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Summary

Recent technology improvements in wireless communications, in digital electronics
and in micro-electromechanical systems (MEMS) make feasible the design and de-
velopment of low-power, low-cost multifunctional "nodes" able to interact with each
other. This new kind of devices, which include sensing, actuation, data processing
and communication, allows the creation of increasingly pervasive wireless networks,
enabling and expanding the concept of Internet of things (IoT). IoT refers to the
inter-networking of physical devices, vehicles, buildings and many other items or
objects that embedding some electronics makes them smart. Smart in the sense of
something able to be part of the environment, reacting to stimuli or actively actu-
ating them, and collecting and exchanging data. From its dawning, the potentiality
of such concept was clearly enormous and, despite the actual diffusion, growth po-
tential is still huge. As a natural consequence, the IoT concept can easily take
advantage from Wireless Sensor Networks (WSNs). A Wireless Sensor Network is
based on the interaction of a large number of nodes of the same type, or also with
different characteristics, typically with sensing purposes only. The integration of
WSNs into the IoT unleashes an extremely wide range of possible applications and,
not surprisingly, IoT and WSN are becoming an integral part of our lives.

In these areas, thanks to the considerable amounts of research efforts of the
last years, we have available several sophisticated and extremely efficient commu-
nication protocols and software instruments, and some emerging standards enable
interoperation within them (e.g., IEEE 802.15.4). Often WSNs are composed of a
very large number of sensors nodes, placed in vastly different areas with different
requirements in terms of reliability and sensing capabilities. The creation of a ro-
bust infrastructure, tailored to specific requirements, can be challenging and needs
a careful analysis to find the best solution using the available hardware and software
components or developing ad-hoc devices and strategies. These problems are further
emphasized when the systems need to be positioned in inaccessible terrains or in
conditions where human activity are very limited or not possible at all.

This work has the aim of defining a framework for the development and the eval-
uation of ambient monitoring wireless sensor networks with low data-rate, based on
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an embedded operating system supporting 6LoWPAN (Contiki) and targeting ex-
tremely low-power consumption. The flexibility of the platform and of the firmware
gives the opportunity to customize network parameters in order to better match
application requirements. Within this framework, an experimental case study was
developed and empirically validated.

The developed network is composed of a self-forming and self-healing multi-hop
mesh network for ambient conditions monitoring. The nodes can be entirely powered
by a solar energy harvester even in indoor environments not in direct sunlight. The
data acquired by each node are collected by a sink. The sink is connected to the
Internet and provides the Internet access to the other nodes of the network.

The hardware of a node is composed of off-the-shelf devices by STMicroelectronics®

belonging to the STM32 Nucleo ecosystem. Each node consists of:

• the core board integrating a low-power microcontroller (ARM® Cortex®-M3)
with several integrated peripherals;

• an ultra-low power, Sub-GHz radio module that guarantees the wireless com-
munication;

• an expansion board integrating several sensors for monitoring humidity, tem-
perature and pressure;

• a power module equipped with solar cells and a rechargeable battery.

The first part of my work aimed at characterizing the solar energy harvester used
for supplying the system. In order to effectively measure the power output capabil-
ities of the module, a test circuit was specifically implemented to perform the task.
In addition to the characterization of the power module, this analysis was used to
define some profiles for the ambient light of a typical office and to understand which
are the limits and the expected values for the energy that can be collected from the
environment.

Then, I focused on the energy consumption of the node, in particular considering
the power required by the microcontroller. The several available low-power modes
were used to minimize the energy consumption during both active and idle phases,
exploiting voltage and frequency scaling as well as selective core and peripheral de-
activation. The radio module resulted very critical from the power consumption
point of view. In order to guarantee the functioning of the system using the solar
harvester, a duty cycling mechanism for the nodes was adopted. It consists in allow-
ing the nodes to go in a low-power mode where the system is frozen, and periodically
waking them up for a small amount of time sufficient to acquire, process and send
data to the sink, and to maintain the network connectivity. The amount of time
in which the system stays on and off can be easily configured to match application
requirements and power supply capabilities.
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The duty cycling mechanism requires to precisely synchronize nodes to guarantee
the consistency of the network and make it work correctly. The time distribution
between nodes required some attention so as not to generate excessive traffic on
the communication channel but, at the same time, to ensure a sufficient level of
synchronization (in the order of few tens of milliseconds).

In parallel with the hardware implementation, all the concepts related to the
network were tested using a network simulator that was customized to accurately
replicate the behavior of the system. The simulation, based on the Cooja software,
was used, at first, to test the goodness of the mechanism adopted for the network
management before deploying them in the real node. Then, the software was used to
validate the final version of the firmware by analyzing long time periods, unpractical
to be tested experimentally.

The average output power of the scavenger during a day is in the order of 180µW .
This allows the system to acquire data every 20 minutes relying only on the har-
vester energy, with a surplus of a few µW useful to compensate small variations in
daily light conditions.

Keeping under control overheads, delays and latencies in a heavy constrained sys-
tem is not a trivial task, as well as guaranteeing reliability in connections between
nodes. This work demonstrated the feasibility of an energy-autonomous system
and will support the development of WSNs based on the STMicroelectronics® de-
vices. Further development is currently directed to an improvement of the low-power
property of the radio module by working on the firmware and driver integration and
applying a fine-grained duty cycling. Reducing the power absorbed by the radio
during the listening phase is key for enabling an always-on network continuously
accessible via the IPv6 protocol.
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Chapter 1

Introduction

Recent technology improvements in wireless communications, in digital electronics
and in micro-electromechanical systems (MEMS) enable the design and develop-
ment of low-power, low-cost multifunctional sensor nodes able to interact with each
other. This new kind of devices, which include sensing, actuation, data processing
and communicating, allows the creation of increasingly pervasive wireless networks,
enabling and expanding the concept of Internet of things (IoT). IoT refers to the
inter-networking of physical devices, vehicles, buildings and many other items or
objects that embedding some electronics makes them smart. Smart in the sense
of something able to be part of the environment, reacting to stimuli or actively
actuating them, and collecting and exchanging data[1]. From its dawning, the po-
tentiality of such concept was clearly enormous and, despite the current diffusion,
growth potential is still huge. The IoT concept greatly contributed to the diffusion
of Wireless Sensor Networks (WSNs) development. A Wireless Sensor Networks is
based on the interaction of a large number of nodes of the same type or also with
different characteristics typically with sensing purposes only. Simultaneously to the
IoT, the range of possible applications is extremely wide and WSNs are becoming
an integral part of our lives.

Thanks to the considerable amounts of research efforts of the last years, we have
available several sophisticated and extremely efficient communication protocols and
software instruments. They are fundamental in the implementation and deployment
of a WSNs. Often WSNs are composed of a very large number of sensors nodes,
placed in vastly different areas with different requirements in terms of reliability and
sensing capabilities.

The creation of a robust infrastructure, tailored to specific requirements, can be
challenging and needs a careful analysis to find the best solution using the available
hardware and software components, or developing ad-hoc devices and strategies.

WSNs characteristics make them very suitable for deployment in inaccessible
terrains or in conditions where human activity are very limited or not possible at
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1 – Introduction

all. Routing protocols provide a self-forming and self-healing mechanisms for the
networks that become fundamental for node sensors randomly and densely deployed.

In traditional networks, performances are often intended in terms of throughput
and delay so routing and communication protocol are designed to improve these
metrics typically at the cost of a very high power consumption and an important
processing power required. WSNs shows very different constraints, hence protocols
primarily focus on power conservation and on keeping algorithms as simple as pos-
sible. The deployment of WSNs is another factor that is considered in developing
protocols. The position of the sensor nodes does not need to be engineered or prede-
termined. This allows random deployment, e.g., in inaccessible terrains or disaster
relief operations. On the other hand, this random deployment requires the develop-
ment of self-organizing protocols for the communication protocol stack.

All these properties of WSNs present unique challenges for the development of
communication protocols, but on the other hand open an extremely wide range of
applications from the military ones to the ambient monitoring, healthcare, domotics
and industrial application for example in production processes.

Looking at the extremely wide constraints and properties that should be man-
aged and the heterogeneity in the sensor platforms, the difficulty to unify every-
thing should not be surprising. Standardization becomes a major issue in order to
improve quality and performance and above all reusability and interoperability. In
this respect, IEEE 802.15.4 was formed with the aim to provide a standard physi-
cal layer and media access control for Wireless Personal Area Networks (WPANs).
A WPAN is a computer network used for data transmission among devices with
low-range wireless transceiver technology with long battery life and very low com-
plexity. WPAN extension typically varies from a few centimeters to a few meters.
For low data-rate networks a more accurate distinction identifies the Low Rate Per-
sonal Area Networks (LR-WPANs). IEEE 802.15.4 is extended with upper layers
by several other specifications such as ZigBee, ISA100.11a, WirelessHART, MiWi,
SNAP, and Thread specifications. It can be used also with 6LoWPAN to deliver the
IPv6 version of the Internet Protocol (IP) over WPANs.

All the above-mentioned properties and features imply a parallel discussion on
the power supply requirements of these devices. For example, the deployment of
nodes in the environment can be independent of the availability of power source in
the environment itself. This is typically enabled by using batteries with a reasonable
capacity for the application or by providing energy harvesting tools to the nodes to
allow a form of self-power supply. Others applications may require a strict condition
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1 – Introduction

on the size of the device including batteries. In this case, the trade-off between bat-
tery size and battery duration can benefit the extremely low power behavior reached
with currently available technology. Merging this two aspects, long battery duration
and small-scale dimensions for the devices represent one of the major challenges in
the IoT scenario.

This work deals with the analysis on power consumption contributors, the way
in which they impact performance and functionalities. These analyses aim to the
theorization of some viable strategies to the design of an energy-autonomous wire-
less sensors network and to the physical realization and validation of a working
system adopting one of the discussed strategies. Analyzing the way in which the
power is used by the system is the first step to do in order to clearly understand
the direction in which to focus attention and try to adopt effective countermeasures
or optimizations. The performance of the best solution typically collides with other
requirements and trade-off should be evaluated to find an optimal behavior. Con-
siderations of these aspects are actualized by implementing them on hardware using
tools and devices provided by the STMicroelectronics®.

The development of an energy-autonomous wireless sensors network is developed
starting from off-the-shelf components by STMicroelectronics®. A solar panel is used
as energy harvester in conjunction with a small battery that guarantees power con-
tinuity over the whole day. The main challenge of the work consists of matching
power requirements of the nodes and power supply capabilities of the harvester by
properly tuning network features and exploiting as much as possible low power capa-
bilities of the node. Keeping under control overheads, delays and latency in a heavy
constrained system may be not so trivial as well as guaranteeing a high reliability
in connections between nodes.
The literature provides good starting points for an effective development as well as
exploring the backgrounds and the working principles of related protocols and algo-
rithm help to better deal with the problem in a structured manner. In this regard,
the next chapter will explore the background of WSNs giving an overview of the
conceptual organization of nodes and the routing mechanism that allows inter-node
communication. In all the battery-operated applications the power consumption
of microcontrollers and radio is a crucial point to investigate. Peripheral compo-
nents like the radio contribute even more to the whole power consumption and some
technique developed by researchers and engineers to reduce it are exposed.

Chapter 3 will show an overview of the system under development describing the
crucial point from a conceptual point of view, whereas in chapter 4 all the imple-
mentation details are analyzed and described in detail with listings and figures. The
firmware development works in conjunction with a software emulation of the system,
discussed in chapter 5. In this way, problem analysis and algorithm improvement
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could benefit from a previous check or on the contrary after the software deployment
a long time simulation could validate the expected result or highlight criticalities
hard to detect on the physical device. Results analysis and conclusion will conclude
this work.

The development is based on the STMicroelectronics® previous experience on
this branch and on its interest in providing reliable and affordable solution in the
IoT panorama. The choice of using a set of off-the-shelf components not already
forming a full featured node is driven by the will of adopting components that can be
easily retrieved and are almost independent of the specific application and hardware
equipment provided by the customer. The resulting system tries to be as much as
possible customizable and expandable with other features and component. More-
over, STMicroelectronics® products are designed specifically to be a springboard for
advanced semi-custom design.
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Chapter 2

Background

The design of WSNs requires ample knowledge of a wide variety of research fields
including wireless communication, networking, embedded systems, digital signal pro-
cessing, and software engineering. This is motivated by the close coupling between
several hardware and software entities of wireless sensor devices as well as the dis-
tributed operation of a network of these devices. Consequently, several factors exist
that significantly influence the design of WSNs[2].

A node, the basic element of every WSN, can be sketched with several building
blocks in which the main elements are highlighted. Figure 2.1 shows a generic
overview of a node divided into the main functional blocks[3].

The simplicity of the schematics reflects the bareness of the system where only
the essential module are implemented. The sensors and actuators block may include
a very huge variety of sensing devices with different specification and characteris-
tics. They can have both a digital or analog interface to the microcontroller. Com-
mon communication protocol for embedded systems, such as CAN, I2C or SPI, are
typically supported by the microcontroller and used for interfacing digital sensors
adopting one of them. For analog sensors, a conversion from the analog domain to
the digital should be performed. The conversion is typically performed by an ADC
peripheral embedded in the microcontroller. If the microcontroller does not provide
an Analog-to-Digital Converter between its peripheral, or the embedded one is not
sufficiently precise, an external converter can be added in the chain.

The power conversion module is responsible to provide power supply to all the
modules of the system. Its output voltages must match all the specifications of each
module, hence several voltage domains should be managed. In fact, it may happen
that the required voltage for a module is different from the others, for sure it is
not the best case but can be managed without particular issues. Moreover, it has
to be able to autonomously switch between the available sources in order to satisfy
the load requirements. The scavenged energy typically is not so abundant so a high
level of efficiency for the converter is required along with a storage mechanism that
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2 – Background

Figure 2.1: Building blocks of a generic node. The supply module may include or
not a scavenger.

allows to not waste surplus energy but save for future needs.

In this chapter, all the major factors in the development of a WSN are described
including: an overview of the networking aspects like network topology and routing
protocol principles, requirements of the operating systems with a brief description
of the ContikiOS operating system for WSN, and a review on power consumption
factors and some technique typically adopted to reduce them.

2.1 Networking

Starting from an abstract view of the network, this section shows the topology that
a Wireless Sensors Network can assume highlighting the benefits that one topology
can take with respect to the others and vice versa. Then, the aspects related to
the physical layer of the communication between nodes are discussed along with the
technique to access the channel and the relative problems. The last two sections
deal with two problems related to the network management, in particular routing
and time distribution.
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2 – Background

2.1.1 Network Topology

A Wireless Sensor Network can assume several network topologies spacing from a
very simple star network to an advanced multi-hop wireless mesh network. These
two topologies have different characteristics and present advantages and disadvan-
tages depending on the features required by the application.

Star network is one of the most common computer network topologies. It con-
sists of a tree with one internal node and k leaves (see figure 2.2a). The central node
typically acts as a bridge toward another network or the Internet and represents
the sink of the network, that is the node in charge of collecting the data coming
from other nodes. All the leaf nodes are able to exchange messages only with the
central node and they are directly connected with it through a wireless link. This
configuration simplifies a lot the network since routing is not necessary. However,
this simplicity presents a substantial drawback. The network spatial extension is
strongly limited by the wireless transmission range of both nodes and router. During
deployment, the distance between nodes and sink should not exceed its maximum.
Due to the power consumption and size bounds, the node transmitting power is
usually constrained and, in some circumstances, ranges can be too limiting. A re-
markable network specification using this topology is the LoRaWAN™. It is based
on the LoRa modulation technology and it is intended for wireless battery operated
nodes of a Low Power Wide Area Network (LPWAN)1. Its typical architecture is
laid out in a star-of-stars topology in which gateways are a transparent bridge re-
laying messages between end-devices and a central network server in the backend.
Gateways are connected to the network server via standard IP connections while
end-devices use single-hop wireless communication to one or many gateways[4]. Sig-
fox technology represents another example of one-hop star topology in LPWAN,
unlike LoRa, Sigfox is based on Ultra Narrow Band modulation technology.

A mesh network is a computer network topology consisting of a large number
of nodes randomly2 placed more or less close to each other. As opposed to the star
topology, nodes can exchange messages with each other. This allows what is known
as multi-hop communications, that is, if a node wants to send a message to another
node that is out of radio communications range, it can use an intermediate node to
forward the message to the desired node. Depending on the number of connection
we can differentiate fully connected meshes, where each node is directly connected

1LPWAN and LR-WPAN mainly differs in the spatial scope: the reach of a PAN typically
extends to 10 meters, whereas a WAN covers large area such as city, country and even more.

2Physical position of nodes does not need to be statically predetermined. Each node can be
positioned without constraints except for their wireless range.
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(a) (b)

(c) (d)

(e)

Figure 2.2: Network topology examples: a) shows a simple star topology; b) shows
a star of stars topology, where hubs are typically wired and communicate through
the IP; c) and d) show respectively a full and a partial mesh network; e) shows a
rooted tree-like mesh (DODAG).

to all the others, and partial meshes, where only some connection is established.
Fully connected networks have the advantages of security and reliability but the
complexity of the network grows rapidly as the number of nodes increases. Partial
meshes tend to preserve the already said advantages but trying to keep complexity
affordable. Mesh network topology has the advantage of redundancy and scalability.
If an individual node fails, a remote node still can communicate to any other node in
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2 – Background

its range, which, in turn, can forward the message to the desired location. In addi-
tion, the range of the network is not necessarily limited by the range between single
nodes; it can simply be extended by adding more nodes to the system. The disad-
vantage of this type of network relates with the power consumption of the nodes that
implement the multi-hop communications are generally higher than for the nodes
that don’t have this capability, often limiting the battery life due to the increased
number of messages sent. Additionally, as the number of communication hops to
a destination increases, the time to deliver the message also increases, especially if
low power operation of the nodes is a requirement. In WSNs environment, as in star
topology, one node (or few of them) plays the role of the sink and it is in charge of
collecting data coming from the network. Often it is physically connected to a DSL
router with Internet access. In this configuration, the Internet access is shared by
the sink node with the whole network and it acts as a border router. The sink node
may be also the one responsible for the network configuration. Client nodes can act
as source only or as routers. In the first case, the node is only able to send data
to the sink but is not able to forward messages from other nodes. On the contrary,
router nodes are able to forward messages and actively participate in the creation
of routes to the sink. Both types of node autonomously connect to their neighbors
selecting a path that, through other nodes, can reach the sink. The sink node can be
considered as the root of the resulting graph. The way in which nodes establish links
with its neighbors is defined by the routing protocol implemented and can generate
different graph structures. Tree-like meshes are widely used thanks to their low
complexity, compared with other mesh structures. They organize the network as a
Destination Oriented Directed Acyclic Graph (DODAG), a graph that is a set of ver-
tices connected by edges, where the edges have a direction associated with them and
no direct cycles are present. More complex mesh structures group node into clusters
assuming hybrid configurations. Since the communication between two node relies
on other nodes functionality, each node contributes to a self-healing mechanism that
guarantees to restore communication in case that a node becomes inaccessible due
to congestions on the wireless channel or for a failure. Self-healing represent an ad-
ditional benefit with respect to the star topology, but in case of a single sink, even
in mesh network it represents a single point of failure3 for the network.
We will focus mostly on the tree-like mesh topology.

2.1.2 Physical and MAC Layers
The construction of a wide sensor network with nodes densely scattered in a sensor
field presents an issue related to the sharing of the communication channel between

3A single points of failure, in network science, is any network element that, if it fails, it takes
out communication with a section of the network.
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several nodes that can result in collision. Collisions are caused by two nodes sending
data at the same time over the same transmission medium. To address this problem,
a sensor network must employ a Medium Access Control (MAC) protocol to arbitrate
access to the shared medium ensuring reliable point-to-point and point-to-multipoint
connections and to fairly and efficiently share the limited bandwidth resources among
multiple sensor nodes.

In figure 2.3 the conceptual stack of the 6LowPAN layers is compared with the
ISO/OSI standard model. The similarity with the TCP/IP stack is almost visible,
since several concepts of the 6LowPAN protocol are derived from the more complex
TCP/IP stack.

(a) TCP/IP stack (b) ISO/OSI stack (c) 6LowPAN stack

Figure 2.3: Comparative schema of TCP/IP and 6LowPAN stack with respect to
ISO/OSI model.

For example, medium access control (MAC) has been extensively studied for
traditional wireless network, like Wireless Local Area Networks (WLANs). Conse-
quently, several methods are available and, depending on the approach adopted,
they can be classified into three main classes:

• contention-based medium access, if the use of the channel is contented between
clients at the same time and an arbitration mechanism design the owner of
the medium;

• reservation-based medium access, if the access to the channel is regulated in
time frame statically or dynamically assigned to clients;

• hybrid solutions that merge characteristics of the previous two schemes.

Common medium access methods are: carrier sense multiple access (CSMA), time
division multiple access (TDMA), frequency division multiple access (FDMA) and

10



2 – Background

code division multiple access (CDMA). These protocols do not take into account the
unique characteristics and limitations of sensor networks, hence, traditional MAC
protocols cannot be applied directly to sensor networks without modification. For
example, schemes like CDMA and FDMA are generally not employed in WSNs,
whereas CSMA and TDMA are largely adopted, but with several adaptations.

The most used technique in sensor networks is based on Carrier-Sense Multiple
Access (CSMA) mechanism that has been introduced for WLANs. This scheme
belongs to the contention-based medium access class. As the name suggests, the
node senses the channel listening for a specific amount of time to evaluate the
activity on the channel. If the channel is busy the transmission is delayed by a
random amount of time referred to as backoff.

CSMA protocol offers four access modes of the medium:

• 1-persistent: when the transmitting node is ready to transmit, it senses the
channel for idle or busy. If idle, then it transmits immediately. If busy, then
it senses the channel continuously until it becomes idle, then transmits the
message unconditionally. In case of a collision, the sender waits for a random
period of time and attempts the same procedure again;

• Non-persistent: when the transmitting node is ready to transmit data, it senses
the channel for idle or busy. If idle, then it transmits immediately. If busy,
then it waits for a random period of time (during which it does not sense
the channel) before repeating the whole cycle again. This approach reduces
collisions and results in overall higher channel throughput but with a penalty
of longer initial delay compared to 1-persistent;

• P-persistent: this is an approach between 1-persistent and non-persistent
CSMA access modes. When the transmitting node is ready to transmit data,
it senses the channel for idle or busy. If idle, then it transmits a frame with
probability p. If busy, then it senses the channel continuously until it becomes
idle, then transmits with probability p. If the node does not transmit (the
probability of this event is 1-p), it waits until the next available time slot.
If the channel is still not busy, it transmits again with the same probability
p. This probabilistic hold-off repeats until the frame is finally transmitted or
when the channel is found to become busy again. In the latter case, the node
repeats the whole logic cycle (which started with sensing the channel for idle
or busy) again;

• 0-persistent: each node is assigned a transmission order by a supervisory node.
When the channel goes idle, nodes wait for their time slot in accordance with
their assigned transmission order. The node assigned to transmit first trans-
mits immediately. The node assigned to transmit second waits one time slot
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(but by that time the first node has already started transmitting). Nodes mon-
itor the channel for transmissions from other nodes and update their assigned
order with each detected transmission.

Some variations of the protocol have been proposed which introduce extensions
to the CSMA aimed at improving performance. The most relevant are the colli-
sion detection mechanism (CSMA/CD) and the collision avoidance (CSMA/CA).
The collision detection tries to improve performance by terminating transmission as
soon as a collision is detected, shortening the time required for the retransmission.
It adopts a 1-persistent CSMA access mode. The collision avoidance, on the other
hand, tries to ensure the use of the channel by sending a small packet to reserve
the wireless channel before starting the data transmission in order to avoid at most
the probability of collisions. The CSMA/CA protocol adopts a p-persistent access
mode.
CSMA/CA technique has the disadvantage of requiring nodes to continuously sense
the channel for inactivity resulting in a significant energy consumption. Several
energy-aware protocols have been developed starting from the CSMA/CA with dif-
ferent characteristics and drawbacks: S-MAC, B-MAC, CC-MAC and DSMAC, to
name but a few[2].

For what concerns the Reservation-based medium access protocols, time division
multiple access (TDMA) is the reference protocol for several medium access meth-
ods adopted for WSNs. It is based on a time-division multiplexing where for one
receiver there are multiple transmitters. Examples of reservation-based medium ac-
cess protocol derived from TDMA for WSN are among the others: TRAMA, PMAC
and BMA-MAC[5].

2.1.3 Routing Protocol

Once nodes are identified, routing protocols are in charge of constructing and main-
taining routes between distant nodes and withstand failures that may affect the
network. Star or other simpler topologies typically do not present criticalities with
routing. On the contrary, mesh topologies require a consistent, and desirably energy-
aware, routing mechanism. Over the last few years research has led to the devel-
opment of several routing protocols for wireless sensors network. Each of them is
tailored to different requirements that make each protocol appropriate for certain
applications. Traditional routing protocols can be classified into three main classes
according to the manner in which information is acquired and maintained and the
manner in which this information is used to compute paths based on the acquired
information:
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• Proactive strategy, or table-driven, relies on maintaining fresh lists of destina-
tions and their routes by periodically distributing routing tables throughout
the network;

• Reactive strategy, or on-demand, relies on a dynamic route search to establish
paths between a source and a destination. This typically involves broadcasting
a route discovery query, with the replies traveling back along the reverse path;

• Hybrid strategy combines the advantages of proactive and reactive routing.
The routing is initially established with some proactively prospected routes
and then serves the demand from additionally activated nodes through reactive
flooding.

Another way to classify routing protocol concerns the architecture adopted and
the relative routing strategy[6][7]:

• Flat architecture: each node plays the same role as peer and sensor nodes
collaborate together to perform the sensing task;

• Hierarchical architecture: nodes are organized in clusters in which some specific
nodes, e.g. the ones with higher energy, assume the role of cluster head. The
cluster head is responsible for coordinating activities within the cluster and
forwarding information between clusters;

• Location-based architecture: the position of the node within the geographical
coverage of the network assumes a relevant role for the query issued by the
source node. Such a query may identify a specific area where a phenomenon
of interest may occur addressing all the nodes near to the specified location.

RPL

A remarkable routing protocol optimized specifically for WSN is the IPv6 Routing
Protocol for Low-Power and Lossy Networks[8]. IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL pronounced as ripple) is a routing protocol for
wireless sensor networks consisting of constrained nodes (with limited processing
power, memory and energy) typically interconnected by lossy and unstable links
supporting only low data rates. As the name suggests it brings IPv6 functionality
over the WSN allowing the integration of the network with the Internet. This takes
several benefits to the WSN capabilities but at the cost of some new requirements on
the nodes like the implementation of an IP stack that typically increases the single
node complexity. RPL protocol is specified by the Internet Engineering Task Force
(IETF), a large open international community of network designers, operators, ven-
dors, and researchers concerned with the evolution of the Internet architecture and
the smooth operation of the Internet. The IETF mission is to produce high quality,
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relevant technical and engineering documents that influence the way people design,
use, and manage the Internet in such a way as to make the Internet work better.
RPL provides a mechanism whereby multipoint-to-point traffic from devices inside
the network towards a central control point as well as point-to-multipoint traffic
from the central control point to the devices inside the network are supported. Sup-
port for point-to-point traffic is also available.

RPL organizes nodes as a Directed Acyclic Graph (DAG) (refer to section 2.1 for
details on mesh topologies) that is partitioned into one or more Destination Oriented
DAGs (DODAGs), one DODAG per sink (see figure 2.2e).

Communications in the network can be "Up" and "Down" specifying the direction
from leaf nodes towards DODAG roots and from DODAG roots towards leaf nodes,
respectively. This follows the common terminology used in graph and depth-first-
search.
For the Downward traffic RPL supports two modes: Storing and Non-Storing mode.
In both cases, packets travel Up toward a DODAG root then Down to the final des-
tination (unless the destination is on the Upward route). In the Non-Storing case,
the packet will travel all the way to a DODAG root before traveling Down. On
the contrary, in the Storing case the node keeps tracks in a look-up table of node
reachable in its Downward routes. In this case, a packet may be directed Down
towards the destination by a common ancestor of the source and the destination so
a packet does not need to reach a DODAG root. This typically reduces traffic on
links close to the root, at the expense of additional memory in the node.

Since no predefined connections between nodes are present, each node needs a
discovery mechanism to properly set links with its neighbors. For this purpose, RPL
extends the set of ICMPv64 control messages introducing 5 new message types:

• DODAG Information Solicitation (DIS): used to solicit a DODAG Information
Object from an RPL node. A node may use DIS to probe its neighborhood
for nearby DODAGs;

• DODAG Information Object (DIO): allows a node to discover an RPL In-
stance, learn its configuration parameters, select a DODAG parent set and
maintain the DODAG;

4The Internet Control Message Protocol for IPv6(ICMPv6) is a supporting protocol in the
Internet protocol suite. It is used by network devices, including routers, to send error messages
and operational information indicating, for example, that a requested service is not available or
that a host or router could not be reached. It is formally defined in Request for Comments: 4443
technical report by IETF
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• Destination Advertisement Object (DAO): used to propagate destination in-
formation Upward along the DODAG. In Storing mode, the DAO message
is unicast by the child to the selected parent(s). In Non-Storing mode, the
DAO message is unicast to the DODAG root. The DAO message may option-
ally, upon explicit requests or errors, be acknowledged by its destination with
a Destination Advertisement Acknowledgment (DAO-ACK) message back to
the sender of the DAO;

• Destination Advertisement Object Acknowledgment (DAO-ACK): sent as a
unicast packet by a DAO recipient (a DAO parent or DODAG root) in response
to a unicast DAO message;

• Consistency Check (CC): used to check secure message counters and issue
challenge-responses.

A proper exchange of the previously described messages provides RPL with a
mechanism to disseminate information over the dynamically formed network topol-
ogy. This dissemination enables minimal configuration in the nodes, allowing them
to operate mostly autonomously.

Often a node can establish links with different nodes of the same DODAG. The
goal is to select as preferred parent the node that guarantees the best network con-
figuration. In practical terms, each time a DIO message is received and processed,
the RPL protocol checks whether to use that node as preferred parent or not. The
goodness of a node can concern several metrics including, for example, available
battery energy of a node, or the Rank. The Rank of a node is an important infor-
mation associated with each node. In general, it is a scalar representing the location
of that node within the DODAG. The Rank details the hierarchical structure of the
DODAG and, consequently, it must monotonically decrease through upward paths,
for example, to avoid and detect loops. Rank and path cost are strictly related
and correlating these two pieces of information is up to the Objective function. In
particular, the Objective Function defines the rules of how routing metrics, opti-
mization objectives, and related functions are used to compute Rank. Furthermore,
the Objective Function dictates how parents in the DODAG are selected and, thus,
the DODAG formation.
The routing metrics, evaluated by the objective function, can take into account sev-
eral points. They can refer to the node property or to some criteria related to the
characteristics of that link. In an environment when reducing to the minimum the
number of retransmission is crucial, a node metric related to the number of traversed
nodes along a path can be very relevant (known as Hop Count). Some mechanism
can also take into account the energy level of a node in order to avoid to load nodes
with scarce resources. Routing metrics related to the link are usually expressed in
term of throughput, latency and link reliability. Link reliability, in turn, can be
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computed in different ways, but, in all the cases, it tries to model how reliable is a
connection. A relevant reliability parameter is represented by the Expected Trans-
mission Count (ETX).

The ETX metric is the number of transmissions a node expects to make towards
a destination in order to successfully deliver a packet. One of the possible ways in
which this value can be calculated[9] is

ETX = 1
Df · Dr

where Df is the measured probability that a packet is received by the neighbor and
Dr is the measured probability that the acknowledgment packet is successfully re-
ceived. Information about the number of transmissions are retrieved from the MAC
layer and the contention protocol used.

Analyzing the environment and the requirements for the application it is possible
to combine the above showed metrics in order to define a robust Objective Function
taking into account all the criticalities of the system. IETF does not mandate to use
a specific Objective Function, but it gives guidelines for implementing an effective
one. For sure, this is not a trivial task and corner cases may be hard to cover. Of-
ten trade-offs should be taken. For example, a node switching repeatedly between
two preferred parents with comparable characteristics may lead to waste energy and
also to lose some packets. An hysteresis mechanism can be used in this case, which
allows a preferred parent to change only if the new parent cost is lower than the
current parent cost plus a certain threshold. The threshold value must be accurately
evaluated because, in case of problems of the current parent, the node should be
ready to quickly swap to another parent to restore the communication but at the
same time no useless swap has to be performed. Besides, a good Objective Func-
tion guarantees the creation of a stable network able to withstand errors and breaks.

RPL network control

The DODAG generation begins with the DODAG root sending a DIO message to its
reachable neighbors, containing information about the instance, its rank, etc. Once a
node joins the DODAG, it sends a DAO message upward, to enable downward traffic,
and starts sending DIO message to its own neighborhood to propagate DODAG
information. A possible sequence of messages exchange is shown in figure 2.4.

A node that wants to join an existing DODAG can send to its neighbors a
DODAG Information Solicitation (DIS). Nodes reached by the DIS reply with a
DIO message and the new node can establish an Upward link with one of them
according to the Objective Function. An example of the use of DIS messages can
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(a) (b)

(c) (d)

Figure 2.4: DODAG creation: a) shows a DIO message (blue arrows) sent in local
broadcast from the sink; b) and c) show DIO messages dispatch by node 2 and 3;
d) shows possible upward routes (red arrows).

be seen in figure 2.5.

As said, wireless communication may be unreliable and affected by errors. A
typical scenario of connection fault is represented by two devices that previously
were able to communicate with each other and are no longer able to. Causes can be
different, for example, they moved, one of them lost its power, got broken, or because
something blocked their wireless signals, such as a high congestion or a strong radio
interference. Independently of the reason of the fault, the network must withstand
failures so it has to redefine routing to solve the problem. Depending if the device
detects a broken link on the upward or downward route, it acts differently. For
upward communication fault, the node can simply pick another node as preferred
parent. This typically means that the node changes its rank and rapidly spreads
information about its new rank to the network. If a downward route is found to be
broken, a more complex procedure takes place. Because each device only maintains
a single routing table entry for each downward route, the device cannot by itself
pick a new next-hop device for this route but must defer this decision to the root
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(a) (b)

(c)

Figure 2.5: Node joining an already formed DODAG: a) shows how the node that
wants to join the network sends a DIS message (purple arrows) in local broadcast;
b) shows DIO messages (blue arrows) dispatched by node 2, 3 and 5 as response to
the DIS message, gray arrows represent DIO messages sent to node not relevant for
the current analysis; c) shows possible upward routes (red arrows) once the node 6
has selected a node as preferred parent.

node. This is done by sending a DAO NOACK message towards the root. Because
a broken downward route also means that at least one upward link is broken, the
root initiates a global repair of the routing tree.
Since we deal with low-power and lossy networks, the overhead introduced by the

network maintenance should be as low as possible. From this perspective, the man-
ner in which control messages are sent is regulated by the Trickle Algorithm[10].
Dynamically adjusting transmission windows allows Trickle to spread new informa-
tion on the scale of link-layer transmission times while sending only a few messages
per hour when information does not change. Once the network is configured, if no
errors occur, RPL control messages become very rare with a negligible overhead.
Unfortunately, this may result in a slow reaction in case of connection fault that
is not checked anymore until it is used. In this respect, RPL implements a simple
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probing mechanism that force nodes to perform connections and keep neighbors in-
formation updated. Sending periodic messages reduces the effectiveness of Trickle
and while increasing the number of transmissions, but globally we can notice an
improvement in the network behavior.

2.1.4 Time Synchronization
WSNs are distributed systems where each sensor device is equipped with its own
local clock for internal operations. Each event that is related to operation of the
sensor device including sensing, processing, and communication is associated with
timing information controlled through the local clock. Since often users are in-
terested in the collaborative information from multiple sensors, timing information
associated with data at each sensor device needs to be consistent. Ideally, local
clocks are initially synchronized and evolve at a common pace; however, quartz and
circuit non ideality introduce drifts and deviations. The required accuracy depends
on the specific application (e.g., seismographic studies need high synchronization
between nodes while weather monitoring allows for more relaxed requirements) and
guaranteeing it may involve non-negligible costs. These timing requirements make
time synchronization an important part of communication for WSNs. Distributed
synchronization protocols are required to coordinate the nodes in the network so
that they follow the same reference frame. As a result, the following capabilities are
provided:

• Temporal event ordering: network with multi-hop and packet-based informa-
tion are delivered to the sink with variable delay depending on the distance
between nodes. For this reason, the order of how packet are received by the
sink may differ from the chronological order in which events were generated.
Timestamp in the payload may allow the sink to restore the correct temporal
order;

• Synchronization to global time: the internal synchronization may be also
aligned with the global time, i.e. coordinated universal time (UTC), allowing
integration of multiple WSNs through the Internet. This can be performed by
a simple conversion between local time and UTC and it is almost trivial;

• Synchronized network protocols: this kind of synchronization is exploited at
the MAC protocol level, for example, to provide a common time frame for
medium access.

For the local network synchronization, protocols have to address design chal-
lenges typically related to the low-cost and low-performance clock with which sensors
are equipped, effects of wireless communication, node failures, and in general the re-
source constraints of nodes. Several protocols are available with different complexity
and various performances. Some remarkable protocols are[2]:
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• Network Time Protocol (NTP)[11]: in the Internet, NTP is used to discipline
the oscillator frequency of each host. NTP relies on a two-way handshake
between two nodes to estimate the delay between these nodes and calculate the
relative offset accordingly. With modern workstations and fast LANs servers
and clients are precise within a few tens of milliseconds with poll intervals up
to 36 hours. While NTP provides robust time synchronization in a large-scale
network, it is computationally intensive and requires a precise time server to
synchronize the nodes in the network; therefore, the characteristics of WSNs
make this protocol unsuitable;

• Timing-Sync Protocol for Sensor Networks (TPSN)[12]: TPSN adopts some
concepts from NTP. Similarly to NTP, a hierarchical structure is used to syn-
chronize the whole WSN to a single time server. TPSN requires the root node
to synchronize all or parts of the nodes in the sensor field. It consists of two
phases: the level discovery phase, where the hierarchical structure is built in
the network starting from the root node; and the synchronization phase, where
pairwise synchronization is performed throughout the network;

• Reference-Broadcast Synchronization (RBS)[13]: RBS synchronizes a set of re-
ceivers with one another, as opposed to traditional protocols in which senders
synchronize with receivers. In RBS protocol, nodes periodically send beacon
messages to their neighbors using the network’s physical-layer broadcast. Re-
cipients use the message’s arrival time as a point of reference for comparing
their clocks. RBS requires message exchanges with all the neighbors, which
translates into O(n2) message exchanges if there are n nodes in a node broad-
cast range. This increases the energy consumption and may lead to frequent
collisions when the network density is high. Another limitation of RBS is that
it requires a network with a physical broadcast channel. It can not be used,
for example, in networks that employ only point-to-point links;

• Tiny- and Mini-Sync Protocols: Tiny-sync and mini-sync protocols have been
developed to provide a simple and accurate time synchronization for WSNs
keeping as low as possible the complexity of the synchronization algorithm.
Both protocols are based on a hierarchical structure of sensor nodes, where
each node is synchronized with its parent node.

Many other protocols exist all with the same aim: to reduce at a minimum
the message exchange to avoid collisions, to reach a synchronization error as low
as possible at least in the order of milliseconds and to withstand all the problems
related to the intrinsic properties of WSNs.
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2.2 Operating Systems for WSNs

In a typical system of a certain complexity, resources (including processors, mem-
ories, peripherals, network interfaces, etc.) are managed by the Operating System
(OS). The OS manages systematically the allocation of these resources to users,
providing application programmers with system calls used to invoke different OS
services. The resource constraints of typical sensor nodes in a WSN makes OSes
not suitable for this task, hence WSNs require a different type of operating system,
considering their constrained characteristics. The growing interest in WSN of re-
search and industry allowed the development of several OSes that, with different
features, try to exploit the best performance from devices and make them available
for developers and users.

The architecture of the kernel represents the first discriminating factor for OSes.
An Operating System for a Wireless Sensor Network should have an architecture
that results in a small kernel size, hence small memory footprint. Monolithic and
modular kernels are two architectural models with advantages and disadvantages
that are almost complementary. A monolithic kernel consists of one single program
that contains all of the code necessary to perform every kernel-related task. Ser-
vices provided by an OS are implemented separately and each service provides an
interface for other services. Since all the required services are bundled together into
a single system image, OS memory footprint should be smaller both in source and
compiled forms. An advantage of the monolithic architecture is that the module in-
teraction costs are low. On the other hand, the system becomes hard to understand
and modify, unreliable, and difficult to maintain. The lack of portability is also a
remarkable disadvantage. A layered (or modular) OS architecture solves some limits
of the monolithic kernel implementing services in the form of layers. Advantages
associated with the layered architecture are manageability, ease of understanding,
and reliability. But the main disadvantage is the poor flexibility from an OS design
perspective. The virtual machine is another architectural choice. The main idea is
to export virtual machines to user programs, which resemble hardware. A virtual
machine has all the needed hardware features. The key advantage is its portability,
whereas the main disadvantage is typically a poor system performance.

Another design feature of OSes for WSNs is the programming model. The pro-
gramming model supported by an OS has a significant impact on the application
development. There are two popular programming models provided by typical WSN
OSes, namely: event driven programming and multithreading programming. Multi-
threading is the application development model most familiar to programmers, but
it is rather resource-intensive, therefore not considered well suited for resource con-
strained devices such as sensor nodes. Event driven programming is considered more
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useful for computing devices equipped with scarce resources, but not for figure appli-
cation developers due to its difficulty to extend and the excessive complexity of the
application code. Therefore researchers have focused their attention on developing
a lightweight multithreading programming model for WSN OSes or a hybrid model
combining the two approaches, e.g. with ContikiOS, LiteOS, MANTIS, TinyOS,
etc[14].

Depending on the nature of the application also the scheduler should implement
a proper scheduling algorithm. Since a Wireless Sensor Network can work both in
real-time and non-real-time environment, the OS must be able to provide a suitable
scheduling algorithm to accommodate all the application requirements.

Other design issues related to the design of an OS for WSNs involve the memory
management and protection, resource sharing and, at a higher level, the communi-
cation protocol support for interprocess and internode communications.

2.2.1 ContikiOS
In the previous section, some software designs of Operating System for WSNs were
explored. Here ContikiOS architecture and characteristics are exposed with some
more details.

“Contiki is an open source, highly portable, multitasking operating sys-
tem for memory-efficient networked embedded systems and wireless sen-
sor networks.”
�Contiki documentation[15]

Contiki was created by Adam Dunkels in 2002 and has been further improved and
extended by a worldwide team of developers and ported to many different platforms.
It was designed to run on types of hardware devices that are severely constrained
in memory, power, processing power, and communication bandwidth.

The architecture employed is modular and consists of the kernel, libraries, the
program loader, and a set of processes. To combine the benefits of both event-driven
systems and preemptible threads, Contiki uses a hybrid model: the system is based
on an event-driven kernel where pre-emptive multithreading is implemented as an
application library that is optionally linked with programs that explicitly require it.
The event-based kernel of Contiki make it completely responsive to real time events
and classifies it as a real-time operating system.

The programs in Contiki are called Processes. Every process is a piece of code
that is executed regularly by the Contiki system and has certain interfaces to inter-
act with other components.
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All process invocation in Contiki is done by the process scheduler in response to an
event being posted to a process, or a poll has being requested for the process.

The IP communication, both for IPv4 and IPv6, is provided to Contiki through
the µIP stack. The µIP implementation is designed to have only the absolute
minimal set of features needed for a full TCP/IP stack, such as IP, ICMP, UDP
and TCP protocols. It was developed specifically to require very small amount of
code and RAM, hence it is ideal for embedded systems applications such as wireless
sensor nodes.

A very interesting feature of Contiki is the Over-the-Air Reprogramming. In a
wireless sensor network already deployed, manually reprogramming all the node for
a bug fix may be a hard or even an unfeasible task. Since Contiki supports dynamic
program loading and unloading by keeping the core code separate from the program
code in ROM, it has the ability to not only load and unload programs from system
memory, but can also load and unload programs over the network connection into
RAM or ROM. This allows reprogramming all the nodes in an almost transparent
manner.

2.3 Power Consumption

As it has been said repeatedly, nodes of a WSN typically have constrained resources.
In an embedded system, but even in general, resources can be intended in terms of
processing power, memory and power budget. In particular, the power budget as-
pect can be very challenging for developers working with battery-powered devices or
even with devices without batteries requiring energy harvesting from environmental
sources such as heat, vibration, and light. In all those cases the goal is developing a
device able to last as much as possible with battery life even in the order of several
years.

To better understand the discussions about the power consumption a clarification
about terminology can be useful. Speaking about power, energy, total power can
be misleading. With the term "power" we intend the rate, per unit time, at which
electrical energy is transferred by an electric circuit. It gives information about the
instantaneous requirements of energy. The "energy", on the other hand, represents
the quantity of electrical energy absorbed by an electrical circuit in a well defined
time interval or in a variable time interval associated, for example, with the execution
of a task. The "total power consumption" is used, typically, to describe an energy
quantity. Typically, the context helps understanding which of the two concepts is
referred.

23



2 – Background

Starting from the physical design of an electronic device up to the software ap-
plication running on it, techniques for reducing power consumption can cover the
whole range with different contributions.
Circuits based on the Complementary Metal-Oxide Semiconductor (CMOS) tech-
nology dissipate power by charging the various load capacitances (mostly gate and
wire capacitance, but also drain and some source capacitances) whenever they are
switched. This is referred as dynamic dissipation and can be modeled using the
formula:

P = fclk · C · V 2
DD (2.1)

In the equation 2.1, the correlation between power dissipation supply voltage
and clock frequency is clarified.

From the technological point of view, CMOS devices have been continuously
scaled to achieve higher density, better performance, and lower power consump-
tion. To limit power consumption, the supply voltage (VDD) has been scaled down.
This necessitates a corresponding reduction in threshold voltage (Vth) to maintain a
high drive current and achieve the performance improvement. However, scaling the
threshold voltage results in a substantial increase in sub-threshold leakage current.
When scaling the channel lengths, it is also necessary to scale the gate oxide thick-
ness nearly proportionally to maintain a reasonable immunity to the short channel
effect. The short channel effect (SCE) is the decrease in gate threshold voltage as
channel length is reduced. The thin gate oxides and the resultant high electric fields
across the gate oxides enable considerable current to flow through the gate of the
transistor. The total leakage current IOF F is influenced by the threshold voltage,
channel physical dimensions, channel surface doping profile, drain/source junction
depth, gate oxide thickness, and VDD.

Moreover, simply reducing the frequency may be not sufficient to reduce the
total power consumption. In fact, reducing frequency typically slows down the pro-
cessing, hence, the system requires more time to perform computation.
Relations between various parameters are not linear, therefore, finding the opti-
mal working point where performance and power consumptions (both static and
dynamic) are reasonably balanced is the main challenge of manufacturer and de-
signers.

2.3.1 Processor
The voltage and frequency scaling principle is relevant also on a higher abstraction
level. As can be intuitive, the faster the MCU is running, the higher the power
consumption is. Modern MCU typically offers to application developers mechanism
to decrease the operating frequency and the operating supply voltage together mak-
ing a significant reduction in the dynamic current consumption. The challenge is
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to identify the best combination of operating frequency and operating supply volt-
age for an efficient power consumption while meeting the performance needs of the
application. Dynamic voltage and frequency scaling (DVFS) is a very effective tech-
nique to achieve the best ratio between power consumption and performance. It
is based on the modification of the MCU operating supply voltage range and sys-
tem frequency during runtime through periods when the application does not need
significant processing. Dynamic voltage scaling to decrease the core voltage (Vcore)
is known as undervolting[16]. Although at first glance, it is not obvious that high
performance correlates with low MCU current consumption, it is a great advantage
for many low-power applications to wake-up very quickly, execute software tasks at
a high speed and then go back to sleep again as quickly as possible.

To maximize functionality and battery life, developers of battery-powered ap-
plications must consider many factors in their system architecture and design. In
these applications, the microcontroller is a primary power consumer and developers
must carefully consider the way energy is used. Microcontroller power consumption
can be identified in four primary power categories[17]:

• Active power: the energy required by the MCU during the run mode;

• Standby power: the energy required by the MCU to keep an inactive state
when its action is not required;

• Peripheral power: the energy required by the SoC peripheral like DMA, analog-
to-digital converters (ADC), general purpose I/O, oscillator, digital interfaces,
etc.;

• Data logging power: the energy required in case of MCU application requiring
to record data for future elaboration on flash memory or external storage.

The running phase of an MCU typically consists in the execution of tasks and
in idle periods where the MCU waits for the next task to be executed. As said
DVFS allows software to change the operating performance point (OPP) in real-
time without requiring a reset. By adaptively selecting power supply voltage and
clock frequency, DVFS enables software to change SoC processing performance based
upon the desired processing tasks to achieve the best performance or lowest power
possible. In embedded applications the workload may be known a priori: this allows
developers to predict the required processing power and select accordingly the suit-
able combination between the supply voltage and the clock frequency. This avoids
the processing overhead required by a dynamic mechanism that may undermine all
the benefits of using it. From a real-time point of view, relaxing MCU performance
may be not suitable for applications when hard real-time specifications. In this case,
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timing should be accurately evaluated to avoid to miss any deadline.

Modern microcontrollers offer also several low power modes that can be set with
different configurations. The peripheral clock can be selectively enabled and dis-
abled while the core is running or, on the contrary, the core can be put into sleep
mode while peripherals are running. The latter configuration presents interesting
features. During idle periods of the core when it is waiting for interrupt coming from
peripherals, the core itself can go in a low-power idle mode until a peripheral makes
a request that needs the core intervention. This configuration can enable a duty
cycling mechanism that allows the core to rapidly go in low power mode each time
its processing is not required. The main problem with this approach relates to the
time and power overhead introduced by transitions between states. In order to be
effective, wake-up and sleep transition time should be negligible with respect to the
time that the core will spend in that state. The Dynamic power management (DPM)
provides several policies useful to better exploit power and performance capabilities
of the system. The DVFS and the core duty cycling are conceptually based on two
opposite principles and the preponderance of one over the other depends mostly on
the characteristic of the microcontroller considered and on the application. Whereas
the former tries to adapt the core capabilities to the workload, the latter tries to
maximize idle periods by performing task at the maximum speed for a small time
interval. Both mechanisms present overheads during transition or due to the real-
time workload assessment.

Often the energy the microcontroller consumes during standby is higher than
the active processing energy. This can be very common when microcontroller ap-
plications spend the majority of their product life in a low-power standby mode
waiting for an internal or external event to wake-up the CPU to process data, make
decisions and communicate with other system components or when activities are
gathered in small windows distributed over the daytime. Understanding applica-
tion requirements is fundamental to accurately evaluate the standby current the
microcontroller will consume. Typical aspects concern RAM retention, automatic
wake-up and interrupt capabilities.

2.3.2 Radio

As part of a wireless network, nodes include a radio peripheral to communicate with
other nodes and to be part of the network. Often the radio is the main contributor
to the overall power consumption of the system. For this reason, mechanisms to
reduce the radio power consumption are developed. The power consumption for
transmitting and receiving are almost comparable, but, while transmissions usually
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last only a few milliseconds, the radio should be able to receive packets almost con-
tinuously so the receiving mode requires a lot of energy.

Several techniques, aimed at keeping radio turned off as much as possible, exploit
a duty cycling mechanism. The radio duty cycling (RDC) tries to find a way to keep
the radio in receiving mode only when there is an incoming packet on the channel.
Designers aim at very low duty cycles (< 1%, meaning that the radio will be active
less than 1% of the time), but to achieve this objective they will have to compromise
on other network performance goals. The downsides of duty cycling are briefly
discussed next. [18]

• End-to-end message delay: data traversing a duty cycling multi-hop network
will occasionally have to wait for the next hop to wake-up. This is called sleep
waiting and may add significantly to end-to-end latency.

• Collision rates: another side effect of duty cycling is the shortening of trans-
mission and reception time windows. If a contention-based medium access
protocol (MAC) is used, these smaller time windows will increase the proba-
bility of collisions.

• Control packet overhead: duty cycling may need extra control traffic. The
most common source of this overhead is synchronization. Fine-grained syn-
chronization requires frequent resynchronization to deal with clock skews. De-
signers must check if the added power drain caused by the extra control traffic
overhead is compensated by the savings from duty cycling.

Many typologies of RDC process have been studied and developed. They can be
classified in three generic groups depending on the timing scheme adopted: syn-
chronous, asynchronous or semi-synchronous.

The synchronous duty cycling implies a common timing reference between nodes.
In this way, all nodes are able to wake-up at the same instant so they can successfully
exchange messages. If the system is perfectly synchronous, performances are very
high, but such system is hard to manage and drawbacks are present. For example
keeping nodes synchronized with a sufficient precision requires a higher amount of
synchronization messages exchange. Moreover, depending on the network topology,
small time drift are always present that may result in Data Forwarding Interrupt
Problem, meaning that due to a synchronization error, the receiver interrupts the
communication even if the packet is not completely received, hence the packet is
discarded.

In asynchronous duty cycling, nodes can be time independent from each other
and several solutions are used to allow an efficient message exchange. The preamble
sampling consists of a long preamble sent by the transmitter that, anticipating the
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packets, notifies receivers for the incoming packet. Receivers then wait in ON state
for the packet to be received. The two major issues with this technique are the
overhearing and the message delay. In fact, a node should wait for the end of a
preamble even if it is already receiving. Moreover, a node does not know if it is
the recipient of the packet until the packet is sent. This situation is known as
overhearing, a node stays ON for a packet that is addressed to another node. Even
the duration of the transmission may increase noticeably, since the preamble may
be comparable with packet size or even greater. The receiver-initiated transmission
is another asynchronous method. In this case, roles are inverted so the transmitter
waits for a beacon from the receivers that signals its availability to receive packets.
The problem is not completely solved since the transmitter must be always active
to listen for receivers availability.

In sufficiently dense deployments, a random duty cycling may be implemented.
The idea is that since there is a high probability that there will be enough active
nodes anytime, nodes can go to sleep and wake-up randomly. To perform trans-
missions with a high success probability, this method proposes a random wake-up
scheme in which the active time of a node should be inversely proportional to the
number of neighbors. A valuable advantage of this approach consists in the fair
distribution of traffic load due to randomness and low end-to-end delay.

Some early proposals of asynchronous duty cycling were based solely on the
design of the wake-up/sleep schedule. In this category, nodes will divide time into
cycles and each cycle will have active and inactive slots. To be used in asynchronous
duty cycling, a schedule must guarantee that two nodes will have overlapping active
time irrespective of their offset. Even if nodes do not require control messages
anymore, such simple approach would typically result in high duty cycle rates.

Finally, a possible mechanism relies on another communication interface, gener-
ally called wake-up radio, a low power radio that would listen to a wake-up signal
and send an interrupt to the CPU that would activate the primary (or data) radio
in response. This is called on demand wake-up. Conceptually it is clearly advanta-
geous, but its effectiveness depends on the power consumed by the wake-up radio.
The wake-up radio, active all the time, may consume more power than that saved
from reducing the active time of the data radio. In addition, the increase in terms
of cost and complexity for the device may restrict the adoption of a mechanism like
this.

In semi-synchronous proposals, neighbors are grouped into synchronized clusters
and clusters interact with each other asynchronously. Since the synchronization
between neighbors is easier to achieve than global synchronization, these schemes
try to take the best of synchronous and asynchronous mechanisms. On the other
hand, cluster maintenance may require a reference node with a consequence control
traffic that may make clusters inadequate for dynamic topologies. Depending on
how clusters are created we can distinguish between Spontaneous clustering and
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Elected Cluster-heads. Spontaneous clustering will refer to mechanisms where nodes
coordinate themselves without the need of a cluster-head, while Elected Cluster-
heads will include the mechanisms where one of the nodes in each cluster (the cluster-
head) receives the special assignment of (temporarily, in most cases) coordinating
cluster activity.

2.3.3 Sensors and actuators
The power consumption of the sensors modules of a node may be critical from a
low power point of view. The market offers an extremely wide variety of sensing
devices with different sensing characteristics tailored on specific or more general
purpose applications. All the major physical phenomena can be actually monitored,
but, depending on the resources required to perform sensing, power requirements
may heavily change. For example, capacitive digital sensors for relative humidity
and temperature (the typical ambient condition parameters) are very power efficient
with current requirements in the order of some µA. Other sensors, such as motion
or air quality sensors, may be more power hungry with current consumption even in
the order of some mA. The sensor power consumption is typically related even with
the sampling frequency required by the phenomenon to be observed. Depending
on the characteristics of the phenomenon, the sampling frequency can be relaxed,
reducing the total energy required by the sensor. Wireless Sensor Networks provide
extensive information from the physical world through distributed sensing solutions.
Generally, this results in one-way information delivery, where information from the
physical world is imported in the digital domain. With the emergence of low-cost
actuators and robots that can affect the environment, a two-way information ex-
change is possible. As a result, information that is sensed from the environment
can be utilized to act on the environment. This expands WSNs functionalities to
a Wireless Sensor and Actor Networks (WSANs) that are capable of observing the
physical world, processing the data, making decisions based on the observations, and
performing appropriate actions. From a power consumption perspective, equipping
each node with an actuators module implies considerations analogous to the case of
the sensors. Actuation can be performed by transducer in several ways, exploiting
different physical phenomena.

2.4 Energy harvesting
Nodes in Wireless Sensor Network are often placed, for many reasons, far from an
electrical grid that may offer continuous power supply. In general, even if an electric
grid is available, guaranteeing a wired power supply is not feasible because wiring
limits the flexibility of the WSN. Using electric battery is very straightforward to
provide the power supply to the nodes. Moreover, technology improvement allows
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energy density for batteries that can guarantee very long time of functioning with
relatively small sizes.

A more sophisticated approach for supplying power to the node relies on energy
harvesting. The energy harvesting allows deriving electrical energy from the envi-
ronment (for example solar power, thermal energy, wind power, kinetic energy, etc).
Physical and chemical phenomena can be exploited in many ways and on many scales
in order to convert temperature gradients, light beams or vibrations into electrical
energy that can be stored into accumulators or used directly to supply devices.

The energy derived from the environment can be classified into several types
depending on the ambient energy source[19] (see figure 2.6 for a graphical represen-
tation):

• Mechanical Energy. The mechanical energy scavenging converts the kinetic
energy of an object. The kinetic energy refers to the motion of the object in
general, including vibration or deformation phenomena. The harvesting can
be based, for example, on the phenomenon of piezoelectricity. Piezoelectric
materials have the properties of generating a voltage drop when a pressure
is applied due to the internal deformation. This method exploits the elec-
tromechanical interaction between the mechanical and the electrical state in
crystalline materials. For very scaled application the energy scavenged is very
limited, often in the order of some µW or lower[20];

• Radiant energy. The radiant energy is related to the energy associated with
electromagnetic waves such as visible light, ultraviolet ray, and radio frequency
signal. The solar energy is very popular among green energy. The scaveng-
ing requires the so called photovoltaic cells to convert light beam into electric
power. This technology scales very well and also for small surfaces of the panel
provide an energy density of hundreds of µW/cm2 [20][21]. Solar energy has
the disadvantage to be only available during daytime for outdoor environment
or when lights are turned on indoors. The use of batteries or capacitors as
charge storage is fundamental to guarantee continuous power supply the appli-
cation. The increase of wireless signals surrounding urban areas and domestic
settings has motivated also the research on radio frequency scavenging. Its
performance extremely depends on the radio frequency fields emitted in the
surrounding environment but common value space from some pW/cm2 to tens
of µW/cm2[20];

• Thermal Energy. The thermal energy extraction is typically based on the
Seebeck effect. It allows generating an electrical field starting from the tem-
perature gradient of two surfaces using a Thermoelectric Generator (TEG).
Several methods of thermal energy harvesting for wireless sensor networks exist
in the literature exploiting, for example, the temperature difference between
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the human body and the environment[22]. Sources of heat energy vary from
body heat, which can produce energy density of some µW/cm2 to a furnace
exhaust stack where surface temperatures can produce energy density in the
order of mW/cm2[20];

• Fluid Flow. The wind and water flow energy can be classified under fluid
dynamic or fluid flow. The energy from these sources can be harvested using
turbines. Despite the extremely dependence of the wind source from weather
conditions, the literature shows some example of wind energy harvesting used
to supply a Wireless Sensor Network[23].

Figure 2.6: Simple classification of the energy scavenged from the environment de-
pending on the ambient energy source.

Depending on the nature of the power source in almost all the cases a power con-
version is required. Typically a DC/DC converter is employed but also a AC/DC
converter may be required. The needs of a power conversion is driven by the fact
that source, storage and load have different electrical characteristics, hence a power
matching between them has to be considered. Reasons why electrical domain be-
tween modules are different can be several and diverse. One example can be related
to the very wide range of values for the voltage that the power source can provide
as output or to the magnitude of the voltage that can be really high or extremely
small depending to the physical phenomenon associated with.

The power conversion obviously implies an efficiency factor. The ideal efficiency
of 100% is not physically possible, hence a certain power is dissipated in the path
shown in figure 2.7. Moreover, the harvester has low efficiency if storage device is not
impedance-matched to the source. For this reason, the power conversion block on
the left of figure 2.7 typically integrates a Maximum power point tracking (MPPT)
technique. The maximum power point (MPP) refers to the point in which the power
output characteristics of the harvester assumes its maximum value. ON a I-V graph
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Figure 2.7: Block diagram showing the power conversion path required to match
the electrical characteristic of the source with the requirements of the load.

this point is represented by the "knee" on the curve, see figure 2.8 for a graphical
example[24].

Figure 2.8: Example of a I-V graph of the characteristic of a solar cell. From the
power curve superimposed the maximum power point can be easily identified and
put in relation with the I-V curve.

In this context, the MPP tracking is an essential component of the solar en-
ergy harvester and several techniques can be found in the literature depending on
the application domain and performance requirements. Algorithms used for the
tracking may be very complex with the consequence of consuming too much energy
themselves. The perspective of increasing the efficiency of the harvester should also
consider the overhead of the successive module required by the harvesting chain. For
this reason the efficiency of the harvester often is expressed as a global parameter
instead of on the single module.
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Chapter 3

System overview

This chapter presents an overview of the addressed wireless network system. Start-
ing from a top view of the network the network management is described with
a description of the node, of the network creation mechanism and of the routing
protocol.

3.1 Network structure
The adopted structure for the network consists of a mesh network with a tree-like
topology rooted in the sink node that, in addition to the functionality of the other
nodes, has a network interface to the Internet and is in turn of collecting the data
coming from all the nodes of the network. The sink provides access to the Internet to
the whole network. The nodes of the network are composed all by the same modules
and have all identical functionalities. They all run ContikiOS as operating system,
whereas the hardware is composed of off-the-shelf devices by STMicroelectronics®

consisting of:

• the core board integrating a low-power microcontroller (ARM® Cortex®-M3)
with several integrated peripherals;

• an ultra-low power, Sub-GHz radio module that guarantees the wireless com-
munication;

• an expansion board integrating several sensors for monitoring humidity, tem-
perature and pressure;

• a power module equipped with solar cells and a rechargeable battery.

The Contiki operating system provides a basic set of functionalities to support
the development of a mesh network, on which an application can be designed and
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implemented. The message exchange between nodes is based on the User Data-
gram Protocol(UDP), a simple message-based connectionless protocol. Connection-
less protocols do not set up a dedicated end-to-end connection as communication
is achieved by transmitting information in one direction from source to destination
without verifying the readiness or state of the receiver. By definition the UDP proto-
col is unreliable. In order to ensure quality, UDP functionality is extended by means
of adding a small acknowledgment message of received packets and retransmission
of lost packets. Adopting an acknowledge mechanism for data exchange improves
the reliability of the connection reducing the risk of packet loss and allow a lower
redundancy on sent packets by retransmitting packets only when strictly necessary.
Moreover, the acknowledge message enables the use of the ETX metric, discussed in
section 2.1.3, since the acknowledge messages provide a feedback on the number of
retransmissions required for each packet. Drawbacks, as usual, are always present.
Even if acknowledge message are very small, their management requires time and
space on the channel increasing the required time for a single transmission. The
overhead may be not negligible in the case of a highly congested medium.

3.2 Routing optimization
ContikiOS natively implements the RPL protocol (analyzed in section 2.1.3) provid-
ing some functionalities useful to tailor routing behavior according to the application
needs.

The choice of an objective function rather than another relies exclusively on the
developer’s needs. Contiki provides in its firmware two objective functions already
implemented following the guidelines provided by the IEEE in their relative Request
for Comments documents. They are the objective function zero (OF0) and the
Minimum Rank with Hysteresis Objective Function (MRHOF).

The Objective Function Zero (OF0) has a very simple implementation. It is de-
signed to find the nearest Grounded root[25], where Grounded root means a DODAG
root providing such connectivity (the sink in our environment).

The Minimum Rank with Hysteresis Objective Function is the objective function1

adopted in our application. This Objective Function selects routes that minimize
the ETX metric while using hysteresis to reduce parent switching in response to
small metric changes. The hysteresis threshold recommended by the IEEE working
group is PARENT_SWITCH_THRESHOLD : 192 calculated as the number of
transmissions required by a node to successfully deliver a packet multiplied by a 128
factor. This means that a node will switch to a new path only if it is expected to
require at least 1.5 fewer transmissions (1.5 · 128 = 192) than the current path[26].

1See section 2.1.3 for details.
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However, this value is not binding so for our application we followed the ContikiOS
developer’s guideline that preferred to adopt a more aggressive setting for the hys-
teresis (in particular set to 96 corresponding to a number of retransmission equal
to 0.75 0.75 · 128 = 96), so a change is more likely to occur with respect to the
default configuration. This represents a trade-off between network reconfiguration
speed and network stability.

An aspect to be considered concerns with the initial ETX value to be assigned
to a node when no information about the connection properties of the newly added
link. ContikiOS allows two different mechanisms for initializing the ETX metric:
static and dynamic. The static initialization simply assigns a fixed arbitrary value
as ETX metric, by default it is set to 3 retransmission required that with the mul-
tiplication factor of 128 becomes 384. The problem with the static initialization
refers to the complexity of selecting a reasonable value, as close as possible to the
effective transmission count. Values lower than the correct one may cause unrea-
sonable parent switch resulting in a network instability and possible messages loss.
On the other hand, a too high value may interfere heavily on the rank computation
making a "good" parent, with fewer hops, not preferable. The direct consequence is
a sub-optimal network routing.

The ETX definition implies a direct acknowledged message exchange between two
nodes, this means that to update the ETX value of a node after the initialization
a message exchange must occur. Once the network is formed, unless critical errors
on the path, a message exchange between two neighbors is very unlikely to happen,
hence the stability of the network results in a sub-optimal configuration that may
last for a long time. Finding a reasonable value can be non-trivial since it may
change from network to network and a common value working, in general, may not
exist.

A dynamic initialization tries to find a more realistic ETX value starting from
other information about the communication channel. Since we are dealing with
other characteristics of the channel partially unrelated with the ETX computation
we must accept some assumption as true or valid in a first approximation. A quite re-
alistic ETX estimation can be derived from the assumption that the Received Signal
Strength Indicator (RSSI)2 is somehow correlated with the ETX. This assumption,
in general, is not true but gives a sufficiently realistic value for the ETX.

In the eventuality that the RSSI assumes a meaningless value due to unpre-
dictable problems on the link, the same issue encountered for the static initialization

2Received Signal Strength Indicator (RSSI) is a measurement of the power present in a received
radio signal, in milliwatts. The value is tipically expressed in dBm (logarithmic scale) and common
values varies between -100dBm, for a low signal level, and -60dBm for a very strong signal level.
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Figure 3.1: Non-optimal network configuration due to static ETX initialization
(ETXinit = 2 · ETX_DIV ISOR = 256).

arise. The node affected by the error in the estimation may be associated with a
high ETX value that will prevent its neighbor to use it as preferred parent, even if
it may be a good candidate.

A viable solution, valid also for the static initialization, may consider the use of
a probing mechanism. A probing mechanism consists in sending unicast message
(for example using DIS or DIO messages, but any other custom probing functions
are acceptable) to the neighbors of each node with the intent of forcing the update
of the ETX metric consequently to the unicast message exchange. The introduc-
tion of these supplementary messages clearly impacts on the channel occupancy.
As discussed in section 2.1.3, probing too often to keep all the neighbor’s statistics
updated means a high message traffic on the medium whereas an infrequent probing
will make the network very slow to set itself in an optimal configuration. As usual,
a trade-off must be adopted.

When a DIO coming from an unknown node is received, the RSSI value asso-
ciated with the DIO packet just received is used to compute the ETX. The guess
is performed by roughly estimate the Packet Reception Rate (PRR) from RSSI,
as a linear function. For the radio adopted the linear function suggested by ST
developers is:

RSSI ≥ −60dBm results in PRR of 1
RSSI ≤ −90dBm results in PRR of 0

Figure 3.2 shows an example of the behavior of the guess-etx-from-rssi approach.
In this case, it performs better with respect to the static case shown in figure 3.1,
however cases in which the node is associated with a completely wrong ETX value
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are still present. In any case, with time the network tends to evolve towards a more
reliable state.

(a) (b)

Figure 3.2: Nodes that receive a synchronization message update their time only if
the sender is their preferred parent.

3.3 Node synchronization
As frequently said, the Radio Frequency (RF) module is the main source of power
consumption for a node. A viable approach to reducing the RF power consumption
impact at the application level can rely on a sleep wake-up scheduling protocol. The
sleep wakeup scheduling protocol adopted consists on grouping processing and radio
activities in small time windows. The result is a kind of duty cycling mechanism
where the radio is allowed to transmit only during a predetermined time frame. Such
mechanism, extended to the whole network, requires a fine time synchronization
between nodes. In fact, the useful active time is given by the time interval where
all the node active frames overlap, see figure 3.3. To correctly manage all the
application and control messages, the useful overlapping time in figure 3.3 should
be greater than a threshold that increases with network size and is in the order of
few seconds. A very fine-grained synchronization allows to keep the useful active
time as close as possible to the total active time of the node, keeping the overhead
due to clock skew3 as low as possible.

To propagate synchronization messages two different approaches were investi-
gated. In both cases the sink node acts as a time reference and since it is typically
connected to the Internet, it may act also as UTC (Coordinated Universal Time)

3On a network such as the Internet, clock skew describes the difference in time shown by the
clocks at the different nodes on the network.
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Figure 3.3: Timing activity schema. The clock skew between the nodes reduces the
useful active windows, hence the available communication time slot is shrunk.

translator in case a local time synchronization is adopted. The first method uses
the Roll Trickle Multicast protocol4 to propagate messages through the network.
The message propagation is shown in figure 3.4 with the timestamp arrival time
indicated near each node. The delay with which each node receives a timestamp
is proportional to the number of hops, namely the depth level of the node in the
network. For big networks the delay may become remarkable. In this case guaran-
teeing the minimum size to the active windows requires the system to stay active
for more time with the consequence of a growth in the power consumption.

The second method, schematically shown in figure 3.5, is based on the local
synchronization between a node and its parent. Starting from the root, each node
periodically sends in local broadcast its timestamp. When a synchronization message
from the preferred parent is received by a node, the internal RTC registers are
updated and a packet with the new timestamp is prepared and sent to the neighbors
of the node.

An aspect that has to be taken into account when addressing time synchroniza-
tion relates to the characteristics of the RTC oscillator used on the board. The
relative shift between two oscillators clocks, even if it is in the order of a few ppm5,
will require more frequent synchronization messages at the cost of a higher activity
on the channel. A preliminary calibration of the RTC clock of each board may be
beneficial allowing, for example, to reduce the sync messages frequency.

In fact, even if synchronization messages are small (see section 4.5 for details

4This protocol is defined by the IETF as Multicast Protocol for Low-Power and Lossy Networks
(MPL) in the Request for Comments: 7731 technical report; previously it was addressed as Roll
TM protocol and Contiki still use this terminology.

5The performance of an oscillator is typically expressed as parts per million (ppm), indicating
how much the crystal’s frequency may deviate from the nominal value.

38



3 – System overview

Figure 3.4: Propagation of a timestamp from the root to all nodes using Roll TM
protocol. On each branch the value of the timestamp sent is indicated. Node 5
receives the timestamp T0 several milliseconds after it has been sent by the root.
This delay is proportional to the depth level of the node and for each hop is in
the order of tens up to hundreds of milliseconds. The troll−tm variable refers to the
send delay specified by the Roll Trickle Multicast protocol, whereas dxy is the delay
related to the propagation of the message from node x to y.

on the sync message structure) and do not require an acknowledge message to be
sent back to the sender, they necessarily require to be propagated through the whole
network generating a not negligible channel occupancy. Moreover, each node receives
and has to manage all the synchronization messages coming from its neighbors, even
if they are not the parents and will be discarded.

3.4 Microcontroller low power modes
From the analysis exposed in section 2.3.1, all the possible aspects to take into
account for minimizing the microcontroller power consumption were investigated.
For a quantitative analysis refer to section 4.3 The analysis focused on:

• Characterize the active phase, selecting a clock frequency trying to trade-off
between power consumption and performance;

• Configure core peripheral (General Purpose I/O (GPIO) peripherals give the
highest contribution) to minimize power waste in unused peripherals or through
unnecessary pull-up or pull-down networks;

• Configure the low power mode in order to minimize the power consumption;

• Configure the radio parameters to match the processor performance capabil-
ities, in particular, define a datarate and a payload size for packet able to
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(a) (b)

(c)

Figure 3.5: Propagation of a timestamp from the root to all nodes using unicast
messages. On each branch the value of the timestamp sent is indicated. Nodes
that receive a synchronization message update their time only if the sender is the
preferred parent for that node and then propagate the new timestamp to neighbors
nodes. The dxy variable represents the delay related to the propagation of the
message from node x to y.

optimize transmissions and reception operations.

MCU Run mode
The timing for the execution of the ContikiOS threads is the main task for the Con-
tikiOS’s scheduler. Depending on the events that are occurring it updates the queue
of execution and then the MCU is fed with a ready to run task. After the execution
of a task, the MCU may be idle waiting for the next task to execute. During this
time the process does not perform any useful task but it is still consuming power.
The number of idle periods and their duration clearly depend on the number of tasks
to be executed by the MCU (the MCU load) and on the run speed of the MCU.
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The most simple way to reduce power consumption relies on minimizing the current
consumed by the MCU during the idle periods between consecutive tasks exploiting,
for example, a low power mode such as sleep mode.

Merging this low power solution with the clock scaling allows to take advantages
from both aspects. However, it should be noted that reducing the clock frequency
makes the MCU slower and, with the same amount of MCU load, prevents idle
periods to be long and frequent as before. An empirical analysis shows clearly the
evolution of the power consumption depending on the different combination of clock
frequency and sleep mode (see figure 4.5 in section 4.3 for a graphical example).
Under a certain clock frequency, the number of idle periods is very shrunk, hence,
the benefits introduced by the switch between active and sleep mode does not justify
the latency introduced on the scheduler.

GPIO and peripherals configuration
To reach the maximum power saving available it is necessary to enable only the
necessary peripheral and keep OFF and with the clock disabled the others. More-
over, during the run mode, the unused GPIO pins are set to the analog mode with
no-pull. During low power mode, all the pins are set in the low power configuration
except for the pins connected with the radio module that requires a more accurate
configuration in order to drive also the radio module to a correct low power mode
with a minimum power consumption.
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Implementation

This chapter shows what was done for what concerns the implementation and the
software design. Firstly, the energy harvester is described and characterized. Then,
the hardware of the nodes is described with a focus on which steps are required to
configure a node in order to minimize power consumption in all the power modes
used. Finally, the technique adopted for the node synchronization is discussed and
described.

4.1 Characterization of the energy harvester

The wireless sensor network analyzed is intended to be powered by harvesting solar
energy through a solar panel. The solar energy harvested is stored in a battery after
being converted to match the electrical characteristic of the battery.

To quantify the capabilities of the harvester in terms of energy, we developed
a very simple circuit using an operational amplifier and a transistor in shunt con-
figuration in order to drain all the available current provided by the harvester and
measuring the corresponding power output in µW .

Such system is used to characterize the behavior of the harvester during the whole
daylight in different conditions of sunlight, artificial light exposure and weather
condition (sunny or cloudy day). The results are useful mainly for two purposes:

• Find the correlation between luminance level (taken by the light sensor) and
the corresponding power extracted. Before deploying the network can be an
effective tool to estimate the energy budget that we can expect from the envi-
ronment using only an approximated luminance measure. Also an information
about the ambient temperature was also collected and associated with relative
luminance and power samples;
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• Extract a general estimation on maximum, medium and minimum power avail-
ability starting from the analysis of different working conditions. The max-
imum power availability is not very useful because it is very unlikely to be
observed in real deployments but can be considered as an upper bound. De-
pending on the deployments and the position of the solar panel with respect
to the light source the average and minimum power availability can be very
similar and are taken as reference for further analysis.

The solar panel harvester considered is the STEVAL-ISV021V1 demonstration
kit. It consists of a complete energy harvesting module based on the SPV1050 Ultra
Low Power energy harvester and battery charger (see figure 4.1). The SPV1050
device is a very powerful chip from STMicroelectronics® with several features that
allow high performance and very low-power properties. The SPV1050 implements
an MPPT function with a minimum accuracy of the 95% and integrates the switch-
ing elements of a buck-boost converter. The power manager is suitable for both PV
cells and TEG harvesting sources guaranteeing high efficiency for a high range of
voltage from 75 mV up to 18 V. It allows configuring the battery charge voltage in
the range of 2.6 - 5.3 V level[27].

(a) Upside (b) Downside

Figure 4.1: Upside and downside view of the STEVAL-ISV021V1 board.

Two LDO voltage output (1.8 and 3.3 V) are available for powering external
devices like sensors or RF transceivers. The SPV1050 is a very flexible and config-
urable device that scales very well depending on the application requirements. The
functioning of the SPV1050 is related with a 94µF capacitor used by the chip as
the power source for its own operativity and as main power storage. In order to
guarantee the lifetime and safety of the battery, the SPV1050 device controls an
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integrated pass transistor between the main storage and the battery exploiting both
the under voltage (UVP) and the end-of-charge (EOC) protection thresholds.

The board is equipped with two solar panels mounted in series. The solar panels
are the AM-1801 by Panasonic (Sanyo) for indoor applications[21] for a total surface
of 26.5cm2. They are well suited to work with luminance level in the order of 200lx
that represents a common indoor situation with artificial lighting.

The STEVAL-ISV021V1 implements a basic but complete configuration of al-
most all the functionality of the SPV1050. Moreover, it is distributed with a Power
Monitoring Board (PMB) very useful to monitor both PV panel and battery voltages
and currents, and system performance like MPPT accuracy and conversion efficiency.

The Power Monitoring Board includes a dedicated software GUI called SPIDer
useful to analyze statistics on energy harvesting such as:

• Input power extracted from the PV panel;

• Output power carried out to the battery;

• Conversion efficiency (output power / input power);

• Ambient light intensity;

• MPPT accuracy (real maximum power / ideal maximum power);

• Open circuit voltage of the PV panel.

Figure 4.2 shows an example of the graphic interface, in particular it shows the
tab relative to the panel efficiency.

Despite the Power Monitoring Board provided is a very effective analysis tool, it
does not allow a continuous time analysis of the system.

Unfortunately, the tool can not run for a wide time period, since it provides only
instantaneous statistic hard to extend in a continuous form. A simple custom cir-
cuit coupled with a STM32F401re probing board was developed and programmed to
overcome this limitation. The circuit uses an OPA2340 operational amplifier to drain
all the available current provided by the harvester and measuring the correspond-
ing power output. The analysis is performed indirectly by measuring the voltage
drop over the load resistor. Then, the current is derived and used to compute the
corresponding power involved in the process. It is a dual rail-to-rail operational
amplifier powered by the probing board. Both the amplifiers are employed, one for
the voltage regulation and the other one as voltage amplifier for better matching
the voltage under test with the dynamic of the Analog-to-Digital converter of the

44



4 – Implementation

Figure 4.2: Example tab of the software "SPIDer" distributed with the Power Mon-
itoring Board.

probing board. The resulting circuit had a very limited size allowing a simple de-
ployment almost without limitation. The circuit schematic is shown in figure 4.3. It
acts as a shunt voltage regulator able to adapt dynamically the impedance seen by
the generator to keep its voltage at a fixed value of 4.0V. Its correct behavior was
verified using both oscilloscope and multimeter

To better characterize the harvester and its behavior in different illumination
conditions, the power measurement is associated with the information about the
ambient luminance. To measure the ambient luminance the SFH 5711 ambient
light sensor was used. It is mounted on the STEVAL-ISV021V1, but it is not used
by the SPV1050. It is used by the Power Monitoring Board for analogous purposes
and since the PMB is not connected, we can easily use the sensors without any
conflicts. The custom monitor board is also able to collect ambient temperature in-
formation. Since, in indoor application, temperature variations are not so relevant
and always in a pretty small range, this quantity does not seem to be remarkable
so it is not taken into account in further discussions. The voltage is sampled at a
10Hz frequency and then an average of ten samples is performed. The other two
magnitudes are sampled with a frequency of 1Hz since they are likely to have very
small variation in this amount of time and a high accuracy is not strictly necessary.
The set of three measures is collected by a PC through the serial communication
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Figure 4.3: Power output tracker circuit. The block on the left represents the
STEVAL-ISV021V1, only the pins relevant for the analysis are represented. The
OPA2340 is a dual operational amplifier and both amplifiers are employed in the
circuit. They are indicated with A and B, A is used as voltage regulator whereas
B is responsible for amplifying the voltage drop over the load resistors in order to
adjust the dynamic to the ADC requirements. The block on the right represents
the probing board used for collecting data. It is connected to a PC through a serial
connection (not represented in the schematic).

pins of the board connected to the USB port. Each measurement is associated with
a timestamp useful to have also a daylight reference for the measure, The listing 4.1
shows an example of the output generated by the board.

[ Fr i May 19 1 7 : 3 6 : 0 9 . 1 5 6 2017 ] 145 .915 25 .39 544
[ Fr i May 19 1 7 : 3 6 : 1 0 . 1 5 4 2017 ] 145 .775 25 .42 544
[ Fr i May 19 1 7 : 3 6 : 1 1 . 1 5 3 2017 ] 144 .426 25 .46 549
[ Fr i May 19 1 7 : 3 6 : 1 2 . 1 5 1 2017 ] 144 .343 25 .41 549
[ Fr i May 19 1 7 : 3 6 : 1 3 . 1 5 0 2017 ] 145 .228 25 .44 549
[ Fr i May 19 1 7 : 3 6 : 1 4 . 1 6 4 2017 ] 146 .546 25 .42 540
[ Fr i May 19 1 7 : 3 6 : 1 5 . 1 4 6 2017 ] 144 .525 25 .42 540

Listing 4.1: Log otput of the energy output tracker. The timestamp is followed by
the power output expressed in µW , the temperature in Celsius and the luminance
level in lx.

4.2 Node description
Nodes are composed of several devices provided by STMicroelectronics® belonging
to the STM32 Nucleo ecosystem. The STM32 Nucleo ecosystem consists of the
combination of STM32 Nucleo boards and expansion boards allowing a unified scal-
able approach with many possibilities for application development, prototyping or
product evaluation.
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In particular, the following components were involved:

• STM32L152re Nucleo development board equipped with an ultra-low-power
ARM® Cortex®-M3 based microcontroller;

• X-NUCLEO-IDS01A4 evaluation board based on the SPIRIT1 RF module
SPSGRF-868 expansion;

• X-NUCLEO-IKS01A1 motion MEMS and environmental sensor evaluation
board.

(a) STM32L152re (b) X-NUCLEO-IDS01A4

(c) X-NUCLEO-IKS01A1 (d) NUCLEO STACK

Figure 4.4: Hardware equipment adopted; d) shows the final node stacked configu-
ration.

The core of a node consists of the Nucleo board and the Radio module. The
combination of these two elements forms a node of the network able to join and
exchange messages. This basic node can be expanded according to application
requirements with all the necessary sensor devices. An X-NUCLEO-IKS01A1 ex-
pansion board, for example, can be easily added to the X-NUCLEO stack providing
temperature, humidity, pressure sensors, a magnetometer and an accelerometer.
STMicroelectronics® provides many others X-NUCLEO expansion boards that can
be employed. There are no constraints limiting the use of a single typology of nodes
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for the whole network. In fact, the network can be composed of a large variety
of nodes sharing the same protocol but differentiating for the sensing or actuating
functionality.

All the nodes run ContikiOS 3.0 that is already ported on the STM32 platform by
STMicroelectronics® as Open Development Environment (ODE) Function pack[28].
The ODE Function Packs provides some working examples of applications including
one with the X-NUCLEO-IKS01A1 sensors board. This is a useful starting point for
any implementation since it presents minimal configuration and easily customizable
and expandable structured programming. The border router (sink) uses a different
firmware version but fully compatible with the ODE Function Packs. It is the X-
CUBE-SUBG1 communication software expansion for STM32Cube. It is a parallel
development branch to the ODE Function Packs with different goals but sharing
the same software example and structures. It contains the firmware for a wired
border router node to be connected to a PC to interface the network with Internet.
A similar example firmware is also present in the ODE Function Pack but that
version requires a wireless border router node interfacing with the Internet directly
through a traditional Wi-Fi module. The presence of parallel development branches
with different goals but that keep a high level of compatibility and interoperability
between them emphasize the commitment of STMicroelectronics® to create a well-
structured ecosystem where the development opportunities are not restricted to a
specific product or application but span several application designs.

4.3 MCU run and low power configuration
The STM32L1re board is equipped with an ARM® Cortex®-M3-based core exploit-
ing an ST’s proprietary ultra-low-leakage process technology with an innovative
autonomous dynamic voltage scaling and 5 low-power modes.

A useful analysis on the power consumption of a ContikiOS running on a STM32L152re
was discoursed previously by R. Russo for STMicroelectronics®[29].
His work represents a good starting point working with Contiki and low power
methodologies and gives a good overview of the problem.

The clock frequencies tested were 32MHz, 16MHz and 12MHz with a fixed
workload. Between 32MHz and 16MHz there is, as expected, a huge powersave,
enabling the sleep mode during idle periods the powersave becomes slightly higher
but, since the MCU load is higher the benefit starts to be marginal. At 12MHz the
system shows some timing error related to the radio peripheral and packet reception.
With a slower system all timeouts mechanism for the radio should be reconfigured
but since the resulting power saving is not so relevant.
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Figure 4.5: Average current consumption with different combination of clock fre-
quency and sleep mode.

void SystemClock_Config ( void )
{
. . .
RCC_OscInitStruct . Osc i l l a to rType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct . HSEState = RCC_HSE_OFF;
RCC_OscInitStruct . HSIState = RCC_HSI_ON;
RCC_OscInitStruct . HSICal ibrat ionValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct .PLL. PLLState = RCC_PLL_ON;
RCC_OscInitStruct .PLL. PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct .PLL.PLLMUL = RCC_PLL_MUL3;
RCC_OscInitStruct .PLL. PLLDIV = RCC_PLL_DIV3;
. . .

__HAL_RCC_PWR_CLK_ENABLE( ) ;
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2) ;
. . .
}

Listing 4.2: Fragment of the system clock configuration function in cube_hal_l1.c
file. The HSI oscillator (16 MHz) is enabled and selected as source for the PLL.
The PLL is configured with a finl multiplication factor of one so that the resulting
system clock frequency is set to 16 MHz. The last two lines are intended to enable
the Range 2 for the internal voltage regulator

According to the above analysis, the configuration chosen for the microcontroller
consists on a clock of 16MHz coming from the PLL with a multiplication factor of
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1 (both PLL_MUL and PLL_DIV are set to 3, code 4.2 shows the actual imple-
mentation1).

The device family adopted supports dynamic voltage scaling to optimize power
consumption in run mode. The voltage from the internal low-drop regulator that
supplies the logic can be adjusted according to the system’s maximum operating
frequency and the external voltage supply[31]. There are three power consumption
ranges:

• Range 1 (VDD range limited to 1.71 V - 3.6 V), with the CPU running at up
to 32 MHz;

• Range 2 (VDD up to 3.6 V), with a maximum CPU frequency of 16 MHz;

• Range 3 (VDD up to 3.6 V), with a maximum CPU frequency limited to 4
MHz (generated only with the multispeed internal RC oscillator clock source).

Since the clock adopted is set to 16 MHz, the Range 2 for the internal voltage
regulator can be selected for an additional power saving. The last two lines in code
4.2 show how to properly set the Range 2 for the internal voltage regulator. To
change the clock speed two other fundamental modification are needed in platfom-
conf.h file:
#define F_CPU 16000000 u l

and in system_stm32l1xx.c:
uint32_t SystemCoreClock = 16000000;

An optional adjustment in the baud-rate of the SPI peripheral that interfaces the
board with the radio module will guarantee the same communication speed between
the two devices avoiding possible timing issues when dispatching interrupt request
or sending radio command.

GPIO and peripherals configuration
Before stopping the MCU the custom function peripheral_lp_enable() is called by
the user thread to configure the GPIO pins, in code 4.3 a fragment of the function
with the pins initialization is shown. Setting all the pins to the correct state is
fundamental to nullify parasitic current drain through pull-down network or unex-
pected path. This part required a brief debug due to the presence of an EEPROM
memory in the IDS01A4 board that, in case of high impedance input, will cause an
unwanted current drain.

1Further information about clock trees and clock distribution can be retrieved in the
STM32L1xxxx Reference Manual[30].
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The following configuration guarantees that the MCU goes in stop state, the radio
in standby and the EEPROM keeps a stable state:

• PA10(SDN): OUTPUT_PP + NOPULL + set to 0 (default value);
• PB6(CSN): OUTPUT_PP + NOPULL + set to 1 (default value);
• PA7(MOSI): OUTPUT_PP + NOPULL + set to 0;
• PB3(CLK): OUTPUT_PP + NOPULL + set to 0.

In brackets, next to the pin name, the pin function is shown.
stat ic void per iphera l_lp_enable ( )
{
. . .
GPIO_InitStructure . Mode=GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure . Pul l=GPIO_NOPULL;
GPIO_InitStructure . Speed=GPIO_SPEED_HIGH;
GPIO_InitStructure . Pin=GPIO_PIN_10 | GPIO_PIN_7;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure ) ;

HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET) ;
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_RESET) ;
. . .
GPIO_InitStructure . Mode=GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure . Pul l=GPIO_NOPULL;
GPIO_InitStructure . Speed=GPIO_SPEED_HIGH;
GPIO_InitStructure . Pin=GPIO_PIN_3 | GPIO_PIN_6;
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure ) ;

HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET) ;
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET) ;
. . .
}

Listing 4.3: Fragment of code of the function peripheral_lp_enable. Pins 7 and 10
of group A and pins 3 and 6 of group B are set in output mode with no-pull and set
to the proper value

The Spirit1 chip by STMicroelectronics® has very effective features in terms of
low power in both standby and active transmission/reception state. It implements
a Low Duty Cycling Operation mode that allows operation with very low power
consumption, while at the same time keeping an efficient communication link. The
Spirit1 can periodically switch on the receiver to check if a packet is being transmit-
ted, and then go back to sleep in order to save power. This mode allows the reduction
of average reception power consumption while allowing the device to continue receiv-
ing packets under certain conditions[32]. Moreover, this mechanism allows building
a synchronized star network where both transmitter and receiver can sleep period-
ically to reduce average power consumption. The power reduction is proportional
to the duty cycling level adopted. However, since the overhead of adopting this
strategy is very low, advantages are noticed even for low rates[33].

Nevertheless, in this phase, we are not able to exploit this kind of feature. The
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reason is related to the firmware adopted and the integration between the Spirit1
driver and ContikiOS. The implementation of several basic functions collides with
the requirements prescribed by the LDCO mode of the Spirit1. Including this func-
tionality in the driver practically means to rewrite the actual implementation. This
is not a trivial task and falls outside the goal of this work. However, our approach
and the modularity of ContikiOS keep this issues as a lower level problem that can
be easily integrated at a later time.

4.4 Routing optimization
The default RPL configuration provided by ContikiOS sets all the parameters to
a state working in almost every condition. To better fit the requirements of the
application, only a few adjustments were performed in the code. For example, the
time delay before the transmission of a DAO message as answer of a DIO packet was
reduced to 1s to better fit the time requirements trying to speed up the discovery
and maintenance processes.

In addition to minor adjustments, we remark also the use of an RPL network
probing mechanism using DIO messages with a probing interval chosen randomly
between 60 and 120 seconds. This interval may appear too short but, since it does
not take into account all the interval in which the system is in low power mode, the
effective number of probing messages sent in an hour is really low and distributed
on different active slots.

4.5 Node Synchronization
Once the demo firmware was deployed on nodes and the basic functionality vali-
dated, our application idea was implemented by steps. The first step concerns the
distribution of a common time reference for all the node. Achieving a low skew
with as little message exchange as possible is the desirable goal. Both the solutions
analyzed in section 3.3 were implemented and tested on the boards.

The solution based on multicast messages sent by the border router to all the
nodes was implemented first. To enable the multicast engines, the following steps
are needed 2 :

1. Include the following folder as a resource for the build process:
. / Middlewares /Third_Party/ Cont ik i / core / net / ipv6 / mu l t i ca s t

2See the official documentation for details.
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2. Add the following lines in project-conf.h:

#d e f i n e UIP_MCAST6_CONF_ENGINE UIP_MCAST6_ENGINE_ROLL_TM
#d e f i n e ROLL_TM_CONF_IMIN_1 1

Between the border router and a node connected directly (no hops) there is a time
drift of less than ~50ms. This difference derives from the communication protocol
delays and in general it can be treated as a known offset and manually adjusted.
However, with this approach, we have to consider also the time required by a node
to forward a message according to the ROLL Trickle Multicast engine. Parameters
for the ROLL TM protocol can be configured but, Contiki developers’ experience
suggests to use time interval of 125 ms or higher[34]. This results in a time drift,
spread all over the network, proportional to the distance (number of hops) of each
node from the border router. Time drifts are in the order of several hundreds of
milliseconds. If the active time windows is set to be very short, this could be very
critical and the system may be even not working. The second approach is based
on the local synchronization between a node and its parent. A node gets synchro-
nization message from its parent instead of the border router, hence, each time a
node receives a sync message from its parent, it has to send the updated time to its
neighbors. Doing this way the overhead in channel occupancy is almost the same
to the multicast version, but this method presents better performance in terms of
time drift for nodes deeper in the graph.

Figure 4.6: Screenshot of the oscilloscope triggering the calibration signal for the
Nucleo board. The red trace relates to the preferred parent whereas the blue and
green traces are two neighbors already synchronized. The skew between the two
neighbors node is very low, whereas the skew between time source and nodes is a
bit higher.
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The time drift, this time, depends only on the propagation delay of the message
since we are removing the multicast forward delay, reducing the delay related to a
hop in the network to ~30ms as shown in figure 4.6.

To enable the distribution of the time messages an UDP channel is instantiated
in each node and the callback function, shown in code 4.5, is used to manage the
incoming message containing the updated timestamp from the parent.

A synchronization message contains all the field corresponding to the RTC cal-
endar register including time format, hours, minutes, seconds, the second’s fraction,
and its granularity. Other two field are used as control fields, one specifies the type
of message (useful in case of future extension) and the other one specifies if the
low power mode for the node has to be enabled or disabled. A listing of the sync
message structure is shown in code 4.4.
typedef struct
{

uint8_t MessageType ;
uint8_t TimeFormat ;
uint8_t Hours ;
uint8_t Minutes ;
uint8_t Seconds ;
uint32_t SubSeconds ;
uint32_t SecondFract ion ;
uint8_t RunMode ;

}Sync_MessageTypeDef ;

Listing 4.4: Synchronization message type definition.

A minor issue arose in this phase in both configurations due to a characteristic of
the RTC management. In detail, the hardware does not allow to set the sub-second
fraction field, but only to set it to 0 when the hour, minute and second values are
written, fixing the RTC accuracy to a second. Clearly, this is a huge limitation
to our application but a workaround was implemented. In fact, even if this field
cannot be written, it can be easily read by the system. To address the problem
and reach a higher RTC consistency, a node receiving a synchronization message
schedules the update of the timestamp to the beginning of the following second.
In this way, the problem is partially overcome. The proposed solution may require
some adjustments because in particular condition the chain of sync message from
sink to leaf can exceed the working windows and leaf node may not receive some
sync message. This is not critical but it is still an unwanted behavior. A viable so-
lution consists in propagating synchronization messages asynchronously. Each node
may keep an information about the freshness (consequently the goodness) of its syn-
chronization and propagate its timestamp unless the freshness overcome a certain
threshold, becoming outdated. In this way, even the channel occupancy is enhanced
since messages are randomly distributed over the whole active window.

A statistical analysis on propagation and message processing delay, in both meth-
ods, can lead to better performance in terms of synchronization and consequently
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allowing smaller active time frame to reduce the wasted energy. By statically setting
an offset, from figure 4.6 25 or 30ms can be a reasonable value, the time drift between
nodes can be drastically reduced at a very low cost. However, this assumption may
not be valid in general, resulting in a further error introduction. For this reason, we
preferred to not implement it for the moment.

To validate the implementations showed above we adopted two different meth-
ods. An oscilloscope was used to verify at some interval the synchronization of two
nodes and a common reference corresponding to the border router. Three channels
were adopted exploiting a characteristic of Nucleo boards that specifically allows to
export on a pin a 1Hz calibration signal connected to the Real Time Clock (RTC).
An example of the visual feedback from the oscilloscope is shown in figure 4.6 al-
ready mentioned. The oscilloscope gives us very precise measures but, due to its
characteristics, it is not suitable to collect and elaborate statistics on long time pe-
riods. Hence, a parallel software solution is adopted using a fourth Nucleo board.
Calibration pins from target board are connected to the probe board and associated
to the internal timer for period measurement. In this way, the three calibration
signals are expressed according to a common reference, the probe board oscillator,
and the result is sent as raw data to a PC through the serial port. A simple Matlab
script was used to manage and elaborate the data coming from the probe. Results
were, as expected, coherent with previous observation but doing in this way, we have
also the ability to analyze the system’s behavior on a wide time window greater than
the single shot provided by the oscilloscope. Figure 4.7 shows an example of the
delays behavior.

The two implementations differ only in some aspects of the source code so the
firmware was modified keeping both implementations and allowing the switch be-
tween them by using the SYNC_TYPE macro.

4.5.1 Application
The user application running on the client nodes consists mainly in a process thread.
Process thread in Contiki is a single protothread invoked by the process scheduler.
Protothreads are the way in which Contiki allows the system to run other activities
when the code is waiting for something to happen. Depending on the event received
by the system the scheduler invokes the corresponding process polled by calling the
function that implements the process thread. Hence, the interaction between pro-
cesses happen through events that can be synchronous or asynchronous depending
on the way they are delivered to the process.

In our application important events are mainly related to the interrupt line
associated with the radio module. Incoming packets have to be managed and the
system has to react to the information received. An example of the two main user
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Figure 4.7: Delay behavior of two node over some hours. Purple and yellow lines
represent respectively the delay between node 1 and node 2 with respect to the time
reference at a distance of one hop. The green line show the relative delay between two
nodes. The slopes are caused by a not precise calibration of the internal oscillator.

processes developed for the application is shown in figure 4.8. An additional timer
on the client side guarantees the correct timing to the application by informing the
scheduler if a process needs to be polled at a certain time.

The same mechanism is adopted by Contiki through interrupt lines for the man-
agement of the radio. In that case, the timing requires to be very accurate in order
to avoid packets loss or errors in the communications.

Minor issues
An unexpected problem was encountered during the validation with the X-NUCLEO-
IKS01A1. This board embedded several sensors that interface themselves with the
MCU through a I2C protocol. In our application the 3D accelerometer and 3D
gyroscope sensor (LSM6DS0) is not used, hence we disconnected the jumper on the
power supply line for this sensor to avoid an unwanted power consumption by an
unused component. Despite this is the correct way to turn off an unused sensor, the
system was not working correctly. In particular during the startup the initialization
of the sensors failed most of the time. After a short study, the reason of the failures
was identified in the I2C communication protocol. Disconnecting a sensor from the
X-NUCLEO-IKS01A1 means to not supply it, but the chip still remains connected
to the I2C data and clock lines. Hence, inside the not powered chip, a discharge
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(a) Client process flow (b) Synchronization mechanism process flow

Figure 4.8: Flowcharts with the main points of two application processes execution.
Figure a relates to the client user application, figure b relates to the node syn-
chronization mechanism. The two flows run in parallel depending on the scheduler
activity.

path for the I2C lines is created, preventing the pull-up resistor to correctly drive
the I2C lines to the high voltage condition. The result is a not working connection
between MCU and the other sensors attached to the I2C lines. To solve the problem
we had to physically disconnected also the I2C wire from the sensor by un-soldering
the corresponding 0Ω resistors from the board, figure 4.9 shows the placement of
the two resistors on the board.

Figure 4.9: Resistor SB5 and SB6 have to be removed from the board to completely
isolate the LSM6DS0 chip from the rest of the board, avoiding any interference.
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stat ic void
r e c e i v e r ( struct simple_udp_connection ∗c ,
const uip_ipaddr_t ∗ sender_addr ,
uint16_t sender_port ,
const uip_ipaddr_t ∗ rece iver_addr ,
uint16_t rece iver_port ,
const Sync_MessageTypeDef ∗data ,
uint16_t data len )
{
RTC_TimeTypeDef RTC_TimeStructure={0} , RTC_TimeStructure2={0};
RTC_DateTypeDef RTC_DateStructure ={0};

stat ic uip_ipaddr_t ∗pp_address , sa_address ;
int d r i f t _ t a b l e [ 1 0 ] ;
int i ;

HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure2 , RTC_FORMAT_BIN) ;
HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;

sa_address=∗sender_addr ;

pp_address = rpl_get_parent_ipaddr ( dag−>pre fe r red_parent ) ;

for ( i =0; i <8 && pp_address−>u16 [ i ] == sa_address . u16 [ i ] ; i ++);

i f ( i ==8) {
i f ( data−>MessageType==SYNCHRO){
RTC_TimeStructure . TimeFormat = data−>TimeFormat ;
RTC_TimeStructure . Hours = data−>Hours ;
RTC_TimeStructure . Minutes = data−>Minutes ;
RTC_TimeStructure . Seconds = data−>Seconds + 1 ;
HAL_Delay ( ( uint32_t )(1000 −1000∗(\
data−>SecondFraction−data−>SubSeconds )/ ( data−>SecondFract ion +1)) ) ;
HAL_RTC_SetTime(&RtcHandle , &RTC_TimeStructure , FORMAT_BIN) ;
enable_stop=data−>RunMode ;

synch =1;

HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;

mcast_message . MessageType = SYNCHRO;
mcast_message . TimeFormat = RTC_TimeStructure . TimeFormat ;
mcast_message . Hours = RTC_TimeStructure . Hours ;
mcast_message . Minutes = RTC_TimeStructure . Minutes ;
mcast_message . Seconds = RTC_TimeStructure . Seconds ;
mcast_message . SubSeconds = RTC_TimeStructure . SubSeconds ;
mcast_message . SecondFract ion = RTC_TimeStructure . SecondFract ion ;
mcast_message . RunMode = LP_MODE_ON;

simple_udp_sendto(&unicast_connect ion , &mcast_message , \
s izeof ( mcast_message ) , &mc_addr ) ;
}
}
}

Listing 4.5: Callback function associated with the receipt of a synchronization mes-
sage using local synchronization between a node and its parent using unicast mes-
sages.
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Network simulation

In the context of creating a functional framework for the design of a wireless net-
work, software tools are fundamental. In particular, a network simulator and a data
processing software were adopted. Combining the data coming from the network
simulator and the energy harvester monitor, an almost exhaustive description of the
system behavior can be elaborated.

This chapter, first, shows an overview on the software employed and its main
functionalities. Then, it shows a description of the configuration required for setting
up the environment to the conditions of a real deployment. Finally, the simulation
is described and results are presented.

5.1 Cooja Simulator
Cooja is a network simulator specifically designed for Wireless Sensor Networks.
Cooja allows the simulation of large and small networks of motes1 running Contiki
OS.

Cooja is a powerful tool for Contiki development as it allows developers to test
their code and systems long before running it on the target hardware. It allows
analyzing RPL and network behavior both at the hardware level, which is slower
but allows precise inspection of the system behavior, and at a less detailed level,
which is faster and allows simulation of larger networks[35].

The software is very intuitive to use. It is made up of several customizable win-
dows showing different aspects of the simulation. The Network window is used to
physically place and move physically motes in the environment. Several labels can
be added to each node showing, for example, the node ID, the current output of the
serial port, the network address, the coordinates, etc. In this window an interesting

1Motes is the name used by Cooja to indicate nodes. From now on, ’mote’ and ’node’ will be
used without any distinction.
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Figure 5.1: Cooja GUI

feature is given by the mote relation, consisting in a red directed arrow that joins
a mote to its current preferred parent. In this way, at any instant, we can have a
snapshot of the network topology and we can easily evaluate the behavior of the
objective function used. Another useful section is the Timeline window where the
activity of each mote is logged, showing information about the radio hardware sta-
tus (on or off) and its activity (radio transmitting, receiving, idle, interfering). For
simulation with huge networks or for a long time, the graphical version may become
practically unusable, but statistics can be easily saved in a summary log file that
can be analyzed at a later time using other software like Matlab®.
The serial port output of the nodes can be visualized in several manners. The user
can choose to see a dedicated window for each mote or a window combining the
output of all the nodes sorted by the arrival time. Both views are very useful debug
tools and their content is included in the log file previously mentioned.
Other windows include the Simulation panel for controlling the simulation and a
notes editor.

The simulation speed is a crucial aspect for a simulation software. A real-time
simulation can be required in several validation checks, mostly in the earlier phases,
but often a check on the long term behavior is needed. The main reason is ad-
dressable to the fact that once deployed, nodes can be hard to reach for manual
intervention on the firmware, and even if On-The-Air reprogramming is available,
minimizing issues related, for example, to not a optimal configuration for the objec-
tive function or to application bugs or refinements, is always preferable. Addressing
in advance issues is always the best practice, but tools should help. Typically hours
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of execution can be simulated in tens of seconds but performance depends mostly
on the complexity of the application and the size of the network.

5.2 Software configuration
As said, Cooja allows using the same firmware used by the application for the
simulation. Unfortunately, some sections of our application are strictly related with
architecture specific drivers not available on Cooja, hence, some modification in the
code is required and a way to reproduce the same behavior have to be found.

The hardware equipment adopted in this thesis is not yet listed as a supported
platform by Cooja, hence, no hardware level emulation can be used. This is not a
major issue since we are interested in simulating the network from a higher level
perspective, but a generic node model will be used.

The first issue relates to the concept of RTC clock that in the real application
has the central role of scheduling wakeup intervals and it is periodically adjusted
for keeping the synchronization between nodes. The emulator does not support
variable drift in time reference but only a static offset fixed on the startup. This
simplification does not compromise the simulation consistency and we can consider
still valid the system. During the sleep periods of the real mote, the Systick interrupt
is suspended. This means that from the OS point of view, the time is freezed until
the next wakeup drived by the RTC wakeup timer. By modifying the clock_time()
function in clock.c of a node we are able to replicate the same behavior observed on
the real node when turning to the low power state. Practically we suspend the node
clock tick (the really same action is done in the real implementation by disabling
the interrupt on the systick) of the node. The code shown in 5.1 and 5.2 highlights
the modification performed, in particular the variable flag is introduced in the main
file to signal the simulator if the node is in low-power mode or not.

The previous modification is enough from the firmware point of view, but from
the emulator perspective, the result is not optimal. Since the emulator works in an
event-driven fashion, the current configuration will force the simulator to check sta-
tus variation even during low power phase when the Operating System is inhibited.
The result is a low-speed simulation during phases that are practically ineffective.
The solution is easy to implement and consists of setting the next expiration timer
event to the instant when the system is intended to wakeup. The function to mod-
ify is contained in contiki-cooja-main.c file, the modified version of the function is
shown in listing 5.3. Turning on and off the radio is not an issue since it can be
easily managed using the radio driver interface of Contiki in the analogous way done
for the real hardware. All the low-level functions used to prepare core peripherals to
enter and exit the low power mode are commented out since they are not supported
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Listing 5.1: Original code
clock_time_t clock_time ( void )
{

re turn simCurrentTime ;
}

Listing 5.2: Modified code
clock_time_t clock_time ( void )
{
s t a t i c i n t l a s t ;

i f ( f l a g ==1){
i f ( simCurrentTime<exp i r e )
{

re turn l a s t ;
}

}

f l a g =0;
l a s t=simCurrentTime−delay ;
r e turn simCurrentTime−delay ;
}

JNIEXPORT void JNICALL
Java_org_contikios_cooja_corecomm_CLASSNAME_tick (JNIEnv ∗env ,

j o b j e c t obj )
{

. . .

. . .
/∗ Save neares t e x p i r a t i o n time ∗/
i f ( f l a g ==1)

simEtimerNextExpirationTime = exp i r e ;
else

simEtimerNextExpirationTime = etimer_next_expiration_time ( ) ;
}

Listing 5.3: contiki-cooja-main.c

by the abstract model of the mote.

When a new simulation is created, see fig. 5.2, a mote delay and the model to
use for the Radio Medium must be specified. The mote delay is useful to simulate
the small synchronization drift between nodes and avoid the unrealistic perfect syn-
chronization of two nodes that may also result in an increase of unrealistic conflicts
on the channel due to the almost identical behavior of the nodes. Cooja is set to pick
a random number between 0 and the specified number of milliseconds for each node.
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The Unit Disk Graph Radio Medium abstracts radio transmission range as circles.
It uses two different range parameters: one for transmissions, and one for interfering
with other radios and transmissions. No particular analyses were performed on this
aspect.

Figure 5.2: Cooja new simulation creation menu

To add a node, the mote type to be selected is the Cooja mote and the firmware
to be compiled in the same way we do for the real node.
Starting from the \examples\ipv6\rpl-border-router\border-router project
for the sink node and \examples\ipv6\simple-udp-rpl\unicast-sender for all
the other nodes. Once added, the nodes can be graphically placed in the Network
window even using mouse drag and drop.

5.3 Simulation
The simulation can be launched by using the Simulation control window and se-
lecting a speed limit, as a percentage. The behavior of the system can be analyzed
in run-time, selecting a reasonable speed limit, or at the end of the simulation by
collecting the output given by the available tool (mostly using the serial output and
the activity log). The mote serial output window gives a visual feedback of the
packet sent/received ratio highlighting eventual conflicts on the channel. The activ-
ity log, instead, is a textual file storing all the information about a node including
the activity of the radio (on, off, receiving, transmitting and idle) and the serial
output of the mote.

Several simulations have been performed to understand deeply how the network
behaves both in terms of radio activity and in packets received/sent ratio. Both
aspects have been inspected analyzing the activity log with Matlab®. Figure 5.3
shows the radio activity of a node during the active phase when the node receives
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the synchronization message, forwards the synchronization message to its neighbors
and sends to the sink a dump message simulating a sensor measurement.

The duration of a transmission at 100kbps (but even for lower bit-rates) is very
short with respect to the total activity windows, hence in the plot, it appears as a
spike. Moreover, it’s impact on the total power consumed is very marginal.

Figure 5.3: Graphical representation of the radio current consumption evolution for
a mote during the active window.

Figure 5.4 shows two examples of the timeline windows where two different node
activities are inspected (message transmission and synchronization messages distri-
bution). For simplicity, examples show a network composed of a small number of
nodes. During functional validation, larger networks (with up to sixty nodes ran-
domly placed) were simulated.

Using the simulation several aspects of the application were investigated. For
example the different power consumption between leaf nodes and router nodes that
have to manage high traffic. A bit surprisingly, the simulation did not highlight sig-
nificant differences in power consumption. The reason can be easily identified with
the poor contribution that the transmission power takes to the overall with respect
to the receiving/idle state component. Exploiting a radio duty cycling mechanism,
with a huge reduction in radio power consumption will also increase and make re-
markable this aspect.
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(a) Message propagation from node 6 to sink (1)

(b) Synchronization message distribution

Figure 5.4: Cooja examples showing two kinds of transmission activity through the
network and timeline windows. Blue bars represent the transmission of a packet
by the relative mote. Wide bars refer to packets containing an application payload
whereas smaller ones are the acknowledge message sent by the destination node.
Green bars represent motes receiving a packet. Only the recipient at the end of the
transmission sends back an ack to the sender. The sink sends first its timestamp,
and, in sequence, even other nodes forward their timestamps to deeper nodes. Blue
bars represent the transmission of a packet by the relative mote, whereas green bars
represent motes receiving a packet. More precisely the bar says that the mote is
sensing a message on the channel but it can be intended to another mote. The red
bar shows a collision on the channel due to multiple nodes sending at the same time.
The collision shown in this example has no effect since does not affect the behavior
of any node, but, for dense networks, critical collisions are very likely to happen.
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The packets received/sent ratio in simulation remarked a very good behavior
for the network with percentages higher than 99.5%. However, these results show
only how the network behave without any external interference. Environmental
interference and sporadic issues affecting the radio and the channel decrease the real
packets received/sent ratio, hence, a low-grade redundancy will assure the successful
delivery of all the packets.

5.4 Simulation analysis
In this work the simulation aspect has a double importance. Firstly, the opportunity
to analyze accurately all the nodes composing the network concurrently spanning a
very big time window gives an extremely powerful tool to debug the network and
to supervise the behavior of each node. Then, a simulator reproducing the network
can be used to model the energy consumption of the node and at the same time
be used to estimate the capabilities of the network. In this phase, data about the
energy consumption and the energy harvested are combined using Matlab® at the
end of the simulation. Some different profiles of various configurations and different
harvesting profiles are shown in figure 5.5. The plots are realized using 2 discrete
simulations adopting respectively a duty cycling period of 900s and 1200s. The
curves shown represent the State of Charge (Soc) of the battery. It represents as
a percentage the residual capacity of the battery over the total. The simulations
are then correlated with two different harvesting profiles taken in two distinct days.
This kind of representation has a characteristic sinusoidal shape where the minimum
corresponds to the light of dawn or to the beginning of a working day when lights are
turned on. Then the curve profile tends to raise or at least keep a stable trend until
light is no more sufficient to supply the system and the battery is the only power
source. The gap between the starting point and the arrival point of the state of
charge represented indicates the daily energy balance. Figure 5.5a is characterized
by an equal level for the Soc at midnight for the plot on the left, whereas for the
harvesting profile used in the right plot it shows a negative energy balance. Figure
5.5b has a very similar behavior but this time it is clear how the energy balance is
positive in both the profiles.

The daily surplus energy resulting from such luminance conditions is fundamen-
tal to compensate days with very adverse luminance conditions, figure 5.6 shows
two very critical cases. The saw-toothed edge of the plotted curves can be eas-
ily explained with the alternation of on and off periods typical of a duty cycling
mechanism.
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(a)

(b)

Figure 5.5: Comparative plots of two harvesting profile with two different network
simulations.

Figure 5.6: Harvesting profiles combined with a network simulation showing a crit-
ical behavior with a negative energy balance over a day.
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Chapter 6

Experimental results

The work carried out has been analyzed from several points of view in order to ob-
tain an overall view and a summary characterization useful to evaluate the system
in its entirety.

In this chapter the experimental results obtained are exposed. First the power
harvesting and power consumption aspects are shown separately, then they are
merged in an overall concept and some consideration on final results is exposed.

6.1 Energy harvesting

The data collected by our custom power monitoring board show how, in a 24 hour
time window, the power budget available varies between 80 and 200 µA depending
on the placement of the solar panel. Figures 6.1, 6.2 and 6.3 show a graphical repre-
sentation of the collected data. They represent three different profiles depending on
different light exposures. These values need to be examined accurately, since they
represent the crucial point of the whole analysis.

Depending on the requirements of the application the final power budget can be
employed for several uses. To achieve a total energy independence from external
power source some strategy can be discussed and correlated with the performance
requirements.
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Figure 6.1: Chart of the power monitor output showing the time trend of luminance
level and power output during two consecutive days. The acquisition refers to two
sunny days in january (9 hours of daylight in Turin) during working days.

Figure 6.2: Chart of the power monitor output showing the time trend of luminance
level and power output during two consecutive days. The PV is positioned on a
desk inside the lab far from windows and without artificial lighting.

6.2 Node power consumption
The power consumption observed in our measurements is coherent in almost all
the cases with the theoretical values extracted from datasheets. In particular, the
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Figure 6.3: Chart of the power monitor output showing the time trend of luminance
level and power output during two consecutive days. The PV is positioned on a
desk inside the lab far from windows during a cloudy day in january where the light
source is exclusively artificial. The two components, artificial and natural can be
clearly distinguished in this case. During the hour and half in which the artificial
lighting was switched off the natural light luminance is in the order of only 50lx or
lower with a few tens of µW harvested.

measures of the current absorbed by the system are shown in the following table:

MCU Radio Radio Tx Radio Rx Total
Stop Mode ~0.3 µA ~0.1 µA - - ~0.4 µA
Run Mode 3.8 mA - 21 mA 9.7 mA 24.8mA / 13.5 mA

Values shown in the table highlight what we already know. The critical part of
the system is represented by the Radio module power consumption during receiving
mode, since the radio never goes idle during on mode, hence we can not exploit
the power saving opportunity given by this mode. During transmission the current
consumption is very high but, since a transmission lasts only few milliseconds, it does
not affect significantly the total power. The radio is in reception mode for all the
active time, hence the power consumption during the on time can be approximated
with the current consumption of the radio during receiving mode of 13.5 mA. The
optimization done on the network management and the use of the already discussed
duty cycling mechanism reduce significantly the power required by the system to
perform its task. However, the current absorbed by the radio places a considerable
limitation on the global performance.
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6.3 Results discussion

Once all the needed parameters are collected, several considerations on the final
network capabilities can be discussed.

The first goal and the most desirable achievement consists in an always-on and
self powered device, able to configure itself at power-on and reset and rejoin the net-
work autonomously in case of error or malfunctioning. ContikiOS and the firmware
provided by STMicroelectronics® are able to guarantee an high stability from what
concerns first configuration and auto-reset mechanism. The energy capabilities of
the harvester and its working conditions dictate some limitations on the always-on
aspect.

As discussed in previous chapter, a duty cycling mechanism with long periods
is chosen as low power strategy at the cost of a high latency in node reactivity but
a very effective powersaving. Guaranteeing an always-on properties means, practi-
cally, to find a good dimensioning for the off period whereas the on period is fixed
a priori. An example of the correlation between the average luminance level and
the period of the duty cycle is shown in figure 6.4. The curve trace is a coarse
estimation that gives a good panorama over the magnitude of luminance and time
period involved. From measurements we can reduce the portion of the graph in
the interval between 50lx and 500lx. Lower values represent very critical condition
whereas higher luminance levels, even if they can be easily reached, are still con-
sidered special cases. In the considered range the time period to be adopted spaces
between 500s and 1800s, as to say between 7 and 30 minutes. To be conservative 30
minutes can be a reasonable value to guarantee an high reliability. In real deploy-
ment dark and light day are alternating, hence the storage battery will spread the
power budget over several days increasing the daily available budget.

In some applications, adding a constraint can be discussed. The constraint con-
sists in adopting a variable time period depending on the time of the day. For
example during the night can be reasonable to relax off periods in order to save
power when the system is not required to work. This solution can be very effective
if the application allows being silent during dark hours, the improvement depends on
the time period adopted during the night and in case of total switch off during night
(extreme case) the daily power budget can be roughly doubled. On the other hand,
the application must be compatible with a design choice like this and in general, it
can be considered a reduction of functionalities that may be not preferable.

Coupling the solar power source with a small battery pack (larger than the
120mAh battery integrated in the harvester) can be an interesting solution to the
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Figure 6.4: Luminance vs latency (duty cycling level) for energy autonomous system

problem of guaranteeing high autonomy and good performance also considering dif-
ferent seasons. In this case, the autonomy is not infinite since it relates to the
combination of solar harvesting and battery charge. Since the current provided by
the battery is not the primary power source, the system may, theoretically, work for
thousands of days, as to say to be almost energy autonomous. Practically, battery
performance is not good as expected on time interval so long, therefore the real
charge may result less as expected.
The last approach proposed collides in part with the presupposition of this work,
namely the design of an energy autonomous system. It has been shown only to be
thorough since it practically represents a viable solution when addressing the prob-
lem.

In general, a self-configurable network that each 20 minutes wakes-up, collects
and sends data to the central node autonomously with a good stability can be consid-
ered a satisfying result. This configuration has been extracted from the simulations
and verified by an empirical test. An example of a three days simulation is shown
in figure 6.5.
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Figure 6.5: Evolution of the state of charge of the battery during a 3 day simulation.
The three nodes show extremely similar behaviors and traces are almost overlapped.
The final balance is slightly positive for the days considered.

The tools and the models defined constitute the core of a framework that gives
the guidelines to the creation of an energy-autonomous wireless sensors network.
The energy characterization, the network simulation and all the tunable parameters
allow to exhaustively design a trustworthy network giving the ability to the user
of balancing as better as possible the application requirements and the restrictions
coming from the energy aspect.
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Chapter 7

Conclusion

Nowadays, the interaction between humans and the environment in which they move
needs more and more electronics and devices. Objects partecipating to the world
of the Internet of Things are imposing a new paradigm in the interaction of people
with the world. Market motivation and the requirements of a smart society require
more and more attention to the development of such technology. On the other hand,
recent technology improvements constantly raise the bar of the possibility in inno-
vation, making feasible devices incredible from all the point of view including the
size or the ability to dialog with the environment becoming an essential part of the
environment itself.

In this work, the focus was on the research and the development of an easy to
deploy and trustworthy Wireless Sensor Network able to provide high sensing and
even actuating capabilities to an unlimited range of environments with an extremely
high level of customization. The point on which we focused our investigation re-
volves around the power aspect, hence the power consumption requirement of the
nodes which make up the system and the way in which the required power supply
is retrieved. Beside the goal of creating a stable sensors network, the firm require-
ment of powering the system by using green energy has been placed, in particular
harvesting power from solar energy.

Exploring the potentiality of alternative power sources encourages the commit-
ment to maximize the power harvesting capabilities and at the same time minimize
the power requirements to fit the lacking power availability

The first part of the work aimed at characterizing the solar energy harvester used
for supplying the system. In order to effectively measure the power output capabil-
ities of the module, a test circuit was specifically implemented to perform the task.
In addition to the characterization of the power module, this analysis was used to
define some profiles for the ambient light of a typical office and to understand which
are the limits and the expected values for the energy that can be collected from the
environment.
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Then, I focused on the energy consumption of the node, in particular considering
the power required by the microcontroller. The several available low-power modes
were used to minimize the energy consumption during both active and idle phases,
exploiting voltage and frequency scaling as well as selective core and peripheral de-
activation. The radio module resulted very critical from the power consumption
point of view. In order to guarantee the functioning of the system using the solar
harvester, a duty cycling mechanism for the nodes was adopted. It consists in allow-
ing the nodes to go in a low-power mode where the system is frozen, and periodically
waking them up for a small amount of time sufficient to acquire, process and send
data to the sink, and to maintain the network connectivity. The amount of time
in which the system stays on and off can be easily configured to match application
requirements and power supply capabilities.
The duty cycling mechanism requires to precisely synchronize nodes to guarantee
the consistency of the network and make it work correctly. The time distribution
between nodes required some attention so as not to generate excessive traffic on
the communication channel but, at the same time, to ensure a sufficient level of
synchronization (in the order of few tens of milliseconds).

In parallel with the hardware implementation, all the concepts related to the
network were tested using a network simulator that was customized to accurately
replicate the behavior of the system. The simulation, based on the Cooja software,
was used, at first, to test the goodness of the mechanism adopted for the network
management before deploying them in the real node. Then, the software was used to
validate the final version of the firmware by analyzing long time periods, unpractical
to be tested experimentally.

The average output power of the scavenger during a day is in the order of 180µW .
This allows the system to acquire data every 20 minutes relying only on the har-
vester energy, with a surplus of a few µW useful to compensate small variations in
daily light conditions.

A further work may integrate also the power estimation inside Cooja. This
can bring a lot of advantages allowing for example the adoption of an adaptive
duty cycling depending on the information coming from the nodes, or emulating
also critical errors in the network like nodes that at after a certain time are out of
charge and simply disappear from the network. Moreover, the interaction between
the harvesting profile and the software behavior can be exploited by the system to
adaptively modify the duty cycling period to maximize performance without the
risk of discharging too quickly the battery. This concept is very promising and can
be an excellent starting point for further developments both on the simulator side,
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expanding its functionalities, and on a real implementation.
Keeping under control overheads, delays and latencies in a heavy constrained sys-

tem is not a trivial task, as well as guaranteeing reliability in connections between
nodes. This work demonstrated the feasibility of an energy-autonomous system
and will support the development of WSNs based on the STMicroelectronics® de-
vices. Further development is currently directed to an improvement of the low-power
property of the radio module by working on the firmware and driver integration and
applying a fine-grained duty cycling. Reducing the power absorbed by the radio
during the listening phase is key for enabling an always-on network continuously
accessible via the IPv6 protocol.
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Appendix A

Source code

In the following sections, some source files from the developed firmware are listed.
In particular, appendix A.1 lists the file containing the source code of the user pro-
cess of the client node. In this file, highlighting some functions can be useful. The
receiver() function, for example, at line 300 is the one that manages the synchro-
nization mechanism. It is called when a sync packet is received, updating the RTC
register if the packet sender is the preferred parent for the node and, eventually, for-
ward a new synchronization message to the neighbors. Functions spirit_lp_enable()
and spirit_lp_disable() (lines 392 and 398) are used, respectively, to turn the radio
off and on, whereas functions peripheral_lp_enable() and peripheral_lp_disable()
(lines 405 and 504) are used to configure the GPIO peripherals to properly go
in a low-power mode and to reactivate them when exiting the low-power state.
These functions are called by the enter_stop_mode() function that prepare the
whole system to go in the low power mode, set the wake up timer and call the
HAL_PWR_EnterSTOPMode() macro. Appendix A.2 refers to the main file for a
generic client node. In addition to the configuration procedure for the node initial-
ization, it is interesting to remark the line 144 where, in case of no process ready to
be dispatched, in order to save power the MCU is set to go in sleep mode. Finally,
appendix A.3 shows the file containing the source code of the user process of the sink
node, known also as border router due to its functionality to provide connectivity
with the Internet. The sink does not implement any low-power mode, but, since
it acts as the time reference, in the user process it implements the periodic time
distribution mechanism.

A.1 client.c
1 /∗ ∗
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 ∗ @ f i l e c l i e n t . c
4 ∗ @author C e n t r a l LAB
5 ∗ @ve rs ion V1 . 0 . 0
6 ∗ @date 20−June −2016

77



A – Source code

7 ∗ @ b r i e f lwm2m c l i e n t
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 ∗ @ a t t e n t i o n

10 ∗
11 ∗ <h2><c e n t e r >&copy ; COPYRIGHT( c ) 2016 S T M i c r o e l e c t r o n i c s </ c e n t e r ></h2>
12 ∗
13 ∗ R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h or w i t h o u t m o d i f i c a t i o n ,
14 ∗ are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s are met :
15 ∗ 1 . R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t n o t i c e ,
16 ∗ t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
17 ∗ 2 . R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t n o t i c e ,
18 ∗ t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e documentat ion
19 ∗ and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e d i s t r i b u t i o n .
20 ∗ 3 . N e i t h e r t h e name o f S T M i c r o e l e c t r o n i c s nor t h e names o f i t s c o n t r i b u t o r s
21 ∗ may be used t o e n d o r s e or promote p r o d u c t s d e r i v e d from t h i s s o f t w a r e
22 ∗ w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
23 ∗
24 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS "
25 ∗ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 ∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 ∗ DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
28 ∗ FOR ANY DIRECT, INDIRECT , INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL
29 ∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 ∗ SERVICES ; LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER
31 ∗ CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
32 ∗ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 ∗ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 ∗
35 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36 ∗/
37 #include " ipso−ob j e c t s . h "
38 #include "lwm2m−engine . h "
39 #include " r e s t−engine . h "
40 #include " er−coap . h "
41
42 #include " dev/humidity−s ensor . h "
43 #include " dev/ temperature−s ensor . h "
44 #include " dev/ sensor−common . h"
45 #include " s en so r s . h "
46
47 #include " c on t i k i . h "
48 #include " cont ik i−l i b . h "
49 #include " cont ik i−net . h "
50
51 #include " net / ip /uip . h "
52 #include " net / ip / r e s o l v . h "
53 #include " net / ip /uip−debug . h "
54 #include " net / ip / ip64−addr . h "
55 #include " net / ipv6 /uip−ds6 . h "
56 #include " net / ipv6 /mul t i ca s t /uip−mcast6 . h "
57 #include " net / rp l / rp l . h "
58 #include " net / rp l / rpl−pr i va t e . h " // d i s _ o u t p u t ( )
59
60 #include " cube_hal . h "
61
62 #include " radio_gpio . h "
63
64 #include " s p i r i t 1 . h "
65 #include " s p i r i t 1 −arch . h "
66 #include " stm32l1xx_ll_bus . h "
67 #include " stm32l1xx_l l_ext i . h "
68 #include " st−l i b . h "
69
70 /∗ ∗ @addtogroup LWM2M_example
71 ∗ @{
72 ∗/
73 #define DEBUG
74 #i f d e f DEBUG
75 #define PRINTF ( . . . ) p r i n t f (__VA_ARGS__)
76 #endif
77
78 #define TEST_MODE 0
79
80 #define MULTICAST_SYNC 1
81 #define UNICAST_SYNC 2
82
83 /∗ t e s t ∗/
84
85 #define BUSYWAIT_UNTIL( cond , max_time) \
86 do { \
87 rtimer_clock_t t0 ; \
88 t0 = RTIMER_NOW() ; \
89 while ( ! ( cond ) && RTIMER_CLOCK_LT(RTIMER_NOW() , t0 + (max_time) ) ) ; \
90 } while (0 )
91

78



A – Source code

92
93 /∗ S e l e c t a sync mechanism ∗/
94 //#d e f i n e SYNC_TYPE MULTICAST_SYNC
95 #define SYNC_TYPE UNICAST_SYNC
96
97 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
98 #ifndef REGISTER_WITH_LWM2M_BOOTSTRAP_SERVER
99 #define REGISTER_WITH_LWM2M_BOOTSTRAP_SERVER 0

100 #endif
101 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
102 #ifndef REGISTER_WITH_LWM2M_SERVER
103 #define REGISTER_WITH_LWM2M_SERVER 1
104 #endif
105 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
106 uip_ipaddr_t server_ipaddr ;
107 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
108 /∗ 0 means d e f a u l t p o r t f o r remote s e r v e r , o t h e r w i s e s p e c i f y a s p e c i f i c p o r t ∗/
109 #define SERVER_PORT 0
110 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
111 #undef USE_PUBLIC_LWM2M_SERVER
112 #i f d e f USE_PUBLIC_LWM2M_SERVER
113 s t a t i c uip_ipaddr_t ∗ addrptr ;
114 s t a t i c struct et imer et ;
115 s t a t i c char host [ 4 0 ] = " le shan . e c l i p s e . org " ;
116 #e l s e
117 /∗ D e f i n e ONE o f t h e f o l l o w i n g macros ∗/
118 //#d e f i n e LWM2M_SERVER_ADDRESS_v4 " 1 9 2 . 1 6 8 . 0 . 1 1 " // f o r i p v 4
119 #define LWM2M_SERVER_ADDRESS_v6 " aaaa : : 1 " // f o r i p v 6
120 #endif /∗USE_PUBLIC_LWM2M_SERVER∗/
121
122 uip_ip4addr_t ip4addr ;
123
124 #define DRIFT_TABLE_SIZE 10
125
126 int ca lp =511 , calm=1;
127
128 /∗ e x t e r n a l v a r i a b l e ∗/
129 extern RTC_HandleTypeDef RtcHandle ;
130 extern uint8_t so f tware_rese t ;
131 extern const struct ipso_objects_sensor IPSO_TEMPERATURE;
132 extern const struct ipso_objects_sensor IPSO_HUMIDITY;
133 /∗ b r o a d c a s t synch management ∗/
134 #define PERIOD 1200
135 #define RADIO_RESET PERIOD∗2∗1000
136 #define ON_TIME 4
137 #define SYNC_UDP_PORT 3001
138 #define TEST_UDP_PORT 3003
139 #define SYNCHRO 2
140 #define LP_MODE_ON 1
141 #define LP_MODE_OFF 0
142
143 uint32_t t_old=0xFFFFFFFF;
144 int d r i f t_ tab l e [DRIFT_TABLE_SIZE ] ;
145 int k ;
146
147 /∗ message t y p e d e f ∗/
148 typedef struct
149 {
150 uint8_t MessageType ;
151 uint8_t TimeFormat ;
152 uint8_t Hours ;
153 uint8_t Minutes ;
154 uint8_t Seconds ;
155 uint32_t SubSeconds ;
156 uint32_t SecondFract ion ;
157 uint8_t RunMode ;
158 }Sync_MessageTypeDef ;
159
160
161 #i f SYNC_TYPE == MULTICAST_SYNC
162
163 s t a t i c struct uip_udp_conn ∗ sink_conn ;
164 s t a t i c void tcpip_handler (void ) ;
165 s t a t i c uip_ds6_maddr_t ∗ join_mcast_group (void ) ;
166
167 s t a t i c Sync_MessageTypeDef ∗mcast_message ;
168
169 #e l i f SYNC_TYPE == UNICAST_SYNC
170
171 s t a t i c uip_ipaddr_t mc_addr ;
172 s t a t i c Sync_MessageTypeDef mcast_message ;
173 s t a t i c struct simple_udp_connection unicast_connect ion ;
174 s t a t i c void
175 r e c e i v e r ( struct simple_udp_connection ∗c ,
176 const uip_ipaddr_t ∗ sender_addr ,
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177 uint16_t sender_port ,
178 const uip_ipaddr_t ∗ rece iver_addr ,
179 uint16_t rece iver_port ,
180 const Sync_MessageTypeDef ∗data ,
181 uint16_t data len ) ;
182
183 #endif
184
185 s t a t i c struct simple_udp_connection rp l_connect ion_test ;
186 s t a t i c void
187 r e c e i v e r 2 ( struct simple_udp_connection ∗c ,
188 const uip_ipaddr_t ∗ sender_addr ,
189 uint16_t sender_port ,
190 const uip_ipaddr_t ∗ rece iver_addr ,
191 uint16_t rece iver_port ,
192 const uint8_t ∗data ,
193 uint16_t data len ) ;
194
195 s t a t i c uint8_t synch=0;
196
197 /∗ low power management ∗/
198 s t a t i c void SYSCLKConfig_STOP(void ) ;
199 s t a t i c void per iphera l_lp_enable (void ) ;
200 s t a t i c void per iphera l_ lp_di sab l e (void ) ;
201 s t a t i c void enter_stop_mode ( int seconds ) ;
202 s t a t i c void sp i r i t_ lp_enab le (void ) ;
203 s t a t i c void sp i r i t_ lp_d i s ab l e (void ) ;
204 s t a t i c void pe r i ph e r a l_ in i t (void ) ;
205
206 s t a t i c uint32_t gpioa_moder , gpiob_moder , gpioc_moder ;
207 s t a t i c uint32_t gpioa_otyper , gpiob_otyper , gpioc_otyper ;
208 s t a t i c uint32_t gpioa_ospeedr , gpiob_ospeedr , gpioc_ospeedr ;
209 s t a t i c uint32_t gpioa_pupdr , gpiob_pupdr , gpioc_pupdr ;
210 s t a t i c uint32_t exti_imr_backup ;
211 s t a t i c uint8_t wakeup=0;
212
213 /∗ sync management ∗/
214 s t a t i c void increase_ppm (void ) ;
215 s t a t i c void decrease_ppm (void ) ;
216 rpl_parent_t ∗p ;
217 rpl_dag_t ∗dag ;
218
219 s t a t i c uint8_t enable_stop = 0 ;
220
221 s t a t i c struct et imer per iod ic_t imer ;
222 s t a t i c struct et imer sync_timer ;
223 s t a t i c struct et imer per iod ic_t imer_test ;
224 s t a t i c struct et imer process_pause ;
225
226 PROCESS( rd_cl ient , "OMA␣LWM2M␣/rd␣Cl i ent " ) ;
227 AUTOSTART_PROCESSES(&rd_c l i en t ) ;
228
229
230 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
231 #i f SYNC_TYPE == MULTICAST_SYNC
232
233 s t a t i c void
234 tcpip_handler (void )
235 {
236 RTC_TimeTypeDef RTC_TimeStructure={0}, RTC_TimeStructure2={0};
237 RTC_DateTypeDef RTC_DateStructure={0};
238
239 // t a k e t h e a c t u a l t imestamp and compare w i t h t h e r e c e i v e d once
240 // t o g e t t h e t ime d r i f t
241 uint32_t t1 , t2 ;
242 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure2 , RTC_FORMAT_BIN) ;
243 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
244
245 i f ( uip_newdata ( ) ) {
246 mcast_message=(Sync_MessageTypeDef ∗) uip_appdata ;
247 i f (mcast_message−>MessageType==SYNCHRO){
248 RTC_TimeStructure . TimeFormat = mcast_message−>TimeFormat ;
249 RTC_TimeStructure . Hours = mcast_message−>Hours ;
250 RTC_TimeStructure . Minutes = mcast_message−>Minutes ;
251 RTC_TimeStructure . Seconds = mcast_message−>Seconds + 1 ;
252 HAL_Delay ( ( uint32_t ) (1000−1000∗(mcast_message−>SecondFract ion − mcast_message−>SubSeconds ) /(

mcast_message−>SecondFract ion +1) ) ) ;
253 HAL_RTC_SetTime(&RtcHandle , &RTC_TimeStructure , FORMAT_BIN) ;
254
255 enable_stop=mcast_message−>RunMode ;
256
257 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
258 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
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259 PRINTF( "SYNCH! ␣Current ␣ time : ␣%02d:%02d:%02d.%03d\n" , RTC_TimeStructure . Hours ,
RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(RTC_TimeStructure .
SecondFract ion − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure . SecondFraction + 1) ) ;

260 t1=1000∗(3600∗mcast_message−>Hours + 60∗mcast_message−>Minutes + mcast_message−>Seconds ) +
(1000∗(mcast_message−>SecondFract ion − mcast_message−>SubSeconds ) ) /(mcast_message−>
SecondFract ion + 1) ;

261 t2=1000∗(3600∗RTC_TimeStructure2 . Hours + 60∗RTC_TimeStructure2 . Minutes + RTC_TimeStructure2 .
Seconds ) + (1000∗( RTC_TimeStructure2 . SecondFract ion − RTC_TimeStructure2 . SubSeconds ) ) /(
RTC_TimeStructure2 . SecondFraction + 1) ;

262 PRINTF( "Time␣ d r i f t ␣ s i n c e ␣ l a s t ␣ synch␣was␣ o f ␣t−t_sync␣=␣%d␣ms\n" , t2−t1 ) ;
263
264 synch=1;
265 }
266 }
267
268 return ;
269 }
270
271 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
272 s t a t i c uip_ds6_maddr_t ∗
273 join_mcast_group (void )
274 {
275 uip_ipaddr_t addr ;
276 uip_ds6_maddr_t ∗ rv ;
277
278 // /∗ F i r s t , s e t our v6 g l o b a l ∗/
279 // u i p _ i p 6 a d d r (&addr , UIP_DS6_DEFAULT_PREFIX, 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
280 // uip_ds6_set_addr_iid (&addr , &u i p _ l l a d d r ) ;
281 // uip_ds6_addr_add(&addr , 0 , ADDR_AUTOCONF) ;
282
283 /∗
284 ∗ IPHC w i l l use s t a t e l e s s m u l t i c a s t c o m p r e s s i o n f o r t h i s d e s t i n a t i o n
285 ∗ (M=1, DAC=0) , w i t h 32 i n l i n e b i t s (1E 89 AB CD)
286 ∗/
287 uip_ip6addr(&addr , 0xFF1E ,0 , 0 , 0 , 0 , 0 , 0 x89 , 0xABCD) ;
288 rv = uip_ds6_maddr_add(&addr ) ;
289
290 i f ( rv ) {
291 PRINTF( " Joined ␣mul t i ca s t ␣group␣ " ) ;
292 PRINT6ADDR(&uip_ds6_maddr_lookup(&addr )−>ipaddr ) ;
293 PRINTF( "\n" ) ;
294 }
295 return rv ;
296 }
297
298 #e l i f SYNC_TYPE == UNICAST_SYNC
299
300 s t a t i c void
301 r e c e i v e r ( struct simple_udp_connection ∗c ,
302 const uip_ipaddr_t ∗ sender_addr ,
303 uint16_t sender_port ,
304 const uip_ipaddr_t ∗ rece iver_addr ,
305 uint16_t rece iver_port ,
306 const Sync_MessageTypeDef ∗data ,
307 uint16_t data len )
308 {
309 RTC_TimeTypeDef RTC_TimeStructure={0}, RTC_TimeStructure2={0}, RTC_TimeStructure3={0};
310 RTC_DateTypeDef RTC_DateStructure={0};
311
312 s t a t i c uip_ipaddr_t ∗pp_address , sa_address ;
313 int d r i f t_ tab l e [ 1 0 ] ;
314 int i ;
315 // t a k e t h e a c t u a l t imestamp and compare w i t h t h e r e c e i v e d once t o g e t t h e t ime d r i f t
316 int t1 , t2 , t3 , d r i f t ;
317 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure2 , RTC_FORMAT_BIN) ;
318 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
319
320 p r i n t f ( " Sync␣ r e c e i v ed ␣ from␣ " ) ;
321 uip_debug_ipaddr_print ( sender_addr ) ;
322 p r i n t f ( " \n" ) ;
323 sa_address=∗sender_addr ;
324
325 pp_address = rpl_get_parent_ipaddr ( dag−>pre fer red_parent ) ;
326
327 for ( i =0; i <8 && pp_address−>u16 [ i ] == sa_address . u16 [ i ] ; i++) ;
328
329 i f ( i==8) {
330 i f ( data−>MessageType==SYNCHRO){
331
332 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure3 , RTC_FORMAT_BIN) ;
333 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
334 t_old=1000∗(3600∗RTC_TimeStructure3 . Hours + 60∗RTC_TimeStructure3 . Minutes +

RTC_TimeStructure3 . Seconds ) + (1000∗( RTC_TimeStructure3 . SecondFraction −
RTC_TimeStructure3 . SubSeconds ) ) /(RTC_TimeStructure3 . SecondFraction + 1) ;

335
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336 RTC_TimeStructure . TimeFormat = data−>TimeFormat ;
337 RTC_TimeStructure . Hours = data−>Hours ;
338 RTC_TimeStructure . Minutes = data−>Minutes ;
339 RTC_TimeStructure . Seconds = data−>Seconds + 1 ;
340 HAL_Delay ( ( uint32_t ) (1000−1000∗( data−>SecondFraction−data−>SubSeconds ) /( data−>SecondFract ion

+1) ) ) ;
341 HAL_RTC_SetTime(&RtcHandle , &RTC_TimeStructure , FORMAT_BIN) ;
342
343 enable_stop=data−>RunMode ;
344
345 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
346 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
347 PRINTF( "SYNCH! ␣Current ␣ time : ␣%02d:%02d:%02d.%03d\n" , RTC_TimeStructure . Hours ,

RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(RTC_TimeStructure .
SecondFract ion − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure . SecondFraction + 1) ) ;

348 t1=1000∗(3600∗data−>Hours + 60∗data−>Minutes + data−>Seconds ) + (1000∗( data−>SecondFract ion −
data−>SubSeconds ) ) /( data−>SecondFract ion + 1) ;

349 t2=1000∗(3600∗RTC_TimeStructure2 . Hours + 60∗RTC_TimeStructure2 . Minutes + RTC_TimeStructure2 .
Seconds ) + (1000∗( RTC_TimeStructure2 . SecondFract ion − RTC_TimeStructure2 . SubSeconds ) ) /(
RTC_TimeStructure2 . SecondFraction + 1) ;

350 PRINTF( "Time␣ d r i f t ␣ s i n c e ␣ l a s t ␣ synch␣was␣ o f ␣t−t_sync␣=␣%d␣ms\n" , t2−t1 ) ;
351
352 synch=1;
353
354 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
355 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
356
357 mcast_message . MessageType = SYNCHRO;
358 mcast_message . TimeFormat = RTC_TimeStructure . TimeFormat ;
359 mcast_message . Hours = RTC_TimeStructure . Hours ;
360 mcast_message . Minutes = RTC_TimeStructure . Minutes ;
361 mcast_message . Seconds = RTC_TimeStructure . Seconds ;
362 mcast_message . SubSeconds = RTC_TimeStructure . SubSeconds ;
363 mcast_message . SecondFraction = RTC_TimeStructure . SecondFract ion ;
364 mcast_message .RunMode = LP_MODE_ON;
365
366 simple_udp_sendto(&unicast_connect ion , &mcast_message , s i z e o f (mcast_message ) , &mc_addr) ;
367 }
368 }
369 }
370 #endif
371
372 s t a t i c void
373 r e c e i v e r 2 ( struct simple_udp_connection ∗c ,
374 const uip_ipaddr_t ∗ sender_addr ,
375 uint16_t sender_port ,
376 const uip_ipaddr_t ∗ rece iver_addr ,
377 uint16_t rece iver_port ,
378 const uint8_t ∗data ,
379 uint16_t data len )
380 {
381
382 }
383
384 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
385 s t a t i c void s p i r i t_ r e s e t ( ) {
386 sp i r i t_rad i o_dr i v e r . o f f ( ) ;
387 sp i r i t_rad i o_dr i v e r . i n i t ( ) ;
388 sp i r i t_rad i o_dr i v e r . on ( ) ;
389 }
390
391 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
392 s t a t i c void sp i r i t_ lp_enab le ( ) {
393 uint16_t r s s i ;
394 sp i r i t_rad i o_dr i v e r . o f f ( ) ;
395 }
396
397 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
398 s t a t i c void sp i r i t_ lp_d i s ab l e ( ) {
399
400 sp i r i t_rad i o_dr i v e r . i n i t ( ) ;
401 sp i r i t_rad i o_dr i v e r . on ( ) ;
402 }
403
404 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
405 s t a t i c void per iphera l_lp_enable ( )
406 {
407 /∗ Gpio c o n f i g u r a t i o n :
408 ∗ GPIO : D E F G H are s e t i n t h e p e r i p h e r a l _ i n i t ( ) f u n c t i o n as analog −i n n o p u l l w i t h c l o c k

d i s a b l e d s i n c e
409 ∗ t h e y are not used by t h e a p p l i c a t i o n . (NUCLEO + IDS01A4 )
410 ∗
411 ∗ IDS01A4 e x p a n s i o n board u s e s t h e f o l l o w i n g p i n c o n n e c t e d t o t h e n u c l e o :
412 ∗ SDN: PA10
413 ∗ CSN : PB6
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414 ∗ MISO : PA6
415 ∗ MOSI : PA7
416 ∗ SCLK PB3
417 ∗ SPIGPIO3 : PC7
418 ∗ LED: PB4
419 ∗
420 ∗ t h e y are c o n f i g u r e d by t h e r a d i o d r i v e r b u t d u r i n g s t o p mode t h e y need t o be c o n f i g u r e d i n

t h e c o r r e c t s t a t e
421 ∗ i n o r d e r t o be s u r e t h a t t h e MCU g o e s i n s t o p s t a t e , t h e r a d i o i n s t a n d b y and t h e EEPROM

k e e p s a s t a b l e s t a t e :
422 ∗ PA10(SDN) : o u t p u t + n o p u l l + s t o r i n g a ’ 0 ’
423 ∗ PB6(CSN) : o u t p u t + n o p u l l + s t o r i n g a ’ 1 ’ ( t h i s i s t h e d e f a u l t v a l u e )
424 ∗ PA6(MISO) : a n a l o g + n o p u l l
425 ∗ PA7(MOSI) : o u t p u t + n o p u l l + s t o r i n g a ’ 0 ’
426 ∗ PB3(CLK) : o u t p u t + n o p u l l + s t o r i n g a ’ 0 ’
427 ∗
428 ∗ SPIGPIO3 and LED are s e t t o a n a l o g n o p u l l s i n c e t h e y are not c r i t i c a l
429 ∗
430 ∗ Other GPIO used are :
431 ∗ PA5 : Nucleo Green Led
432 ∗ PA0 : TIM2 ( used f o r c o n t i k i t i m e r s
433 ∗ PC13 : Nucleo Push Button ( used by i p s o a p p l i c a t i o n )
434 ∗ PA2 : TX f o r USART2
435 ∗ PA3 : RX f o r USART2
436 ∗
437 ∗ ∗/
438
439 GPIO_InitTypeDef GPIO_InitStructure= {0};
440
441 /∗ s a v e t h e p r e v i o u s c o n f i g u r a t i o n ∗/
442 gpioa_moder = GPIOA−>MODER;
443 gpiob_moder = GPIOB−>MODER;
444 gpioc_moder = GPIOC−>MODER;
445 gpioa_otyper = GPIOA−>OTYPER;
446 gpiob_otyper = GPIOB−>OTYPER;
447 gpioc_otyper = GPIOC−>OTYPER;
448 gpioa_ospeedr = GPIOA−>OSPEEDR;
449 gpiob_ospeedr = GPIOB−>OSPEEDR;
450 gpioc_ospeedr = GPIOC−>OSPEEDR;
451 gpioa_pupdr = GPIOA−>PUPDR;
452 gpiob_pupdr = GPIOB−>PUPDR;
453 gpioc_pupdr = GPIOC−>PUPDR;
454
455 /∗GPIOC c o n f i g u r a t i o n ( not c r i t i c a l f o r low power mode−> a l l p i n i n a n a l o g mode ) ∗/
456 __HAL_RCC_GPIOC_CLK_ENABLE() ;
457 GPIO_InitStructure .Mode=GPIO_MODE_ANALOG;
458 GPIO_InitStructure . Pul l=GPIO_NOPULL;
459 GPIO_InitStructure . Pin=GPIO_PIN_All ;
460 HAL_GPIO_Init(GPIOC, &GPIO_InitStructure ) ;
461 __HAL_RCC_GPIOC_CLK_DISABLE() ;
462
463 /∗GPIOA c o n f ∗/
464 __HAL_RCC_GPIOA_CLK_ENABLE() ;
465 GPIO_InitStructure .Mode=GPIO_MODE_ANALOG;
466 GPIO_InitStructure . Pul l=GPIO_NOPULL;
467 GPIO_InitStructure . Speed=GPIO_SPEED_HIGH;
468 GPIO_InitStructure . Pin=GPIO_PIN_All & ~GPIO_PIN_7 & ~GPIO_PIN_10 ;
469 HAL_GPIO_Init(GPIOA, &GPIO_InitStructure ) ;
470
471 /∗ c r i t i c a l p i n : PA10 PA7 ∗/
472 GPIO_InitStructure .Mode=GPIO_MODE_OUTPUT_PP;
473 GPIO_InitStructure . Pul l=GPIO_NOPULL;
474 GPIO_InitStructure . Speed=GPIO_SPEED_HIGH;
475 GPIO_InitStructure . Pin=GPIO_PIN_10 | GPIO_PIN_7;
476 HAL_GPIO_Init(GPIOA, &GPIO_InitStructure ) ;
477
478 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10 , GPIO_PIN_RESET) ;
479 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_RESET) ;
480 __HAL_RCC_GPIOA_CLK_DISABLE() ;
481
482 /∗GPIOB c o n f ∗/
483 __HAL_RCC_GPIOB_CLK_ENABLE() ;
484 GPIO_InitStructure .Mode=GPIO_MODE_ANALOG;
485 GPIO_InitStructure . Pul l=GPIO_NOPULL;
486 GPIO_InitStructure . Speed=GPIO_SPEED_HIGH;
487 GPIO_InitStructure . Al te rnate=0x00 ;
488 GPIO_InitStructure . Pin=GPIO_PIN_All & ~GPIO_PIN_3 & ~GPIO_PIN_6 ;
489 HAL_GPIO_Init(GPIOB, &GPIO_InitStructure ) ;
490
491 /∗ c r i t i c a l p i n : PB3 PB6 ∗/
492 GPIO_InitStructure .Mode=GPIO_MODE_OUTPUT_PP;
493 GPIO_InitStructure . Pul l=GPIO_NOPULL;
494 GPIO_InitStructure . Speed=GPIO_SPEED_HIGH;
495 GPIO_InitStructure . Pin=GPIO_PIN_3 | GPIO_PIN_6;
496 HAL_GPIO_Init(GPIOB, &GPIO_InitStructure ) ;
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497
498 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET) ;
499 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET) ;
500 __HAL_RCC_GPIOB_CLK_DISABLE() ;
501 }
502
503 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
504 s t a t i c void per iphera l_ lp_di sab l e ( )
505 {
506 __HAL_RCC_GPIOA_CLK_ENABLE() ;
507 __HAL_RCC_GPIOB_CLK_ENABLE() ;
508 __HAL_RCC_GPIOC_CLK_ENABLE() ;
509
510 GPIOA−>MODER = gpioa_moder ;
511 GPIOB−>MODER = gpiob_moder ;
512 GPIOC−>MODER = gpioc_moder ;
513 GPIOA−>OTYPER = gpioa_otyper ;
514 GPIOB−>OTYPER = gpiob_otyper ;
515 GPIOC−>OTYPER = gpioc_otyper ;
516 GPIOA−>OSPEEDR = gpioa_ospeedr ;
517 GPIOB−>OSPEEDR = gpiob_ospeedr ;
518 GPIOC−>OSPEEDR = gpioc_ospeedr ;
519 GPIOA−>PUPDR = gpioa_pupdr ;
520 GPIOB−>PUPDR = gpiob_pupdr ;
521 GPIOC−>PUPDR = gpioc_pupdr ;
522
523 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET) ;
524 HAL_Delay(10) ;
525 IPSO_TEMPERATURE. i n i t ( ) ;
526 IPSO_HUMIDITY. i n i t ( ) ;
527 }
528
529 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
530 s t a t i c void pe r i ph e r a l_ in i t (void ) {
531 /∗ D e a c t i v a t e unused GPIO p i n ∗/
532 GPIO_InitTypeDef GPIO_InitStructure= {0};
533
534 __HAL_RCC_GPIOD_CLK_ENABLE() ;
535 __HAL_RCC_GPIOE_CLK_ENABLE() ;
536 __HAL_RCC_GPIOF_CLK_ENABLE() ;
537 __HAL_RCC_GPIOG_CLK_ENABLE() ;
538 __HAL_RCC_GPIOH_CLK_ENABLE() ;
539
540 GPIO_InitStructure .Mode=GPIO_MODE_ANALOG;
541 GPIO_InitStructure . Pul l=GPIO_NOPULL;
542 GPIO_InitStructure . Pin=GPIO_PIN_All ;
543
544 HAL_GPIO_Init(GPIOD, &GPIO_InitStructure ) ;
545 HAL_GPIO_Init(GPIOE, &GPIO_InitStructure ) ;
546 HAL_GPIO_Init(GPIOF, &GPIO_InitStructure ) ;
547 HAL_GPIO_Init(GPIOG, &GPIO_InitStructure ) ;
548 HAL_GPIO_Init(GPIOH, &GPIO_InitStructure ) ;
549
550 __HAL_RCC_GPIOD_CLK_DISABLE() ;
551 __HAL_RCC_GPIOE_CLK_DISABLE() ;
552 __HAL_RCC_GPIOF_CLK_DISABLE() ;
553 __HAL_RCC_GPIOG_CLK_DISABLE() ;
554 __HAL_RCC_GPIOH_CLK_DISABLE() ;
555
556
557 /∗ D i s a b l e unused p e r i p h e r a l s ∗/
558 __HAL_RCC_CRC_CLK_DISABLE() ;
559 __HAL_RCC_DMA2_CLK_DISABLE() ;
560 __HAL_RCC_TIM3_CLK_DISABLE() ;
561 __HAL_RCC_TIM4_CLK_DISABLE() ;
562 __HAL_RCC_TIM5_CLK_DISABLE() ;
563 __HAL_RCC_TIM6_CLK_DISABLE() ;
564 __HAL_RCC_TIM7_CLK_DISABLE() ;
565 __HAL_RCC_TIM9_CLK_DISABLE() ;
566 __HAL_RCC_TIM10_CLK_DISABLE() ;
567 __HAL_RCC_TIM11_CLK_DISABLE() ;
568 __HAL_RCC_LCD_CLK_DISABLE() ;
569 __HAL_RCC_WWDG_CLK_DISABLE() ;
570 __HAL_RCC_SPI2_CLK_DISABLE() ;
571 __HAL_RCC_SPI3_CLK_DISABLE() ;
572 __HAL_RCC_I2C1_CLK_DISABLE() ;
573 __HAL_RCC_I2C2_CLK_DISABLE() ;
574 __HAL_RCC_COMP_CLK_DISABLE() ;
575
576 __HAL_RCC_GPIOA_CLK_ENABLE() ;
577 GPIO_InitStructure .Mode=GPIO_MODE_ANALOG;
578 GPIO_InitStructure . Pul l=GPIO_NOPULL;
579 GPIO_InitStructure . Pin=GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15 ; // | GPIO_PIN_2 | GPIO_PIN_3 ;
580 HAL_GPIO_Init(GPIOA, &GPIO_InitStructure ) ;
581
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582 }
583
584 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
585 s t a t i c void enter_stop_mode ( int s leep_seconds )
586 {
587 int stop_time ;
588
589 PRINTF( " Stop␣mode : ␣ ente r . . . \ n" ) ;
590
591 sp i r i t_ lp_enab l e ( ) ;
592 per iphera l_lp_enable ( ) ;
593
594 HAL_PWREx_EnableUltraLowPower ( ) ;
595 HAL_PWREx_EnableFastWakeUp( ) ;
596
597 exti_imr_backup = EXTI−>IMR;
598 EXTI−>IMR=0x00000000 ;
599
600 HAL_SuspendTick ( ) ;
601
602 stop_time=sleep_seconds ∗2048;
603
604 while ( stop_time>0){
605 /∗## C o n f i g u r e t h e Wake up t i m e r ###########################################∗/
606 /∗ RTC Wakeup I n t e r r u p t Ge ner at ion :
607 Wakeup Time Base = (RTC_WAKEUPCLOCK_RTCCLK_DIV /( LSI ) )
608 Wakeup Time = Wakeup Time Base ∗ WakeUpCounter
609 = (RTC_WAKEUPCLOCK_RTCCLK_DIV /( LSI ) ) ∗ WakeUpCounter
610 ==> WakeUpCounter = Wakeup Time / Wakeup Time Base
611 To c o n f i g u r e t h e wake up t i m e r t o 20 s t h e WakeUpCounter i s s e t t o 0xA017 :
612 RTC_WAKEUPCLOCK_RTCCLK_DIV = RTCCLK_Div16 = 16
613 Wakeup Time Base = 16 / ( ~ 3 2 . 7 6 8 KHz) = ~0 ,488 ms
614 Wakeup Time = ~20 s = 0 ,488ms ∗ WakeUpCounter
615 ==> WakeUpCounter = ~20 s /0 ,488ms = 40983 = 0xA017 ∗/
616
617 /∗ D i s a b l e Wake−up t i m e r ∗/
618 HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle ) ;
619
620 /∗ C l e a r PWR wake up F l a g ∗/
621 __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU) ;
622
623 /∗ C l e a r RTC Wake Up t i m e r F l a g ∗/
624 __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(&RtcHandle , RTC_FLAG_WUTF) ;
625
626 /∗ Enable Wake−up t i m e r ∗/
627 i f ( stop_time <=65535){
628 HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle , stop_time , RTC_WAKEUPCLOCK_RTCCLK_DIV16) ;
629 }
630 e l s e{
631 HAL_RTCEx_SetWakeUpTimer_IT(&RtcHandle , 0 x f f f f , RTC_WAKEUPCLOCK_RTCCLK_DIV16) ;
632 }
633 /∗## Enter Stop Mode #######################################################∗/
634 HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI) ;
635 stop_time −=65535;
636 }
637
638
639 /∗ C o n f i g u r e s sys tem c l o c k a f t e r wake−up from STOP: e n a b l e HSI , PLL and s e l e c t
640 PLL as system c l o c k s o u r c e ( HSI and PLL are d i s a b l e d i n STOP mode ) ∗/
641 SYSCLKConfig_STOP() ;
642
643 /∗ D i s a b l e Wake−up t i m e r ∗/
644 i f (HAL_RTCEx_DeactivateWakeUpTimer(&RtcHandle ) != HAL_OK)
645 {
646 /∗ I n i t i a l i z a t i o n Error ∗/
647 Error_Handler ( ) ;
648 }
649
650 HAL_ResumeTick ( ) ;
651 EXTI−>IMR = exti_imr_backup ;
652 per iphera l_ lp_di sab l e ( ) ;
653 sp i r i t_ lp_d i s ab l e ( ) ;
654
655 HAL_PWREx_DisableUltraLowPower ( ) ;
656 PRINTF( " Stop␣mode : ␣ e x i t ! \ n" ) ;
657 }
658
659 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
660 s t a t i c void SYSCLKConfig_STOP(void )
661 {
662 RCC_ClkInitTypeDef RCC_ClkInitStruct ;
663 RCC_OscInitTypeDef RCC_OscInitStruct ;
664 uint32_t pFLatency = 0 ;
665
666 /∗ Get t h e O s c i l l a t o r s c o n f i g u r a t i o n a c c o r d i n g t o t h e i n t e r n a l RCC r e g i s t e r s ∗/
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667 HAL_RCC_GetOscConfig(&RCC_OscInitStruct ) ;
668
669 /∗ A f t e r wake−up from STOP r e c o n f i g u r e t h e sys tem c l o c k : Enab le HSI and PLL ∗/
670 RCC_OscInitStruct . Osc i l l a to rType = RCC_OSCILLATORTYPE_HSI;
671 RCC_OscInitStruct . HSIState = RCC_HSI_ON;
672 RCC_OscInitStruct .PLL. PLLState = RCC_PLL_ON;
673 RCC_OscInitStruct . HSICal ibrat ionValue = 0x10 ;
674 i f (HAL_RCC_OscConfig(&RCC_OscInitStruct ) != HAL_OK)
675 {
676 Error_Handler ( ) ;
677 }
678
679 /∗ Get t h e C l o c k s c o n f i g u r a t i o n a c c o r d i n g t o t h e i n t e r n a l RCC r e g i s t e r s ∗/
680 HAL_RCC_GetClockConfig(&RCC_ClkInitStruct , &pFLatency ) ;
681
682 /∗ S e l e c t PLL as system c l o c k s o u r c e and c o n f i g u r e t h e HCLK, PCLK1 and PCLK2
683 c l o c k s d i v i d e r s ∗/
684 RCC_ClkInitStruct . ClockType = RCC_CLOCKTYPE_SYSCLK;
685 RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
686 i f (HAL_RCC_ClockConfig(&RCC_ClkInitStruct , pFLatency ) != HAL_OK)
687 {
688 Error_Handler ( ) ;
689 }
690 }
691
692 PROCESS_THREAD( rd_cl ient , ev , data )
693 {
694 PROCESS_BEGIN( ) ;
695 s t a t i c char server_found = 0 ;
696
697 s t a t i c uint16_t t ;
698 s t a t i c uint32_t message [ 1 0 ] ;
699 s t a t i c int t_now ;
700
701 s t a t i c RTC_TimeTypeDef RTC_TimeStructure ;
702 s t a t i c RTC_DateTypeDef RTC_DateStructure ;
703
704 int32_t hum=0, temp=0;
705
706 p r i n t f ( "RD␣Cl i ent ␣ proce s s ␣ s t a r t ed .\ n\n" ) ;
707
708 #i f d e f USE_PUBLIC_LWM2M_SERVER
709 s t a t i c int r e t ;
710 uip_ip6addr_t ip6addr ;
711
712 p r i n t f ( " Looking␣ f o r ␣LWM2M␣ se rv e r : ␣’%s ’\n" , host ) ;
713 uip_ipaddr(&ip4addr , 8 ,8 ,8 ,8 ) ;
714 ip64_addr_4to6(&ip4addr , &ip6addr ) ;
715 uip_nameserver_update(&ip6addr , UIP_NAMESERVER_INFINITE_LIFETIME) ;
716
717 /∗DNS r e q u e s t f o r s e r v e r a d d r e s s ∗/
718 et imer_set (&et , 2 ∗ CLOCK_SECOND) ;
719 reso lv_query ( host ) ;
720
721 HAL_Delay(3000) ;
722
723 while ( ( r e t = reso lv_lookup ( host , &addrptr ) ) != RESOLV_STATUS_CACHED) {
724 i f ( r e t != RESOLV_STATUS_RESOLVING){
725 resolv_query ( host ) ;
726 }
727 PROCESS_WAIT_EVENT_UNTIL( et imer_expired(&et ) ) ;
728 et imer_reset (&et ) ;
729 }
730
731 server_found = 1 ;
732 server_ipaddr = ∗ addrptr ;
733
734 #e l s e
735 #i f d e f LWM2M_SERVER_ADDRESS_v4
736 p r i n t f ( " Looking␣ f o r ␣LWM2M␣ se rv e r : ␣’%s ’\n" , LWM2M_SERVER_ADDRESS_v4) ;
737
738 // u i p _ i p a d d r (& ip4addr , 192 , 168 , 0 , 1) ; // Old code
739 i f ( u ip l ib_ip4addrconv (LWM2M_SERVER_ADDRESS_v4, &ip4addr ) ) {
740 ip64_addr_4to6(&ip4addr , &server_ipaddr ) ;
741 server_found = 1 ;
742 }
743 #endif /∗ LWM2M_SERVER_ADDRESS_v4 ∗/
744
745 #i f d e f LWM2M_SERVER_ADDRESS_v6
746 p r i n t f ( " Looking␣ f o r ␣LWM2M␣ se rv e r : ␣’%s ’\n" , LWM2M_SERVER_ADDRESS_v6) ;
747
748 i f ( u ip l ib_ip6addrconv (LWM2M_SERVER_ADDRESS_v6, &server_ipaddr ) ) {
749 server_found = 1 ;
750 }
751 #endif /∗ LWM2M_SERVER_ADDRESS_v6 ∗/
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752 #endif /∗USE_PUBLIC_LWM2M_SERVER∗/
753
754 i f ( ! server_found ) {
755 p r i n t f ( "ERROR␣with␣ the ␣ Server ␣IP␣Address , ␣ p l ea s e ␣ check␣ the ␣ provided ␣ con f i gu r a t i on .\ n" ) ;
756 } e l s e {
757
758 p r i n t f ( "LWM2M␣Server ␣Address :\ n" ) ;
759 uip_debug_ipaddr_print(&server_ipaddr ) ;
760 p r i n t f ( " \n" ) ;
761 dis_output (NULL) ;
762 /∗ N o t i f y t h e a d d r e s s t o lwm2m f o r r e g i s t r a t i o n ∗/
763 // l w m 2 m _ e n g i n e _ r e g i s t e r _ w i t h _ b o o t s t r a p _ s e r v e r (& s e r v e r _ i p a d d r , 0) ;
764 lwm2m_engine_register_with_server(&server_ipaddr , SERVER_PORT) ;
765
766 // lwm2m_engine_use_bootstrap_server (REGISTER_WITH_LWM2M_BOOTSTRAP_SERVER) ;
767 lwm2m_engine_use_registration_server (REGISTER_WITH_LWM2M_SERVER) ;
768
769 /∗ I n i t i a l i z e o b j e c t s and s t a r t lwm2m e n g i n e ∗/
770 lwm2m_engine_init ( ) ;
771 lwm2m_engine_register_default_objects ( ) ;
772
773 pe r i ph e r a l_ in i t ( ) ;
774 ip so_ob j e c t s_ in i t ( ) ;
775 }
776
777 /∗ custom a p p l i c a t i o n f o r sync ∗/
778
779 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
780 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
781 PRINTF( " C l i en t ␣ s t a r t ed ␣ at : ␣%02d:%02d:%02d\n" , RTC_TimeStructure . Hours , RTC_TimeStructure . Minutes

, RTC_TimeStructure . Seconds ) ;
782
783
784
785 do {
786 dag = rpl_get_any_dag ( ) ;
787
788 i f ( dag != NULL)
789 {
790 PRINTF( "GATEWAY␣IP : ␣ " ) ;
791 for ( uint8_t i =0; i <8; i++)
792 {
793 PRINTF( "%.4x␣ " , dag−>dag_id . u16 [ i ] ) ;
794 }
795 PRINTF( "\n" ) ;
796 }
797 e l s e
798 {
799 et imer_set (&per iodic_t imer , CLOCK_SECOND/5) ;
800 PROCESS_WAIT_UNTIL( et imer_expired(&per iod ic_t imer ) ) ;
801 }
802 } while ( dag == NULL) ;
803
804 #i f SYNC_TYPE == MULTICAST_SYNC
805 i f ( join_mcast_group ( ) == NULL) {
806 PRINTF( " Fa i l ed ␣ to ␣ j o i n ␣mul t i ca s t ␣group\n" ) ;
807 PROCESS_EXIT( ) ;
808 }
809
810 sink_conn = udp_new(NULL, UIP_HTONS(0) , NULL) ;
811 udp_bind ( sink_conn , UIP_HTONS(SYNC_UDP_PORT) ) ;
812 #e l i f SYNC_TYPE == UNICAST_SYNC
813 simple_udp_register (&unicast_connect ion , SYNC_UDP_PORT,
814 NULL, SYNC_UDP_PORT, r e c e i v e r ) ;
815 uip_ip6addr(&mc_addr , 0 xfc00 , 0 , 0 , 0 , 0 , 0 , 0x1337 , 0x0002 ) ;
816 uip_create_l ink loca l_al lnodes_mcast (&mc_addr) ;
817 #endif
818
819 simple_udp_register (&rpl_connect ion_test , TEST_UDP_PORT,
820 NULL, TEST_UDP_PORT, r e c e i v e r 2 ) ;
821
822 et imer_set (&per iodic_timer , CLOCK_SECOND/5) ;
823 et imer_set (&per iod ic_t imer_test , 10∗CLOCK_SECOND) ;
824 #i f TEST_MODE == 0
825 /∗ B e f o r e s t a r t i n g s e n s o r s o p e r a t i o n + l p mode p r o c e s s w a i t s f o r s y n c h r o n i z a t i o n message
826 ∗ jump i f a s o f t w a r e r e s e t o c c u r r e d ∗/
827 i f ( so f tware_rese t==0){
828 PRINTF( "Waiting␣ f o r ␣ sync\n" ) ;
829 #i f SYNC_TYPE == MULTICAST_SYNC
830 while ( et imer_expired(&per iod ic_t imer_test )==0 | | ! synch ){
831 PROCESS_YIELD() ;
832 i f ( ev == tcpip_event ) {
833 tcpip_handler ( ) ; // p e r f o r m s t h e sync
834 }
835 }

87



A – Source code

836 #e l i f SYNC_TYPE == UNICAST_SYNC
837 PROCESS_YIELD_UNTIL( et imer_expired(&per iod ic_t imer_test ) && synch ) ;
838 #endif
839 PRINTF( " Synched\n" ) ;
840 }
841 #endif /∗ test_mode ∗/
842
843 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
844 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
845 PRINTF( " Sync␣debug : ␣%02d:%02d:%02d.%03d\n" , RTC_TimeStructure . Hours , RTC_TimeStructure . Minutes ,

RTC_TimeStructure . Seconds , (1000∗(RTC_TimeStructure . SecondFraction − RTC_TimeStructure .
SubSeconds ) ) /(RTC_TimeStructure . SecondFract ion + 1) ) ;

846 et imer_reset (&per iod ic_t imer ) ;
847 message [ 0 ]=0 ;
848
849 PRINTF( " Sending␣message␣%d␣ to : ␣ " , message [ 0 ] ) ;
850 IPSO_TEMPERATURE. read_value(&temp) ;
851 IPSO_HUMIDITY. read_value(&hum) ;
852 message [1 ]=hum;
853 message [2 ]= temp ;
854 uip_debug_ipaddr_print(&dag−>dag_id ) ;
855 PRINTF( "\n" ) ;
856 BSP_LED_Toggle(LED2) ;
857 simple_udp_sendto(&rpl_connect ion_test , &message , s i z e o f ( message ) , &dag−>dag_id ) ;
858 BSP_LED_Toggle(LED2) ;
859 message [0]++;
860
861 while (1 ) {
862 RTC_TimeStructure . Hours , RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(

RTC_TimeStructure . SubSeconds − RTC_TimeStructure . SecondFract ion ) ) /(RTC_TimeStructure .
SecondFract ion + 1) ) ;

863
864 PROCESS_YIELD() ;
865 #i f SYNC_TYPE == MULTICAST_SYNC
866 i f ( ev == tcpip_event ) {
867 tcpip_handler ( ) ; // p e r f o r m s t h e sync
868 }
869 #endif
870 #i f TEST_MODE == 0
871 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
872 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
873
874 t = (RTC_TimeStructure . Minutes ∗60 + RTC_TimeStructure . Seconds )%PERIOD;
875
876 i f ( t>=ON_TIME){
877 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
878 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
879 i f ( enable_stop == LP_MODE_ON){
880 PRINTF( " time␣ to ␣ ente r ␣ stop ␣mode␣ f o r ␣%d␣ seconds : ␣%02d:%02d:%02d.%03d\n" , PERIOD−t ,

RTC_TimeStructure . Hours , RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(
RTC_TimeStructure . SecondFract ion − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure .
SecondFraction + 1) ) ;

881 enter_stop_mode (PERIOD−t ) ;
882 } e l s e {
883 PRINTF( " time␣ to ␣be␣ qu i e t ␣ f o r ␣%d␣ seconds : ␣%02d:%02d:%02d.%03d\n" , PERIOD−t , RTC_TimeStructure

. Hours , RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(RTC_TimeStructure .
SecondFraction − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure . SecondFract ion + 1) ) ;

884 et imer_set (&process_pause , (PERIOD−t ) ∗CLOCK_SECOND) ;
885 PROCESS_YIELD_UNTIL( et imer_expired(&process_pause ) ) ;
886 }
887 wakeup=1;
888 }
889 e l s e i f (wakeup==1){
890 i f ( so f tware_rese t==1){
891 dis_output (NULL) ;
892 so f tware_rese t =0;
893 }
894
895 et imer_set (&process_pause , 1000 + random_rand ( ) %2000) ; // random_rand ( ) %3000) ;
896 PROCESS_WAIT_UNTIL( et imer_expired(&process_pause ) ) ;
897
898 PRINTF( " Sending␣message␣%d␣ to : ␣ " , message [ 0 ] ) ;
899 IPSO_TEMPERATURE. read_value(&temp) ;
900 IPSO_HUMIDITY. read_value(&hum) ;
901 message [1 ]=hum;
902 message [2 ]= temp ;
903 uip_debug_ipaddr_print(&dag−>dag_id ) ;
904 PRINTF( "\n" ) ;
905 BSP_LED_Toggle(LED2) ;
906 simple_udp_sendto(&rpl_connect ion_test , &message , s i z e o f ( message ) , &dag−>dag_id ) ;
907 BSP_LED_Toggle(LED2) ;
908 message [0]++;
909
910 et imer_set (&process_pause , random_rand ( ) %2000) ; // random_rand ( ) %3000) ;
911 PROCESS_WAIT_UNTIL( et imer_expired(&process_pause ) ) ;
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912
913 PRINTF( " Sending␣message␣%d␣ to : ␣ " , message [ 0 ] ) ;
914 IPSO_TEMPERATURE. read_value(&temp) ;
915 IPSO_HUMIDITY. read_value(&hum) ;
916 message [1 ]=hum;
917 message [2 ]= temp ;
918 uip_debug_ipaddr_print(&dag−>dag_id ) ;
919 PRINTF( "\n" ) ;
920 BSP_LED_Toggle(LED2) ;
921 simple_udp_sendto(&rpl_connect ion_test , &message , s i z e o f ( message ) , &dag−>dag_id ) ;
922 BSP_LED_Toggle(LED2) ;
923 message [0]++;
924
925 RTC_TimeStructure . Hours , RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(

RTC_TimeStructure . SecondFraction − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure .
SecondFract ion + 1) ) ;

926 wakeup=0;
927 }
928 #e l s e
929 /∗ t e s t ∗/
930 et imer_set (&process_pause , 10∗CLOCK_SECOND) ; // random_rand ( ) %3000) ;
931 PROCESS_WAIT_UNTIL( et imer_expired(&process_pause ) ) ;
932
933 PRINTF( " Sending␣message␣%d␣ to : ␣ " , message [ 0 ] ) ;
934 IPSO_TEMPERATURE. read_value(&temp) ;
935 IPSO_HUMIDITY. read_value(&hum) ;
936 message [1 ]=hum;
937 message [2 ]= temp ;
938 uip_debug_ipaddr_print(&dag−>dag_id ) ;
939 PRINTF( "\n" ) ;
940 // parent_debug ( ) ;
941 simple_udp_sendto(&rpl_connect ion_test , &message , s i z e o f ( message ) , &dag−>dag_id ) ;
942 message [0]++;
943 #endif /∗ test_mode ∗/
944
945 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
946 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
947 t_now=1000∗(3600∗RTC_TimeStructure . Hours + 60∗RTC_TimeStructure . Minutes + RTC_TimeStructure .

Seconds ) + (1000∗(RTC_TimeStructure . SecondFraction − RTC_TimeStructure . SubSeconds ) ) /(
RTC_TimeStructure . SecondFract ion + 1) ;

948
949 i f ( ( t_now−t_old )>RADIO_RESET){
950 s p i r i t_ r e s e t ( ) ;
951 }
952 et imer_reset (&per iod ic_t imer ) ;
953 }
954
955 PROCESS_END() ;
956 }
957
958 /∗ ∗
959 ∗ @}
960 ∗/
961
962 /∗ ∗
963 ∗ @}
964 ∗/
965
966
967 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ (C) COPYRIGHT S T M i c r o e l e c t r o n i c s ∗∗∗∗∗END OF FILE∗∗∗ ∗/

A.2 main.c
1 /∗ ∗
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 ∗ @ f i l e main . c
4 ∗ @author C e n t r a l LAB
5 ∗ @ver s ion V1 . 0 . 0
6 ∗ @date 20−January −2016
7 ∗ @ b r i e f Main program body
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 ∗ @ a t t e n t i o n

10 ∗
11 ∗ <h2><c e n t e r >&copy ; COPYRIGHT( c ) 2014 S T M i c r o e l e c t r o n i c s </ c e n t e r ></h2>
12 ∗
13 ∗ R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h or w i t h o u t m o d i f i c a t i o n ,
14 ∗ are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s are met :
15 ∗ 1 . R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t n o t i c e ,
16 ∗ t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
17 ∗ 2 . R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t n o t i c e ,
18 ∗ t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e documentat ion
19 ∗ and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e d i s t r i b u t i o n .
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20 ∗ 3 . N e i t h e r t h e name o f S T M i c r o e l e c t r o n i c s nor t h e names o f i t s c o n t r i b u t o r s
21 ∗ may be used t o e n d o r s e or promote p r o d u c t s d e r i v e d from t h i s s o f t w a r e
22 ∗ w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
23 ∗
24 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS "
25 ∗ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 ∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 ∗ DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
28 ∗ FOR ANY DIRECT, INDIRECT , INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL
29 ∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 ∗ SERVICES ; LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER
31 ∗ CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
32 ∗ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 ∗ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 ∗
35 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36 ∗/
37 /∗ I n c l u d e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
38
39 #include " s t d i o . h "
40 #include " s t r i n g . h "
41 #include " s t d l i b . h "
42 #include "main . h "
43 #include " cube_hal . h "
44 #include " rad io_sh i e ld_con f i g . h "
45 #include " s p i r i t 1 . h "
46 #include " p roce s s . h "
47
48 /∗ ∗ @defgroup LWM2M_example
49 ∗ @{
50 ∗/
51
52 /∗ ∗ @addtogroup LWM2M_example
53 ∗ @{
54 ∗/
55
56 /∗ Funct ion p r o t o t y p e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
57 void USARTConfig (void ) ;
58 void Stack_6LoWPAN_Init (void ) ;
59 void SystemClock_Config (void ) ;
60 int MX_GPIO_Init(void ) ;
61 int RTC_Config ( ) ;
62 int RTC_TimeStampConfig ( ) ;
63 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
64
65 extern RTC_HandleTypeDef RtcHandle ;
66 uint8_t so f tware_rese t ;
67
68 /∗ ∗
69 ∗ @ b r i e f Main program
70 ∗ i n i t i a l i s e s HAL s t r u c t u r e s and c a l l s t h e c o n t i k i main
71 ∗ @param None
72 ∗ @ r e t v a l None
73 ∗/
74 int main ( )
75 {
76 GPIO_InitTypeDef GPIO_InitStructure= {0};
77
78 HAL_Init ( ) ;
79 /∗ C o n f i g u r e t h e sys tem c l o c k ∗/
80 SystemClock_Config ( ) ;
81
82 //HAL_EnableDBGStopMode ( ) ;
83
84 MX_GPIO_Init ( ) ;
85
86 // e n a b l e 3 . 3 v o u t p u t p i n f o r s e n s o r i n i t
87 __HAL_RCC_GPIOA_CLK_ENABLE() ;
88 GPIO_InitStructure .Mode=GPIO_MODE_OUTPUT_PP;
89 GPIO_InitStructure . Pul l=GPIO_NOPULL;
90 GPIO_InitStructure . Pin=GPIO_PIN_0;
91 GPIO_InitStructure . Speed=GPIO_SPEED_VERY_LOW;
92 HAL_GPIO_Init(GPIOA, &GPIO_InitStructure ) ;
93
94 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET) ;
95 HAL_Delay(10) ;
96 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET) ;
97 HAL_Delay(10) ;
98 //END e n a b l e 3 . 3 v o u t p u t p i n f o r s e n s o r i n i t
99

100
101 /∗ I n i t i a l i z e LEDs ∗/
102 BSP_LED_Init(LED2) ;
103
104 RadioSh ie ldLedIn i t (RADIO_SHIELD_LED) ;
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105
106 BSP_PB_Init (BUTTON_USER, BUTTON_MODE_EXTI) ;
107
108 USARTConfig ( ) ;
109
110 /∗ I n i t i a l i z e RTC ∗/
111 RTC_Config ( ) ;
112 // c o n f i g t h e r t c o n l y i f a power r e s e t o c c u r r e d
113 i f (RCC−>CSR & RCC_CSR_PORRSTF){
114 SET_BIT(RCC−>CSR, RCC_CSR_RMVF) ;
115 RTC_TimeStampConfig ( ) ;
116 so f tware_rese t =0;
117 } e l s e{
118 so f tware_rese t =1;
119 }
120
121 /∗ Compiler , HAL and f irmware i n f o : ∗/
122 p r i n t f ( " \ t (HAL␣%ld .% ld .%ld_%ld )\ r\n"
123 " \tCompiled␣%s␣%s "
124 #i f de f ined (__IAR_SYSTEMS_ICC__)
125 " ␣ (IAR)\ r\n\n" ,
126 #e l i f de f ined (__CC_ARM)
127 " ␣ (KEIL)\ r\n\n" ,
128 #e l i f de f ined (__GNUC__)
129 " ␣ ( openstm32 )\ r\n\n" ,
130 #endif
131 HAL_GetHalVersion ( ) >>24,
132 (HAL_GetHalVersion ( ) >>16)&0xFF ,
133 (HAL_GetHalVersion ( ) >> 8)&0xFF ,
134 HAL_GetHalVersion ( ) &0xFF ,
135 __DATE__,__TIME__) ;
136
137 Stack_6LoWPAN_Init ( ) ;
138
139 while (1 ) {
140 int r = 0 ;
141 do {
142 r = process_run ( ) ;
143 } while ( r > 0) ;
144 HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI) ;
145 }
146
147 }
148
149 /∗ ∗
150 ∗ @}
151 ∗/
152
153 /∗ ∗
154 ∗ @}
155 ∗/
156
157
158 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ (C) COPYRIGHT S T M i c r o e l e c t r o n i c s ∗∗∗∗∗END OF FILE∗∗∗ ∗/

A.3 border-router.c
1 /∗
2 ∗ R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i t h or w i t h o u t
3 ∗ m o d i f i c a t i o n , are p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s
4 ∗ are met :
5 ∗ 1 . R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t
6 ∗ n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
7 ∗ 2 . R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t
8 ∗ n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e
9 ∗ documentat ion and / or o t h e r m a t e r i a l s p r o v i d e d w i t h t h e d i s t r i b u t i o n .

10 ∗ 3 . N e i t h e r t h e name o f t h e I n s t i t u t e nor t h e names o f i t s c o n t r i b u t o r s
11 ∗ may be used t o e n d o r s e or promote p r o d u c t s d e r i v e d from t h i s s o f t w a r e
12 ∗ w i t h o u t s p e c i f i c p r i o r w r i t t e n p e r m i s s i o n .
13 ∗
14 ∗ THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ‘ ‘AS IS ’ ’ AND
15 ∗ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 ∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 ∗ ARE DISCLAIMED . IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
18 ∗ FOR ANY DIRECT, INDIRECT , INCIDENTAL, SPECIAL , EXEMPLARY, OR CONSEQUENTIAL
19 ∗ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 ∗ OR SERVICES ; LOSS OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION)
21 ∗ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
22 ∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 ∗ OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 ∗ SUCH DAMAGE.
25 ∗
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26 ∗ This f i l e i s p a r t o f t h e C o n t i k i o p e r a t i n g sys tem .
27 ∗
28 ∗/
29 /∗ ∗
30 ∗ \ f i l e
31 ∗ border −r o u t e r
32 ∗ \ a u t h o r
33 ∗ N i c l a s Finne <n f i @ s i c s . se>
34 ∗ Joakim E r i k s s o n <j o a k i m e @ s i c s . se>
35 ∗ N i c o l a s T s i f t e s <n v t @ s i c s . se>
36 ∗/
37
38 #include " c on t i k i . h "
39 #include " cont ik i−l i b . h "
40 #include " cont ik i−net . h "
41 #include " net / ip /uip . h "
42 #include " net / ip /uip−debug . h "
43 #include " net / ipv6 /uip−ds6 . h "
44 #include " net / ipv6 /mul t i ca s t /uip−mcast6 . h "
45
46 #include " net / rp l / rp l . h "
47
48 #include " net / net s tack . h "
49 #include " dev/button−s ensor . h "
50 #include " dev/ s l i p . h "
51
52 #include <std i o . h>
53 #include <s t d l i b . h>
54 #include <s t r i n g . h>
55 #include <ctype . h>
56
57 #include " cube_hal . h "
58
59 /∗ ∗ @addtogroup Border_router
60 ∗ @{
61 ∗/
62
63 #define DEBUG DEBUG_PRINT
64 #i f DEBUG | | 1
65 #define PRINTF ( . . . ) p r i n t f (__VA_ARGS__)
66 #endif
67
68 #define MULTICAST_SYNC 1
69 #define UNICAST_SYNC 2
70
71 /∗ S e l e c t a sync mechanism ∗/
72 //#d e f i n e SYNC_TYPE MULTICAST_SYNC
73 #define SYNC_TYPE UNICAST_SYNC
74
75 /∗ e x t e r n a l v a r i a b l e ∗/
76 extern RTC_HandleTypeDef RtcHandle ;
77
78 /∗ b r o a d c a s t synch management ∗/
79 #define SYNC_START_DELAY 2
80 #define START_DELAY 5
81 #define SEND_INTERVAL 450
82 #define ON_TIME 5
83 #define SYNC_UDP_PORT 3001
84 #define TEST_UDP_PORT 3003
85 #define SYNCHRO 2
86 #define LP_MODE_ON 1
87 #define LP_MODE_OFF 0
88
89 /∗ Mcast message t y p e d e f ∗/
90 typedef struct
91 {
92 uint8_t MessageType ;
93 uint8_t TimeFormat ;
94 uint8_t Hours ;
95 uint8_t Minutes ;
96 uint8_t Seconds ;
97 uint32_t SubSeconds ;
98 uint32_t SecondFract ion ;
99 uint8_t RunMode ;

100 }Sync_MessageTypeDef ;
101
102 s t a t i c Sync_MessageTypeDef mcast_message ;
103
104 #i f SYNC_TYPE == MULTICAST_SYNC
105
106 s t a t i c struct uip_udp_conn ∗ mcast_conn ;
107 s t a t i c void prepare_mcast (void ) ;
108
109 #e l i f SYNC_TYPE == UNICAST_SYNC
110 s t a t i c struct simple_udp_connection unicast_connect ion ;
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111 s t a t i c uip_ipaddr_t mc_addr ;
112 s t a t i c void
113 r e c e i v e r ( struct simple_udp_connection ∗c ,
114 const uip_ipaddr_t ∗ sender_addr ,
115 uint16_t sender_port ,
116 const uip_ipaddr_t ∗ rece iver_addr ,
117 uint16_t rece iver_port ,
118 const uint8_t ∗data ,
119 uint16_t data len ) ;
120 #endif
121
122 s t a t i c struct simple_udp_connection rp l_connect ion_test ;
123 s t a t i c void
124 r e c e i v e r 2 ( struct simple_udp_connection ∗c ,
125 const uip_ipaddr_t ∗ sender_addr ,
126 uint16_t sender_port ,
127 const uip_ipaddr_t ∗ rece iver_addr ,
128 uint16_t rece iver_port ,
129 const uint32_t ∗data ,
130 uint16_t data len ) ;
131
132 s t a t i c struct et imer synch_timer ;
133 s t a t i c struct et imer rand_timer ;
134
135 s t a t i c void send_synchro_message (void ) ;
136
137 s t a t i c uint8_t synchro_sent=0;
138 s t a t i c uip_ipaddr_t p r e f i x ;
139 s t a t i c uint8_t pr e f i x_se t ;
140
141 #i f SYNC_TYPE == UNICAST_SYNC
142 s t a t i c void
143 r e c e i v e r ( struct simple_udp_connection ∗c ,
144 const uip_ipaddr_t ∗ sender_addr ,
145 uint16_t sender_port ,
146 const uip_ipaddr_t ∗ rece iver_addr ,
147 uint16_t rece iver_port ,
148 const uint8_t ∗data ,
149 uint16_t data len )
150 {
151 // b o r d e r r o u t e r does not r e c e i v e sync message
152 }
153 #endif
154
155 s t a t i c void
156 r e c e i v e r 2 ( struct simple_udp_connection ∗c ,
157 const uip_ipaddr_t ∗ sender_addr ,
158 uint16_t sender_port ,
159 const uip_ipaddr_t ∗ rece iver_addr ,
160 uint16_t rece iver_port ,
161 const uint32_t ∗data ,
162 uint16_t data len )
163 {
164 PRINTF( "Message␣%d␣ r e c e i v ed ␣ from : ␣ " , data [ 0 ] ) ;
165 uip_debug_ipaddr_print ( sender_addr ) ;
166 p r i n t f ( " ␣Hum: ␣%d␣rH\t ␣Temp: ␣%d␣C\n" , data [ 1 ] /1000 , data [ 2 ] / 1000 ) ;
167
168 }
169
170 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
171 s t a t i c void
172 send_synchro_message (void ) {
173
174 s t a t i c RTC_TimeTypeDef RTC_TimeStructure ;
175 s t a t i c RTC_DateTypeDef RTC_DateStructure ;
176
177 #i f SYNC_TYPE == UNICAST_SYNC
178 s t a t i c uip_ds6_nbr_t ∗nbr ;
179 #endif
180 int x ;
181 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
182 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
183 x=(1000∗(RTC_TimeStructure . SecondFract ion − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure

. SecondFract ion + 1) ;
184 i f (x>=500)
185 {
186 do{
187 rt imer_clock_t t0 ;
188 t0 = RTIMER_NOW() ;
189 while ( RTIMER_CLOCK_LT(RTIMER_NOW() , t0 + (500) ) ) ;
190 }while (0 ) ;
191 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
192 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
193 }
194
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195 mcast_message . MessageType = SYNCHRO;
196 mcast_message . TimeFormat = RTC_TimeStructure . TimeFormat ;
197 mcast_message . Hours = RTC_TimeStructure . Hours ;
198 mcast_message . Minutes = RTC_TimeStructure . Minutes ;
199 mcast_message . Seconds = RTC_TimeStructure . Seconds ;
200 mcast_message . SubSeconds = RTC_TimeStructure . SubSeconds ;
201 mcast_message . SecondFraction = RTC_TimeStructure . SecondFract ion ;
202 mcast_message .RunMode = LP_MODE_ON;
203
204 #i f SYNC_TYPE == MULTICAST_SYNC
205 uip_udp_packet_send (mcast_conn , &mcast_message , s i z e o f (mcast_message ) ) ;
206 #e l i f SYNC_TYPE == UNICAST_SYNC
207 simple_udp_sendto(&unicast_connect ion , &mcast_message , s i z e o f (mcast_message ) , &mc_addr) ;
208 #endif
209 PRINTF( "\nSending␣ cur rent ␣ time : ␣%02d:%02d:%02d.%03d\n" , RTC_TimeStructure . Hours ,

RTC_TimeStructure . Minutes , RTC_TimeStructure . Seconds , (1000∗(RTC_TimeStructure .
SecondFract ion − RTC_TimeStructure . SubSeconds ) ) /(RTC_TimeStructure . SecondFraction + 1) ) ;

210 }
211
212 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
213 #i f SYNC_TYPE == MULTICAST_SYNC
214 s t a t i c void
215 prepare_mcast (void )
216 {
217 uip_ipaddr_t ipaddr ;
218
219 /∗
220 ∗ IPHC w i l l use s t a t e l e s s m u l t i c a s t c o m p r e s s i o n f o r t h i s d e s t i n a t i o n
221 ∗ (M=1, DAC=0) , w i t h 32 i n l i n e b i t s (1E 89 AB CD)
222 ∗/
223 uip_ip6addr(&ipaddr , 0xFF1E ,0 , 0 , 0 , 0 , 0 , 0 x89 , 0xABCD) ;
224 mcast_conn = udp_new(&ipaddr , UIP_HTONS(SYNC_UDP_PORT) , NULL) ;
225 }
226 #endif
227
228 PROCESS( border_router_process , " Border␣ route r ␣ proce s s " ) ;
229
230 #i f WEBSERVER==0
231 /∗ No w e b s e r v e r ∗/
232 AUTOSTART_PROCESSES(&border_router_process ) ;
233 #e l i f WEBSERVER>1
234 /∗ Use an e x t e r n a l w e b s e r v e r a p p l i c a t i o n ∗/
235 #include " webserver−nogui . h "
236 AUTOSTART_PROCESSES(&border_router_process ,&webserver_nogui_process ) ;
237 #e l s e
238 /∗ Use s i m p l e w e b s e r v e r w i t h o n l y one page f o r minimum f o o t p r i n t .
239 ∗ M u l t i p l e c o n n e c t i o n s can r e s u l t i n i n t e r l e a v e d t c p segments s i n c e
240 ∗ a s i n g l e s t a t i c b u f f e r i s used f o r a l l segments .
241 ∗/
242 #include " httpd−s imple . h "
243 /∗ The i n t e r n a l w e b s e r v e r can p r o v i d e a d d i t i o n a l i n f o r m a t i o n i f
244 ∗ enough program f l a s h i s a v a i l a b l e .
245 ∗/
246 #define WEBSERVER_CONF_LOADTIME 0
247 #define WEBSERVER_CONF_FILESTATS 0
248 #define WEBSERVER_CONF_NEIGHBOR_STATUS 0
249 /∗ Adding l i n k s r e q u i r e s a l a r g e r RAM b u f f e r . To a v o i d s t a t i c a l l o c a t i o n
250 ∗ t h e s t a c k can be used f o r f o r m a t t i n g ; however t c p r e t r a n s m i s s i o n s
251 ∗ and m u l t i p l e c o n n e c t i o n s can r e s u l t i n g a r b l e d segments .
252 ∗ TODO: use PSOCk_GENERATOR_SEND and t c p s t a t e s t o r a g e t o f i x t h i s .
253 ∗/
254 #define WEBSERVER_CONF_ROUTE_LINKS 0
255 #i f WEBSERVER_CONF_ROUTE_LINKS
256 #define BUF_USES_STACK 1
257 #endif
258
259
260 PROCESS( webserver_nogui_process , "Web␣ s e rv e r " ) ;
261 PROCESS_THREAD( webserver_nogui_process , ev , data )
262 {
263 PROCESS_BEGIN( ) ;
264
265 httpd_init ( ) ;
266
267 while (1 ) {
268 PROCESS_WAIT_EVENT_UNTIL( ev == tcpip_event ) ;
269 httpd_appcal l ( data ) ;
270 }
271
272 PROCESS_END() ;
273 }
274 AUTOSTART_PROCESSES(&border_router_process ,&webserver_nogui_process ) ;
275
276 s t a t i c const char ∗TOP = "<html><head><t i t l e >ContikiRPL</t i t l e ></head><body>\n" ;
277 s t a t i c const char ∗BOTTOM = "</body></html>\n" ;
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278 #i f BUF_USES_STACK
279 s t a t i c char ∗bufptr , ∗bufend ;
280 #define ADD( . . . ) do { \
281 bufptr += snp r i n t f ( bufptr , bufend − bufptr , __VA_ARGS__) ; \
282 } while (0 )
283 #e l s e
284 s t a t i c char buf [ 2 5 6 ] ;
285 s t a t i c int blen ;
286 #define ADD( . . . ) do { \
287 blen += snp r i n t f (&buf [ blen ] , s i z e o f ( buf ) − blen , __VA_ARGS__) ; \
288 } while (0 )
289 #endif
290
291 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
292 s t a t i c void
293 ipaddr_add ( const uip_ipaddr_t ∗addr )
294 {
295 uint16_t a ;
296 int i , f ;
297 for ( i = 0 , f = 0 ; i < s i z e o f ( uip_ipaddr_t ) ; i += 2) {
298 a = ( addr−>u8 [ i ] << 8) + addr−>u8 [ i + 1 ] ;
299 i f ( a == 0 && f >= 0) {
300 i f ( f++ == 0) ADD( " : : " ) ;
301 } e l s e {
302 i f ( f > 0) {
303 f = −1;
304 } e l s e i f ( i > 0) {
305 ADD( " : " ) ;
306 }
307 ADD( "%x" , a ) ;
308 }
309 }
310 }
311 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
312 s t a t i c
313 PT_THREAD( generate_routes ( struct httpd_state ∗ s ) )
314 {
315 s t a t i c uip_ds6_route_t ∗ r ;
316 s t a t i c uip_ds6_nbr_t ∗nbr ;
317 #i f BUF_USES_STACK
318 char buf [ 2 5 6 ] ;
319 #endif
320 #i f WEBSERVER_CONF_LOADTIME
321 s t a t i c clock_time_t numticks ;
322 numticks = clock_time ( ) ;
323 #endif
324
325 PSOCK_BEGIN(&s−>sout ) ;
326
327 SEND_STRING(&s−>sout , TOP) ;
328 #i f BUF_USES_STACK
329 bufptr = buf ; bufend=bufptr+s i z e o f ( buf ) ;
330 #e l s e
331 blen = 0 ;
332 #endif
333 ADD( " Neighbors<pre>" ) ;
334
335 for ( nbr = nbr_table_head ( ds6_neighbors ) ;
336 nbr != NULL;
337 nbr = nbr_table_next ( ds6_neighbors , nbr ) ) {
338
339 #i f WEBSERVER_CONF_NEIGHBOR_STATUS
340 #i f BUF_USES_STACK
341 {char∗ j=bufptr +25;
342 ipaddr_add(&nbr−>ipaddr ) ;
343 while ( bufptr < j ) ADD( " ␣ " ) ;
344 switch ( nbr−>sta t e ) {
345 case NBR_INCOMPLETE: ADD( " ␣INCOMPLETE" ) ; break ;
346 case NBR_REACHABLE: ADD( " ␣REACHABLE" ) ; break ;
347 case NBR_STALE: ADD( " ␣STALE" ) ; break ;
348 case NBR_DELAY: ADD( " ␣DELAY" ) ; break ;
349 case NBR_PROBE: ADD( " ␣NBR_PROBE" ) ; break ;
350 }
351 }
352 #e l s e
353 {uint8_t j=blen+25;
354 ipaddr_add(&nbr−>ipaddr ) ;
355 while ( blen < j ) ADD( " ␣ " ) ;
356 switch ( nbr−>sta t e ) {
357 case NBR_INCOMPLETE: ADD( " ␣INCOMPLETE" ) ; break ;
358 case NBR_REACHABLE: ADD( " ␣REACHABLE" ) ; break ;
359 case NBR_STALE: ADD( " ␣STALE" ) ; break ;
360 case NBR_DELAY: ADD( " ␣DELAY" ) ; break ;
361 case NBR_PROBE: ADD( " ␣NBR_PROBE" ) ; break ;
362 }
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363 }
364 #endif
365 #e l s e
366 ipaddr_add(&nbr−>ipaddr ) ;
367 #endif
368
369 ADD( "\n" ) ;
370 #i f BUF_USES_STACK
371 i f ( bufptr > bufend − 45) {
372 SEND_STRING(&s−>sout , buf ) ;
373 bufptr = buf ; bufend = bufptr + s i z e o f ( buf ) ;
374 }
375 #e l s e
376 i f ( blen > s i z e o f ( buf ) − 45) {
377 SEND_STRING(&s−>sout , buf ) ;
378 blen = 0 ;
379 }
380 #endif
381 }
382 ADD( "</pre>Routes<pre>" ) ;
383 SEND_STRING(&s−>sout , buf ) ;
384 #i f BUF_USES_STACK
385 bufptr = buf ; bufend = bufptr + s i z e o f ( buf ) ;
386 #e l s e
387 blen = 0 ;
388 #endif
389
390 for ( r = uip_ds6_route_head ( ) ; r != NULL; r = uip_ds6_route_next ( r ) ) {
391
392 #i f BUF_USES_STACK
393 #i f WEBSERVER_CONF_ROUTE_LINKS
394 ADD( "<a␣ hr e f=http : / / [ " ) ;
395 ipaddr_add(&r−>ipaddr ) ;
396 ADD( " ] / s t a tu s . shtml>" ) ;
397 ipaddr_add(&r−>ipaddr ) ;
398 ADD( "</a>" ) ;
399 #e l s e
400 ipaddr_add(&r−>ipaddr ) ;
401 #endif
402 #e l s e
403 #i f WEBSERVER_CONF_ROUTE_LINKS
404 ADD( "<a␣ hr e f=http : / / [ " ) ;
405 ipaddr_add(&r−>ipaddr ) ;
406 ADD( " ] / s t a tu s . shtml>" ) ;
407 SEND_STRING(&s−>sout , buf ) ; //TODO: why t u n s l i p 6 needs an o u t p u t here , w p c a p s l i p does not
408 blen = 0 ;
409 ipaddr_add(&r−>ipaddr ) ;
410 ADD( "</a>" ) ;
411 #e l s e
412 ipaddr_add(&r−>ipaddr ) ;
413 #endif
414 #endif
415 ADD( "/%u␣ ( v ia ␣ " , r−>length ) ;
416 ipaddr_add ( uip_ds6_route_nexthop ( r ) ) ;
417 i f (1 | | ( r−>sta t e . l i f e t im e < 600) ) {
418 ADD( " ) ␣%lu s \n" , (unsigned long ) r−>sta t e . l i f e t im e ) ;
419 } e l s e {
420 ADD( " )\n" ) ;
421 }
422 SEND_STRING(&s−>sout , buf ) ;
423 #i f BUF_USES_STACK
424 bufptr = buf ; bufend = bufptr + s i z e o f ( buf ) ;
425 #e l s e
426 blen = 0 ;
427 #endif
428 }
429 ADD( "</pre>" ) ;
430
431 #i f WEBSERVER_CONF_FILESTATS
432 s t a t i c uint16_t numtimes ;
433 ADD( "<br><i>This ␣page␣ sent ␣%u␣ times</i>",++numtimes ) ;
434 #endif
435
436 #i f WEBSERVER_CONF_LOADTIME
437 numticks = clock_time ( ) − numticks + 1 ;
438 ADD( " ␣<i>(%u.%02u␣ sec )</i>" , numticks /CLOCK_SECOND, (100∗ ( numticks%CLOCK_SECOND) ) /CLOCK_SECOND)

) ;
439 #endif
440
441 SEND_STRING(&s−>sout , buf ) ;
442 SEND_STRING(&s−>sout , BOTTOM) ;
443
444 PSOCK_END(&s−>sout ) ;
445 }
446 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
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447 httpd_simple_script_t
448 httpd_simple_get_script ( const char ∗name)
449 {
450
451 return generate_routes ;
452 }
453
454 #endif /∗ WEBSERVER ∗/
455
456 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
457 s t a t i c void
458 pr in t_loca l_addre s s e s (void )
459 {
460 int i ;
461 uint8_t s t a t e ;
462
463 PRINTA( " Server ␣IPv6␣ addre s s e s :\ n" ) ;
464 for ( i = 0 ; i < UIP_DS6_ADDR_NB; i++) {
465 s t a t e = uip_ds6_if . addr_l i s t [ i ] . s t a t e ;
466 i f ( uip_ds6_if . addr_l i s t [ i ] . i s u s ed &&
467 ( s t a t e == ADDR_TENTATIVE | | s t a t e == ADDR_PREFERRED) ) {
468 PRINTA( " ␣ " ) ;
469 uip_debug_ipaddr_print(&uip_ds6_if . addr_l i s t [ i ] . ipaddr ) ;
470 PRINTA( "\n" ) ;
471 }
472 }
473 }
474 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
475 void
476 reque s t_pre f i x (void )
477 {
478 /∗ mess up uip_buf w i t h a d i r t y r e q u e s t . . . ∗/
479 uip_buf [ 0 ] = ’ ? ’ ;
480 uip_buf [ 1 ] = ’P ’ ;
481 uip_len = 2 ;
482 s l ip_send ( ) ;
483 uip_clear_buf ( ) ;
484 }
485 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
486 void
487 set_pref ix_64 ( uip_ipaddr_t ∗pref ix_64 )
488 {
489 rpl_dag_t ∗dag ;
490 uip_ipaddr_t ipaddr ;
491 memcpy(&pre f i x , pref ix_64 , 16) ;
492 memcpy(&ipaddr , pref ix_64 , 16) ;
493 pr e f i x_se t = 1 ;
494 uip_ds6_set_addr_iid(&ipaddr , &uip_l laddr ) ;
495 uip_ds6_addr_add(&ipaddr , 0 , ADDR_AUTOCONF) ;
496
497 dag = rpl_set_root (RPL_DEFAULT_INSTANCE, &ipaddr ) ;
498 i f ( dag != NULL) {
499 rp l_se t_pre f ix ( dag , &pre f i x , 64) ;
500 PRINTF( " c reated ␣a␣new␣RPL␣dag\n" ) ;
501 }
502 }
503
504 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
505 PROCESS_THREAD( border_router_process , ev , data )
506 {
507 s t a t i c struct et imer et ;
508 s t a t i c uint16_t t=0, i ;
509 s t a t i c RTC_TimeTypeDef RTC_TimeStructure ;
510 s t a t i c RTC_DateTypeDef RTC_DateStructure ;
511
512 PROCESS_BEGIN( ) ;
513
514 /∗ While w a i t i n g f o r t h e p r e f i x t o be s e n t t h r o u g h t h e SLIP c o n n e c t i o n , t h e f u t u r e
515 ∗ b o r d e r r o u t e r can j o i n an e x i s t i n g DAG as a p a r e n t or c h i l d , or a c q u i r e a d e f a u l t
516 ∗ r o u t e r t h a t w i l l l a t e r t a k e p r e c e d e n c e o v e r t h e SLIP f a l l b a c k i n t e r f a c e .
517 ∗ P r e v e n t t h a t by t u r n i n g t h e r a d i o o f f u n t i l we are i n i t i a l i z e d as a DAG r o o t .
518 ∗/
519 pr e f i x_se t = 0 ;
520 NETSTACK_MAC. o f f (0 ) ;
521
522 PROCESS_PAUSE() ;
523
524 SENSORS_ACTIVATE( button_sensor ) ;
525
526 PRINTF( "RPL−Border␣ route r ␣ s t a r t ed \n" ) ;
527 #i f 0
528 /∗ The b o r d e r r o u t e r runs w i t h a 100% d u t y c y c l e i n o r d e r t o e n s u r e h i g h
529 p a c k e t r e c e p t i o n r a t e s .
530 Note i f t h e MAC RDC i s not t u r n e d o f f now , a g g r e s s i v e power management o f t h e
531 cpu w i l l i n t e r f e r e w i t h e s t a b l i s h i n g t h e SLIP c o n n e c t i o n ∗/
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532 NETSTACK_MAC. o f f (1 ) ;
533 #endif
534
535 /∗ R e q u e s t p r e f i x u n t i l i t has been r e c e i v e d ∗/
536 while ( ! p r e f i x_se t ) {
537 et imer_set (&et , CLOCK_SECOND) ;
538 reque s t_pre f i x ( ) ;
539 PROCESS_WAIT_EVENT_UNTIL( et imer_expired(&et ) ) ;
540 }
541
542 /∗ Now t u r n t h e r a d i o on , b u t d i s a b l e r a d i o d u t y c y c l i n g .
543 ∗ S i n c e we are t h e DAG root , r e c e p t i o n d e l a y s would c o n s t r a i n mesh t h r o u g h b u t .
544 ∗/
545 NETSTACK_MAC. o f f (1 ) ;
546
547 #i f DEBUG | | 1
548 pr in t_loca l_addre s s e s ( ) ;
549 #endif
550
551 /∗ mcast management ∗/
552 /∗ own a d d r e s s a l r e a d y s e t ∗/
553 #i f SYNC_TYPE == MULTICAST_SYNC
554 prepare_mcast ( ) ;
555 #e l i f SYNC_TYPE == UNICAST_SYNC
556 simple_udp_register (&unicast_connect ion , SYNC_UDP_PORT,
557 NULL, SYNC_UDP_PORT, r e c e i v e r ) ;
558
559 uip_ip6addr(&mc_addr , 0 xfc00 , 0 , 0 , 0 , 0 , 0 , 0x1337 , 0x0002 ) ;
560 uip_create_l ink loca l_al lnodes_mcast (&mc_addr) ;
561
562 #endif
563
564 s imple_udp_register (&rpl_connect ion_test , TEST_UDP_PORT,
565 NULL, TEST_UDP_PORT, r e c e i v e r 2 ) ;
566
567 et imer_set (&synch_timer , SYNC_START_DELAY∗CLOCK_SECOND) ;
568 for ( i =0; i <10; i++){
569 PROCESS_YIELD() ;
570 i f ( et imer_expired(&synch_timer ) ) {
571 send_synchro_message ( ) ;
572 et imer_set (&synch_timer , SYNC_START_DELAY∗CLOCK_SECOND) ;
573 }
574 }
575 et imer_set (&synch_timer , START_DELAY∗CLOCK_SECOND) ;
576
577 /∗ c a l i b r a t i o n g i a v a t t o ∗/
578 GPIO_InitTypeDef GPIO_InitStruct ;
579
580 GPIO_InitStruct . Pin = GPIO_PIN_13 ;
581 GPIO_InitStruct .Mode = GPIO_MODE_AF_PP;
582 GPIO_InitStruct . Pul l = GPIO_NOPULL;
583 GPIO_InitStruct . Speed = GPIO_SPEED_FREQ_LOW;
584 GPIO_InitStruct . A l te rnate = GPIO_AF0_TAMPER;
585 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct ) ;
586
587
588 i f (HAL_RTCEx_SetCalibrationOutPut(&RtcHandle , RTC_CALIBOUTPUT_1HZ) != HAL_OK)
589 {
590 Error_Handler ( ) ;
591 }
592 /∗ c a l i b r a t i o n g i a v a t t o ∗/
593
594 while (1 ) {
595 PROCESS_YIELD() ;
596 i f ( ev == sensors_event && data == &button_sensor ) {
597 PRINTF( " I n i t i a t i n g ␣ g l oba l ␣ r epa i r \n" ) ;
598 rp l_repa i r_root (RPL_DEFAULT_INSTANCE) ;
599 }
600
601 HAL_RTC_GetTime(&RtcHandle , &RTC_TimeStructure , RTC_FORMAT_BIN) ;
602 HAL_RTC_GetDate(&RtcHandle , &RTC_DateStructure , RTC_FORMAT_BIN) ;
603
604 t = (RTC_TimeStructure . Minutes ∗60 + RTC_TimeStructure . Seconds )%SEND_INTERVAL;
605
606 i f ( t < ON_TIME && synchro_sent==0){
607 et imer_set (&rand_timer , random_rand ( ) %2000) ;
608 PROCESS_WAIT_UNTIL( et imer_expired(&rand_timer ) ) ;
609
610 send_synchro_message ( ) ;
611 synchro_sent=1;
612 } e l s e i f ( t >= ON_TIME){
613 synchro_sent=0;
614 }
615 et imer_set (&synch_timer , CLOCK_SECOND/5) ;
616 }
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617
618 PROCESS_END() ;
619 }
620 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
621
622 /∗ ∗
623 ∗ @}
624 ∗/
625
626 /∗ ∗
627 ∗ @}
628 ∗/
629
630
631 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ (C) COPYRIGHT S T M i c r o e l e c t r o n i c s ∗∗∗∗∗END OF FILE∗∗∗ ∗/
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