
POLITECNICO DI TORINO

Corso di Laurea in Computer Engineering

Tesi di Laurea Magistrale

Chatbot integration within
Sitecore Experience

Platform

Relatore:
prof. Guido Albertengo

Riccardo Di Vittorio
matricola: 231694

Supervisore Aziendale
Luigi De Martino

Anno accademico 2017-2018

Summary

Nowadays users want to feel themselves considered important and to
receive a dedicated treatment from technological experiences as well
as between people in the real life. The the main purpose of the thesis’
project is the development of a chatbot to integrate within a Sitecore’s
website in order to increase the user engagement with respect to the
brand, exploiting personalization mechanisms.
The work included the analysis of the Sitecore technology, in order to
understand how it works as Content Management System and how it
is able to deliver a personalized experience in the websites that use it.
Than has been analyzed how a chatbot should improve the user experi-
ence within a website, looking at their state of art, and the possibilities
for developing a new one. Finally has been studied and exploited the
Microsoft Bot Framework to speed up the chatbot’s creation and de-
velopment.
The thesis is composed by five chapters in which are illustrated the
state of art of the technology studied and how it has been used for
the development of the targeted project. In the first chapter is done
an overview of the Content Management Systems, what are, how they
work and how they can be categorized in different types, focusing then
on Sitecore and its main characteristics. In the second one is presented
the chatbot’s world: starting from the first bot developed until nowa-
days, explaining their history, how they are evolved, the used tech-
nology and how they are used, distinguishing different ways to work.
Going on, the next chapter is about the Microsoft Bot Framework, a
powerful tools for creating, developing and managing chatbots, with a

ii

detailed description of the main components of this framework, in or-
der to understand how it works. Having done an overview of the state
of art of the technology used in the work, the fourth chapter shows
the project implementation, how the shown technology has been used
and how it was chosen to operate, the choices done and what has been
developed, with the addition of code snippets for a more detailed view
on the work done. Finally, the last chapter is dedicated to the con-
clusions and further works, with the summary of what has been done,
the goals achieved and an analysis of what is missing and what could
be added in future.

iii

Contents

Summary ii

1 Content Management Systems 1
1.1 Sitecore . 4

1.1.1 Sitecore® Experience Platform™ 4
1.1.2 Experience Personalization 12
1.1.3 Content Management 23

2 Chatbots and Artificial intelligence 29
2.1 History of chatbots . 30
2.2 How the chatbots work 36

3 Microsoft Bot Framework 55
3.1 Azure Bot Service . 55
3.2 Bot Framework components 58

3.2.1 Bot Builder SDK 58
3.2.2 Bot Connector Service 60
3.2.3 Bot Developer Portal 60

4 Project Implementation 63
4.1 Jetstream website integration 63
4.2 Azure Cosmos DB . 68
4.3 JetstreamBot chatbot 73

4.3.1 Language Understanding Intelligent Service (LUIS) 74
4.3.2 FormFlow . 78

iv

4.3.3 Destinations research 81

5 Conclusions and further works 85

v

List of Figures

1.1 Sitecore Experience Platform 6
1.2 Continuous update processing overview 9
1.3 Rebuilding of the reporting database overview 9
1.4 xDB architecture overview 10
1.5 Sitecore Launchpad . 12
1.6 Evergage and Researchscape International survey . . . 13
1.7 Rule Set Editor . 15
1.8 Component personalization 16
1.9 Marketing Persona . 17
1.10 Profile Card . 18
1.11 Pattern Card . 19
1.12 Profiles node in Sitecore 21
1.13 Experience Editor . 24
1.14 Content Editor tree . 27
2.1 DeepQA Architecture 34
2.2 Finite-state machine for task-oriented chatbot 39
2.3 Sequence to sequence model for answers generation . . 54
3.1 Azure Bot Service . 57
3.2 Bot Developer Portal 61
4.1 Content Editor view in Jetstream 65
4.2 Marketing Control Panel in Jetstream 66
4.3 Azure CosmosDB Collection 73
4.4 Bot Architecture . 76
4.5 Chatbot interaction . 80
5.1 Overall Architecture 87

vi

Chapter 1

Content Management
Systems

The development of a website passes first of all from the definition of
what will be its use in terms of quantity and complexity of the infor-
mation to be represented, the need or not to have updated contents
and how the user can interact with them. Hence the choice between a
static or a dynamic site. The first one is characterized by an HTML
markup language, through which little flexible pages are created as far
as updating and maintenance are concerned, but which at the same
time have reduced loading times. The user can use these pages only in
a consultative way, without a real interaction that leads to the mod-
ification of the pages themselves. The second one, instead, offers the
possibility to manipulate the content dynamically going to query the
databases in real time in order to obtain the required content, using
languages such as ASP.NET, PHP or AJAX. In this case the loading
times will be longer due to latency between the data request and the
response from external databases but it will be possible to establish
an interaction with the user. While on one hand the dynamic sites
allow better content management and greater involvement of the user,
on the other hand, the construction and maintenance of this type of
sites requires a greater implementation effort due to the need to con-
trol and update the material provided in them. Traditionally the task

1

1 – Content Management Systems

of uploading and updating site content is fell to the IT department,
but sometimes a web page may consist of several areas handled from
different departments in the company, so the additional difficulty of
managing the access to the same resources by several people must be
considered. To overcome this, specific applications were born for the
management of websites without the need for high technical conno-
tations, called web content management systems, or CMS. A content
management system is a software package that provides some automa-
tion to the tasks that are required to maintain content. It is composed
by many parts, like an editing interface, a repository, and several pub-
lishing mechanisms, even if from outside it might appears as a single
block for non-technical users. A CMS is usually server-based, multi-
user software which interacts with the content stored in a repository
in the same server or in another one allowing editing, controlling and
reusing it. Based on the content type is possible to distinguish four
categories of CMS, though they are not exactly separated and inde-
pendent among them:

• Enterprise Content Management (ECM): is a combination of
strategies, methods and tools used for the organization of general
business information as employee resumes, memos or incident re-
ports, that has to be used by a designated audience.

• Digital Asset Management (DAM): is a software solution that
allows enterprises to store, organize and share digital content,
like images, audio, video and presentations.

• Records Management: it concerns the creation and management
of records that are part of the business transactions, identifying
relevant information to be used for record classification.

• Web Content Management: manage material designed to be pub-
lished on a website. [3]

Core functions of all Content Management Systems are the possibility
to establish the necessary permissions to editing, deleting or simply see

2

the content and keeping published content separated from the reposi-
tory where editors work, so that revised content remains unpublished
until it’s ready to be launched. At the same time the system automat-
ically tracks all the changes and allows to see when it was done the
last modify and how the current version is different from the previous
one. Furthermore it encourage content reuse and provides dependency
management, so that when a content is modified or deleted, also all
the references to it are modified accordingly.
Going into more detail about Web Content Management Systems (WCMS),
these typically are web applications that provide browser-based user
interfaces in order to allow to maintain the content, and its presenta-
tion, of one or more websites. The primary goal of these systems is
to provide means by which even non-technical users can maintain the
content of their website, including the consistency of what is shown,
as well as the reuse of the content not only in several pages but also in
different websites, adapting the presentation to the different character-
istics of the various devices (for example different browsers could use
different markups, and the same content will be arranged differently
depending on whether you use a smartphone rather then a tablet [26].
Actually many different CMS are available on the market, for example:

• WordPress: an open source content management system launched
in 2003 and based on PHP and MySQL.

• Drupal: another open source software written in PHP, that can
be used to easily create and manage websites that include blog,
forum, e-commerce sites and social networks.

• Joomla!: it is a free open source content management system
based on Mambo (the previous CMS) and is written in PHP,
while stores data using MySQL.[18]

• Sitecore: a powerful CMS built on ASP.NET, that enables web
content editors and marketers to have full control over all aspects
of their website.

Among those listed above, we focus on Sitecore technology.

3

1 – Content Management Systems

1.1 Sitecore
Sitecore is a global software company founded in 2001 as spin-off of
another consultancy company, and become one of leading providers of
customer experience management, digital marketing and e-commerce
software. It offers a complete ASP.NET development platform and a
web content management system that uses a flexible and hierarchical
data storage, that give to the developer the possibility to speed up the
website creation and maintenance.
Starting from pure web content management software, the company
has expanded its offering concerning digital marketing allowing Sitecore’s
customers to personalize and tailor the provided content to individual
visitors on different channels. The importance of the user experience
in the sales process has been confirmed by several studies, including a
survey made by American Express and reported by Glance in which
states that «91% of customer who had a bad experience won’t will-
ing do business with your company again», thus the importance of
investing to improve the user experience and establish an ongoing re-
lationship with him. In support of this we can refer to another survey
done by Gartner in 2016, who reports that «89% of companies expect
to compete mostly on the basis of customer experience, versus 36%
four years ago».
To meet these expectations Sitecore offers solutions leveraging on arti-
ficial intelligence and machine learning to help its customers to design
marketing activities that are increasingly targeted and personalized
for individual visitors [7], including the Sitecore Experience Platform
launched in 2015.

1.1.1 Sitecore® Experience Platform™

«Marketers need three key elements to deliver relevant, personalized
experiences,» said Michael Seifert, CEO, Sitecore. «First, they must
understand their customers, who they are, what they care about, and
what they are doing. Second, they need a single content management

4

1.1 – Sitecore

system that can share contextualized content across channels to cus-
tomers. And third, they need to deliver communication automation,
the ability to map profile and real time behaviors with on the spot de-
cision making to customize the experience as it happens across touch
points.»
Sitecore Experience Platform (XP) helps businesses to know better
their customers, using key attributes like location, device used and
purchase history in order to offer them targeted content, selected based
on the acquired information, and present them in the most adequate
[21]. It is a customer experience management software containing the
Sitecore CMS, the Experience Database (xDB) and Experience Mar-
keting applications that allow the unification of activities across mul-
tiple channel, like campaigns, visitor activity and performance mea-
surement.

Sitecore’s architecture

Sitecore’s architecture can be split into five main blocks: Channels,
Management, Sitecore AIDA, Database and Integration.

Channel Layer Users interact with a brand by means of channels.
Those available are web, e-mail, mobile, social, commerce, print, apps
and federated. Sitecore provides useful tools for managing the con-
tent available on each channel, such as an Email Experience Man-
ager, that can be used for creating personalized email campaigns and
tracking user interaction with them, the Print Experience Manager,
for dynamically creating print assets like manuals and brochures by
means of familiarly design tools, the Federated Experience Manager,
for adding Sitecore content and tracking visitor interactions on exter-
nal non-Sitecore websites, the Social Connected, for social networks
integration and statistic tracking, in addition to the Sitecore Com-
merce Connect, that allows e-commerce solutions to use customer en-
gagement to provide personalized experiences thanks to the customer’s
behaviors tracking.

5

1 – Content Management Systems

Figure 1.1. Sitecore Experience Platform

Management Layer This is the core of the Sitecore Experience
Platform. It gives the possibility to manage the content of the website,
configure the personalization rules and view the engagement scores of
the customers. To access these functionality, Sitecore provides tools
such as the Media Library, the Content Editor and the Experience Ed-
itor, that users with log-in credentials can use through the Launchpad.

Sitecore AIDA Layer Sitecore AIDA (Analytics, Insights, Deci-
sions, and Automation) is a framework that allows to collect and an-
alyze the behaviors of the users that interact with the brand across
the several channels. It gives the possibility to perform different tests
of the customer experience, track how users have interacted with the
website and may how they have achieved some defined goals. All these
information are then available in different reports, from which you can
extract meaningful user’s characteristics and use them to associate visi-
tors to available pattern, delivering personalized content based on their

6

1.1 – Sitecore

interests. Using rules is also possible to dynamically create customer
segmentation based on real time information. Finally the automation
process allows to establish a one-to-one relationship with all the users
responding immediately to their actions.

Sitecore Database Layer In order to improve user experience de-
livering personalized, channel optimized content, a large amount of
data has to be stored in several big databases. Sitecore’s flexibility
allow to have several deployment options, concerning low-traffic solu-
tions as well as high-traffic solutions with higher availability. However,
in all possible solutions the key components of the Sitecore Experience
Database (xDB) are always the same:

• Content delivery server: this Sitecore application server is the
one aimed to deliver website content serving incoming HTTP
requests from the network. For improved scalability and better
performance is possible to have multiple instances of this server
in different geographic locations in order to offer the website
content to a high number of visitors.

• Content management server: this type of server enables content
editors to create, modify and publish content on the website.

• CMS databases: are three SQL Server databases that host data
available on the website. Going more in detail there is the Core
database, that contains all configurations and settings about
users and roles, the Master database, where are stored all ver-
sions of all website content and where it can be created modified
or deleted. Finally the Web database is the one responsible for
the live site, indeed all editing actions done on the content are
not propagated to the website until content author publish it.

• Session state server: this component is a session state store used
by the delivery server for the personalization process. Really it
is an ASP.NET session state store provider.

7

1 – Content Management Systems

• Collection database: it is the main repository for storing interac-
tion, contact, history and automation data as well as devices,
location and triggered events. This database is implemented
with MongoDB, so a NoSQL document-oriented database where
is possible to store unstructured data and retrieve them faster
then in SQL databases, improving availability and scalability.

• Reporting database: it contains aggregated data from the Col-
lection database. This data are generated by the Sitecore aggre-
gation pipeline and then used by Sitecore reporting applications.
When processed, data are stored in several tables organized in a
star schema where at the center there is a fact table containing
foreign keys for joining the dimension table around the schema.

• Processing server: this is a server connected both to the Col-
lection and to the Reporting databases, aimed to process and
aggregate data from the first one and store them in the second
in a form suitable for the reporting applications. Several types
of processing data are available:

– Aggregation: this processing extracts data from the Collec-
tion database, then groups and reduces it before storing it
in the Reporting database.

– Continuous update: is a continuous process that starts with
the launch of Sitecore and keeps the Reporting database up
to date with the most recent interaction as long as the Ex-
perience Database is running. Latest interactions are saved
into the Collection database, and added to the processing
pool waiting for the aggregator, which pushes them into the
processing pipeline where they are transformed in a form
suitable for the Reporting database and finally merged with
the existing data into it.

– Rebuilding the reporting database: is a process that can
be requested for ensuring to have the Reporting database

8

1.1 – Sitecore

Figure 1.2. Continuous update processing overview

updated with the latest interactions. This operation com-
pletely override the content in the Reporting database and
require some time, thus, in order to minimize the interrup-
tion of reporting functionality, is performed with the help
of a secondary database (reporting secondary) that will re-
place the existing Reporting database once the rebuild pro-
cess has finished.

Figure 1.3. Rebuilding of the reporting database overview

– Maintenance: this process concern maintenance tasks on
the Collection database. [20]

• Reporting service: this allows to retrieve information from the
Collection and the Reporting databases using the Reporting Ser-
vice API. However, is recommended querying the Reporting database
because it contains information in a form optimized to be queried,
so that writing and reading operation are very fast. These queries
are performed by Sitecore’s reporting applications like Sitecore
Experience Profile (xFile), Engagement Analytics reports (stan-
dard Sitecore reports), Executive Insight Dashboard (overview
analytics data reported as charts and dashboards), Email Cam-
paign Manager (ECM) and Web Forms for Marketers (WFFM).

9

1 – Content Management Systems

Figure 1.4. xDB architecture overview

When a user starts navigating through the website, depending on his
geographic location he is redirected to contact an appropriate Content
delivery server in the closest cluster to which the user will remains
connected also if he will switch device or use another browser, as long
the session will not expire. During the session, information concerning
the user, like interactions, used device and visited pages, are retrieved
and stored in either a private or a shared session state until the session

10

1.1 – Sitecore

will not end. At the end of the session these information are pushed on
the Collection database and scheduled for the processing done by the
Processing server. This aggregates customer data in a form suitable
to be queried and stores them in the Reporting database, available to
the Reporting service. [19]

Integration Layer The Integration layer provides connectivity with
third products such as CRM (Customer Relationship Management),
custom databases or e-commerce solutions. Thanks to its modular
architecture is possible to make Sitecore the hub of external digital
activities that have only to push data into Sitecore and use it as central
repository for their marketing content, while it will take care of the
content management.
In order to make integration available, Sitecore provides several useful
tools such as CRM connectors, ERP connectors, Sitecore Commerce
Connect, SharePoint connectors and social connections. [27]

Sitecore Launchpad

In order to make easy acceding to Sitecore Experience Platform func-
tionality has been made available the Sitecore Launchpad, a collection
of shortcuts to commonly used Sitecore applications.
The Launchpad was introduced with the Sitecore 8 release and pro-
vides a unify access to Sitecore functionality including campaign man-
agement, view of Analytics reports and performance measurement. It
is split into four main areas:

• Marketing Applications: It contains useful applications such as
the Marketing Control Panel, from which is possible creating
profiles that corresponds to users segments of the website, in
addition to goals and events for measuring the engagement, or
the Experience Analytics, for seeing interactions of visitors.

• Content Editing: Applications in this area allow to manage the
website content, adding, editing and deleting pages or single item

11

1 – Content Management Systems

inside them, in addition to the possibility of categorize each com-
ponent with respect to users segments.

• Control Panel: It allows to manage system and personal configu-
rations, like a language registration, password change or licenses
management.

• Access Management: It concerns the management of the roles
and permissions inside the project. Administrator can use these
applications to manage the registered users or to modify the
permission for acceding the content management.

Figure 1.5. Sitecore Launchpad

1.1.2 Experience Personalization
The technological growth has considerably increased the consumer ex-
pectations, leading them to desire for a personalized treatment in the
digital experience, as well as in the real one. Social networks, newslet-
ters, e-commerce sites and several other digital services aim to the
customer loyalty providing him personalized content, in order to give
the impression to have always the right solution to his needs.

12

1.1 – Sitecore

In a survey conducted in 2017 by Evergage and Researchscape Inter-
national, on 206 organizations of all sizes, about their marketing op-
erations and implementation of personalization, marketers as a whole
(88%) say their customers expect an experience, across digital proper-
ties, that’s personalized to them. The majority of respondents typically
see a lift of over 10% from their personalization efforts while 63% in-
dicate increased conversation rates. Moreover, 61% see benefits in the
improvement of the customer experience and 57% in the increasing of
the visitor engagement.

Figure 1.6. Evergage and Researchscape International survey

Sitecore, with its personalization, provides targeted, relevant con-
tent to the users based on their characteristics and behavior, like lo-
cation, visited pages and interactions with the website. For example
you may want to hide some content to a targeted type of user or show
additional content to those user that comes from a given country.
Sitecore provides two main ways to enable personalization: Rule-based
personalization and Predictive personalization.

13

1 – Content Management Systems

Rule-based personalization The Rule-based personalization al-
lows to modify the rendered content by means of a set of rules formu-
lated by the developer, who can choose between the various suggestions
offered by the system or create other personalized ones. These rules
are nothing more than if/else statements evaluated in a cascade order
from the top to bottom, going through the list until you find a match.
They follow the policy of the first come, first served, then usually the
default rendering is the last of the list, so as to be shown in case no
customization is applied. This functionality can be achieved though
the Experience Editor tab in the Launchpad. It is a WYSIWYG(what
you see is what you get) editor that allows to make changes to the
items shown in the page, as well as to their single fields. Once selected
the component that has to be modified, is possible to use the Rule Set
Editor tool (Figure 1.7) to create conditional renderings and control-
ling the user’s experience. These rules are composed by three main
elements:

• Conditions: they are logic statements that determine when a con-
dition is true. For example the when the current interaction
is on the specified channel condition is true, it is triggered if
the user interacts with the website through the specified channel.

• Actions: they are logical steps executed when one or more Con-
ditions in a rule are true. For example the Redirect to page
redirects the user to the specified page if the related condition is
true. As well as for the conditions, also for the actions Sitecore
provides a number of default choices, but the developer can also
implements his own.

• Rules: they are associations of one or more conditions with one
or more actions, concatenated by means of logical operators as
And and Or. For example if you want to create a rule that hide
a component to those user that comes from Canada and Mexico,
you have to state a rule where the action hides the component,
while the condition contains a double check for the country.

14

1.1 – Sitecore

Figure 1.7. Rule Set Editor

Once you have personalized a component you can also check changes
obtained by the stated rules, indeed the Experience Editor allows to
check for each component inside the page, which rules exist on it and
if they are useful or not, giving to the developer the opportunity to
change those rules that did not meet expectations (Figure 1.8). For
each version of the component, Sitecore provides the Reach field, that
indicates the percentage of visitors who met the condition, out of all
visitors who viewed the component along the time1, and the Effect
field, that is calculated as difference, in percent, between the trailing
value per visit of the personalized experience and the default experi-
ence for the visitors who meet the condition.

1if the rule is under test, the time considered by the report is the duration of
the test, otherwise it corresponds to the last 30 days.

15

1 – Content Management Systems

Figure 1.8. Component personalization

Predictive personalization The Predictive personalization is based
on the concept of Persona and is the most robust personalization
method of Sitecore. This type of personalization uses the informa-
tion retrieved by the framework about user’s interactions within the
website, such as visited pages, completed goals and events, in order to
categorizing him and finding a match to one of the profiles prepared
by marketers, whose features are well known. Assigning one or more
profile cards also to a component, its easy to implement a rule that
hides or shows it to those visitors that match a given profile, avoiding
to write complicated rules.
At the base of the personalization concept used by Sitecore, there are
several technical terms such as Persona, Profile card, Goal and so on,
therefore, in order to clarify what we are talking about and going
deeper through the process of personalization, first of all we have to

16

1.1 – Sitecore

explain these concepts.

Personas Lars Birkholm Petersen2 states that «Personas are “archetyp-
ical” visitors/users of a website that represent the needs of larger
groups of users, in terms of their goals and personal characteristics.
They act as “stand-in” for real users and help guiding decisions about
functionality and user experience design», since that «they identify
user motivations, expectations and goals responsible for driving online
behavior»[16]. To define Personas, developers and marketers cooperate

Figure 1.9. Marketing Persona

for developing a fictitious person able to represent a segment of cus-
tomers. This usually leads to write a full description for the archetype,

2Lars Birkholm Petersen is a web content management expert, leader of Sitecore
Business Optimization Services

17

1 – Content Management Systems

equipped of name, picture, story and relevant features, such as the rea-
sons why he is using the website and information that might interest
him.

Profiles Profiles are just categories of profile cards useful to de-
fine criteria used to track visitor’s behaviors. Thus, for each profile,
developer has to define some profile keys, whose values will distinguish
visitors belonging to it.

Profile cards A profile card is akin to a persona, but it refers only
to the aspects of a single profile, while a persona describes life, habits,
background and interests in detail. A profile card is a persona whose
key/value pairs have been defined for each profile key characterizing
proper profile.

Figure 1.10. Profile Card

18

1.1 – Sitecore

Profile keys Profile keys represent the behaviors of a profile card
and are associated to numeric values within a defined range. This keys
are used by marketers to define relevant parameters on which assign
values for categorize profiles.

Pattern cards The pattern card concept is very close to that
of the profile card but it concerns the current visitor. Once defined
the profile cards, Sitecore allows to set content profiles, that are profile
cards assigned to the content. In this way is fast and easy to categorize
each page of the website associating it to one or more profile cards that
represent users segments interested to that type of content. Doing
this, when a visitor navigates through the website and reach a profiled
content, he accrues the values associated to it. These values contribute
profiling the user, indeed Sitecore will assign him the pattern card,
whose values are most similar to those accumulated.

Figure 1.11. Pattern Card

Events Events are like actions that reflect the reasons that led
the user to use the website. Looking at Figure 1.9, you can think
events like the listed points in the motivation section and so how the
digital experience meet the user’s needs. Sitecore allows to create and

19

1 – Content Management Systems

edit events through the Marketing Control Panel, assigning them en-
gagement value points according to the relative importance. Then, the
framework tracks user interactions with the website and the triggered
events. Example of events are searches, downloads and registrations.

Goals Goals are similar to events but represent those actions that
the brand want the user to do in order to go deeper down the funnel.
For example, referring to a e-commerce website, if a possible event
is the visit of a particular page, a possible goal is the purchase of a
product, or the registration to the newsletter. Given the importance of
goals, usually they have a higher value then events, so tracking them,
marketers have a relevant measure of user’s engagement.

20

1.1 – Sitecore

Figure 1.12. Profiles node in Sitecore

User profiling and tracking As visitors start navigating through
the website, they are assigned to the content profile values that devel-
opers have defined for each visited item. These values are accumulated
along the navigation, helping profiling users.
To make this possible, first of all marketers and developers have to
collaborate for creating one or more profiles, that will correspond to
users segments that interact with the website. Looking at Figure 1.12,
that reports an example that can be used within a website of bikes, it
might be useful to define a profile for categorize users based on their

21

1 – Content Management Systems

use of the bike. The Cyclists Categories profile will be composed by
profile keys (Fitness, Leisure, Off-roads Cycling, Travel to school and
Travel to work) that represent the criteria used for defining different
categories of cyclists. After having created the profile keys, developers
have to create the profile cards, that will be used to assign values to
the content of the website. An example is the “George” profile card,
that corresponds to a person that usually uses the bike to go at work
and sometimes for fitness, as shown in its diagram in Figure 1.10, and
can be assigned to a page of the website that sells products useful to
this type of use. When the visitor will navigate to this page he will
accumulate the values associated to George. This values will help to
categorize the current user and bring him back to the most similar
pattern card.
Despite usually pattern cards and profile cards are very similar, with
the same names and values, is also possible to define them differently.
In the Figures 1.12 and 1.11 have been defined three different pattern
cards that don’t match exactly the previous profile cards. Among them
there is for example the “Mountain Cyclist” card that categorize those
users that love go off road, rarely use the bike for going to school and
never to go at work.
Along his navigation through the website the visitor accumulates key
values associated to the visited items and is categorized with the clos-
est pattern card. This tells to Sitecore the kind of the current user,
but is not enough to show personalized content. Indeed, this goal is
achieved using the rule-based personalization, that allows to show, hide
or change the source of the page content with respect to the current
user pattern card.
Together with the profile of the users, Sitecore tracks also their interac-
tions with the website providing detailed reports that can be accessed
through the Experience Analytics application inside the Sitecore Ex-
perience Platform. Several types of reports are available for helping
marketers to understand if the choices made are leading in the desired
direction, to check the usage of each channel and how people engaged
with the website through the defined goals. Indeed, among all reports
available, the most relevant are:

22

1.1 – Sitecore

• Online interactions by visits and value per visit: It shows week
by week the number of visits and for each visit the value accu-
mulated.

• Channels group by visits: It shows week by week the number of
visits for each available channel. This allows to understand who
are the preferred channels and so where to put more effort and
reach a larger number of users.

• Top pattern matches by value per visit: A pie chart shows which
pattern cards are generating the most value. Thanks to this
report marketers may decide to get more value out of lower per-
forming personas, updating the personalization strategy.

• Top Goals by Conversions: This report shows how goals are en-
gaging the visitors and which are the most used.

1.1.3 Content Management

The content management is the capability of creating, editing or re-
moving content of a website and is a key functionality of Sitecore. The
framework provides two tools for editing content, both reachable from
the Content Editing section of the Sitecore Launchpad: the Content
Editor and the Experience Editor.

Experience Editor The Experience Editor is a WYSIWYG (“what
you see is what you get”) editor easy to use also for non technical user,
such as the marketers. It allows doing modify the content, such as
changing an image or editing a text, and seeing immediately the result.

23

1 – Content Management Systems

Figure 1.13. Experience Editor

In the Figure 1.13 you can see the several tabs that take part to
the ribbon:

• Home: This is the first tab to use to edit the content. You can
insert a new page or a single component on an existing page,
edit components and then publish the changes to see them on
the live site. In addition, the social button allows you to create,
edit and publish messages on the desired social network, such as
Twitter or Facebook. An important button is the lock/unlock.
When you decide to change a component, you must always lock
it so that other users can not touch it while you are working on
it, and unlock it once the changes are over.

• Presentation: It allows to edit directly the layout of a targeted
component, giving to the developer the possibility to choose if
applying changes only to the selected object in the current ver-
sion of the website, or, in case of shared layout, to extending it
to all version of the website in all the languages.

• Experience: In this section you can toggle the several available
devices and see how the website appear in each one of them. A

24

1.1 – Sitecore

very helpful functionality is the one concerning the date field.
Sitecore allows to set a publishing future date and hour, so that
developers can work at the same time on different versions, with-
out affecting the live site. This is helpful if for example you want
a Valentine’s day version of the website that is different from the
one available all other days. You can set the 14 of February as
publishing date for the Valentine’s day version and the following
day for the main one, and Sitecore will automatically provide the
swap operation.

• Versions: From the Version tab developers can manage different
versions of the website content, adding new one, removing an-
other or comparing two already existing. In addition they can
also change the language of the website.

• Optimization: Here developers can choose among available goals
and attributes, such as the content sharing on social networks,
the registration to the newsletter or the log-in operation, and
associate them to the content of the website. They can also view
the report on the applied personalization rules and the effects
achieved for the user experience. Finally in the test section is
available the list of tests performed on the current page, one list
for the suggested tests and another where can be found pages
already tested.

• View: It simply provides some facilitation for quickly show or
hide controls, the control bar and the navigation bar. In addition
it lets the possibility to separate the design phase (component
addition and removal, changing of components properties and so
on) from the editing one.

Content Editor The Content Editor is an editing tool designed for
users who are familiar with Sitecore. It allows acceding the website
content tree, Figure 1.14, whose main components are the following:

25

1 – Content Management Systems

• Templates: Everything in Sitecore is an item and every item is
based on a template. A template is itself an item that represent
the structure and the behavior of other items. Differently from
the template concept usually used, in Sitecore it refers not to the
presentation of a component, thus the template of a item doesn’t
tell nothing about how it will be shown. Developers can create
their custom templates and inherit from those already available.
The data template is used to represent the schema of an item and
can be seen like a class whose properties represents the fields of
the template. Every field has a type and a standard value, that
is its default value, equal in all the items that use the template
without override the inner values.

• Layouts: Layouts tell Sitecore where to render a component in-
side the page and components tell Sitecore how the data template
and the content instance should be rendered. A layout contains
one or more placeholders, that can be simply thought of as areas
in the page where to place components.

• Content: Is the main node of the Content Editor tree and where
is located each item of the website. Developer can move within
the content node to the desired location and create a new item
based on the specified data template in few clicks. Navigating
to each single item of the website, is possible to see all the in-
formation available about it, such as the used template and the
value of the each field associated to it. These fields can also be
edited and then republished on the live site. For each item there
is also the possibility to see which is the associated profile card
and change it with another one. In this way when a visitor, nav-
igating through the website, will arrive on the page concerning
this item, he will accumulate the values of the associated profile
card.

26

1.1 – Sitecore

Figure 1.14. Content Editor tree

27

28

Chapter 2

Chatbots and Artificial
intelligence

Robots able to recognize the voice of the master, play the role of but-
lers interfacing with other smart devices around the house in order
to adjust the air conditioning, turn on and off the alarm and project
films on TV. If in the past all this might seem like pure science fiction,
nowadays it is a reality and joins several other robot cases dedicated
to ordering online, helping people to shop at the supermarket and
even playing the role of babysitter. The artificial intelligence (AI) is
increasingly present in everyday life, as evidenced by the debut of a
human-like robot in April 2018, for the conduction of a Japanese tele-
vision news.
One of main goals of the AI is to create a computer able to have conver-
sation with user in a human-like way, so that it can pass the Imitation
game proposed by Alan Touring1 in 1950 and that later will be known
as the Touring test, from the inventor’s name. The purpose of the test
was to measure the level of intelligence of a computer, by means of an
interrogation submitted by a judge to two questioned, a human and

1Alan Touring was a British computer scientist lived between 1912 and 1954,
widely considered to be the father of artificial intelligence.

29

2 – Chatbots and Artificial intelligence

a machine, using a text type interface similar to a modern messag-
ing application. The judge communicated with each participant from
separated rooms and without knowing who was the human and who
was the machine. His task was to submit to each respondent a set of
answers trying to identify the machine.
Chatbots (also known as virtual assistant, online chat program or soft-
ware agent) are software applications aimed to interact with users in
a conversational way by means of text messages. Their presence on
the market has seen an exponential increase in the last years but the
first attempts to realize such technology go back to a distant past
considering the technological evolution

2.1 History of chatbots
The first chatbot was developed at MIT by Joseph Weizenbaum and
shown to the public in 1966. It was a program written in MAD-Slip
for the IBM 7094, called ELIZA, thought to interact with humans by
means of a text messages. ELIZA simulated conversations based on
provided scripts, including the one concerning a Rogerian psychother-
apist and that made the machine famous. User interacted with the
bot typed in some statements using normal punctuation and sentence
structure (except the question mark, who could not be used for MAC
system compatibility), than ELIZA analyzed them searching for key-
word and printed out a statement retrieved from an internal list and
modified using some transformation rules related to the found key-
word, without really understanding the conversation[25]. An example
of rule, based on [10], could be resumed as the following:
keyword: i

pattern: * i am *
answer: Is it because you are (2) that you came to me?

pattern: * i don’t *
answer: Why don’t you (2)?

pattern: *
answer: Can you elaborate on that?

30

2.1 – History of chatbots

When the bot finds the keyword, it tries to match the received state-
ment with the related patterns in the script (* represents wildcards
that always match) and, in case of success, returns the associated text
in which (2) represents the second wildcard, otherwise returns the de-
fault answer.
Despite the purpose of Weizenbaum was not to simulate the human
cognitive process many patients thought to speak with a real person.
Given its success, ELIZA has been at the base of many other later chat-
bots, including PARRY, developed by Kenneth Colby in 1971 with the
meant of simulating a paranoid schizophrenic patient. Like the pre-
vious, it is rule-based and has similar structure, but it is also able to
perform “emotional responses” triggered by a weight applied to the
inputs. PARRY was also the first bot to pass the Turing test, in a
modified version where the jury was composed by psychotherapists
whose aim was to discover if the patient was a human or a machine.
An interesting originality was introduced in 1997 with Jabberwacky,
an artificial intelligence created by Rollo Carpenter, aimed to simulate
natural human chat with the capability to learn as the humans. Dif-
ferently from the previous it was not bound to hard-coded rules but,
based on an internal knowledge-base containing a great amount of con-
versations and a pattern-matching algorithm, it was able to formulate
an answer. As already said Jabberwacky learns. This is possible be-
cause the bot stores each conversation, in each language, so that later
time will know something more[5].
Later, from the hands of the same creator was born Cleverbot, an ad-
vanced version of Jabberwacky. As the previous, it learns from the
people who chat with, storing each conversation in a huge database
which is scanned each time a new response has to be provided in a
conversation. The capability to provide a response searching among
all the conversations done (from its launch to 2011 Cleverbot has ex-
changed 65 million conversations), and so having a huge amount of
human statements as source of inspiration, is the key of its success in
the Turing test done in 2011, in which 59% of its human interlocutors
thought to converse with another human[28].

31

2 – Chatbots and Artificial intelligence

Moving close to nowadays, in 1995 Wallace developed ALICE (Arti-
ficial Linguistic Computer Entity), become later, in 2002, an open-
source chatbot. It clearly separate the bot engine from the language
knowledge model, so that is possible to change one without affecting
the other.
ALICE doesn’t have any semantics or NPL modules but works with
a huge set of rules, maintained in a AIML file2, containing AIML ob-
jects composed by topics and categories. A topic is a top-level element,
which internally has a name attribute and a set of categories related
to it. Each category, the basic unit of knowledge, is a rule composed
by the couple pattern/template that represents user input and related
chatbot template for the answer. When the bot receives an user input,
it searches for the longest pattern matching using a depth first tech-
nique in order to retrieve the template for the response.
ALICE relies on more then fifty thousand categories and can count
several Loebner3 competitions won.
With the arrival of twenty-first century, research for creating a chat-
bot able to replicate a human-like conversation proceeded with the
development of artificial intelligence and machine learning algorithms.
However, instead of chatbots with the purpose of maintain general con-
versations with humans, was preferred to invest in machines focused
on specific purposes, able to cover the virtual assistants role and using
data sources for answering questions[2].
The first example of this new trend was SmarterChild, a chatbot de-
veloped by ActiveBuddy in 2001 with the aim of providing the user
with useful information such as sport scores, movie quotes, weather
forecasts and so on. It lived inside AIM (AOL Instant Messenger)

2AIML, or Artificial Intelligence Mark-up Language, is a XML derivation devel-
oped by the Alicebot community during 1995-2000, that enables people to provide
input patterns into the chatbot.

3The Loebner Prize is an annual competition in artificial intelligence that awards
prize for the most human-like computer program based on a simplified Turing test.

32

2.1 – History of chatbots

so that users could simply communicating with it by means of tex-
tual messages, from which the bot, relying on its linguistic artificial
intelligence, was able to extract the context and the type of response
to deliver. Smarterchild relied on a huge database, which allowed to
query and obtain the desired information in a shorter time than in any
other website. In addition it was also one of first chatbots to deliver
targeted content to the user, indeed it asked for name, age range and
zip code in order to contextualize the user and delivering him the right
information about weather, news and so on [14].
An example of conversation with this chatbot could be the following:
User: What movies are playing?
SmarterChild: For what city or zip code would you like the movie list-
ings?
User: 10036
SmarterChild: Movies playing in or near New York, NY (10036) on
Tuesday, October 23rd:

1. The Game Plan [PG]

2. 30 Days of Night [R]

3. The Comebacks [PG13]

4. The Heartbreak Kid [R]

5. Michael Clayton [R]

6. We Own the Night [R]

SmarterChild achieved a great success, accounting for 5% of global
instant messaging traffic and laying the foundations of modern vir-
tual assistants, such as Siri and Alexa, but the user’s involvement was
insufficient to guarantee long-term success. This, combined with the
scalability problems encountered with Neuro-Linguistic programming,
led to the dismissal when in 2007 Microsoft acquired the company Ac-
tiveBuddy[4].

33

2 – Chatbots and Artificial intelligence

Another example of development in this direction was IBM Watson,
a question answering system born in 2006 with the purpose of taking
part to a television quiz called Jeopardy!, in which participants have
to answer to general questions. Technically, IBM Watson is not really
a chatbot but, in a refashioned version, it provides now a set of intel-
ligent services used in chatbot development. Indeed, the aim of the
Watson project was not only about playing Jeopardy!, but mostly do-
ing research in natural language understanding and machine learning.
The IBM Watson used for the game was developed on the DeepQA
software architecture, that allows advanced natural language process-
ing, informational retrieval, reasoning based on evidences and machine
learning (an high-level view of the architecture is reported in Figure
2.1). The first processing task is to analyze the given question using

Figure 2.1. DeepQA Architecture

natural language processing techniques in order to extract relevant in-
formation, such as the entities involved in the phrase, the requested
response type and so on. Then the process continues with the research
of information sources where could be found the desired response. The
research is done both on structured data like databases that on un-
structured data like encyclopedias, dictionaries, news articles and other

34

2.1 – History of chatbots

textual material coming from the web. Once retrieved the source doc-
uments, several possible answers are collected using information ex-
traction algorithms that are able to find relevant terms and entities
inside them. In order to select only the right answer between all the
possibilities, various analytics strategies and scoring algorithms are
used to create evidence on which draw up a ranking to the retrieved
possibilities. The ranking strategies can exploit information like the
expected category of the answer, geographical reasoning or the lexical
overlap4. Finally, thanks to machine learning techniques that use his-
torical collected answers and the aggregation of all scores calculated
with the various strategies, the final rank is computed and top scored
answer extracted[9].
The effort put into developing this technology was rewarded in 2011,
when IBM Watson challenged the best champions of the game and
won. After obtaining the desired success, the company decided to
open Watson technology to the rest of the world, developing services
able to use it in the most diverse areas, such as medicine, technical
support and industry.
In the wake of the success obtained by SmarterChild few years be-
fore, in 2011 Apple launched Siri, an intelligent assistant consisting of
machine learning, natural language processing and Web search algo-
rithms. The purpose of this software program is to help users doing
tasks such as making calls, writing and reading messages and creating
remainders, simply by requesting them verbally.
Siri can be split in three different layers: voice processing, grammar
analysis-context learning engine and services.
First of all when the user gives a command, the device used collects
analog voice and translates it to a file audio. This task is not simple be-
cause of Siri has to interfacing with people peaking different languages,

4The lexical overlap technique takes in account how many keywords are in
common between the question and the supporting evidence for each candidate
answer

35

2 – Chatbots and Artificial intelligence

in different accents, thus every interaction with Siri is recorded by Ap-
ple and used to improve the later translations. Then the speech is sent
to the Apple servers, where is translated to text and natural language
processing techniques are used to understand the meaning of it, by
looking at the syntactical structure. This step allows to extract the
core of the request, independently of how it is formulated: thus phrases
like “I want a pizza” or “I would like to eat a pizza” will be evaluated
in the same way. Finally, once Siri knows what is the user intent, it
has to interact with the application chosen to accomplish the desired
task.
With the advancement of voice technology and following the Watson
and Siri example, in last years several other companies launched their
own voice-based personal assistants, such as Cortana for Microsoft
(2013), Alexa for Amazon (2014) and Google Assistant for Google
(2016). On the other hand, starting from Telegram in 2015, several
messaging platform such as Slack, Skype and Facebook Messenger
opened to chatbots allowing developer to deploy their bot on them,
leveraging the possibility to reach a huge consumer base to which pro-
viding multiple services via chat.

2.2 How the chatbots work
Starting from the Alan Turing and the first chatbot ELIZA, until nowa-
days the research in the human-machine conversation has made sig-
nificant progress, with the development of several bot able to interact
with users in a conversational way by means of text-messages or voice
and in some cases also taking part to public challenges with human
participants and win them.
In literature the term chatbot has been associated to several definitions
and synonymous, such as chatterbot, conversational agents, software
agents, virtual agents, intelligent personal assistants. Together with
the different definitions, in order to siting them in categories, were
born also various classification criteria, such as how to interact with
the user (by means of messages or voice), the purpose for which they

36

2.2 – How the chatbots work

were created (carry out targeted activities or support dialogues with
humans), rather than the technique used to respond (based on hand-
written rules or using natural languages components).
Bots has become increasingly smart, able to answer a question logically
and solve requested tasks, however at the same time not all modern
bots can be considered smart with respect to the Turing concept of
intelligence, that concerns the capability of a machine to maintain a
conversation with a human without he realize that is talking to a robot.
The needs of the market have in fact led to develop chatbots able to
understand the user’s needs and carry out simple tasks in his place,
rather than maintaining a conversation with the sole purpose of en-
tertaining. Thus, a first distinction is between task-oriented chatbots
and non-task-oriented chatbots, then in both is possible to made an
additional discrimination between rules-based and intelligent chatbots.

Task-oriented chatbots

This category includes those chatbots based on a domain ontology,
a knowledge structure representing the kinds of intentions the sys-
tem can extract from user sentences[11]. Belong to it, those personal
agents available on mobile devices such as Siri for Apple, Cortana for
Microsoft and Alexa for Amazon.
Simplest bots carry out only the tasks belonging to a target domain
and discard all the others, like booking a fly or an hotel, while advanced
ones are able to recognize and accomplish intentions concerning dif-
ferent domains, like the personal assistants on the smartphone that
let you set a reminder, make a call or search something in the web in
addition to several other operations.
Each domain ontology defines one or more intents, each one composed
by a set of slots, and the values that each slot can take. The set of
slots defines what the system need to known in order to accomplish its
task. For example the travel domain can include a Booking-flight in-
tent for representing the user intention to book a flight ticket. In order
to satisfy the request of the user the system can define the following
slots with their relative value types, where City type means that the

37

2 – Chatbots and Artificial intelligence

slot requires the name of a city, while Date type could be a hierarchic
type including integers for day, month and year.

Slot Type
Departure city City
Destination city City
Departure date Date
Arrival date Date

The way of handling the dialogue, formulating questions and re-
trieving information from the user utterance, in addition to providing
response, depends from the three main components of the chatbot: the
Dialog Manager, the Natural Language Understanding (NLU) compo-
nent, the Output Generator.

Dialog Manager The Dialog Manager component is the one who
manages all the aspects of the dialog and coordinates activities of all
other components, thus is the core of the dialog systems. It has to rec-
ognize if all necessary information have been retrieved from the user, or
if something else should be asked, interacts with external knowledge
databases for searching and providing query results and internally,
control the conversational mechanisms such as multi-party dialog and
back-channels.
There are three main models to choose in the Dialog Manager imple-
mentation phase concerning the way used by the system to converse
with the users[1].

• Finite-state model: This is the simplest model. Here the Dia-
log Manager is represented as a finite-state machine, where each
state corresponds at a part of the conversation and the arcs link-
ing the states are the streets that the conversation can follow.
Thus, along the conversation the user is guided through a set of
predefined steps according to his responses.

38

2.2 – How the chatbots work

Figure 2.2. Finite-state machine for task-oriented chatbot

The chatbot proceeds by placing the questions associated with
each state of the FSM, following the arcs corresponding to the
user’s responses, until the task is completed. Internally it stores
the dialogue state and the values of the already completed slots.
The mainly advantage of this method is that the user is forced
to respond in a predictable way, as is the system that has the
initiative for the most of time. On the other side, the drawbacks
are the rigidity of the conversation, which is less natural, and the
need of having a pre-built model according with all the possible
street that the dialogue can follow. So, despite its simplicity, this

39

2 – Chatbots and Artificial intelligence

model is not suitable to open-domain dialogues. An example of
a finite-state machine is the one reported in Figure 2.2.

• Frame-based model: It is widely used to compensate the lack of
flexibility of the previous model. Indeed in the finite-state model
the chatbots asks the questions to the user based on the slots
to be filled, one at a time, without possibility to extract more
information from the same utterance. The frame-based approach
instead uses a frame template including all the information that
the system have to retrieve to accomplish a task for the targeted
domain. Differently from the finite-state model it allows the user
to responds with more degree of freedom, being able to recognize
multiple entities in the same utterance. For example, always
looking at Figure 2.2, if at the request
“Where are you going?”
the user responds
“I want fly to Rome on Tuesday.”
the bot has to recognize the Departure city and the Departure
date slots, storing them and avoiding to request the departure
date again.
Clearly the advantage of this approach is to have a more natural
dialog, with the possibility to get more information in less turns,
however these approach is not suitable in complex dialogues and
is restricted to those systems aimed to collect information from
the user based on static templates.

• Plan-based model: Also known as Agent-based model, is a more
flexible approach originated from artificial intelligence research
and the use of acts in order to analyze dialogues in terms of goal
to achieve, beliefs and desires of the users.
A “speech act” is defined as the function of an utterance, such
as confirming, requesting, informing or greeting. In order to de-
fine speech acts, further the syntactic and semantic analysis of
the sentence, also an higher level study is needed, including its

40

2.2 – How the chatbots work

context with the aim of understanding speaker needs and beliefs.
In fact the purpose of a sentence can be implicit and not clearly
stated. For example the utterance “it’s cold today” may not just
be an observation, but the desire of turning up the heating or
closing the window.
Systems that follow this approach are able to recognize the user
intentions also if they are not explicitly exposed and can skip
from one topic to another as in a dialog between two humans.
An example of dialog of this type, taken from [13], is reported

User: “I’m looking for a job in the Calais area. Are there any
servers?”
System: “No, there aren’t any employment servers for Calais.
However, there is an employment server for Pas-de Calais and an
employment sever for Lille. Are you interested in one of these?”

In the example is clear how the system goes further the seman-
tic request formulated by the user, and instead of simply answer
“yes” or “no”, it provides some additional information to keep
alive the dialogue. Although this is quite normal in a conversa-
tion between humans, is not obvious when a machine is implied.
In fact agent-based models are aware of the dialog context, track-
ing its evolution and associating it to a purpose dynamically,
looking at what the user is saying, what has already said and
what information are missing in order to achieve the targeted
goal. In this way the system adopts a mixed initiative, where the
user is asked for information concerning the retrieved purpose of
the dialog, but he can also take the control and introducing a new
topic, that will be recognized by the machine, who will adapt to
the evolved scenario.
This approach is more flexible than the finite-state or the frame-
based models, that are not suitable for complex dialogues. Fur-
thermore is clearly closer to a human-human conversation where
the really purpose of some assertions is not explicit but has to be
inferred from the context. However, this type of systems requires

41

2 – Chatbots and Artificial intelligence

more complex technology and advanced natural language under-
standing capabilities, thus they are not common on the market
but are limited to the laboratories for research purposes[13].

Natural Language Understanding (NLU) The role of analyze
the sentence for discovering the targeted domain and the relative intent
is in charge of the Natural language understanding module. The first
task of this component is to define the domain of the user request,
understanding if he is talking about booking a flight, setting an alarm,
searching for an hotel and so on. Then it has to determine the intent,
the general goal of the request.
At the current state of Computational linguistic, the input analysis
can be done using several techniques, such as Part-of-speech Analysis,
Named Entity Recognition, Syntactic and Semantic Parsing.

• Part-of-speech (POS) Analysis: This technique concerns the clas-
sification of each word to a part of the speech, such as “noun”,
“adjective”, “verb” and so on. Each word is tagged with respect
to the labels contained in the choose tag set, among the several
available. The labeling task is done by a POS tagger that has to
be trained on some data before, paying attention that, as the tag
set used depends from the language of the input utterance, also
the training data set to use depends from the future data that
the parser will analyze. In fact, taggers that use a stochastic tag-
ging approach relies to the probability of a certain tag occurring,
looking at the training corpus used, thus parser trained on data
from newspaper article will lose accuracy when used on other
data sources. Alternatively to the stochastic approach, the rule-
based one can be used, consisting in a set of if<some pattern>
then<label>.
An example of POS analysis is the utterance “The grand jury
commented on a number of other topics.” that is evaluated, us-
ing the Peen Treebank POS tag set5 as

5Among the several available, the Peen Treebank POS tag set is the most used.

42

2.2 – How the chatbots work

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT num-
ber/NN of/IN other/JJ topics/NNS ./.
The POS analysis is easy to use and gives helpful information on
the text, however it can suffer ambiguity.

• Named Entity Recognition (NER): This approach is similar to
the POS, but instead of tagging each word, it aims to tag only
those single words or chunks of words that are relevant for the
context, as their recognition is crucial for the intent analysis. An
example of this technique applied on the text “John think that
Turin is a beautiful city” return the following classification
[John] (Person) think that [Turin] (Location) is a beautiful city
The methods used for the Named Entities Recognition (NER)
can be divided in three main categories:

– Hand-made Rule-based NER: This approach use a set of
hand-written rules for recognize entities within the text, ex-
ploiting grammatical, syntactical and orthographic features
such as the part of the speech, the words precedence and
the use of capitalization, or using gazetteers automatically
learned on annotated corpora containing named entities.
This method works well for restricted domains but is not
portable and is too domain and language specific.

– Machine learning-based NER: Is a statistical classification
method that use patterns and relationships in the text with
statistical models and machine learning algorithms. Based
on the machine learning model used, it can be further di-
vided in supervised and unsupervised machine learning. The
first means that the program learns to classify the text us-
ing a set of labeled data and is guided to label correctly
by a “supervisor”. Instead the unsupervised model learns,

It includes a list of the available tags and their descriptions.

43

2 – Chatbots and Artificial intelligence

without any feedback, to autonomously create representa-
tions from data. These approach can be used in different
domains but need a huge set of data on which learning clas-
sification.

– Hybrid NER: It combines machine leaning and rule-based
strongest points, achieving better results that the previous
approaches, however is still suffers the domain dependence
as the rule-based approaches[12].

• Syntactic and semantic parsing: This approach aims to construct
a structural representation of the sentence recognizing structural
units of the text at an higher level that part-of-speech or chunks
of words because it is applied at the sentence level. The process
involves a syntactic parser and a semantic one, relatively em-
ployed to extract the utterance constituents as words or chunks
of them together with their role (noun, adjective, verb and so
on), and the relationship between them.
The syntactic parser is first of all used to extract the constituents
from the input utterance and placing them in a tree structure,
labeled with their syntactic role. For example the phrase “The
vehicle proceed quickly along the road” is parsed in the following
tree structure, where brackets include words dependent on each
other
(ROOT

(S
(NP (DT the) (NN vehicle))
(VP (VBZ proceeds) (ADVP (RB quickly))

(PP (IN along) (NP (DT the) (NN road))))))
Is possible also that the parser constructs a tree with the whole
sentence (S) as root and then divides it in blocks who inter-
nally contain words dependency, such as along the road, that
is grouped. In order to analyze syntactically an utterance, the
parser need first of all a grammar to use in its task, then a set

44

2.2 – How the chatbots work

of hand-parsed sentences from which to learn.
Then the semantic parser is employed to understand the mean-
ing of the the input phrase, that is the existing relationships
among the phrase constituents according to the semantic frame-
work used[15]. One of most used is the First Order Predicate
Calculus (FOPC), based on which the sentence “John is a foot-
baller” would look like
footballer (j)
where “footballer” is a predicate referring to j, that is John.
In addition, the framework allows to use special operators such
as the quantifiers “∀” and “∃”, or the negation “¬”.

Output generator Once the Dialog Manager has triggered all the
necessary sub-tasks, it may want to provide the retrieved information
encapsulating them in a message for the user. Also in this case, the
task can be done in several ways, ranging in terms of simplicity and
closeness to the formulation that could be made by human being.
The output message, according with the system type can be imple-
mented as a speech, a simple text-based message or including some
graphic aimed to rise the user engagement, related on the encapsu-
lated information. This phase is fundamental within the interaction
with the user, as the system can be able to understand the intention
stated by means of natural language and retrieve all the needed infor-
mation, but a non-smart way of presenting them, may can lead to a
frustration of the work done.
There are three main options for constructing the output message:

• Pre-stored text: this approach is the simplest and concerns the
use of canned responses. According with the information to pro-
vide, a canned response could be selected among those available,
without additional effort, however in this way the responses pro-
vided are repetitive and so less natural.

• Template filling: more flexible and personalized that the previ-
ous, this method relies on message snippets with variable parts

45

2 – Chatbots and Artificial intelligence

to fill according with the information retrieved. An example of
this approach could involve the use of the user name, if avail-
able, together with the information requested, in order to make
the message more personal. Despite the increased flexibility, also
in this case the message could seems repetitive.

• Natural Language generation: this is the most advanced ap-
proach, able to achieve the best result. It concerns the output
planning at an abstract level, then processed by a dialog pipeline
similar to the one used by the Natural Language Understanding
component, in order to mimic human responses more naturally,
removing dependencies from rule-based approaches. Several ar-
chitectures has been defined to accomplish this tasks, however
they all refers to the same sub-tasks, implemented in different
ways along the pipeline. Basically they can be resumed as

– Content determination: deciding what information to in-
clude and what not in the response. The included content
strongly depends from the domain in which the system is
operating.

– Text structuring: Once the system has decided what in-
formation to provide, then it needs to order them so as to
expose them in a sensible way. Indeed, is quite obvious
that, looking for example at news in newspaper article, if
some sentences are extracted and shuffled randomly that
lost sense.

– Aggregation: after the text structuring stage, the system
has a list of information expressed in separated sentences.
At this point is necessary to reorganize them by combining
multiple messages in a single one, in order to achieve a more
fluid output.

– Lexicalisation: it concerns with choosing to right word or
phrase in order to correctly express the retrieved informa-
tion. This step, therefore aims to transform the message’s

46

2.2 – How the chatbots work

building blocks into natural language representation, being
aware of the context and of the possible several ways to
expose the same concept.

– Referring Expression Generation: this step is similar to the
previous but is aimed to determine how referring to entities
in the text avoiding repetitions, by using pronouns, short
defined nouns or other attributes.

– Linguistic Realisation: in this step, all the words and phrases
decided before have to be combined to form a well-formed
sentence. It can concern a reordering of the constituents in-
side the sentence, adding conjunctions, auxiliary verbs and
so on. The system has to decide which syntactic form to
use, exploiting human-crafted templates or statistical ap-
proaches, ensuring the correctness of the resulting text, both
syntactically and morphologically[8].

Non-task-oriented chatbots

Non-task-oriented chatbots, also known simply as chatbots, are those
bots not thought to accomplish some task on request, rather to carry
on extended conversations with users miming human dialogues.
Chatbots can be divided in two categories based on the way they act in
order to respond to the user input: rules-based chatbots and corpus-
based chatbots. The first group includes earlier bots, who follow a
pattern-matching approach, while the second is more recent and is
powered by artificial intelligence and machine learning algorithms.

Rules-based chatbots These bots was the earlier to be developed,
including ELIZA, the first chatbot shown to the public, created by
Weizenbaum at MIT in 1966, and ALICE, its modern version con-
ceived by Wallace in 1995.
As introduced in 2.1, ELIZA worked using rules and a pattern match-
ing algorithm dependent from the script used among the several avail-
able, including the one of the Rogerian psychoanalyst, the most known.

47

2 – Chatbots and Artificial intelligence

Going more in detail, when the chatbot received the user input, it
scanned the text from left to right searching for a keyword. The re-
search concerned the use of a rank, calculated looking up each word
against a keywords dictionary, so that only the keyword with the higher
value was kept, while the others found were discarded. Finally, if a key-
word was found, it was tried to associate one of the related rules until
one was successful or the search was terminated without any corre-
spondence, in which case it was provided to apply some default rules.
At the end, the computed result was printed out to the user.
The structure of the script could being resumed as

(K x ((D1) (R1,1) (R1,2) ... (R1,m1))
((D2) (R2,1) (R2,2) ... (R2,m2))

.

.

.
((Dn) (Rn,1) (Rn,2) ... (Rn,mn)))

Where K is the keyword with the x value for the rank, while Di is the
ith decomposition rule associated with K and Ri,j is the jth reassem-
bly rule for the ith decomposition rule.
So the transformation rules were composed of a decomposition rule
and a composition one. For example, as reported in [25], a decompo-
sition rule was

(0 YOU 0 ME)

and the reassembly rule was

(WHAT MAKES YOU THINK I 3 YOU).

In the mentioned rule, associated with the keyword “YOU”, the “0” in
the decomposition rule stood for an undefined number of words, while
the “3” in the reassembly rule indicated that the third component of
the decomposed sentence has to be placed in that place. This type of
rule could been applied to the sentence “It seems that you hate me”,
that would be decomposed in It seems that-you-hate-me and recom-
posed as “What makes you think that i hate you”.

48

2.2 – How the chatbots work

In addition to simple rules of decomposition and composition, ELIZA
was also equipped with substitutions rules designed to transform some
words as they were analyzed, and a numerical index for each decom-
position rule, updated when the latter was used, and exploited then
to access the related replacement rules in a cyclic manner.
A big step forward was done in 1995, when Wallace developed the
AIML (Artificial Intelligence Markup Language) and ALICE (Artifi-
cial Linguistic Internet Computer Entity), the most famous chatbot
based on it.
ALICE could be considered the advanced version of ELIZA, as also in
its case a pattern-matching technique is used to respond to the user.
It was developed using AIML, a derivative of the XML language used
to store the knowledge-base data on which the bot relied. Contrary
to ELIZA, ALICE was an open-source project involving nearly five
hundred developers, that leading to the bot a “brain” of over forty
thousand pattern-template pairs.
AIML consists of AIML objects, that basically are tags, each one con-
taining a command. From all those available, the worth tags are <cat-
egory>, <pattern> and <template>, organized as explained below.
At higher level there is the topic tag, that is an optional top-level el-
ement that includes one or more <category> representing rules, each
one made up of a <pattern> and a <template> used for matching the
input and transforming it into the output. More in detail, the basic
unit of knowledge in AIML is the category, who is composed of a pos-
sible input of the user, called pattern, and a related answer to provide
called template.

<category>
<pattern>HELLO</pattern>
<template>Hi!</template>

</category>

However, covering each possible user input is almost impossible, so in
order to avoid creating an indefinite number of pairs trying to infer
each possible stimulus, developers can exploit some tricks, such as the

49

2 – Chatbots and Artificial intelligence

possibility to use wildcards, recursive mechanisms and divide and con-
quer approaches, to accelerate and make smarter the covering process.
Indeed the AIML vocabulary is composed of simple words, spaces and
two special characters, “*” and “_”, called wildcards, both used to
match single words or multiple-words strings with the only difference
that the first has lower priority than the latter. This is useful in all
those situations in which similar stimulus lead to similar answers from
the bot.
An application example can be the case in which the chatbot wants to
show to approve some user statements.
<category>

<pattern>I LIKE *</pattern>
<template>I like it too!</template>

</category>
that will match each input starting with “I like”, rather than listing all
the possibilities for continuing the sentence. Furthermore, is possible
also capture a particular text fragment contained in the user input
with a wildcard using the <star> tag, and than use it in the response.
Taking in account the following example,
<category>

<pattern>I LIKE *</pattern>
<template>I like <star/> too!</template>

</category>
if the user will say “I like football”, then the bot will responds “I like
football too!”.
Another important tag is the <srai>, that allows to target different
pattern models for a single template tag. It finds application for the
use of synonymous, keywords detection and the divide and conquer
approach. Indeed the content of this tag is a reference to a pattern,
whose template will be used for the response. So looking at the previ-
ous examples, by adding
<category>

<pattern>GOOD MORNING</pattern>

50

2.2 – How the chatbots work

<template><srai>HELLO</srai></template>
</category>
if the user types “Good morning”, the response is took from the
“HELLO” pattern, so the chatbot will states “Hi!”.
In addition to these ones just presented, several other tags are avail-
able and can be combined to create the desired rules.
AIML software then stores all the categories in a tree object similar
to the computer file system where, starting from the root, common
pattern prefixes are accumulated under the same nodes, allowing to
perform a fast back-tracking[24], deep-first search in which the visited
path corresponds to an existing pattern that leads to the bot answer.

Corpus-based chatbots The main rule-based chatbots advantage
is the behavior predictability, as the back-end engine searches for
matching the user input against its knowledge base, retrieving the
prepacked answer if the research success, or a default sentence oth-
erwise. The drawback is the need to have a knowledge base able to
support the conversation, that has to be periodically updated, requir-
ing a non indifferent effort.
Thanks to the progress in the artificial intelligence science, corpus-
based chatbots represent an alternative approach that exploits on the
machine learning techniques in order to provide conversations human-
machine that mine those human-human.
As the name suggests, these chatbots rely on a huge source (corpus) of
conversational data coming from chatting platforms as Twitter. The
way in which they use those data for answering to the users allow
distinguish them in two model categories: Information retrieval and
Generative models.

Information retrieval models The basic idea behind informa-
tion retrieval chatbots is to respond to an user input with a human
response extracted from the corpus data. These approach works well as
big is the data set available, because an higher number of conversations

51

2 – Chatbots and Artificial intelligence

stored implies an higher probability to find the right response, however
following this approach chatbots can’t generate a new response, they
can only provide an existing one.
Several methods can be used in order to search a suitable response
but they can summarized in two categories: those searching for most
similar question, and those searching for most suitable response.
The former method imply to take the user input and retrieve the most
similar question stored in the corpus using whatever evaluation algo-
rithm, such as the cosine similarity, then return the related response.
Although this is the most intuitive approach, it doesn’t work well as
the other mentioned, that is the most used. Its idea is to search within
the corpus, the answer that is most similar to the user input, using
for example the cosine similarity method as for the previous. This
method is less intuitive but relies on the supposition that a good re-
sponse shares some words with the question.
Having the user input, searching for the most similar question in the
corpus doesn’t ensure that the response is appropriate, instead search-
ing for the most similar answer is more effective but doesn’t consider
those available good responses that don’t share words with the in-
put[11]. In order to improve this techniques, can be done a research
that, in addition to the selected turn6, considers also the previous ones
and the user context.

Generative models While information retrieval models answer
to user inputs searching the most suitable response within a set of hu-
man conversations, generative models use these data for training and
then generate response by themselves.
The initial approach for accomplish this task was proposed in 2011
by Ritter, Cherry and Dolan[17], who present a data driven approach
that exploited phrase based Statistical Machine Translation (SMT),

6A turn is a sentence of arbitrary length, including from one to many words,
representing an interaction inside a dialogue. Speakers’ turns alternation composes
the dialogue.

52

2.2 – How the chatbots work

for mapping user input to a system response. Indeed, relying on the
strong relationship that often occurs between two sequential conversa-
tion turns, they realized a way for constructing a response, by analyz-
ing the user sentence.
This method outperformed the information retrieval approach and in
15% of cases automatic generated responses was preferred to human
ones, however it had to cope with some inconvenient. First of all the
system tended to generate answers very similar to the input, because
of the language similarity between initiator and respondent. These
was solved by filtering those generated sentences that were too similar
to the input. Then, a second problem was the word alignment that
occurred in the long phrases and that was partially resolved using the
Giza++ alignment tool created by Och and Ney.
Starting from the Statistical Machine Translation method, in 2014
Kyunghyun Cho introduced the sequence to sequence (seq2seq) model
for response generation. This model is based on two recurrent neural
networks (RNN) encoder-decoder architecture. The first RNN is an
encoder that takes in input an arbitrary-length sentence and encodes
it in a fixed-length vector of symbols, who is then taken by the second
RNN, which is a decoder, and decoded into another symbol sequence
of arbitrary length[6].
At each step the encoder transforms a word into a symbol and update
an internal state that influences later translation within the sentence.
At the end the encoder produce a final hidden state, also called context,
that is the input of the decoder, which at each step generates a new
word, influenced by the context itself and the output of the preceding
step. This model allows to provide good responses, however it has a
tendency to produce repetitive answers and it is not able to handle
the overall conversation context. Recent studies, have shown how to
deal with these issues modifying the decoder and using reinforcement
learning [11].

53

2 – Chatbots and Artificial intelligence

Figure 2.3. Sequence to sequence model for answers generation

54

Chapter 3

Microsoft Bot Framework

The increasing importance and diffusion of chatbots has led to the
born of several frameworks aimed to guide developers to create and
managing their own bots by means of dedicated services and tools.
Among all those available is worth mentioning IBM Watson, Amazon
Lex, Chatfuel.
In addition to the mentioned ones, a leading role is covered by the Mi-
crosoft Bot Framework. It is a complete suite for building intelligent
and powerful bots, deploying and testing them, composed of a Bot
Connector service, a developer portal and a Bot builder SDK. Com-
bined with Azure Bot Service, it allows to simplify and speed up the
chatbots development in a purpose-built environment.

3.1 Azure Bot Service
Microsoft Azure, also known simply as Azure, is the cloud computing
service offered by Microsoft in order to help developers to build, de-
ploy and manage their applications without worrying about managing
necessary hardware and computing resources.
Traditionally companies have their own infrastructure, including web
servers and all hardware necessary to provide their purposes. How-
ever this requires to have qualified personnel to estimate the required

55

3 – Microsoft Bot Framework

hardware, purchasing it and then maintaining over the time, adding
resources when necessary and providing an internet performance ade-
quate to support the estimated network traffic. Cloud computing has
revolutionized everything. Indeed it allows organizations to access to a
massive pool of computing resources for fee, without need to purchase
their own hardware and maintaining it, and using software services on
demand.
Azure is part of those cloud computing platforms classified as Plat-
forms as a Service (PaaS) for the way its cloud resources are available
to end users. That is, it provides both infrastructure and run-time
environment to deploy applications without letting to the user the
possibility to control the infrastructure, so without worry about man-
aging web servers or database servers with maintaining and updating
operations. Thanks to this architecture, developers have only to pro-
vide their application and the PaaS vendor will provide the means for
deploy and run them.
An important service offered by Azure is the Azure Bot Service, an in-
tegrated environment purpose-built for bot development that enables
to create, deploy, test and manage bots. Following a guided procedure,
shown in Figure 3.1 developers can choose one of the two available lan-
guage to use (C# and Node.js) and then select a template, among the
five provided, on which to base the chatbot:

• Basic bot: this is the bot template with basic functionality, able
to respond to users input simply back to the users the same words
they have typed in.

• Form bot: is a template specifically designed to build a guided
conversation with the user, in order to retrieve some information
useful for filling a defined form.

• Language understanding bot: this is a bot that uses language
understanding models to retrieve the user sentence meaning in a
natural language conversation. Leveraging on LUIS (Language
Understanding Intelligent Service), the bot is able to recognize
intents and entities in the user utterance and behave accordingly.

56

3.1 – Azure Bot Service

• Question answer bot: this template allows developers to create
bots able to respond to repetitive questions present in its own
knowledge database. It leverage on the QnA Maker service able
to parse questions and providing desired answers.

• Proactive bot: usually bots react to user input and behave ac-
cordingly to its latest message. Instead the proactive bot is able
to send messages not directly related to user recently messages
and not belonging to the conversation context. An example of
this type is a bot able to send a message to the user for a re-
minder.

Figure 3.1. Azure Bot Service

Azure Bot Service speeds up the bot development leveraging on pro-
vided components such as the Bot Builder and the Microsoft Bot
Framework connectors in order to make available the bot on several
defined channels.

57

3 – Microsoft Bot Framework

3.2 Bot Framework components
The Azure Bot Framework provides a set of means useful to simplify
the task of the developer in managing, testing and publishing his own
chatbot. It can be divided in three main components: the Bot Builder
SDK, the Bot Connector Service and the Bot Developer Portal.

3.2.1 Bot Builder SDK
The Bot Builder SDK is an open source framework available for both
Node.js and .NET, with features that make the interaction between the
bot and the user simpler and a emulator for debugging the bot once
created. For .NET it is available as NuGet package and on GitHub,
so it is quickly retrievable from the Visual Studio IDE.
Bots can communicate with users by means of simple text based mes-
sages, rather that rich text messages including text, image and other
components such as buttons. However, in any case developers have
always to face with common problems like managing Input/Output
(I/O) operations, connecting the bot to the user and providing lan-
guage and dialogue skills for support the conversation. All these fea-
tures are allowed by means of the core components of this SDK, that
are listed below.

• Channel: is the connection between the Bot Framework and the
bot application. Developer has to configure the bot to connect to
the channels he wants it to be available on. Skype and Web Chat
are pre-configured, but many popular services such as Bing, Cor-
tana, Direct Line and several others are available. For example,
a bot connected to the Skype channel can be added to a contact
list and people can interact with it in Skype.

• Connector: is a library that allows to access the Connector Ser-
vice for delivering messages from bot to channel and from channel
to bot.

• Activity: the connector, in order to exchange information back

58

3.2 – Bot Framework components

and forth between the bot and the user, uses activity objects
that are essentially the body of the HTTP request sent. Different
types of activity are allowed, like the typing activity, the ping or
the endOfConversation, but the most used is the message. This
one is used to exchange information with the user and can be
simple plain text, or may can have richer content such as media
attachments, buttons, and cards or channel-specific data.

• Dialog: when a bot is created using the Bot Builder SDK for
.NET, it can use dialogs to model a conversation and manage
conversation flow. A dialog can be composed of other dialogs
to maximize reuse, and a dialog context maintains the stack of
dialogs that are active in the conversation at any point in time. A
conversation that comprises dialogs is portable across computers,
making the bot implementation able to scale. The conversation
state (the dialog stack and the state of each dialog in the stack) is
automatically stored, enabling bot’s service code to be stateless,
much like a web application that does not need to store session
state in web server memory[23].

• State: the Bot Builder allows the bot to store data associated
to a user and reuse them for enabling preferences and customize
next conversations. To store state data a developer can either use
the Bot Builder Framework’s in-memory data storage, or custom
data storage like Cosmos DB or Azure Table storage.

• FormFlow: Within the Bot Builder SDK for .NET FormFlow
can be used for building a bot that collects information from
the user. For example, a bot that takes sandwich orders must
collect several pieces of information from the user such as type
of bread, choice of toppings, size, and so on. Given basic guide-
lines, FormFlow can automatically generate the dialogs necessary
to manage a guided conversation. It is less flexible that Dialogs
but it greatly simplify the process of managing a guided conver-
sation. To create a bot using FormFlow, developer must specify
the information that the bot needs to collect from the user. To

59

3 – Microsoft Bot Framework

do this you can define a form by using either a C# class or JSON
schema.

3.2.2 Bot Connector Service
The Bot Connector Service enables the bot to communicate through
the channels defined in the Bot Framework Portal, using REST and
JSON over HTTPS. Communication requires an access token obtained
providing the Azure App ID and password, indeed a bot communicates
with the Bot Connector service using HTTP over a secured channel
(SSL/TLS). When it sends a request to the Connector service, it must
include information that the Connector Service can use to verify its
identity. Likewise, when the Connector Service sends a request to the
bot, it must include information that the bot can use to verify its
identity.

3.2.3 Bot Developer Portal
The Bot Developer Portal, accessible at https://dev.botframework.com/,
is a central place used by developers for managing, testing and deploy-
ing their chatbots. After logging into the portal, you can access your
bots and for each one of them exploit the offered service, reported in
Figure 3.2, whose sections are listed below.

• Build: is where is possible to download the zip file containing
the source code, in order to develop it locally with the favorite
IDE. It is also available an online code editor that can be used to
make quick changes on the code and see them applied instantly.

• Channels: is where is possible to configure the bot to connect to
the channels you want it to be available on. In this section chan-
nels can be managed by adding, editing or deleting theme and is
easy for the developer to see associated configuration parameters.

• Analytics: is an extension of Application Insights, an exten-
sible Application Performance Management (APM) service for

60

https://dev.botframework.com/

3.2 – Bot Framework components

web developers that can use it to monitor their live web ap-
plication. While Application Insights provide service-level and
instrumentation data like traffic and latency, Analytics provides
conversation-level reporting on user, message and channel data[22].
If you are not interested to the wall data report but only to a
part, you can filter it on the channels and time period of interest.

• Settings: in this blade the developer can access and modify bot
settings such as Display name, Icon and Application Insights.

• Test: the Bot service provides a Web Chat control to help devel-
opers to test their bot. In this way is simple to see and improve
behaviors of the bot without need of any other external debug
tool.

Figure 3.2. Bot Developer Portal

61

62

Chapter 4

Project Implementation

The purpose of the project is the development of a chatbot to integrate
into a Sitecore website, with the aim of increasing the user engagement
and his navigation experience. Today’s customers search for more than
the traditional one-side commerce communication services. They want
to connect and engage with their brands in order to build a person-
alized experience, that is user-context aware. Sitecore features allow
tracking user activities on the website and manipulate them to under-
stand more on who use the service, in order to provide him the right
content with respect to he his looking for, but a relevant improvement
can be achieved by letting the user actively interact, and making him
feel part of the service. This is the reason why a chatbot could be a
huge opportunity of increasing the user experience within the website.

4.1 Jetstream website integration
For the project purpose has been chosen a Sitecore website dedicated
to travels, named Jetstream. This choice has been guided by the fact
that travelers can easily be divided in categories based on the types of
destinations they are interested in, for example a user who focuses his
research on exotic places and beautiful beaches is probably a lover of

63

4 – Project Implementation

the sea, while a user who seeks resorts with entertainment and activ-
ities for children, will be a family father and so on. This subdivision
of users allows to take advantage of the features of Sitecore to provide
targeted and dedicated content. Jetstream is a Sitecore’s demo website
developed with ASP.NET framework that exploit the personalization
Sitecore’s engine within a travels site. It is not a complete website but
is a working solution that lets users to access many services present in
other sites, such as navigate through the pages of several destinations,
book for a resort or look for available flights in order to reach it.
Behind to the website the Sitecore’s engine works for categorize the vis-
itors in order to provide a personalization of the content delivered and
achieving a great user experience. As explained in 1.1.2, Sitecore al-
lows to create a set of rules to associate to each item within the website
in order to personalize it following the concept of the pattern cards and
user profiles. Indeed, together with the set of predefined items which
constitute the content of the website, also some standard personas has
been defined, equipped of profile cards and pattern cards. In this way
when a visitor arrive on a page labeled with a targeted profile card, he
automatically accumulates the values associated to it. Then if some
personalization rule is triggered, it is applied on the related compo-
nent, adapting it to the user.
Exploiting the Sitecore Experience Platform and its Content Editor
section, is possible to see the data stored by default in the Master
database and managing it. This section is organized as a treeview,
who can be visited trough each folder until to reach leaves that rep-
resent items part of the website. Indeed it can be seen as a different
representation of the website and so all the sections and pages reach-
able navigating through the website, are also present in this treeview.
The chatbot purpose is to suggest to the users the most suitable resorts
according to their profiles, so has been necessary studying those that
are present in the website, their features and how they can be mapped
to the users tastes. Resort items are stored in a Resorts folder within
the Content Editor, as shown in figure 4.1 and each one of theme, is
composed by a representative picture, a description and a set of key/-
value pairs that helps to categorize it under several aspects.

64

4.1 – Jetstream website integration

At the begin of the project the majority of those resorts, apart of the

Figure 4.1. Content Editor view in Jetstream

picture and a brief overview, resulting as unclassified because to the
default value associated to each key, the zero, so it resulted useless for
the personalization process. Therefore has been necessary to navigate
through each resort item, and according to the present description ,
defining the values associated to it, in a range from zero to five.
However the existing key/value pairs were not enough to completely
categorize the resorts according to the features of the user profiles, so
other fields has been added and set in order to have for each resort a
set of values that can be used to check its compatibility with the user
behaviors. Acting in this way resorts has been categorized as sea, lake
or mountain destinations, for their inclination to host young people
as well as families, for the presence of nightlife and the possibility to
practice sports, as well as several other parameters.
On the other side, in the Experience platform’s Marketing Control
Panel section, under the Visit Profile folder are visible the predefined
user profiles and pattern cards, as reported in figure 4.2. There are six

65

4 – Project Implementation

different profiles and the associated card, equipped of a brief descrip-
tion aimed to explain the persona’s behaviors and a graph showing
the values associated to each key of the profile card, in a range from
zero to ten. These profiles are the core of the personalization, as users
along their navigation experience accumulate points and are compared
to these profiles. For this reason, a study phase acting to fully under-
stand each profile and its possible preferences has been done in order
to choose how each one can be considered in a different way from the
chatbot though a personalized interaction. In fact, different profiles
have different interests and so the chatbot has to aware that a ques-
tion or a suggestion can be very suitable if posed to one of theme, but
useless, if not counter-productive, if posed to one other.

Figure 4.2. Marketing Control Panel in Jetstream

The personalization adopted by Sitecore is useful to increase the user
experience, however to make feel him at the center of the site, is nec-
essary to increase his engagement letting him actively interact with it.
For this purpose a chat has been embedded within the website, so that
to establish a conversation aimed to achieve more information about
the user and suggest a destination suitable for him. Using JavaScript,

66

4.1 – Jetstream website integration

a web chat control, that is a widget for communicating with the chat-
bots, has been added into the website exploiting the Direct Line API.
In this case the web chat control access the mentioned API using a
JavaScript class called DirectLineJS that allows to share the channel
with the page of the website in which it is hosted, allowing to sending
and receiving massages.
The chat integration is fundamental first of all to avoid redirecting
the user to another page dedicated only to the bot, which would lead
him to think of it as a separate thing from the site itself, then to al-
low the data exchange between the Sitecore engine and the chatbot.
Indeed this one has to be aware of the profile associated to the user
which is interacting both for the destination suggestion that for the
conversation. Hence, once a given page is loaded and so the profile
score for the current user updated, using the Sitecore Analytics API
the user’s profile is retrieved together with its related pattern card and
sent to the chatbot by means of JavaScript and AJAX, used for call-
ing a purpose-built web service that initialize a new conversation. All
the process is made exploiting the communication channel exposed by
Direct Line in a way completely invisible to the user, as shown in the
following code snippet.

[HttpPost]
public void StartConversation (string id , string

patternProfile)
{

ConversationID = id;
PatternProfile = patternProfile ;
DirectLineClient client = new

DirectLineClient (DirectLineSecret);
client . Conversations . ReconnectToConversation (ConversationID);
var message = " userprofile : "+ PatternProfile ;
ChannelAccount ca = new

ChannelAccount (" userid ");
Activity a = new Activity (text: message ,

fromProperty : ca , type: " message ");
// send message

67

4 – Project Implementation

client . Conversations . PostActivity (ConversationID ,
a);

}

Once received the current pattern card the chatbot takes the initiative,
opens the web chat control and sends a welcome message to the user.
This is a not the common approach used by chatbots but has been
adopted for emphasizing the bot and encouraging to interact with it.
Indeed in the majority of cases is the user that starts interacting, typing
some message or enabling it for example with a click on a button that
opens the chat, while in the current case is the chatbot that starts the
conversation.

4.2 Azure Cosmos DB
All Sitecore website content is stored in the Sitecore databases men-
tioned above, that can be accessed querying them by Sitecore APIs,
however the developed chatbot doesn’t use directly this method to
obtain data on the available resorts. Indeed, having the necessity to
manipulate resorts data without changing the content of the website
and given the fact that not all information are useful, has been decided
to export those relevant for the purpose.
To do this, an external application was written using a custom ASP.NET
Web API that reads the relevant resort data and uploads it into an ex-
ternal database. Internally this custom Web API, queries Sitecore
databases for all available resorts, then extracts targeted informa-
tion and adds other custom fields of interest. Going more in detail,
this service accesses the Master Sitecore database and, using some
Sitecore APIs, navigates through the folders of the website up to the
one that acts as the common root for all the resorts. Indeed the
Sitecore.Context class allows to access the context database, auto-
matically determined by the framework, and positioning on the item
identified by a provided path, as in the following code
var db = Sitecore . Context . Database ;

68

4.2 – Azure Cosmos DB

var resortRoot =
db. GetItem ("/ sitecore / Content /Home/Plan And
Book/ Resorts ");

Starting from there a deep recursive search was carried out to reach
every single object of the resort. In fact, in Sitecore, any type of data,
like a page, a paragraph or a multimedia file, is an item, which is
characterized by some information but can also contain other items.
Based on this, Sitecore lets the possibility to use the abstract class
Sitecore.Data.Items.CustomItem, as base of an own class in which there
is a property, with getter and setter, for each field of the item that
you want to access. Thus a purpose built class, has been created
implementing the abstract class above, so that for each resort, key
properties, such as the unique identifier and those attributes needed
to characterize the specific element, have been retrieved as reported
in the code snippet below, and additional fields, such as the url of the
resort and the its image, has been added.
[JsonObject (MemberSerialization .OptIn)]
public class MyCustomItem :

Sitecore .Data.Items. CustomItem
{

public MyCustomItem (Item innerItem) :
base(innerItem){}

public static implicit operator
MyCustomItem (Item innerItem)

{
return innerItem != null ? new

MyCustomItem (innerItem) : null;
}

public static implicit operator
Item(MyCustomItem customItem)

{
return customItem != null ?

customItem . InnerItem : null;

69

4 – Project Implementation

}

public string Title { get { return
InnerItem ["Name"]; } }

public string CountryCode { get { return
InnerItem [" Country Code"]; } }

public Dictionary <String , String > Attributes
{

get
{

string a = InnerItem [" Attributes "];
string [] splitted = a.Split (’&’);
Dictionary <String , String > result =

new Dictionary <String , String >();
foreach (string s in splitted)
{

string so = s;
string [] keyValue = s.Split (’=’);
if(keyValue . Length == 2)

result .Add(keyValue [0],
keyValue [1]);

else
result .Add(keyValue [0], "0");

}
return result ;

}
}

}

Once retrieved all necessary data about resorts, is time to upload them
in an external database. The one chosen is Azure Cosmos DB, that is
a Microsoft’s globally distributed, multi-model database. It supports
multiple data models, including but not limited to document, graph,
key-value, table, and column-family data models. For query these doc-
ument types it offers API in different programming languages, such as

70

4.2 – Azure Cosmos DB

SQL API, MongoDB API, Cassandra API and others. Once again i
used the Azure Portal to create this database. Indeed through the por-
tal in few clicks is possible to create a new Azure Cosmos DB account
using the Azure marketplace, create a database, add a new collection,
or add simple data to an already existing one. Once an account has
been created and a database filled, is possible to use the Data Explorer
tool in the Azure Portal to navigate through its documents (they ap-
pear as JSON objects) or to write a personalized query on the fly.
All these operations can be done from the portal but also through cod-
ing. It requires to download the Microsoft.Azure.DocumentDB NuGet
package in order to access the DocumentClient class, that allows inter-
acting with your Cosmos DB account. Indeed, providing the endpoint
url and the related key of the account, the DocumentClient class is
able to manage databases, as well as collections of documents and the
individual documents. In fact the DocumentClient exposes the Cre-
ateDocumentAsync method to create documents (modeled as JSON)
and store them in a database. To do this it requires a class that mod-
els the object within the database, so has been created a class named
JSONResort, shown below, where each property represents a piece of
information that is stored for each document.

public class JSONResort
{

[JsonProperty (PropertyName = "id")]
public string Id { get; set; }

public string CountryCode { get; set; }

public bool HasSpa { get; set; }
public string Continent { get; set; }

public string CountryName { get; set; }

public string ItemURL { get; set; }
public string ImageURL { get; set; }
public int Young {get; set ;}

71

4 – Project Implementation

public int Watersports { get; set; }
public int Family { get; set; }
public int Beach { get; set; }
public int Cost { get; set; }
public int Restaurants { get; set; }
public int Shopping { get; set; }
public int Sightseeing { get; set; }
public int Nightlife { get; set; }
public int Skiing_beginner { get; set; }
public int Skiing_intermediate { get; set; }
public int Skiing_advanced { get; set; }
public int Snow_reliability { get; set; }
public bool Lake_mountains_chk { get; set; }
public bool Beach_chk { get; set; }
public bool Ski_chk { get; set; }
public float Latitude { get; set; }
public float Longitude { get; set; }
public int BusinessValue { get; set; }
public int SunBatherValue { get; set; }
public int RomanticValue { get; set; }
public int FamilyValue { get; set; }
public int PartyingValue { get; set; }
public int SightseerValue { get; set; }

public override string ToString ()
{

return JsonConvert . SerializeObject (this);
}

}

In the reported class, the Id property is required and used as unique
identifier of the document, but apart this detail, all other properties
was stored to enable the research mechanism of the chatbot. Acting
in this way at the end of the process the target database include a
collection of documents, each one representing a resort, identified by
name and characterized by a list of key/value pairs that are the values
associated to each field of the item that is in Sitecore, as shown in

72

4.3 – JetstreamBot chatbot

Figure 4.3.

Figure 4.3. Azure CosmosDB Collection

4.3 JetstreamBot chatbot
This is the core of the project. Chatbots have gained lot of popularity
in recently years and several companies have relied on these virtual
assistants to offer a greater supports to their customers, with the pur-
pose of increase their experience with the brand.
JetstreamBot is a chatbot, integrated in a travel website, aimed to
help users along their navigation experience, to find the resort that
is most suitable to their characteristics. This solution avoids the user
having to navigate the site searching for a destination, with the risk of
getting tired and abandon, in fact it will be the bot to do it for him.
In addition, it puts the user at the center of the research, as it estab-
lishes a dialogue with him, aimed to capture additional information to
those already obtained by Sitecore, so to better outline his profile and
understand what are his intentions.
So the first study phase has been the definition of the chatbot purpose

73

4 – Project Implementation

and how it has to interact with users. JetstreamBot’s purpose is en-
couraging users to visit one of the resorts present within the Jetstream
travel website, interacting with them in a conversational way, in or-
der to increase their engagement with the brand and the awareness
that the proposed destination is tailored on their features. Moreover,
also the chatbot approach to the conversation changes with respect
to the type of user that navigate the website, thus different users will
receive different question about their ideal destination and according
to their answer, the conversation will proceed in several ways. This is
fundamental in order to provide a great user experience, because the
customer will be more satisfied if he feels understood and treated in a
particular way.
In the conversation’s personalization a key role is played by the Sitecore
engine, who is able to define a user profile for the current customer,
as well as a set of personalization rules for the website components.
Thus, is in charge of the chatbot interacting both with the user and
with Sitecore in order to being aware about the person who is using
the website.
Once explained the chatbot role within the project, is time to see how
it has been developed. Given the increasing usage of chatbots, several
platforms are available to help developer in the bot creation and man-
agement, such as IBM Watson, Wit.ai or Api.ai, but i choose to use the
Microsoft Bot Framework because, as explained it is a very powerful
platform for building bots that lets the possibility to use the C# pro-
gramming language, exactly as Sitecore, and because it provides the
Direct Line REST API, which you can use to host the conversational
agent on a website.

4.3.1 Language Understanding Intelligent Service
(LUIS)

Inside the Microsoft Bot Framework, the Azure Bot Service speeds up
development by providing an integrated environment that is purpose-
built for developing chatbots. Using this service i created a C# bot

74

4.3 – JetstreamBot chatbot

based on the Language understand template. This allows the applica-
tion to understand what a person wants in its own words because it
relies on LUIS to interpret the meaning of the messages and behavior
accordingly.
LUIS is a service exposed as REST API, and consumable with an Azure
subscription, that uses Natural Language Processing (NLP) techniques
to process incoming user sentences and infer their meaning. It is based
on several natural language concepts, including some particularly im-
portant, like intents, entities and utterances that are at base of LUIS
understanding process. The prior function of the service is extracting
intents from a user sentences, that are the goals, purposes, and mo-
tivations enclosed within these, regardless of the way user expresses
them. Indeed, in natural language the same concept can be exposed
in several ways but has to be recognized by who analyze the different
sentences, for example a user can say “I want to fly to Milan” or “I’m
looking for a flight to Milan”, but the underling concept is the same.
A LUIS application, that can be created at https://www.luis.ai/, has
to be able to recognize intents for which it has been thought, within a
specified context, so that if the application is implied in forecast, it has
to recognize intent like search for forecast in a location, search forecast
of a day, or search expected temperature of a day and so on.
As well as the intents, also entities are important, and without them,
finding intents is quite trivial and useless, because they represent the
parameters of the intents, as nouns, subjects and objects. For example
in the utterance “What’s the weather in Turin?”, the search for fore-
cast in a location is recognized as intent and Turin as location entity,
that is fundamental to accomplish the task. Entities can be pre-built
and provided by LUIS, as number, dimension, datatime and several
others, but can be also customized by the developer that define them.
Once defined intents and entities, LUIS in not able yet to classify in-
coming sentence, but it has to be trained. This phase is in charge of
the developer, who has to provide some simple sentences, called utter-
ances, aimed to learn the LUIS model. It is a delicate task from which
depends the accuracy of the future classifications, since the model has
to be trained to recognize all possible ways in which a user expresses

75

https://www.luis.ai/

4 – Project Implementation

an intent.
At the end the overall architecture is the one reported in Figure 4.4,
with the Bot Connector that takes care of delivering user messages
to the bot, who immediately forwards them to the LUIS service end-
point developed for the application. Here messages are evaluated and
transformed in intents and entities, then returned to the chatbot. All
this is possible using the Dialog model provided by the Bot Builder
SDK. When the Language Understand template is used, the frame-

Figure 4.4. Bot Architecture

work automatically creates an empty LUIS application to associate to
the bot, with only the predefined None intent, that you can use to
handle all those cases in which any other intent doesn’t matches in-
coming data. In order to recognize the pattern cards delivered by the
website i created a SelectUserProfile intent able to understand when
an input contains a user profile and associating it to a purpose-built

76

4.3 – JetstreamBot chatbot

PatternCard entity. LUIS service provides a response including intents
and entities, in addition to their reliability score, as JSON document,
hence to understand it, the client that consumes the service has to
parse the incoming data and extracting information from the parsed
JSON object.
The easiest approach to parse the data and reuse them is to exploit the
Bot Builder SDK and a special Dialog class provided by it, the Luis-
Dialog<object>. This class automatically takes care of parsing the
incoming data and deserializing JSON, lifting the developer from this
task. To use these functionality, programmer has only to write a class
inheriting from the LuisDialog<object> one, and to provide a method
for each intent that the service is able to recognize. Each one of these
methods has to be decorated with the LuisIntent attribute, who takes
an additional string parameter representing the name of the intent,
indicating that the targeted method has to be used as handler of the
associated intent. Thus i modified the basic class that inherits from
LuisDialog<object> and that is already provided with the template,
by adding the method reported in the following snippet of code.

[LuisIntent (" SelectUserProfile ")]
public async Task

SelectUserProfileIntent (IDialogContext context ,
LuisResult result)

{
string message = "Hi ";
string profile = "";
foreach (var e in result . Entities)
{

profile = e. Entity ;
message += profile ;

}

PatternProfile = " userProfile : " + profile ;

PossibleResorts .Clear ();
DistinctContinents .Clear ();

77

4 – Project Implementation

ExtractedResorts .Clear ();
DistinctCountries .Clear ();

if (PatternProfiles . Contains (PatternProfile))
{
await context . PostAsync ($"{ message }");
GeneralForm gf = new GeneralForm (profile);
context .Call(gf. BuildFormDialog (FormOptions . PromptInStart),

FormComplete);
}
else
{

await context . PostAsync ("Hi , I’m your
virtual assistent . I cannot help you
yet , please first visit the site");

context .Wait(MessageReceived);
}

}

When this handler is invoked, the user profile is extracted and, if valid,
a purpose-built FormFlow is created for handling a guided conversation
aimed to collect information about the user.

4.3.2 FormFlow

Chatbots are conversational agents, thus their main purpose is to es-
tablish and maintain conversations with one or more users. The Bot
Builder SDK uses dialogs to model these conversations and manage
their flows, invoking them when the message controller receives an ac-
tivity message. However, if on one side dialogs offer a very flexible
way to handle conversations, can become difficult using them for han-
dling guided conversations in which bot behavior depends from user
messages and so many possibilities have to be expected and handled,
maintaining all possible information retrieved along it. To overcome
this problem the Bot Builder SDK provides the FormFlow.

78

4.3 – JetstreamBot chatbot

FormFlow automatically generates dialogs for supporting a guided con-
versation that follows a guideline defined by the developer. Indeed, he
can specify all required information in a C# class using properties and
enums, then supplying it to the FormFlow, it takes care of the di-
alogs required to retrieve these information. Thus i wrote a class with
properties representing the information to retrieve from the user and
decorated with attributes provided by the framework. Indeed, Form-
Flow in addition to letting to the developer the possibility to specify
the aim of the conversation, allows also to customize it providing the
way the requests have to be performed and how to handle unexpected
responses, as in the code snippet shown below.

[Prompt ("What kind of destination do you prefer ?
{||}")]

[Template (TemplateUsage . NotUnderstood ,
NotUnderstoodMsg)]

public DestinationTypeOptions DestinationType {
get; set; }

Here is shown how the bot uses the Prompt attribute to customize the
question supplied to the user for retrieving the destination type he is
searching for, and the Template attribute to provides a standard way
for reacting to unexpected responses. The properties must be inte-
grals, floating points, string, DateTime or enumerations, like in this
case, letting the developer to specify desired options.
For each property the FormFlow will expose the related question to
the user, prompting also the options available, as in Figure 4.5, letting
to him the possibility to write the response as text or selecting di-
rectly one of the proposal, then the choice is stored by the framework.
Once defined the information that the chatbot has to retrieve, the
FormFlow automatically manages the conversation flow formulating
each request, and collecting each answer, however without additional
guidelines, they are supplied one after the other in a static way, which
is not very pleasant in terms of naturalness and fluidity of the conver-
sation, because some questions could be related to other answers, so

79

4 – Project Implementation

Figure 4.5. Chatbot interaction

optionally omitted or proposed in a different fashion in order to natu-
ralize the conversation. Likewise, the JetstreamBot bot according with
the pattern card recognized and the received responses, dynamically
manage the conversation flow creating step by step the next questions.
This is useful to supply different questions to different users, for exam-
ple if he has been classified as sea lover, it would not make much sense
asking him if is searching for a mountain destination rather then for
a sea one, moreover the question “Do you like skiing?” is meaningful
only if him wants to go the mountain, while it will be inappropriate
for the user previously mentioned.

80

4.3 – JetstreamBot chatbot

In order to perform these customization, JetstreamBot uses the Form-
Builder, that is a reach and versatile framework for managing Form-
Flow dialogs and exploiting their advanced features. Thanks to the
FormBuilder the developer can use the Prompt and the Template at-
tribute previously mentioned and dynamically managing conditional
questions. User have also the possibility to go back on previous choice
and change it, and the chatbot will automatically change also its inter-
nal information and will react as required to continue the conversation.

4.3.3 Destinations research
When the chatbot has collected all required information, its task is to
retrieve those resorts that could interest the user. To do this it estab-
lish a set of values for the keys used to categorize the resorts based on
the user profile received by Sitecore and the additional information ob-
tained along the conversation, then it queries the external CosmosDB
database for those destinations that match the values set. Wanting to
leave the widest range of possible choices, without geographical limits,
the user is not asked questions about the destination nation or con-
tinent, but rather the characteristics sought in this one, such as the
presence of nightlife, the possibility of doing sports and so on. Thus,
once queried the external database, the destinations found are grouped
by continent, letting the user to choose what is his preference, then if
more that one nation is available within it, also in this case the choice
is let to the user, while if there is only one, it is immediately shown.
Cosmos DB allows executing queries against documents in the collec-
tions using the preferred syntax, like SQL or LINQ, exactly as you
would to interrogate the classic relational databases, letting to achieve
entire documents as well as targeted fields of certain documents. In
addition it allows to query the documents and retrieve wanted infor-
mation based on a model composed as JSON object. In this way is
possible to create your own class representing a JSON document ad
fill it with data retrieved from the database.
An example of how this works is reported in the following code that is

81

4 – Project Implementation

a query executed for a targeted user profile, using the LINQ syntax.

query = from f in
client . CreateDocumentQuery <JSONResort >(

UriFactory . CreateDocumentCollectionUri (DatabaseName ,
CollectionName),

new FeedOptions { MaxItemCount = 10 })
where f.Cost >= Cost &&

f. Restaurants >= Restaurants &&
f. Beach_chk == Beach_chk &&
f. Ski_chk == Ski_chk &&
f. Lake_mountains_chk ==

Lake_mountains_chk &&
f. Family <= Family &&
f. Watersports >= Watersports &&
f. Skiing_advanced >=

Skiing_advanced &&
f. Skiing_intermediate >=

Skiing_intermediate &&
f. Skiing_beginner >=

Skiing_beginner &&
f. Snow_reliability >=

Snow_reliability &&
f. HasSpa == Spa_chk

orderby f. BusinessValue descending
select new SimpleResort { Id = f.Id ,

CountryName = f. CountryName ,
Continent = f.Continent , ItemURL =

f.ItemURL , ImageURL = f. ImageURL };

For each user profile JetstreamBot executes purpose-built queries based
on different values, according to those aspects considered relevant for
the pattern card associated to the user by Sitecore and for the choice
done by the user himself during the conversation. In this ways differ-
ent users will achieve different suggestions about their destinations.
The main purpose of the chatbot is suggesting a resort that could
interest the user, so at the end of the dialogue it proposes to him a

82

4.3 – JetstreamBot chatbot

destination. This phase is quite important as although the suggestion
can be suitable to the user and perfect with respect to its character-
istics, it could be discarded or could affect the navigation experience
if not presented in the appropriate way. Thus rather then simply sug-
gesting a destination name, letting to the user the task of navigate all
the website searching for it, or redirecting him directly on the target
page, that could be too invasive, i choose to use hero cards provided
by the Bot Connector. This is a card that allows exchanging image
and buttons during a conversation. Thanks to this functionality the
bot delivers to the user a message in which the name of the suggested
resort is accompanied by a large image of it achieved by its page within
the travel website and a button that gives the opportunity of navigat-
ing to the resort’s page.
Furthermore, if more than one resort is found for the nation chosen, an
additional button allows to discard the presented destination and see-
ing another one. This possibility meets the needs of different people,
with different tastes, so as to satisfy the user as much as possible, mak-
ing him always find a suitable opportunity for him. However also this
choice can quickly lead to a bad user experience, indeed if resorts are
proposed without any logic, the user may get tired and lose confidence
in the reliability of the proposals. In order to avoid this, a evaluation
mechanism has been created for ranking destinations according to the
interest shown by the users themselves. In fact is useless to propose
those resorts that have never been successful, while if it has captured
the attention of multiple users, then it should be placed among the
suggestions.
Starting from the assumption that if a user stays for a long time on a
website page, is because he is pretty interested to it, the idea was to
give a point every time a resort page is considered interesting. In order
to do this, a JavaScript function has been embedded into the website
code, so that it is called when a user visits a resort page and stays on it
at least for a predefined time. This function uses a purpose-built .NET
web service that, obtained the pattern card associated to the current
user, increase the resort’s score inside the Cosmos DB database for the
targeted category of users.

83

4 – Project Implementation

In this way when the chatbot queries the database for the resorts most
suitable to the current user, it sorts them according to their score for
the pattern card associated to him, so that the resorts with an higher
value will be shown before the others.
This additional mechanism enforces the concept of pattern cards and
of providing the right content to the user, that is the basic concept in
order to increase the user engagement with respect to the brand.

84

Chapter 5

Conclusions and further
works

This thesis project concerns the use of the Microsoft Bot Framework
for developing a chatbot to integrate in a Sitecore’s website, able to
exploit its personalization mechanism for delivering conversations tai-
lored on the users and increasing their engagement with the brand.
The framework above speeds up the chatbot development process, pro-
viding templates that can be used to create several type of bot, ranging
from basic ones to those relying on artificial intelligence or backed by
a knowledge base to use for responding to common questions. This al-
lows developers to create with few clicks a bot equipped with all those
basic functionality that enable to interact with it.
In addition to the templates, the frameworks provides also a power-
ful open source SDK that enables to compose several dialogs, create
a guided conversation and utilize artificial intelligence as LUIS. Once
created their chatbots, developers can modify and develop them down-
loading the source codes, rather than doing it directly on the portal,
exploiting the online editor, furthermore the framework allows to cre-
ate, delete and manage the channels on which the bots can reached,
monitoring the use of each one based on the messages exchanged in
a chosen range of time. Finally, it provides also a useful web chat
connected to the bot in order to test it before being published on the

85

5 – Conclusions and further works

network.
While the Sitecore’s website use its personalization engine to deliver
personalized content to the user, the chatbot is able to learn from the
site itself the characteristics of the user with which it is interacting,
leading conversations that are built based on the its profile and that
change depending on the answers provided.
The developed chatbot exploits the Language Understanding Intelli-
gent Service (LUIS) provided by Microsoft to understand messages
meaning and behavior accordingly establishing a conversation that
ends with the suggestion to the user of one or more resorts that are
most suitable to their characteristics and intentions. The destination
selection process is backed by a Cosmos DB, a globally distributed,
multi-model database service, in which are stored relevant data of re-
sorts present in the travel site, constantly updated with users prefer-
ences, in order to deliver always the best results.
Hence the overall architecture can be seen as in Figure 5, with the
chatbot at the center that is hosted into the Sitecore’s website and
communicates with Azure Cosmos DB to retrieve resorts information
and with the LUIS service for the messages interpretation. Finally the
Bot Framework, from which the bot can be managed. In the future
some improvement can be applied to offer a user experience even bet-
ter. Of sure some effort can be spent in order to expand the chatbot
functionality, letting the possibility to interact with it for several addi-
tional purposes, such as for booking a flight for the chosen destination,
reserve a car for moving on the place or connecting to others external
services in the world of tourism. This can be achieved by an more
intensive use of LUIS, so that to leave at the user a greater initiative
along the conversation, relying on the artificial intelligence to under-
stand user needs. Furthermore the chatbot could exploit an holiday
calendar in order to provides suggestion based on some specific festiv-
ity and events available on the period chosen for traveling, to check
which could be the more interesting place.
Another possible improvement is to exploit the user localization in or-
der to make aware the bot about the distance that separate him from

86

Figure 5.1. Overall Architecture

the potential destinations, so to delivering more accurately sugges-
tions. For example a user that wants to stay out only for a weekend,
probably will prefer a resort not too far.
Finally, in addition to those information obtained from Sitecore web-
site, the chatbot could also exploit data retrieved from user navigation
on external sites and his researches on the network, in order to have a
more complete picture about him.

87

88

Bibliography

[1] Suket Arora, Kamaljeet Batra, and Sarabjit Singh. Dialogue Sys-
tem: A Brief Review. 2013.

[2] Kat Austin. The History and Future of Chatbots. 2017. url:
http://inthechat.com/chatbots/the-history-and-future-
of-chatbots/.

[3] Deane Barker. «Web Content Management: systems, features,
and best practices». In: O’Reilly Media, Inc., 2015. Chap. 1,
p. 10.

[4] Matt Carbone. Remembering SmarterChild. 2016. url: http:
//blog.talla.com/remembering-smarterchild.

[5] Rollo Carpenter. About the Jabberwacky AI. 2018. url: http:
//www.jabberwacky.com/j2about.

[6] Kyunghyun Cho et al. Learning Phrase Representations using
RNN Encoder–Decoder for Statistical Machine Translation. 2014.

[7] EQT. Sitecore. url: https://www.eqtpartners.com/Investments/
Current-Portfolio/sitecore/.

[8] Albert Gatt and Emiel Krahmer. Survey of the State of the Art
in Natural Language Generation: Core tasks, applications and
evaluation. 2017.

[9] Dr. Alfio Gliozzo et al. «Building Cognitive Applications with
IBMWatson Services: Volume 1 Getting Started». In: RedBooks,
2017. Chap. 3, pp. 30–39.

89

http://inthechat.com/chatbots/the-history-and-future-of-chatbots/
http://inthechat.com/chatbots/the-history-and-future-of-chatbots/
http://blog.talla.com/remembering-smarterchild
http://blog.talla.com/remembering-smarterchild
http://www.jabberwacky.com/j2about
http://www.jabberwacky.com/j2about
https://www.eqtpartners.com/Investments/Current-Portfolio/sitecore/
https://www.eqtpartners.com/Investments/Current-Portfolio/sitecore/

BIBLIOGRAPHY

[10] Charles Hayden. How Eliza work. url: http://www.chayden.
net/eliza/instructions.txt.

[11] Daniel Jurafsky and James H. Martin. «Speech and Language
Processing». In: 2017. Chap. 28, pp. 418–440.

[12] Alireza Mansouri, Lilly Suriani Affendey, and Ali Mamat. «Named
Entity Recognition Approaches». In: International Journal of
Computer Science and Network Security (2008).

[13] Michael F. McTear. «Spoken dialogue technology: enabling the
conversational user interface». In: ACM Comput. Surv. 34 (2002),
pp. 90–169.

[14] Danny Miller. SMARTERCHILD AND ELIZA. 2007. url: http:
//k2xl.com/wordpress/smarterchild-and-eliza/.

[15] Diana Perez-Marin and Ismael Pascual-Nieto. «Conversational
Agents and Natural Language Interaction». In: Information Sci-
ence Reference, 2011. Chap. 1, pp. 8–10.

[16] Lars Birkholm Petersen. Best Practices for Developing Personas
with the Sitecore Customer Engagement Platform. 2012.

[17] Alan Ritter, Colin Cherry, and William B. Dolan. Data-Driven
Response Generation in Social Media. 2011.

[18] Margaret Rouse. web content management system (WCMS). url:
http://searchcontentmanagement.techtarget.com/definition/
web-content-management-WCM.

[19] Sitecore. Architecture overview. url: https://doc.sitecore.
net/sitecore_experience_platform/81/setting_up_and_
maintaining/xdb/platform/architecture_overview.

[20] Sitecore. Processing overview. url: https://doc.sitecore.
net/sitecore_experience_platform/81/setting_up_and_
maintaining/xdb/platform/processing_overview.

90

http://www.chayden.net/eliza/instructions.txt
http://www.chayden.net/eliza/instructions.txt
http://k2xl.com/wordpress/smarterchild-and-eliza/
http://k2xl.com/wordpress/smarterchild-and-eliza/
http://searchcontentmanagement.techtarget.com/definition/web-content-management-WCM
http://searchcontentmanagement.techtarget.com/definition/web-content-management-WCM
https://doc.sitecore.net/sitecore_experience_platform/81/setting_up_and_maintaining/xdb/platform/architecture_overview
https://doc.sitecore.net/sitecore_experience_platform/81/setting_up_and_maintaining/xdb/platform/architecture_overview
https://doc.sitecore.net/sitecore_experience_platform/81/setting_up_and_maintaining/xdb/platform/architecture_overview
https://doc.sitecore.net/sitecore_experience_platform/81/setting_up_and_maintaining/xdb/platform/processing_overview
https://doc.sitecore.net/sitecore_experience_platform/81/setting_up_and_maintaining/xdb/platform/processing_overview
https://doc.sitecore.net/sitecore_experience_platform/81/setting_up_and_maintaining/xdb/platform/processing_overview

BIBLIOGRAPHY

[21] Sitecore. Sitecore Launches Sitecore Experience Platform 8.1 to
Deliver World-Class Context Marketing at Scale. url: https:
//www.sitecore.com/company/press- and- media/press-
releases/2015/10/sitecore81.

[22] Robert Standefer and Kamran Iqbal. Bot analytics. 2017. url:
https://docs.microsoft.com/en-us/bot-framework/bot-
service-manage-analytics.

[23] Robert Standefer et al. Dialogs in the Bot Builder SDK for
.NET. 2017. url: https://docs.microsoft.com/en-us/bot-
framework/dotnet/bot-builder-dotnet-dialogs.

[24] Wallace and Richard S. «The Anatomy of A.L.I.C.E.» In: Pars-
ing the Turing Test: Philosophical and Methodological Issues in
the Quest for the Thinking Computer. Ed. by Robert Epstein,
Gary Roberts, and Grace Baber. Springer Netherlands, 2009,
pp. 181–210.

[25] Joseph Weizembaum. «ELIZA - A Computer Program For the
Study of Natural Language Communication Between Man And
Machine». In: Communications of the ACM (1996).

[26] John West. «Professional Sitecore Development». In: John Wiley
& Sons, Inc., 2012. Chap. 1, p. 2.

[27] Phil Wicklund. «Practical Sitecore 8 Configuration and Strat-
egy: A User Guide for Sitecore’s Content and Marketing Capa-
bilities». In: Apress, 2015. Chap. 1, pp. 9–12.

[28] Natalie Wolchover. How the Cleverbot Computer Chats Like a
Human. 2011. url: https://www.livescience.com/15940-
cleverbot-computer-chats-human.html.

91

https://www.sitecore.com/company/press-and-media/press-releases/2015/10/sitecore81
https://www.sitecore.com/company/press-and-media/press-releases/2015/10/sitecore81
https://www.sitecore.com/company/press-and-media/press-releases/2015/10/sitecore81
https://docs.microsoft.com/en-us/bot-framework/bot-service-manage-analytics
https://docs.microsoft.com/en-us/bot-framework/bot-service-manage-analytics
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-dialogs
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-dialogs
https://www.livescience.com/15940-cleverbot-computer-chats-human.html
https://www.livescience.com/15940-cleverbot-computer-chats-human.html

	Summary
	Content Management Systems
	Sitecore
	Sitecore® Experience Platform™
	Experience Personalization
	Content Management

	Chatbots and Artificial intelligence
	History of chatbots
	How the chatbots work

	Microsoft Bot Framework
	Azure Bot Service
	Bot Framework components
	Bot Builder SDK
	Bot Connector Service
	Bot Developer Portal

	Project Implementation
	Jetstream website integration
	Azure Cosmos DB
	JetstreamBot chatbot
	Language Understanding Intelligent Service (LUIS)
	FormFlow
	Destinations research

	Conclusions and further works

