Brain Atlas. I stored the whole data in a SQlite database processed
through a pipeline designed in Knime dataflow framework, an open-source
platform that enables to perform elaborations and to organize data in an easy
accessible model. Projection data were reconducted to an unique value repre-
senting the connectivity’s intensity between the source and the target region.
This to overcome the impossibility to match the volumes provided by ABA at
different resolutions without introducing a significant error. The connectivity
value was obtained calculating the median of all the projection energy values
for each source-target couple. When multiple injections were provided for a
region, the connection’s intensity between couples was evaluated as the mean
or maximum of the median values obtained for each injection situated in a
given region. As declared early in this document, the main goal of this the-
sis is the creation of a model capable to recognizing the level of connection of
two areas by looking at the gene expression profiles. In order to achieve this
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purpose, N source-target regions are selected in accordance with their connec-
tivity intensity and the type of analysis to perform. These data undergo the
following pipeline:

i) For each source-target pair, I selected on the gene data annotation M voxels
belonging to source region and M voxels to the target region.

ii) For each selected voxel, I created a vector composed of 3318 elements where
each element corresponds to a specific gene provided by AMBA. In par-
ticular, each array’s cell contains the gene expression energy detected
for that voxel. At the end of this step, I obtained M vectors represent-
ing source’s gene expression profile and M vectors representing target’s
gene expression profile.

iii) I created the dataset selecting P combinations among all possible combi-
nations of source and target voxels. In particular, for each combination
I concatenated the gene expression vector corresponding to the source
voxel with the gene expression vector corresponding to the target voxel.
Therefore, the dataset will be made of P vectors.

iv) In the end, I assigned a label representing the source-target connectivity
value to each of previously created combinations.

I repeated these steps for all the N source-target regions selected at the be-
ginning. Sequentially, the whole vectors representing gene expression profiles
for the selected source-target regions and their labels are used as dataset to
feed a neural network. Evaluated the nature and complexity of the performed
analysis, I implemented a Multilayer Perceptron (MPL) that is a class of feed-
forward artificial neural network used for data classification and regression.
Thus, the dataset composed by source-target vectors and their labels is divided
in training, validation and test set to feed the MPL. More in detail, training set
accounts for the 70% of the whole data and test set the remaining 30%. The
validation set is made up selecting 10% of pairs in the training set.
Results:
MLP was requested to accomplish different tasks in order to test two main
hypotheses. Initial experiments consisted in a binary classification between
connected and unconnected regions. In order to achieve this result, seven
source-target pairs have been selected. In particular, four pairs were chosen
among the ones that on BAMS are reported with maximum connection’s in-
tensity and other 3 pairs were chosen with minimum connection’s intensity
(corresponding to unconnected condition on BAMS). I obtained the dataset
processing the original data through the before mentioned pipeline. To per-
form the binary classification, I assigned label “1” (codifying connected re-
gions) to the source-target vectors obtained by pairs with maximum intensity
on BAMS, otherwise I assigned label “0” (codifying unconnected condition).
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The trained model has shown accurate performances suggesting that a strong
correlation between gene expression and axonal connectivity exists. More in
detail, accuracy, recall and F1_score reached 1.0 value on the test set after few
epochs. Verified this first hypothesis, I designed a second set of experiments
to test if gene expression profiles can contain enough information to predict
the intensity of connections between regions. To achieve this result, I built a
MLP to perform the regression task. For this purpose I created another dataset
following the above mentioned pipeline. The dataset was created selecting
only one source region and some of its multiple targets with different connec-
tion’s intensity. In this case, I assigned the connectivity value obtained from
AMBA as the mean(medians) to the label representing the connection’s in-
tensity between source and target. As before, I trained MLP model on the
70% of the dataset and tested the 30%. The regression produced real out-
put values representing connection’s intensity that have been revealed to be
accurate. In fact, encouraging results have been observed reporting a mean
squared error (1, 47± 0, 000187) ∗ 10−5 and mean absolute percentage error of
(5, 72%± 0, 0040%) on the test set. Since the model has proved to be promising,
further experiments focused to the generalization to a wider dataset composed
of cortex and cerebellum’s data (approximately 58 regions). The analysis per-
formed on the wider dataset was composed of two phases and these differ-
entiate in the choice of the connectivity value assigned to each Source-Target
combination. In fact, mean and maximum of the medians of the projection
energies of each connectivity experiment were assigned respectively in phase
1 and phase 2. The first phase has outlined the limitations of the regression
model on a dataset composed of gene expression profiles measured for many
different regions. Instead, the predictions obtained by the multiclass classifica-
tion highlighted a low precision on the class of the regions connected through
a strong intensity. In light of this results, I have hypothesized that the mean
of the medians was not representative of the connectivity status between two
regions. Therefore, in the second phase I have assigned as connectivity value
to each Source-Target vector the maximum of the medians. A multiclass task
was performed subdividing the dataset in three classes: unconnected, weakly
and strongly connected classes. The choice of the connectivity value, calcu-
lated as maximum(medians), has proved to be crucial in the improvement on
the precision and recall on the strongly connected regions with F1_score 0.74.
This value is affected by a 0.67 recall on the strongly connected class. Despite
of the recall on strongly connected regions, almost the totality of misclassified
vectors were attributed to the class of weakly connected regions. In light of
this, a last classification experiment with two classes, econding connected and
unconnected conditions, have been designed. This has proved on the available
data that analyzing gene expression profile of Source-Target region combina-
tion is possible to recognize the connected pairs with a 0.84 F1_score. The pur-
pose of this thesis is to predict connection’s intensity for the couples of brain
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regions for which BAMS matrix does not report complete connectivity data.
The complete matrix is obtained analyzing gene expression and connectivity’s
energy data provided by AMBA. The trained model can be used to individ-
uate the gene patterns affecting the connectivity networks. This consists in a
feature selection executed through wrapper-based approaches. The presence
of many structural similarities and genetic homologies between mouse and
human brain can allow scientists to use the obtained table as a connectivity
reference. This reference table constructed on the information retrieved from
energy levels represents a promising means to perform analogues analysis ex-
ploiting gene expression data coming from RNA-seq experiments instead of
the energy data provided by Allen Brain Atlas.
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Chapter 1

Introduction

1.1 Brain Connectivity

The brain is an organ that serves as the center of the nervous system in all
vertebrate and most invertebrate animals. It is encased in the head with the
advantage of direct short connections with the sense organs localized in or on
top of the head (olfaction, taste, vision, audition, vestibular sense). The inti-
mate relation of the brain to the sense organs points to the brain’s essential role
as an information handling device.
The brains of all species are composed primarily of two type of cells: neurons
and glial cells. Glial cells (also known as glia or neuroglia) can be of different
typed, and perform several essential functions, including structural support,
metabolic support, insulation, and guidance of development. However, neu-
rons are usually considered the most important cells in the brain. The property
that makes neurons unique is their capability to send signals to specific target
cells over long distances.
Neuron (fig:1.1.A) is star shaped cell composed of a cell body from which
two type of nerve fibers emanate. The neuronal body is called soma and it
is seat of the cellular nucleus and organelles. Here, the DNA is transcripted
in RNA whose genetic sequence is used to produce different type of proteins.
Neuronal soma receives and sends elettro-chimical signals to other neurons
through nerve fibers. Dendrites carry the neural signal toward the neuronal
body. Instead, axons carry trains of signal pulses called action potentials to
distant target cell of the brain or body [11][27]. Axons transmit signals to other
neurons by means of specialized junctions called synapses (fig:1.1.B). A single
axon may be connected to thousand other cells’ axons through synaptic con-
nections. [12].
The physical connections that link numerous group of neurons constitute a
network. This represents the anatomical brain connectivity which is a pattern
of physical links that enable interactions between neurons. Thus, connectiv-
ity plays crucial roles in determining the functional properties of neurons and
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(A) Complete neuron cell diagram[14]

(B) Pre/Postsynaptic neuronal connections [3]

FIGURE 1.1: Neurons

neuronal systems. This has long attracted the attention of neuroanatomists
that dedicated their studies to connectomics. This is the field of science deal-
ing with the assembly, mapping and analysis of connectome [24].

Despite the intense effort that has gone into elucidating the structure of neural
systems, many connections results still unexplored for all the species. Many
studies focused in discovering factors that may affect physical connectivity.
In this regard, connectivity is constituted by fibers that propagate from the
neuronal bodies. These,in turn, are the seat of the nucleus and all the nuclear
component that contribute with their activity to the cellular differentiation and
morphogenesis. According to this evidence, many scientists have assumed
that the main factors influencing connectivity’s patterns have to be researched
at cellular scale. Thus, the leading trend is the hypothesis that the cellular ac-
tivity influences physical brain connectivity patterns at anatomical level. On
top of that, the analysis of neuronal gene expression profiles may represent a
means to understand connectome more in deep.
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1.2 Gene expression profiling

Gene expression is the process by which information from a gene is used in the
synthesis of a function gene product such as proteins. Gene regulation gives
the cell control over structure and function, and is the basis for cellular differ-
entiation, morphogenesis and the adaptability of any organism. The complete
set of transcripts in a cell is called transcriptome. Understanding the tran-
scriptome is essential for interpreting the functional elements of the genome
and revealing the molecular constituents of cells and tissues [28]. Gene expres-
sion can be evaluated for each gene in a sample and represents an index of the
gene’s activity.
Gene expression profiling is the measurement of the activity (the expression)
of genes. Many experiments of this sort measure an entire genome simultane-
ously, that is, every gene present in a particular cell. Several transcriptomics
technologies can be used to generate the necessary data to analyze through
DNA amplification techniques. Sequence based techniques, such as RNA-Seq,
provide information on the sequences of genes in addition to their expression
level. However, these techniques extract gene expression profiling through
bulk analysis of tissue samples. This way, the gene expression information
obtained is only an averaged profile among the cell’s population in a sample.
Thus, it is not possible to detect the variation among the members of the pop-
ulation through this techniques.
Technological advances allowing the precise measurement of single-cell tran-
scriptional states overcome the limitation imposed by bulk analysis. These
techniques are called Single-cell RNA-seq (scRNA-seq)[17] and rely on sepa-
ration of single cells from tissue by enzymatic or mechanical dissociation re-
sulting in loss of the spatial information. Single cells are then subjected to
downstream analysis, providing analyzed results that can then be linked to the
spatial localization in the original tissue. However, the contextual information
is limited because only the target cells are analyzed but not their surrounding
neighbor cells that form the micro environment of the target cells [22].
These limitations pushed to develop new techniques able to save the spatial in-
formation. In in situ techniques, the species of interest is detected in its location
in individual cells. In fact, through these techniques it is possible to sequence
nucleic acids directly in cells and tissue. [22]. An effective in situ technique is
the fluorescence in situ hybridization (FISH or ISH). This approach allows to
detect a specific RNA and DNA sequence in a tissue. In fact, it uses RNA or
DNA complementary hybridization probes labeled to fluorescent molecules.
Once the probes has hybridized the target in the fixed tissue, the transcript can
be localized and quantified through fluorescence microscopy images. It is pos-
sible to detect multiple targets at once using different fluorophores (fig:1.2). In
particular, fluorescence in situ hybridization permits to save both spatial and
morphological information. Futhermore, FISH produces good-quality images
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FIGURE 1.2: ISH image result for Plekhg1 gene in mouse’s Tha-
lamus from Allen Mouse Brain Atlas.

that are easier to interpret than the ones produced with others in situ tech-
niques [17].

1.3 Thesis layout

This thesis aims to implement a pipeline able to predict axonal connections
between brain regions. This is obtained analyzing the gene expression profiles
detected in those brain’s areas.
First of all, in Chapter 2 the computational resources used in this work are
presented. The first part of the chapter is dedicated to machine learning tech-
niques focusing on the fundamental notions to implement a Multilayer Per-
ceptron. Subsequentially, some knowledge about Sqlite database architecture
and the potentials of an open-source data processing tool, are given.
Chapter 3 offers an overview about the main data resource, Allen Brain At-
las. After a brief historical excursus, the informatic pipeline designed by Allen
Brain Science Institute to retrieve, elaborate and organize connectivity and
gene expression data will be presented.
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Chapter 4 is dedicated to the detailed presentation of the method designed in
this work. The first part of the chapter illustrates the steps executed in the
data downloading procedure. In this section, gene expression and connectiv-
ity data nature will be clarified. Subsequently, the pipeline implemented ad
hoc for the construction of the datasets, is described focusing on the steps ex-
ecuted. In the last part of the chapter, the datasets, used to perform different
experiments in this work, will be presented focusing on the description of the
brain areas selected and computational means used.
The result produced in the will be discuss in Chapter 5.
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Chapter 2

Technical Background

2.1 Machine Learning

Machine learning algorithms analyzes data in the same way humans do: learn-
ing from experience. These techniques figure out natural patterns in examples
and use them to make previsions on unknown data. During the training, ma-
chine learning algorithms extract information from raw data and represent it
in some type of model. This is used, in the testing, to deduct information about
unknown data that have not been analyzed yet.
When the algorithm is presented with inputs and their desired outputs for
training, the machine learning method is called supervised. Supervised learn-
ing uses classification and regression techniques to develop predictive models.
Classification’s goal is to build a model that is able to assign a given input to
a class (label). Otherwise, the output of the model is a continue value when
a regression is performed. Deep learning is a particular supervised machine
learning’s category and refers to the learning mode characterizing Neural Net-
works (NN). These are computational models inspired by animals’ brain be-
havior and its attitude to retrieve knowledge from experience. Similar to how
animal brains work, in Neural Networks many simple units work in paral-
lel with no centralized control unit. Each network’s node is connected to an-
other one through weighted links. These connections are the primary means
of learning and information’s storage process in Neural Networks. In fact, NN
learn how to analyze data updating connections’ weights. A specific category
of NN is represented by Multilayer Perceptron that is a powerful means to
accomplish classification and regression tasks.

2.1.1 Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) is a class of feedforward artificial neural net-
work used for data analysis. The main architecture is composed by many
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FIGURE 2.1: Fully connected multilayer feed-forward neural net-
work topology

layers, at least three: an input layer, one or more hidden layers and an out-
put layer. Each layer comprises a certain number of nodes depending on the
network’s complexity and it is fully connected to the adjacent one. The con-
nections between the neurons in the layers form an acyclic graph (fig:2.1). The
nodes of Neural Networks model brain’s neurons and, except of the first layer,
each layer includes nodes characterized by a non-linear activation function
that maps the weighted inputs to the output of each neuron. MLP utilizes a
supervised learning technique called backpropagation in order to adjust the
weights of the connection between nodes. The artificial neuron takes an input
that, based on the weights on the connections, can be ignored (by a 0.0 weight
on an input connection) or passed on to the activation function. The activation
function also has the ability to filter out data if it does not provide a non-zero
activation value as output. One full training cycle on the training dataset is
called epoch.

2.1.2 Backpropagation

The process by which Neural Networks learn to recognize data patterns is
called backpropagation. This uses an optimization method to adjust the weights
of the connections in a neural network and minimize the error on the output
of the network. At the start of the training process, weights are initialized
randomly. During a forward-propagation, the network propagates the input
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pattern from layer to layer until the output pattern is generated by the output
layer. All the computational steps performed by each neuron of each layer in
order to transform the input xi into the output yi can be summarized by the
equation:

yi = F(∑
i

wijxi + bj) (2.1)

Where wi j is the weight that links the i-th input to the j-th neuron, bj is the bias
added by that neuron to the input, and F() is the activation function computed
by the j-th neuron.
Once the output of each hidden layer is produced, the output layer is reached.
In order to evaluate the error, the overall output o and the desired output,
called target t, are provided to a loss function[1.2].

loss = l(o, t) (2.2)

Thus, the gradient of the output o, with respect to the input, is computed
through the chain rule of differentiation in order to determine the contribu-
tion of each parameter to the resulting loss. The partial derivatives of the loss
with respect to the weights are computed, obtaining each component as

∂l
∂wij

=
∂l
∂o

∂o
∂yi

∂yi

∂wij
(2.3)

The network weights are modified in order to decrease the loss at the next
iteration. The parameter values are updated following the opposite direction
of the gradient and accordingly to a learning step which defines how big
the changes to make must be. In general, it is preferred proceeding with small
changes a time. This approach of making changes iteratively depending on the
direction of a negative gradient is called gradient descent. Parameter update
is made for all the weights at the same time.

2.1.3 Activation Functions

Activation functions are scalar-to-scalar functions, yielding the neuron’s acti-
vation. There are different type of activation functions that can be more suit-
able to accomplish some task than others. It is important to choose the activa-
tion function based on the type of data and task required to the NN. In fact,
specific activation functions allow to perform regression or classification.

Linear

A linear transform is basically the identity function where the dependent vari-
able has a direct, proportional relationship with the independent variable (fig
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2.2.a):
yi = wi ∗ xi (2.4)

wi is the neuronal connection’s weight, xi is the input, yi is the output that was
producted by the i-th node.

Sigmoid

Sigmoids can reduce extreme values or outliers in data without removing
them. A sigmoid function is a machine that converts independent variables
of near infinite range into simple probabilities between 0 and 1, and most of
its output will be very close to 0 or 1 (fig 2.2.b).

Softmax

Softmax is a generalization of logistic regression in as much as it can be applied
to continuous data (rather than classifying binary) and can contain multiple
decision boundaries. It handles multinominal labeling systems.

Rectified Linear

Rectified linear activates a node only if the input is above a certain quantity (fig
2.2.c). While the input is below zero, the output is zero, but when the input
rises above a certain threshold, it has a linear relationship with the dependent
variable:

f (x) = max(0, x) (2.5)

Tanh

Tanh is a hyperbolic trigonometric function. Just as the tangent represents a ra-
tio between the opposite and adjacent sides of a right triangle, tanh represents
the ratio of the hyperbolic sine to the hyperbolic cosine:

tanh(x) = sinh(x)/cosh(x) (2.6)

Unlike the sigmoid function, the normalized range of tanh is –1 to 1. The
advantage of tanh is that it can deal more easily with negative numbers (fig
2.2.d).

2.1.4 Loss Function

Loss functions quantify how close is the output predicted by the NN to the
desired output. To this purpose, a metric based on the observed error in the
network’s prediction is calculated. These errors are aggregated over the entire
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(A) Linear (B)

(C) Recti-
field Linear

(D) Tanh

FIGURE 2.2: Activation functions
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dataset and averaged. The single number obtained represents how close the
neural network is to the desired output. Then, it is necessary to find the set
of parameters that minimize the error. This way, loss functions help reframe
training neural networks as an optimization problem.

Loss functions for regression

When dealing with regression problems, a widely used loss function is mean
square error (MSE). The error in a prediction is squared and is averaged over
the number of data points. However MSE is particulary sensitive to outliers.
Thus, in some cases it is suggested to use mean absolute error loss that simply
averages the absolute error over the entire dataset.

Loss function for classification

Cross-entropy loss is commonly-used in binary classification (labels are as-
sumed to take values 0 or 1) as a loss function, which is computed by

Cross− entropy = − 1
m

m

∑
i=1

yi ∗ logpmodel(yi|xi; Θ) (2.7)

where pmodel is the deep neural network model to estimate the pdata distribu-
tion, xi is the example drown from the pdata, is the distribution of network pa-
rameters and yi the label of the xi example. A particular case of cross-entropy
is called binary cross-entropy and it is used in case of two classes classification.

2.1.5 Optimization

The process of adjusting weights to produce more accurate predictions about
the data is known as parameter optimization. This aims to reduce the error
calculated by the loss function. One of the most used optimization method is
Gradient descent. This is a way to minimize the loss function F(θ) dependent
by a set of model’s parameters θ. Gradient descent minimize the error up-
dating the parameters in the opposite direction of the gradient of the function
∇θ(F(θ)). The steps taken to reach a local minimum is determinated by the
leaning rate η. Gradient descent has three main variants that differ each other
in how much data is used to calculate the gradient of F(θ).

Batch gradient descent

Batch gradient descent (BGD), also known as Vanilla gradient descent, calcu-
late the cost function for the entire training dataset. This way only one update
is performed. This method is slow and can not be indicated for big dataset that
would not fit in memory.
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Stochastic gradient descent

Stochastic gradient descent (SGD) updates parameters for each training exam-
ple. It is very fast optimization method even if it performs many updates re-
sulting in significant fluctuations of the objective function. These fluctuations
enables the SGD to jump to new better local minimum.

Mini-batch gradient descent

Mini-batch gradient descent (MBGD) takes the best of both method metioned
before. In fact, MBGD updates parameters for every mini-batch of n training
examples. This results in a reduction of fluctuations that characterize SGD.
Common mini-batch sizes range between 50 and 256. However, MBGD does
not provide an automatic learning rate adjustment during the training pro-
cess. For this reason adaptive optimization methods have been implemented
in order to overcome the learning rate choice’s issue.

Adagrad

It adapts the learning rate to the parameters, performing larger updates for
infrequent and smaller updates for frequent parameters. In order to minimize
the error, Adagrad uses a different learning rate for every parameter θi.

RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff
Hinton. RMSprop, as Adagrad, uses a different learning rate for each update.
At each iteration, the learning rate is divided by an exponentially decaying
average of squared gradients.[23]

2.1.6 Hyperparameters

The performance of Neural Networks are affected by parameters that can be
freely chosen. Obviously, those parameters deal with controlling optimization
function and have been selected in order to minimize the error calculated by
the loss function. They fall into several categories and characterize the model.

Network Size

The size of the model depends on the number of layers that constitute the
NN and the number of nodes comprised in each layer. The number of nodes
for hidden layer is affected by the problem’s complexity and can be chosen
arbitrarily; whereas the number of input and output layer’s nodes depend on
the feature of the input vector and the output class desired, respectively.
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Learning Rate

The learning rate influences how much fast the vector of parameters have to be
changed during the training in order to minimize the error. An high learning
date permits to reach the best set of parameters rapidly but the pass might be
so large to miss the best parameters set. On the contrary, a small learning rate
might make the algorithm too slow in solving the required task.

Dropout

Dropout is a computationally inexpensive way of regularization during model
training by removing units from the network. In hidden layers, dropout is
done with a probability of 0.5. By randomly omitting neurons co-adaptation
can be prevented among detectors, which helps drive better generalization in
models on held-out data.

Momentum

Momentum helps the learning algorithm get out of spots in the search space
where it would otherwise become stuck[11]. .

2.1.7 Typical Dataset

In general, the goal of machine learning technique is to build a mathematical
model able to make predictions on unknown data. To achieve this purpose,
the algorithms are trained to recognize pattern on data learning from them.
A typical dataset is composed by raw data, such as gene expression and con-
nectivity levels. Usually, these data undergo a normalization process in order
to obtain values that belong to the the activation functions’ domain. In deep
learning supervised techniques, data used to build the final model is splitted
in three datasets:

• Training dataset: examples used to fit the model in order to adjust the
connections’ weights of the neural networks. It consist of input data and
their desired output (labels). It counts an higher number of elements
than test and validation sets.

• Validation dataset: this dataset is provided to the model already fitted
on the training set. The validation dataset provides an unbiased eval-
uation of a model fit on the training dataset while tuning the model’s
hyperparameters[2]. Usually it derives from the training set and it is
only a little fraction of it.

• Test set: is used to test the final model’s performance. Test dataset is pro-
vided without his labels and consist of data that the network has never
seen during the training phase. It is smaller than training dataset.
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All the datasets have the same distribution and are independent each
other. Notice that is important to avoid the overfitting phenomenon that
occurs when the classifier begins to memorize data pattern that are spe-
cific on the training dataset and loses its capability to generalize. In this
case, the performance on the test set are much lower than on training set.
To avoid overfitting, a validation set is used to perform a regularization
technique by early stopping: stop training when the error calculated on
the validation dataset increases, as this is a sign of the overfitting to the
training dataset[21].

2.2 SQLite

SQLite is an in-process library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. The code for SQLite is
in the public domain and is thus free for use for any purpose, commercial or
private. SQLite is an embedded SQL database engine. Unlike most other SQL
databases, SQLite does not have a separate server process. It reads and writes
directly to ordinary disk files. A complete SQL database with multiple tables,
indices, triggers, and views, is contained in a single disk file. The database file
format is cross-platform, it is possible to freely copy a database between 32-
bit and 64-bit systems or between big-endian and little-endian architectures.
SQLite strives to provide local data storage for individual applications and
devices. SQLite emphasizes economy, efficiency, reliability, independence, and
simplicity. Raw data can be imported from CSV files, then that data can be
sliced and diced to generate a myriad of summary reports. More complex
analysis can be done using simple scripts written in Tcl or Python (both of
which come with SQLite built-in) or through the use of tools such as Knime.
Many bioinformatics researchers use SQLite in this way[25].

2.2.1 SQlite Architecture

The architecture of SQLite is composed by four main units (fig:2.3):

• Core: contains user interface, the SQL command processor, and the vir-
tual machine. The user interface consists of a library of C functions and
structures to handle operations such as initializing databases, executing
queries, and looking at results. Function calls that execute SQL queries
use the SQL command processor. The command processor functions ex-
actly like a compiler. When executing a program, the virtual machine
directs control flow through a large switch statement, which jumps to a
block of code based on the current opcode.

• SQL compiler contains a tokenizer, a parser, and a code generator. When
a string containing SQL statements is to be executed, the interface passes
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FIGURE 2.3: SQlite’s architecture
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that string to the tokenizer. The job of the tokenizer is to break the origi-
nal string up into tokens and pass those tokens one by one to the parser.
The parser is the piece that assigns meaning to tokens based on their con-
text. The parser for SQLite is generated using the Lemon LALR3 parser
generator. After the parser assembles tokens into complete SQL state-
ments, it calls the code generator to produce virtual machine code that
will do the work that the SQL statements request.

• Backend contains B-Tree, Page Cache, OS Interface: An SQLite database
is maintained on disk using a B-tree implementation found in the btree.c
source file. A separate B-tree is used for each table and index in the
database. All B-trees are stored in the same disk file. The B-tree mod-
ule requests information from the disk in fixed-size chunks. The page
cache is responsible for reading, writing, and caching these chunks. In
order to provide portability between POSIX and Win32 operating sys-
tems, SQLite uses an abstraction layer to interface with the operating
system.

• Accessories contains Utilities and Test code: SQLite provides some util-
ity related functionality such as memory allocation and case less string
comparison routines are located in util.c more than half the total code
base of SQLite is devoted to testing[26].

2.2.2 Knime

KNIME allows users to visually create data flows (or pipelines), selectively ex-
ecute some or all analysis steps, and later inspect the results, models, and in-
teractive views. KNIME is written in Java and based on Eclipse and makes use
of its extension mechanism to add plugins providing additional functionality.
The core version already includes hundreds of modules for data integration
(file I/O, database nodes supporting all common database management sys-
tems through JDBC or native connectors: SQLite, SQL Server, MySQL, Post-
greSQL, Vertica and H2, data transformation (filter, converter, splitter, com-
biner, joiner) as well as the commonly used methods of statistics, data mining,
analysis and text analytics. Visualization supports with the free Report De-
signer extension. KNIME workflows can be used as data sets to create report
templates that can be exported to document formats like doc, ppt, xls, pdf or
stored in databases [1].
KNIME boasts a rich catalogue of processing nodes that have been used in this
thesis work in order to process and organize data in an easy accessible SQlite
database. In the following, the nodes used mainly will be presented.
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I/O nodes

• Excel Reader (XLS): this node reads a spread sheet and provides it at its
output port. It reads only data from one sheet at the moment. It can read
only numeric, date, boolean and string data but, of course, no diagrams,
pictures, or other items.It reads in the data from the sheet and sets a type
for all columns that is compatible with the data in that column (in the
worst case "String" covers all).

• CSV Reader: Reads CSV files. Use this node if the workflow is used in
a server or batch environment and the input files structure change be-
tween different invocations. In particular, this includes a variable num-
ber of input columns. Upon executing the node will scan the input file to
determine number and types of the columns and output a table with the
auto-guessed structure.

Manipulation nodes

• Join: This node joins two tables in a database-like way. The join is based
on the joining columns of both tables.

Filter nodes

• Column/Rows filter: This node allows columns/rows to be filtered from
the input table while only the remaining columns/rows are passed to
the output table. Within the dialog, columns can be moved between the
Include and Exclude list.

• GroupBy: Groups the rows of a table by the unique values in the selected
group columns. A row is created for each unique set of values of the
selected group column. The remaining columns are aggregated based
on the specified aggregation settings. The output table contains one row
for each unique value combination of the selected group columns.

Database nodes

• Database Reader Establishes and opens a database access connection to
read data from.

• Database Writer: Establishes and opens a database access connection to
which the entire input table is written to.

• SQlite Connector: This node creates a connection to a SQlite database
file via its JDBC driver. You need to provide the path to the file [13].
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Allen Brain Atlas

"The Allen mouse brain Atlas" and "The Allen mouse Connectivity Atlas" are
projects within the Allen Institute for Brain Science which aims to generate a
gene expression and connectivity mouse brain’s 3D maps through the com-
bination between neuroanatomy and genomics. The institute’s founder was
Paul G. Allen who devoted 100 million dollars to this purpose in September
2003. An initial release of The Allen Mouse Brain was the first project to be
made publish in 2004. Subsequently, more data has been added to the first
project’s version and many other brain atlases have been published. From
its birth, Allen institute has released seven brain atlases: Mouse Brain At-
las, Human Brain Atlas, Developing Mouse Brain Atlas, Developing Human
Brain Atlas, Mouse Connectivity Atlas, Non-Human Primate Atlas and Mouse
Spinal Cord Atlas. Each brain atlas focuses on its own project and it is built
by a selected team of researchers. These groups have collected and produced
brain scans, medical data, genetic information and psychological data with
the purpose to construct a mouse brain 3D map. In order to obtain data, sev-
eral different techniques have been used. One technique involves the use of
postmortem brain in brain scanning technology to discover where in the brain
genes are turned on and off. Then in situ hybridization is used to individuate
gene expression patterns as in situ hybridization images.
Even though the majority of research has been done in mice, 90 per cent of
genes have a counterpart in humans. Thus, the atlas based on mouse is a pow-
erful means to model and study human diseases.

The main goal and motto for Allen Brain Institute is “fueling discovery”. As
matter of the fact, their atlases have the purpose to provide to the scientific
community the means needed to study mouse brain’s functional and anatomic
connections. In order to archive this purpose, the atlases are open source and
data are freely available to everyone for consulting and downloading. Thus,
any scientist is able to read all the information stored in Allen Brain Atlas’s site
and retrieves knowledge from them while designing their experiments. The
Allen Brain Atlas lets researchers view the areas of differing expression in the
brain which enables the viewing of neural connections throughout the brain
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[19][15].

In this thesis, gene expression and connectivity data were collected from Allen
mouse Brain Atlas and Allen mouse Brain Connectivity Atlas respectively.

3.1 Allen Mouse Brain Atlas

The Allen Mouse Brain Atlas represents an integration between genome and
neuroanatomic mouse brain data. It is a complete genome-wide, high-resolution
atlas of gene expression throughout the adult mouse brain. It is composed by
different sections and tools that enable an easy data’s navigation and analysis.
Gene expression patterns are available as images obtained by in situ hybridiza-
tion technique. The Atlas contains ISH data for approximately 20,000 distinct
mouse genes in 56 day old male "black" mice (P56).

The informatic pipeline designed by Allen Brain Science Institute to retrieve
informations from ISH images implements the following units [Fig.3.1]:

• Processing Module: this unit balances white and intensity normalize
the image to get an higher quality visualization. This step is followed
by a global adaptive thresholding method to obtain a separation of the
background and foreground and then a morphological filtering and con-
nected component analysis steps are applied to the ISH image in order
to remove noise and connect broken segments.

• Detection: is applied to each ISH image to create a grayscale mask iden-
tifying pixels in the high-resolution image that correspond with gene
expression. The grayscale intensity represents the average ISH signal
within a connected area. For Web presentation, the intensity is color-
coded to range from blue (low expression intensity), through green (medium
intensity) to red (high intensity).

• Expression Gridding Module:creates a low-resolution 3-D summary of
the gene expression and project the data to the common coordinate space
of the 3-D reference model to enable spatial comparison between data
from different specimens.

• Structure unionizer module:computes expression statistics for each struc-
ture delineated in the reference atlas by "unionizing" grid voxels with the
same 3-D structural label. Then, the results of this operation are used in
the web application to display expression summary bar graphs for each
structure and for each image.
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FIGURE 3.1: Mouse Brain Atlas Pipeline[4]

• Alignment module: operates on a per-specimen basis where all image
series from a specimen are combined as one series. Based on maximiza-
tion of image correlation, the module interleaves reconstructing the spec-
imen as a consistent 3-D volume with co-registration to the 3-D reference
model. Once registration is achieved, information from the 3-Dreference
model can be transferred to the reconstructed specimen and vice versa.
The resulting transform information (a 2-D affine transform per image
and 3-D affine transform per image-series) is saved in the database to
support the image synchronization feature in the Zap viewer and gener-
ation of grid-level gene expression summaries.

• Expression Grid Search Service: it is a grid search service that has been
implemented to allow users to instantly search over the 25,000 image
series to find genes with specific expression patterns.

• Anatomic gene expression Atlas: AGEA is a relational atlas that allows
users to explore spatial relationships in the adult mouse brain based on
the expression patterns of 4,000 genes, which comprise the set of coronal
image-series in the Allen Mouse Brain Atlas[4].
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FIGURE 3.2: Projection’s signal detected for an injection situated
in Primary Visual Area

The output of the pipeline is quantified expression values at a grid voxel
level and at a structure level according to the integrated reference atlas ontol-
ogy.

3.2 Mouse Brain Connectivity Atlas

Mouse Brain Connectivity Atlas is a 3D map of neural connections in the
mouse brain, built on an array of transgenic mice genetically engineered to
target specific cell types. It consists of numerous 2D images corresponding
to a mouse brain’s slice that can be visualized side-by-side in a 3D reference
space. Allen Brain Institute provides powerful tools that enable the 3D visual-
ization and spatial search of connectivity data.

In order to obtain neural projections [Fig.3.2], a specific region per mouse brain
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was chosen to be injected with a green fluorescent protein (EGFP) as an antero-
grade viral tracer (AAV). EGFP labeled axonal projections and images were
obtained by using two-photon microscopy[16]. More than one injection was
used for larger regions. Subsequently, intrinsic signal imaging data (ISM) have
been added to the two-photon images to permit a more accurate individuation
of visual areas. Allen Brain Institute has implemented an informatic data pro-
cessing pipeline [Fig.3.3], similar to the one designed for gene expression data,
that allows an integration of the connectome’s information derived by two-
photon images and ISM data. This algorithm consists of different processing
steps:

• Preprocessing: scanned image tiles are stitched to form a single high-
resolution image in a three step process that consists of tile positioning
using a calibration matrix, intensity correction, and tile transition blend-
ing.

• the Alignment module: registers each projection image to the common
coordinates of a 3D reference model

• Projection Detection Module: separates signal from background through
three main steps (intensity rescaling and noise reduction, tissue region
segmentation, projection signal segmentation).

• The Gridding module: summarize the detected signal for each data set
and report it in a common coordinate space.

• Grid Search Service: it is a services that implement an intuitive search
of the desired experiment. User can use different types of search’ func-
tions that allows to find specific projection depending on the information
needed. For instance, it is possible to visualize all the exeperiments for a
couple of source region (where the injection is placed) and target region
(where a projection’s signal is detected)[10].

3.3 The Allen Common Coordinate Framework

The Allen common coordinate framework (CCF) allows connectivity and gene
expression data mapping on the mouse brain, quantification, visual presenta-
tion and investigation [fig.3.4]. Allen brain institute has released many CCF’s
versions since the first one was made public in 2005. The latest version (v3)
was uploaded on the site in 2017 to support the new products available in the
connectivity’s section.
To create the CFF, an anatomical template of the mouse brain was obtained
by the shape and background signal intensity average of 1675 specimens from
the Allen Mouse Brain Connectivity Atlas. Averaging many mouses’ brains,
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FIGURE 3.3: Connectivity informatic pipeline [10]

Allen experts generated a population average. Thus, the anatomical template
is the average shape and average appearance of the population of 1675 speci-
mens and shows remarkably clear anatomic features and boundaries for many
brain structures. Many reference data sets were used to individuate anatom-
ical structures in the created template. For the 3D annotation, manual delin-
eation of the anatomical template was a combined process of structure discov-
ery and 3D illustration carried out at various levels: as individual structures,
group of local structures and interface between groups. Using anatomical tem-
plate contrast features from select supporting (connectivity data), structures
were land marked, filled in serially, and validated. In certain cases the process
was modified to include previously drawn structures. Once a critical mass
of content was reached, a global merging of all individual and local structure
groups was performed. The process was completed by a final evaluation of
structures in the component 2D plates as well as the rendered 3D composi-
tion. The final CCF product consists of 662 annotated structure volumes, in-
cluding gray matter, white matter and ventricles. Overall, 242 cortical and 330
subcortical gray matter, 82 fiber tracts,and 8 ventricle and associated structure
volumes were delineated natively in 3D[9].

3.4 Grid Data

3.4.1 Gene expression Grid Data

The aim of the Gridding module, is to create a low-resolution 3-D summary
of the gene expression and project the data to the common coordinate space of
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FIGURE 3.4: CCF versions [9]
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the 3-D reference model. This enables spatial comparison between data from
different specimens.
The Gridding module operates on a per image-series basis. Each image is
divided into a 200µm x 200µm grid. For each division, pixel-based statistics
of the sum of the number of expressing pixels and sum of expressing pixel
intensity were collected. From these statistics measures were obtained for:

• expression density = sum of expressing pixels/sum of all pixels in divi-
sion

• expression intensity = sum of expressing pixel / sum of expressing pix-
els

• expression energy = sum of expressing pixels intensity / sum of all pix-
els in division

In the previous step, the Alignment module computes the transforms that
rotates each 2-Dimage to form a consistent 3-D volume per specimen. Each
per-image 2-D expression grid is smoothed and rotated to form a 3-D grid.
Finally, z-direction smoothing is applied to the 3-D grid which is then trans-
formed into the standard reference space[4].

3.4.2 Projection Grid Data

The aim of the Gridding module, which is the last unit of connectivity infor-
matic pipeline, is to create an isotropic 3D summary of projection data and
resample the data to a common coordinate space to enable spatial compari-
son between data from different specimens. The Gridding module operates
on a per specimen basis. Images are divided into 10µm x 10µm grids. In each
division, the sum of the number of detected pixels and the sum of detected
pixel intensity were collected. A second set of summations was computed for
regions identified as belonging to the injection site for injection site quantifi-
cation. The 2D per-image grids were combined to form 3D grids of resolution
10m x 10m x 100m. Using the transform parameters computed by the Align-
ment module, each 3D grid was transformed to the standard 10m isotropic ref-
erence space using linear interpolation to generate sub-grid values [10]. From
these statistics measures were obtained for:

• projection density = sum of detected pixels/sum of all pixels in division

• projection energy = sum of detected pixel intensity / sum of expressing
pixels

• injection fraction = fraction of pixels belonging to manually annotated
injection site
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• injection density= density of detected pixels within the manually anno-
tated injection site

The data grids were used for downstream search and analysis, and were fur-
ther processed as computational paths for viewing in the Brain Explorer 2 3D
viewer, alongside the Allen Mouse Common Coordinate Framework.Grids at
10, 25, 50 and 100 m isotropic resolution are also generated and are available
for download through the Allen Brain Atlas Application Programming Inter-
face (API)[5].

3.4.3 SectionDataSet

In Allen Brain Atlas data portal, experiments’ information about conditions
and results are organized in records called SectionDataSet. Each SectionDataSet
is identified by a unique id and stores the grid-data. For each experiment,
the gene expression and projection grid-data can be viewed directly as 3-D
volumes in the Brain Explorer 2 3-D viewer, alongside the 3-D version of the
Allen Reference Atlas. Furthermore, SectionDataSets are used for downstream
search and analysis. In fact, they are freely downloadable through API service
for both data type.
ISH’s experiments measure only one gene’s expression per time. Sub sequen-
tially, each SectionDataSet contains the expression profile of a single gene as
grid-data and information about the gene and experiment’s conditions.
For connectivity data, instead, each experiment is associated to the tracer’s
injection site. In the record, along with the projection data detected, the in-
jection’s region is reported. Through API, it is possible to search for specific
SectionDataSet IDs using experiment’s conditions as filters. The unique ID
that identifies a SectionDataSet is required to download the grid-data stored
in it.
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Chapter 4

Method

This thesis aims to implement a complete pipeline to perform enabling the
collection, organization and processing of gene expression and connectivity
data from mouse brain. In this chapter, the procedures designed and executed
to achieve this purpose will be illustrated in detail. An overall view of the
main steps composing the pipeline is shown in figure 4.1. This represents only
a guide to the lecture of the chapter.

Data Download

Raw files transformations in energy gene 
expression arrays Nrrd unpacking in energy projection arrays

Energy gene expression matrix construction Projection csv single files creation

Data pre-processing and database creation

N region pairs selection

Dataset creation through the ad hoc pipeline

Intensity of the 
connections

Predictions through the MPL for 
regression task

Predictions through the MPL for 
classification task

Unconnected/Connected
regions

Gene expression data Connectivity data

FIGURE 4.1: Flowchart of the implemented pipeline
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4.1 Downloading data phase

In this work, two different type of data have been used to perform an inte-
grative analysis. Specifically, gene expression of the adult mouse brain have
been retrieved from Allen Mouse Brain Atlas (AMBA); whereas connectivity
data have been collected from Allen Mouse Connectivity Brain Atlas (AM-
CBA) and Brain Architecture Management System (BAMS).
For both type of data, Allen Brain Atlas (ABA) provides data as grid-data at
different resolutions. These are the result of the elaborations performed by
the Gridding Module implemented by ABA. This unit creates a 3D summary
of the gene expression or connectivity data and resamples them to the com-
mon coordinate space of the 3D brain model. For each connectivity and gene
expression experiment, a grid data is downloadable through API service. All
the queries, used to download data from AMBA and AMCBA, were composed
through the RMA BUILDER that is made accessible on Allen Brain Atlas API’s
section[8]. In addition to the gene expression and connectivity grid-data, ABA
provides a structural grid-data annotation at the same resolution of the other
data. This allows to link mouse brain’s voxels to anatomical structures in the
Common Coordinate Framework.
In the downloading phase, the two datasets have been organized in data struc-
tures depending on the type of data.
In this work, data were retrieved from AMBA and AMCBA in July 2018. In
October 2018, connectivity experiments have been added on AMCBA that
haven’t been used for this work.

4.1.1 Gene expression grid-data

Allen Institute Mouse Gene expression data consist of whole-brain in situ hy-
bridization data that have been obtained from 24 µm sections of 56-day old
C57BL/6J mice. The detected expression levels have been transformed by a
pipeline in energy, density or intensity levels and then reported as grid-data.
Data are available for coronal and sagittal sections. Although sagittal section
counts more than 20,000 genes, connectivity data are available only for coronal
section. Furthermore, coronal section has a better coverage of the mouse brain.
On top of that, only coronal experiments have been taken in account.

In AMBA, the expression profile of each gene throughout the mouse’s brain is
associated to SectionDataSet, a record in which all the experiment’s informa-
tion are stored.
To download the grid-data, a query was built to retrieve the SectionDataSet
IDs for gene expression experiments through the API service. This returns an
XML containing all gene expression SectionDataSet IDS annotated on AMBA
for coronal section. Thus, 3318 SectionDataSet IDS corresponding to 3318 gene
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expression grid-data have been obtained.
The SectionDataSet IDS retrieved were annotated in a list to be used in the cre-
ation of 3318 queries. Each of them was used to download a gene expression
grid-data.
To obtain the gene expression grid-data, the presented steps were performed
for each of the 3318 genes:

i) a query declaring SectionDataSet ID and the volume type (energy) de-
sired has been built through the RMA BUILDER.

ii) A request has been sent to the server through the constructed query ob-
taining an archive (.zip) as response

iii) Energy.mhd and energy.raw files have been extracted from the archive.

These steps produced an energy.raw file for each of 3318 gene expression ex-
periments.
The energy.raw file contains a vector of 159’326 elements. Each of these is a
voxel that corresponds to a 3D element of the mouse brain model. In fact, the
grid-data has a shape of a volume, specifically 67x41x58 at 200 µm resolution,
but it is provided packed into a 1-D numerical array, stored in the energy.raw.
However, ABA provides references to reconstruct the volume starting from
the array (fig.4.2). The values in the array are the expression energy levels de-
tected for a specific gene.
At end of this procedure, 3318 arrays of 159’326 elements, containing gene ex-
pression’s energy levels, were obtained. These vectors have been transferred
in a 3318x159’326 matrix. Subsequently, this matrix underwent few steps of
processing and had been organized in a database created through Knime.

4.1.2 Connectivity data

Allen Connectivity grid-data

The Allen Mouse Brain Connectivity Atlas comprises axonal projections la-
beled by rAAV and detected through two-photon tomography for more than
200 mouse brain’s regions in coronal section. On AMCBA, injection sites re-
fer to the spots where the viral tracer is injected. The region where a certain
injection site is placed is referred as source region; whereas the brain struc-
tures where the injection produced axonal projections is defined target region.
Due to the restricted dimensions of the mouse brain, it may be possible that
some injections involved more than one region. To distinguish this two con-
ditions, injection sites situated in a single region are defined primary. Instead,
secondary injections involve more regions. AMCBA provides a number of pri-
mary injection experiments adequate to build a significant dataset. On top of
that, only primary injections were analyzed in this work.
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(A) 3D Volume

(B) Packing’s criteria

FIGURE 4.2: The common reference space is in PIR orientation
where x axis = Anterior-to-Posterior, y axis = Superior-to-Inferior

and z axis = Left-to-Right [5]
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Connectivity data are available at different resolutions (10, 25, 50, 100 µm). In
this work only 100 µm resolution was taken in account as it is the closest to the
one provided for gene expression data (200 µm).

Each primary injection site corresponds to a SectionDataSet, which stores the
experiment’s conditions and the detected projections as grid-data.
To download the grid-data, query was built to retrieve the SectionDataSet IDs
for injection experiments through the API service.This returns an XML con-
taining 2333 primary injection SectionDataSet IDS annotated on AMCBA for
coronal section. These were annotated in a list and subsequently used to create
2333 queries. Each of them was used to download a connectivity grid-data.
More in detail, the presented steps were performed for each of the 2333 injec-
tion sites:

i) a query declaring SectionDataSet ID and the volume type (projection
energy) and a integer expliciting the resolution desired has been built
through the RMA BUILDER.

ii) A request has been sent to the server through the constructed query ob-
taining a single 32-big floating NRRD file as response

Requesting data for all the SectionDataset IDs retrieved, 2333 files .Nrrd were
obtained. Each of them represents the axonal projections’ distribution pro-
duced by a specific primary injection site throughout the mouse brain.

For connectivity experiments, the 3-D volumetric grid-level data at 100 µm are
provided packed in a 3D numerical array .nrrd with shape 132x80x114 (fig:
4.2.a). Each element of this 3D array is a voxel that composes the mouse brain
model. It contains projection energy level produced by the injection site, to
which the grid data refers, and detected for that point of the mouse brain.
Keeping the spatial reference provided by ABA, the 3D array was unpacked
in a 1D array of length 1’203’840 (fig: 4.2.b). This way, 2333 1D arrays were
create as many injection sites and nrrd files. The voxels with projection energy
equal to 0 have been filtered out from each array. Due to the vectors dimen-
sion, the 2333 arrays containing energy were stored in single csv along with
the source region indication.

Brain Architecture Management System (BAMS)

Other neural circuitry data were collected from BAMS to be used as connec-
tivity reference. To date, BAMS contains on the order of 45,000 reports of con-
nections between different gray matter regions in the rat. Even if AMBA’s data
were retrieved from mouse, some studies have demonstrated that mouse and
rat’s brains share many anatomical features but at different dimension scales.
BAMS provides an interactive matrix (fig.4.3) that reports for each couple of
brains’ regions the existence of a connection and its intensity for the rat’s brain
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(A) Submatrix extracted from the 496x496 matrix of
BAMS

(B) Detail of BAMS interactive matrix

FIGURE 4.3: Each element of the matrix define a connection be-
tween the two regions reported in column and row. Different
colours have been used to codify connection’s intensity. In par-

ticular, white colour represents unknown connections[20].

regions. This matrix was built collecting from the literature already known
and demonstrated connections. In this matrix, the strengthen of the connec-
tion is codified by a value belonging to the range [1,9]. Therefore, the intensity
of the connection grows with the increase of the value reported in the ma-
trix. For unknown connections, a 0 was assigned. Furthermore, regions are
reported with a universal acronyms enabling the matching with ABA’s region
annotation. The matrix can be freely consolidated and downloaded as an xlsx
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FIGURE 4.4: Annotation’s slice [6]

from the site of BAMS [20].

4.1.3 Structural annotation file

An annotation volume is a 3D raster image that segments the reference space
into structures. These are composed of a number of voxels depending on the
dimensions and the model’s resolution taken in account. In the annotation
volume, each voxel is assigned to an integer value that describes the structure
to which it belongs [6]. Brain structures in Allen reference spaces are arranged
in trees. The leaf nodes of the tree describe the very fine anatomical divisions
of the space, while nodes closer to the root correspond to gross divisions [6].
The annotation file reports regions’ IDs with the finest anatomical division’s
detail (fig.4.4). Gene expression and connectivity data are registered to one of
several common reference spaces. With the purpose to link each data’s voxel
to the membership brain region, ABA provides a structural annotation file at
different resolutions. In fact, the i-th annotation element allows the matching
between the i-th voxel in the data array and its membership brain structure.

As for the other gene expression data, the gene expression annotation (GEA) is
provided at 200 µm resolution. It is a 1D array that counts the same number of
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voxels that compose array containing the gene expression data (about 159k).
Similarly, the connectivity annotation (CA) is provided at 100 µm. As for the
connectivity data, it has been reshaped in a 1D array of length 1’203’840.

However, primary injection structures annotation is not at the finest annota-
tion’s level. Then, a procedure to trace back both annotation to the same de-
tail’s level was implemented.
The purpose is to regroup all the finest regions nested in the belonging rougher
region. In order to achieve this, ABA provides a structure graph, a list of dictio-
naries documenting brain structures and their containment relationships. This
reports the depth at which each region can be found. In the graph, finest region
annotations correspond to higher depths. The structure id path enables to de-
terminate the route to follow to trace back finest regions to rougher structures.
Combining this two information, it was possible to construct a dataframe re-
porting for each region the belonging structure at different depths. This was
used to group and trace back voxels, assigned to finest regions in the grid data
annotation, to coarser regions.

4.2 Implementation choices

Connectivity and gene expression grid-data are provided at different reso-
lutions. Connectivity data are available at 100 µm unpacked in a array of
1’204’840 voxels. Gene expression data, instead, are provided at 200 µm corre-
sponding to an array of 159’326 voxels.
This means that the data volume is composed of different numbers of 3D fun-
damental elements that correspond to the voxels. In fact, a voxel in the gene
expression data volume should match to 8 voxels in the connectivity one.
Thus, the information in the connectivity data volume that is subdivided in
a major number of voxels, is finer. On top of this, an alignment of the two
volumes was required to analyze the connectivity and gene expression infor-
mation detected in specific point of the mouse brain.
However, due to the data inconsistency, it was not possible to overlap the two
volumes through a resampling process (fig. 4.5).
First of all, gene expression volume counts approximately 9’000 spare voxels
that do not correspond to any voxel of the connectivity data.
Furthermore, another possible issue was the assignation of the group of voxels
located across two or more regions to a single region of the resampled volume.
Thus, in order to not introduce significant error, the connectivity data was ag-
gregate per region. Hence, the connection between Source-Target regions is
associated to a unique value that represents the connectivity intensity. The
aggregation methods used to obtain a unique value is the median of all the
energies detected for a Source-Target pair in a specific experiment.
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FIGURE 4.5: Representation of the two data volumes

4.3 Database creation

At the end of the collecting data phase, grid data for 3318 genes and 2333 in-
jection sites have been obtained for coronal sections.
Gene expression data have been organized in a single matrix 3319x159’326 that
have been stored in a csv file. In particular, 3318 columns correspond to genes,
whereas rows are associated to a specific voxel that composes the 3D volume.
An additional column reports the region annotation for each voxel (fig. 4.6.A).
Connectivity data, instead, have been saved in 2333 singles csv. Each file is

associated to an injection site and stores the array obtained at the end of con-
nectivity’s downloading phase. This array is composed by 1’203’840 elements
filled with projection energy detected for the specific voxel. Along with con-
nectivity data, two region annotations have been inserted. A column reports
the Source region annotation which is the structure of the injection site. Since
each file stores data for only one injection site, a unique id is reported in the
Source column. Another column, instead, reports the membership region an-
notated for the voxel. This corresponds to the Target region produced by a
specific injection site (fig. 4.6.B)

Both connectivity and gene expression data have been stored in a database
to allow an easy and faster access to the data. The database created has an
SQlite architecture and has been filled with data processed through Knime.
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(B) Elaborations of gene expression data data

FIGURE 4.6: Data elaboration flows

This is an open-source platform that enables elaborations of data through com-
putational nodes. A workflow has been designed to process gene expression
and connectivity data obtained in the previous phase. The processed data
have been organized in tables designed with the purpose to access data more
quickly and easily.
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4.4 Knime workflow

The workflow designed in Knime to process connectivity and gene expression
data is composed by three main sections (fig. 4.7). In turn, each section is
composed by several nodes that apply different elaborations on data. First
of all, the loading block read connectivity and gene expression data from the
csv files. After this, data is sent to a processing block where undergo several
elaborations. In the end, the output tables, produced in the previous section,
are saved in the SQlite database by the writing block.
Each section of the workflow will be presented focusing on the elaborations
executed.

FIGURE 4.7: Blocks in Knime’s workflow

Data Loading

The nodes in figure 4.8 compose the reading section that loads the data to be
processed.
On the bottom, gene expression matrix has been red using a CSV Reader node.
This has produced a 3318x159’326 table whose columns correspond to voxels
and rows to genes.
The series of nodes, used to load connectivity data, are shown on the top of
the workflow. Starting from left:

1. the List Files node creates a list with the locations of the injections files
contained in a specific folder. Therefore, it has produced a table whose
rows are the 2333 paths to as many csv. This table is sent in input to a
Variable Loop Start node.

2. This uses each row of a data table in input to define new variable values
for each loop iteration. Therefore, it sends a single path per time to the
next nodes. The elaborations executed by these nodes are repeated for
all the paths in the input table.
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FIGURE 4.8: Data Loading block in Knime’s workflow

3. In the loop, the current path is sent to a CSV Reader enabling the reading
of the correspondent connectivity csv.

Data Processing

The nodes in figure 4.9 have been used to process data and organize them in
tables.
On the top, the connectivity matrix at the current iteration is processed in or-
der to obtain two tables.
On the bottom, the gene expression matrix containing the energy values for
each gene is sent in input to a processing pipeline. As for connectivity data,
these data is organized in 2 tables that will be wrote in the SQlite database.
The connectivity matrix, at current iteration, stores injection id, energy projec-
tion values of each voxel, Source and Target region IDS. This is sent in input to
the following pipeline:

1. the Row Splitter node divides rows in two group according to a filter
criteria. The table at the upper port (with index 0) includes the rows
whose Target Region id is not equal to 0. Voxel annotated for region 0
composes the background of the 3D volume modeling the mouse brain.

2. After this, the filtered table is sent in input to two nodes:
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FIGURE 4.9: Data processing block in Knime’s workflow

2.a GroupBy node that groups the rows of a table by the unique values
in the columns reporting Source and injection id. This reduces the
table (injection2regionID)(fig. 4.10) in a row of two elements (injec-
tion id, Source id).

2.b on the underlying branch, Column Filter node allows Source id col-
umn to be filtered out from the input table. After this, the filtered
table is sent in input to a GroupBy node that groups the voxel re-
ported on the rows of the table by the Target id. This node aggregate
all the voxels belonging to the same Target region by the median of
the energy levels associated to each of these voxels. Hence, the out-
put table (injection2target) (fig. 4.10) is composed by three columns:
injection id, median of the energy obtained for a Target id and its ID
annotation.

The gene matrix, instead, stores expression energy values for all the 3318 genes,
the gene ids and the region annotation for the single voxel. This table is sent
in input to a Row Filter node. This filters all the rows containing voxels anno-
tated to region 0 (background). After this, the column containing indexes of
voxels is renamed through Column Rename node. Then, the output table is
processed by two pipelines.
In the series of nodes on the top, the output table is sent in input to:
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FIGURE 4.10: Tables created through Knime and stored in SQlite
database

1. Column Aggregator node which groups the selected columns per row
and aggregates their cells using the selected aggregation method. This
was used to calculate median, mean and sum statistic.

2. The final table (voxID2Annotation) (fig. 4.10) was created keeping the
voxel id and their annotation through Column Filter .

In the series of nodes on the bottom, the output table is sent in input to:

1. RowId node that replaces the RowID of the input data with the values
of the voxel column. This permits to use the voxel index to indentify the
rows. After this, the annotation column is filtered out by a Column Filter
node.

2. The filter table is sent in input to a Column List Loop Start node that
iterates on the list of columns that correspond to the arrays of expression
energies for each gene. The next following steps are then repeated for
each gene expression array:

2.a Java Snippet executes arbitrary java code that generates a table com-
posed by rows reporting for each gene id the voxel id and energy
value detected for that voxel.
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2.b After this, the voxel with energy value equal to 0 are filtered out
through a Row Filter node. The output table (voxID2GenExpr) (fig.
4.10) is composed by columns reporting gene expression energy
value, voxel ID and gene ID.

Database Writing

The database writing block is composed by four Database Writer nodes linked
to the SQlite Connector node. In turn, the connector node creates a connec-
tion to a SQLite database located in a specific path.
At each iteration, the four tables, obtained in the previous step, are sent in
input to Database Writer nodes. These are connected to Variable loop end
nodes that end the loop started on injection files and genes array in the previ-
ous steps. At the end of the first iteration, writing nodes initialize the current
tables in the database. In the next iterations, the already existent tables are
filled in with the current data.

FIGURE 4.11: Database Writing block in Knime’s workflow
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4.5 Dataset creation

In this section, a detailed description of the steps followed to create the datasets
to be analyzed in different experiments, will be given. An ad ad hoc pipeline
have been implemented to extract gene expression and connectivity data for
selected Source-Target regions. The pipeline provides as output vectors con-
taining gene expression profiles detected for two random voxels belonging to
the source and target. After its creation, each vector is accompanied by a con-
nectivity value according to specific assigning criteria.
Three dataset with different sizes and features have been created through the
implemented pipeline. Each of this have been used to test the informative
content of gene expression profiles enabling the exploration of connectivity
networks.

4.5.1 Ad hoc pipeline for dataset creation

While implementing a machine learning model, the construction of the dataset
is a crucial step. A significant dataset has to be created in accordance to the task
required to the network. Input examples should be characterized by features
through which the NN can learn to predict on unknown data. On top of this,
an ad hoc pipeline was implemented to combine gene expression and connec-
tivity data to feed a Multilayer Perceptron.

Gene expression vectors construction

First of all, N source-target regions are selected in accordance with their con-
nectivity intensity and the specific analysis to perform.
Gene expression and connectivity data of the selected pairs undergo the fol-
lowing pipeline:

i) For each source-target pair, M voxels belonging to the source region and M
voxels to the target regions are selected on the expression gene annota-
tion1.

ii) For each selected voxel, a vector composed of 3318 elements where each el-
ement corresponds to a specific gene provided by AMBA, is created. In
particular, each array’s cell contains the gene expression energy detected
for that voxel. At the end of this step, M vectors representing source’s
gene expression profile and M vectors representing target’s gene expres-
sion profile, are obtained.

1the M voxels are selected among all the ones belonging to the regions nested in the source
and target regions using the dictionary constructed in the previous step.
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FIGURE 4.12: Dataset suddivision in training, validation and test
sets

iii) The dataset is created selecting P combinations among all possible combi-
nations of source and target voxels. In particular, for each combination
the gene expression vector corresponding to the source voxel is concate-
nated with the gene expression vector corresponding to the target voxel.
Therefore, the dataset will be made of P vectors.

iv) In the end, a label representing the source-target connectivity value to each
of previously created combinations, is assigned2.

These steps are repeated for all the N source-target regions selected at the be-
ginning.
In the final step of the pipeline, the obtained dataset undergo a normalization
process. This scales input vectors individually to unit norm. The normalized
dataset is then divided in training, validation and test sets (Fig.4.12). Train-
ing set accounts for the 70% of the whole data and test set the remaining 30%.
The validation set is made up selecting 10% of pairs in the training set. The
N source-target regions are selected following different criteria dependent on
the analysis to perform. Therefore, starting from different source-target re-
gions three datasets have been created through the presented pipeline. These
have been used to feed a Multilayer Perceptron in three experiments.

Connectivity assigning criteria

The last step of the dataset creation is constituted by the assignation of the
connectivity information to the gene expression vectors. The label assigned is
value obtained processing the median connectivity values stored in database.
When connectivity data have been stored in the database, all the energy val-
ues reported for a specific injection ID (experiment) and for a specific Source-
Target combination have been aggregated through the median value. How-
ever, a region may be site of injection in more experiments. For each of this

2the assigned connectivity label is retrieved from Allen or BAMS connectivity data depend-
ing on the analysis to be performed
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experiment, the axonal projections, produced in the target regions, are stored
as energy in a SectionDataSet. Then, if a certain source has targeted the same
region in different experiments, more than one energy median will be found
in the database for that combination of Source-Target regions.
Therefore, in regression tasks, the following criteria have been applied in order
to assign the labels to the vectors obtained for a certain Source-Target combi-
nation:

• if any projection energy median > 0.001 in database was annotated for
the given Source-Target pair, label "0" was assigned.

• if projection energy median values > 0.001 were annotated for the given
source-target combination, the assigned label is the max(medians) or
mean(medians) depending on the experiment to perform.

4.6 Predictive Model

The output datasets obtained through the presented pipeline have been used
to feed a predictive model. This aims to make prediction about the possible
connection between regions recognizing gene expression patterns. A Multi-
layer Perceptron has been implemented to accomplish classification and re-
gression experiments executed on the datasets created through the ad hoc pipeline.
The MLP architectures that have provided best performances for multiclass,
binary classification and regression, will be illustrated. Details of the datasets
and results obtained through the presented architectures will be discuss in the
dedicated chapter.

4.6.1 MPL architecture for binary classification

To perform binary and multiclass classification tasks, the MPL architecture
(fig.4.13) is composed by an input layer with 64 nodes and two hidden layers
with 32 nodes each. The input nodes apply ’sigmoid’ activation function on
the entries. In the hidden layers, nodes apply ’ReLu’ activation function on
their inputs. Three Dropout layers are placed after the hidden layers to avoid
overfitting phenomenon. This occurs when the MPL specializes on the train-
ing set and loses its ability to generalize on the training set. When the error
on the validation set starts to increase, the dropout layers "drop out" random
neurons. This means that their contribution to the activation of downstream
neurons is temporally removed on the forward pass and any weight updates
are not applied to the neuron on the backward pass.
Notably, two options have been given for the activation function of the output
layer. In fact, the outputs were calculated by the "sigmoid" function for binary
classification and "softmax" for multiclass tasks.
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FIGURE 4.13: MLP architecture for classification tasks

4.6.2 MPL architecture for regression tasks

To perform the regression task, the built MPL architecture (fig.4.14) is charac-
terized by nodes whose activation functions return real values (’sigmoid’ and
’linear’). The input layer is composed by 128 nodes and it is followed by two
hidden layers composed by 64 nodes. Two Dropout layers are placed after the
hidden layers to avoid overfitting phenomenon. The output is calculated by
the output layer’s nodes through ’sigmoid’ activation function in order to ob-
tain a real value. In fact, ’sigmoid’ returns real values between 0 and 1.0.
When performing regression the error, used to make adjustments, is calculated
as mean square error.
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Chapter 5

Results

The first part of this chapter is dedicated to the description of metrics to eval-
uate the performances of the MLP. Subsequently, the three dataset obtained
through the ad hoc pipeline presented in the previous chapter will be described.
The results obtained through the MLP architectures for the experiments, exe-
cuted on the three dataset, will be illustrated and discussed. In the first part of
each discussing section, quantitative details will be given on the dimensions of
the dataset used to feed the Multilayer Perceptron. For each experiment, a fine
tuning phase was executed in order to select the set of parameters enabling
the best performances. The set of the parameters resulted from the tuning and
used to train the MLP is reported from each experiment.

5.1 Performance quality metrics

The evaluation of a machine learning model consists in the process of under-
standing the effectiveness of the algorithm to accomplish a given task. This
means to estimate the quality of the predictions provided by the model. Many
metrics, highlighting different aspects of the performances, are available to
quantify the achievements of a predictive model. Furthermore, due to the dif-
ferent nature of their outputs, different metrics are required for classification
and regression.

5.1.1 Classification

A binary classifier predicts all data instances of a test dataset as either positive
or negative. Many metrics measures the quality of the performances provided
by the classifier. Each of this metrics are applied to the given set of results
manipulated. In this evaluation process, the results provided by a classifier
are defined and regarded, as follow:

• true positive (TP):

- Positive prediction
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- Label was positive

• true negative (TN):

- Negative prediction

- Label was negative

• false positive (FP):

- Positive prediction

- Label was negative

• false negative (FN):

- Negative prediction

- Label was positive

Using the number of these outcomes, it is possible to achieve a more accurate
analysis on the performance of the classifier. In fact different metrics can be
evaluated:

• Accuracy: is calculated as the number of all correct predictions divided
by the total number of the dataset.

ACC =
TP + TN

TP + TN + FN + FP
(5.1)

• Precision (Positive predictive value): proportion of predicted positives
which are actual positive:

PREC =
TP

TP + FP
(5.2)

• Recall (Sensitivity): proportion of actual positives which are predicted
positive :

REC =
TP

TP + FN
(5.3)

• F-score: F-score is a harmonic mean of precision and recall.

F1 =
2 ∗ PREC ∗ REC

PREC + REC
(5.4)

The described parameters have values in [0, 1.0]. Therefore, the best score is
1.0, whereas the worst is 0.0.
Another powerful means to evaluate a classifier performance is the confusion
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matrix that reports on columns the predictions provided by the model and on
rows the real values.
A graphical quality metric for binary classification is the area under the curve
(AUC) representing TP rate respect to FP rate (fig.5.1). The resulting curve is
called ROC and the optimal classifier has AUC=1.0 .

FIGURE 5.1: ROC curve

5.1.2 Regression

Regression refers to functions that attempt to predict a real value output. This
type of function estimates the dependent variable by knowing the indepen-
dent variable. Since the prediction provided by the NN is a real value, it is
not possible to evaluate the performances using the metrics presented for bi-
nary classification. Therefore, the quality of the predictions provided by the
network can be estimated in term of error. In general, an appropriate measure
of the error, in regression tasks, is the mean squared error (MSE):

MSE =
1
n ∑

i
(yi − y∗i )

2 (5.5)

where: n is the number of the inputs, yi is the desired output for the i-th input,
y∗i is the prediction provided for the i-th input. Both desired and predicted
label are continue values. MSE is usually used to evaluate the performances
trend of the model during the training.
To evaluate the performances on test set, a measure of the error normalized in
the range of the value to predict is required. The mean absolute percentage
error (MAPE) provides a the percentage of the error normalized on the range
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of the signal:

MAPE =
100
n ∑

i
(

yi − y∗i
yi

) (5.6)

5.2 Datasets description

The following paragraphs are dedicated to the description of the datasets ob-
tained through the ad hoc pipeline. Each dataset was obtained selecting dif-
ferent Source-Target combinations to give in input to the pipeline. This way,
three datasets have been created and used to perform as many experiments
whose results are discussed in the last part of the chapter.

TABLE 5.1: Source-Target pairs for binary classification task

Source Target
Label ID Acronym Intensity ID Acronym

362 MD 9 44 ILA
385 Visp 9 541 Tea

1 48 Acav 8 972 PL
218 LP 8 894 RSPagl
44 ILA 1 985 MOp

0 731 Orbm 1 507 MOB
29 AON 1 985 MOp

5.2.1 Dataset 1: Unconnected/Connected regions

The dataset used to train and test the MLP was created through the ad hoc
pipeline. The Source-Target pairs have been selected in accordance to the con-
nectivity intensity reported on BAMS. In particular, the created dataset was
composed of gene expression and connectivity data from:

• 4 Source-Target region pairs chosen among pairs that on BAMS are re-
ported with high connection’s intensity. These belong to the "connected"
class encoded with label "1".

• 3 Source-Target region pairs chosen among pairs that on BAMS are re-
ported with minimum connection’s intensity. These belong to the "un-
connected" class encoded with label "0".

The resulting dataset was composed by approximately 4000 source-target
vectors and then subdivided in training, validation and test set.
These were used to feed the MLP in a preliminary experiment. This was per-
formed to verify the hypothesis that gene expression is strongly correlated
to connectivity’s physical network in the mouse’s brain. The first task aims to
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verify the existence of gene expression patterns recognizable by the Multilayer
Perceptron. Therefore, a binary classification was performed to distinguish be-
tween connected and unconnected regions.

5.2.2 Dataset 2: one Source with multiple targets

The dataset was created through the pipeline selecting a source and 3 multi-
ple targets (fig. 5.2). According to BAMS, each target region is connected to
the source with different intensities. The pipeline output was a dataset com-
posed by 2200 source-target vectors with their assigned labels. For this task,
the connectivity value, obtained averaging the medians of projections data,
was assigned as label. This dataset was used to feed a MLP for regression task
in a second experiment.
The previous experiment tested the existence of gene expression patterns en-
abling the discrimination between connected and unconnected regions. This
is the foundation on which next tests are based. In the second experiment,
the hypothesis that gene expression profiles enable to predict the intensity of
connection between regions was evaluated.

Source

362

Mediodorsal nucleus
of thalamus

Target

44

Target

700

Target

972

Infralimbic Area  

Anterior hypothalamic nucleus

Orbital area, medial part

0

0.123

0.0780

FIGURE 5.2: Source region is paired to three Targets with differ-
ent connectivity intensity

5.2.3 Dataset 3: Source-Target pairs from macroregions

The dataset was created through the ad hoc pipeline selecting the regions, sites
of at least one injection, belonging to Cortex and Cerebellum brain areas. These
represent important functional regions and then expected to be characterized
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FIGURE 5.3: .
Slices of mouse brain in coronal section. Regions highlighted in green belong

to Cerebral Cortex (A) and Cerebellum (B) have been used to build the
dataset in phase B [7].
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by a dense connectivity network. Thus, the selected regions amount to ap-
proximately 58. In particular, eight regions belong to Cerebellum whereas the
remaining group composes the Cortex. Hence, the region combinations be-
tween Cerebellum and Cortex were more than 3000.
A wild dataset have been created selecting 21 voxels for each possible Source-
Target combination. This is composed by source-target vectors created through
the implemented pipeline. The total number of the Source-Target vectors was
54’495 with as many connectivity labels associated. These were obtained se-
lecting the mean or maximum value of the connectivity medians reported in
the database for the specific Source-Target combination. When any median
was found for a region pair, 0 connectivity value was assigned to the corre-
sponding gene expression vector. Depending on the experiment to perform,
one between maximum and mean values were chosen.
This dataset has been used to feed the MLP for both classification and regres-
sion tasks whose results will be given in the chapter 5.
The experiments of classification and regression executed through dataset 3
aim to consolidate the results on the previous narrow datasets and generalize
the performance of the model to a wilder dataset.
Regression task aims to predict the connectivity values assigned to each vector
at the output of the ad hoc pipeline.
Classification, instead, consists of binary or multiclass tasks in which the Source-
Target vectors have been divided in classes in accordance with their connec-
tivity value.
In particular, the connectivity values, calculated as mean or maximum of me-
dians, of the selected Source-Target combinations fall in [0 , 1). Notably, the
group that counts most of elements falls in [0, 0.005], whereas only a small
fraction has significant values of connectivity. Reasonably, the most accounted
group represents the Source-Target combinations that are not connected. In-
stead, the remaining values constitute the region pairs connected through dif-
ferent intensities.
Therefore, the connectivity distribution of values has led to define connection
intensity ranges associated to classes. This way, each Source-Target vector is
included in a class in accordance with its connectivity value. In binary classi-
fication tasks, Source-Target vectors were divided as follow:

• Class "0" (unconnected) : Source-Target vectors with connectivity value
equal to 0. This class represents Source-Target regions of the dataset that
are not connected.

• Class "1" (connected): Source-Target vectors with connectivity value >0.006.
This class is made of Source-Target regions satisfying the condition of
connection in spite of the intensity.

In multiclass classification tasks, Source-Target vectors were divided in three
classes as follow
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• Class "0" (unconnected) : Source-Target vectors with connectivity value
equal to 0. This class represents Source-Target regions of the dataset that
are not connected.

• Class "1" (connected): Source-Target vectors with connectivity value be-
longing to [0.006,0.05) . This class is made of Source-Target regions of the
dataset that are connected.

• Class "2" (strongly connected): Source-Target vectors with connectivity
value >0.05. This class is made of Source-Target regions of the dataset
that are strongly connected.

5.3 MLP performances on dataset 1

The Multilayer Perceptron has been presented with the gene expression data
selected from 7 Source-Target pairs regions. Labels codifying the connected
(label "1") and unconnected (label "0") conditions have been assigned to each
pair according to the connectivity intensity reported on BAMS. The experi-
ment aims to reveal the existence of gene expression patterns enabling the dis-
crimination between connected and unconnected regions.
The complete dataset, obtained from the selected Source-Target pairs through
the ad hoc pipeline, was composed of 4027x6636 Source-Target vectors with
their labels. Each vector contains the gene expression energy level detected
for two random voxels of the source-target pairs regions. The 4027 samples
have been divided as follow:

A. Training phase: 3.221 (80%) source-target vectors of the complete dataset
were divided in training set and validation set. Training set accounts
for the 90% of the 3221 source-target vectors of length 6636, resulting
in a 2898x6636 matrix. The validation set, instead, was made up of 323
samples, resulting in a 323x6636 matrix.

B. Testing phase: the test set was composed by the remaining samples, ob-
taining a 806x6636 matrix.

The architecture of Multilayer Perceptron implemented to accomplish the
binary classification task is illustrated in Chapter 4.

The training phase consisted of 30 epochs during which the training dataset
was propagated in batches of size 32. At the end of each propagation, the er-
ror between predicted values and desired outputs was calculated by binary
cross_entropy loss function. In order to minimize the error, Stochastic gradient
descent (SGD) optimizer updated parameters with a learning rate of 0.05 for
each training example. The parameters set in the training are reported in Ta-
ble 5.1.
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Stocastic gradient descent

epochs learning rate
(Lr) decay nesterov clip value Loss

function batch size

30 0.05 Lr/epochs True 0.5 binary cross entropy 32

TABLE 5.2: Training parameters for binary task

After 30 epochs, the implemented MLP reached, in the training phase, 1.0 ac-
curacy with a loss of 0.0160 (fig.5.4). On the test set, the MLP has provided

FIGURE 5.4: Training performance curves

accurate results with accuracy, precision, recall and f1-score equal to 1.0 . The
obtained results demonstrate that gene expression profiles carry the informa-
tion enabling the discrimination between connected and unconnected regions.
Furthermore, the ROC curve constructed on the predictions obtained on test
set has an area of 1.
Notably, the performance of the MLP have been evaluated on a dataset com-
posed of source-target pairs with strong or weak intensity of connection. Hence,
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FIGURE 5.5: ROC curve on test set

performances are expected to decrease on a dataset composed of regions with
a wild range of connectivity intensities. In light of this, this experiment repre-
sents a preliminary analysis on whose results the next experiments have been
built.

5.4 MLP performances on dataset 2

In this paragraph, the results of the regression performed through the MLP
on the dataset composed of Source and its multiple Targets, will be discussed.
As described in the previous chapter, the dataset is composed of the gene ex-
pression vectors obtained from the selected voxels of a Source region paired
with some of its Targets. The Source region is connected to the Targets with
different connectivity intensity.
The label assigned to each Source-Target gene expression vector is the unique
value obtained averaging the medians of the projection energies values re-
ported for the specific Source-Target pair. Only median with a value > 0.01
have been taken in account in the average. Hence, labels are real values codi-
fying the intensity of the connection between the Source and its Target. The ex-
periment aims to reveal if gene expression profiles are characterized by mean-
ingful patterns enabling to predict the intensity of connections between re-
gions.
The complete dataset, obtained from the selected Source-Target pairs through
the ad hoc pipeline, was composed of 2200x6636 Source-Target vectors with the
assigned labels. Each vector contains the expression energy levels of the 3318



5.4. MLP performances on dataset 2 81

RMS prop

epochs learning rate
(Lr) decay epsilon rho Loss

function batch size

100 0.01 0.0 None 0.9 mean squared error 32

TABLE 5.3: Training parameters for regression task

genes, detected for two random voxels of the source-target pairs regions.
The 2200 vectors have been divided as follow:

A. Training phase: 1584 (80%) source-target vectors of the complete dataset
were divided in training set and validation set. Training set accounts
for the 90% of the 1584 source-target vectors of length 6636, resulting
in a 1584x6636 matrix. The validation set, instead, was made up of 176
samples, resulting in a 176x6636 matrix.

B. Testing phase: the test set was composed by the remaining samples, ob-
taining a 440x6636 matrix.

The architecture of Multilayer Perceptron implemented to accomplish the re-
gression tasks is illustrated in Chapter 4.
The training phase consisted of 25 epochs during which the dataset has been
propagated in batches of size 32. At the end of each propagation, the error be-
tween predicted values and desired outputs has been calculated by mean square
error loss function. In order to minimize the error, RMS prop optimizer updated
parameters with a learning rate of 0.005 for each training example.
The parameters set in the training for the regression task are reported in Table
5.2.
In regression tasks, the only metric to check the performance of the MLP dur-
ing the training is the error calculated by the loss function. After 100 epochs,
the error calculated by the mean squared error function reached the conver-
gence.

On test set, the mean squared error (MSE) between the real values (labels)
and predicted values has been calculated. The best performance of the trained
MLP provided MSE=(1, 47± 0, 000187) ∗ 10−5 and MAPE=(5, 72%± 0, 0040%)
on the test set.
However, the MSE and MAPE are a global evaluations of the error committed
by the network on all the samples of the test set. Hence, a graphic reporting
predicted value against actual value of 20 random test samples is provided in
fig 5.7.
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FIGURE 5.6: Training performance

FIGURE 5.7: Distances between real and predicted connectivity
intensity for 20 samples of the test set
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5.5 MLP performances on dataset 3

In this paragraph, the results obtained through the MLP on the dataset 3 com-
posed of Source-Target pairs from Cortex and Cerebellum, will be discussed.
As described in the previous chapter, the dataset 3 is composed of 54’495 gene
expression vectors obtained from random voxels selected from the Source-
Target combinations of Cortex and Cerebellum.
Two phases composes the experiment:

A) In phase A, regression and multiclass classification were performed through
the architectures shown in fig 4.13. The Source-Target vectors are accom-
panied by the mean of the medians reported in the database for the spe-
cific Source-Target combination.

B) In phase B, multiclass and binary classification were performed through
the architectures shown in fig 4.14. The Source-Target vectors are accom-
panied by the maximum of the medians reported in the database for the
specific Source-Target combination.

5.5.1 Phase A

In phase A, the predictive model was trained and tested on dataset 3 using the
architectures previously shown. This phase consists in two tasks:

i) Regression task: the MLP was required to predict the connectivity value
obtained as mean of the connectivity medians.

ii) Multiclass classification task: the dataset 3 were divided in 3 classes as
described in the previous section. The MLP was required to assign each
Source-Target vector to a class in accordance with connection intensity.

Regression task

The regression task was characterized by a tuning phase of the parameters
shown in Table 5.2. However, it was not possible to select a set of parameters
providing predictions with a MAPE lower than 86.7%.

Multiclass classification task

In multiclass task, the dataset 3 was divided in 3 classes in accordance with the
connectivity values associated. Only 1090 Source-Target vectors of the whole
dataset 3 belong to the class of strongly connected. Therefore, to perform the
classification, the three classes were balanced as follow:

• Class "0": 2000 source-target vectors with connectivity values equal to
<0.006
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• Class "1": 2000 source-target vectors with connectivity values in [0.006,0.1)

• Class "2": 1090 source-target vectors with connectivity >0.1 .

The MLP for multiclass classification was trained on 3665 samples, validated
on 408 and tested on 1019.
The parameters set in the training are reported in Table 5.3 . The best perfor-
mances obtained were 0.73 accuracy on training set and 0.68 accuracy on test
set. The precision on the strongly connected class was 0.58.

Discussion of the results

In phase A, the connectivity value associated to each of Source-Target gene
expression vectors is calculated as the mean of the medians values associated
to each Source-Target combination for each experiment. The results show that
averaging the connectivity values between the experiments may not provide
a value which is representative of the actual intensity of connection. This has
led to chose as connectivity value, the maximum of the medians instead of the
mean.
Each connectivity experiment is conducted injecting different sites of the mouse
brain. In fact, a single injection is usually not enough to produce the entire
projection volume. Indeed, some injections may interest portion characterized
by neurons that are strongly deputed to the connectivity respect to others. In
addition, it is possible that only some portions of a region are strongly con-
nected to another one. In light of this, the connectivity network detected in
each experiment seems to be dependent on the position of the injection. Then,
the connectivity status between Source and Target regions may be produced
injecting a specific portion of the source region.
On top of this, to take in account that some experiments may be less represen-
tative for a specific Source-Target combination, due to the injection condition,
maximum value of the medians is used as connectivity value. This means to
select the experiment characterized by the best spatial conditions.

5.5.2 Phase B

In light of the results obtained in phase A, classification experiments have been
designed in order to improve the precision on the connected classes. Then,
phase B is constituted by two classification tasks:

i) Multiclass classification: the dataset was divided in three classes in ac-
cordance with the connectivity value calculated as the maximum of the
medians. Each class encodes an intensity of connection.

ii) Binary Classification: the dataset was divided in two classes codifying the
connected (label "1") and unconnected (label "0") conditions.
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TABLE 5.4: Training parameters for multiclass classification

Nadam

epochs learning rate
(Lr) decay beta1 beta9 Loss

function batch size

200 0.002 0.004 0.9 0.999 categorical cross entropy 6

Multiclass Classification task

In phase B, the connectivity value associated to each Source-Target vector is
the maximum of the medians reported for the specific region combination.
All the samples have been divided in three classes in accordance with their
connectivity value. The three classes are composed as follow:

• Class "0": 5000 source-target vectors with connectivity equal to 0.

• Class "1": 5000 source-target vectors with connectivity values in [0.006,0.1)

• Class "2": 2583 source-target vectors with connectivity >0.1 .

Therefore, the dataset was composed of 14583x6636 gene expression vectors
with their labels. In turn, the whole dataset was divided in training, valida-
tion, test set. Training set was composed of 10499 samples, validation set 1167
samples, test set 2917 samples.
The architecture of Multilayer Perceptron implemented to accomplish the mul-
ticlass tasks is shown in 4.6.2 paragraph. The training phase consisted of 200
epochs during which the dataset has been propagated in batches of size 6. At the
end of each propagation, the error between predicted values and desired out-
puts has been calculated by categorical cross entropy loss function. In order to
minimize the error, Nadam optimizer updated parameters with a learning rate
of 0.002 for each training example. The parameters set in training phase are
summarized in Table 5.3.

After 200 epochs, the implemented MLP reached 0.914 accuracy in the
training phase and provided 0.764 accuracy on test set. The confusion matrix
(Tab 5.4) shows the distributions of the classifieds and misclassifieds among
the three classes. The quality metrics calculated for each class are reported in

TABLE 5.5: Confusion matrix for multiclass classification

Predicted
0 1 2

0 772 238 13
1 133 791 58Real
2 9 166 357

Table 5.4.
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TABLE 5.6: Quality metrics for multiclass classification

Quality metrics
Recall Precision F1_score Accuracy

0 0.755 0.864 0.806
1 0.822 0.662 0.733Class
2 0.671 0.834 0.744

0.763

The implementation phase was focused on building a classifier able to recog-
nize the connected regions with a good precision and recall. Despite of the
0.671 recall on strongly connected regions, almost the totality of misclassified
vectors (166) of this class ("2") have been assigned to class "1" against the mod-
est group (9) attributed to class "0". Class "1" still represents the regions that
are connected even through weaker connections. Therefore, despite of the
misclassifications committed in the predictions on connections intensity, the
model implemented has provided accurate performances in the recognition of
connected regions.

Binary classification task

In light of the results obtained in predicting connection intensities, binary clas-
sification task has been designed to further test the capability to recognize con-
nected regions. Then, the goal is to train an MLP providing precise predictions
on the class of connected regions. To perform the binary classification task, the
dataset 3 was divided in two classes, balanced as follow:

• Class "0": 20’000 Source-Target vectors with connectivity values equal to
0. This class is composed of gene expression vectors obtained selecting
unconnected Source-Target region pairs.

• Class "1": 17’136 Source-Target vectors with connectivity values > 0.006.
This class is composed of gene expression vectors obtained selecting the
connected Source-Target region pairs.

Therefore, the dataset was composed of 37’136x6636 gene expression vectors
with their binary labels. In turn, the whole dataset was divided in training,
validation, test set. Training set was composed of 26’737 samples, validation
set 2516 samples, test set 7428 samples.
The architecture of Multilayer Perceptron implemented to accomplish the bi-
nary tasks is shown in 4.6.2 paragraph.
The training phase consisted of 100 epochs during which the dataset has been

propagated in batches of size 32. At the end of each propagation, the error be-
tween predicted values and desired outputs has been calculated by binary cross
entropy loss function. In order to minimize the error, Nadam optimizer updated
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FIGURE 5.8: Training performance curves for binary classifica-
tion on dataset 3

TABLE 5.7: Training parameters for binary classification

Nadam

epochs learning rate
(Lr) decay beta1 beta9 Loss

function batch size

100 0.002 0.004 0.9 0.999 binary cross entropy 32

parameters with a learning rate of 0.002 for each training example. The param-
eters set in training phase that allowed to obtain the best performances, are
reported in Table 5.6.
After 100 epochs, the implemented MLP reached 0.89 accuracy in the training
phase with 0,247 loss (fig. 5.8). The performances and quality metrics on test
set are reported in figure 5.9 and Table 5.7.

TABLE 5.8: Quality metrics for binary classification

Quality metrics
Precision Recall F1_score Accuracy

0 0.947 0.755 0.841
1 0.772 0.952 0.853 0.847

As expected, this model has proved to be precise and accurate on detecting
connected regions with a 0.853 F1_score. This last experiment outlines that it is
possible to distinguish reliably between connected and unconnected regions,
even though improvements have to be made to predict on the intensities of
these connections with the same level of accuracy.
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FIGURE 5.9: ROC curve on test set for binary classification on
dataset 3
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Chapter 6

Conclusions and future works

In this thesis work, the correlation between gene expression profiles of two
regions of the mouse brain and their physical connections has been explored
through an pipeline designed for this purpose. The pipeline implements the
procedures essential to perform this exploration, starting from data retriev-
ing, storing and elaboration to the analysis aiming the investigation of con-
nections between the brain regions. In this regard, the implementing aim of
this pipeline is to detect connected pairs with the maximum precision possi-
ble.
Selecting different Source-Target combinations, three datasets have been con-
structed. Dataset 1 and 2, composed of gene expression profiles of selected
Source-Target regions, have been used to conduct preliminary analysis to test
the potentials of the available data in studying the physical connections. The
quality of the predictions obtained through the MLP for regression and classi-
fication tasks on these narrow datasets, have proved that gene expression af-
fects the development of connectivity networks. The reliability and accuracy,
characterizing the results obtained in this preliminary phase, have encouraged
to generalize this assumptions to a wilder dataset.
To achieve this purpose, dataset 3 was created from Cortex and Cerebellum
brain areas through the ad hoc pipeline. The analysis performed on dataset 3
was composed of two phases and these differentiate in the choice of the con-
nectivity value assigned to each Source-Target combination. In fact, mean and
maximum of the medians of the projection energies of each connectivity ex-
periment were assigned respectively in phase 1 and phase 2. The first phase
has outlined the limitations of the regression model on a dataset composed
of gene expression profiles measured for many different regions. Instead, the
predictions obtained by the multiclass classification highlighted a low preci-
sion on the class of strongly connected regions.
This has led in the second phase to assign as connectivity value the maximum
of the medians since it may be more representative of the connectivity net-
work between two regions. In multiclass task, this hypothesis was revealed
to be crucial in the improvement on the precision and recall on the strongly
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connected regions with a F1_score of 0.74. This value is affected by a 0.67 re-
call. Despite of the recall on strongly connected regions, almost the totality of
misclassified vectors were attributed to the class of weakly connected regions.
In light of this, a last classification experiment with two classes have been de-
signed. This has proved on the available data that analyzing gene expression
profile of Source-Target region combination is possible to recognize the con-
nected pairs with a 0.84 F1_score.
This work represents a foundation on which improvements and future works
can be build. In fact, gene expression patterns affecting the connectivity net-
works should be extracted from the trained model. This consists in a feature
selection procedure in which the features are the genes of the dataset.
In MLP architectures, the nodes of the layers are fully connected each others.
This does not permit to evaluate the weight of the single feature directly on the
links of the trained model. However, some techniques, called wrapper-based
approach, are able to exploit knowledge of the specific structure of the learning
algorithm. These methods consists in training the model excluding a feature
from the dataset iteratively. At each iteration, the feature importance is esti-
mated in accordance with the performances obtained excluding that feature.
Wrapper methods are more effective than normal filtering feature selection but
has higher computational costs [18].
Thus, the individuation of the genes, whose expression are quantified through
the FISH, would led to an improvement on the results for both regression and
classification.
The model trained using only the gene expression profiles extracted through
the wrapper selection, could be used to construct a connectivity reference to
explore brain connections in others species.
In this regard, almost the totality of the mouse genes used in this work have
homologous in human genes. However, any connectivity data are available to
perform an integrative analysis. Thus, the selected genes along with the refer-
ence obtained in this work would represent a starting point to the construction
of a similar analysis using gene expression profiles obtained through RNA-seq
techniques.
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