
POLITECNICO DI TORINO

III Facoltà di Ingegneria dell’Informazione
Corso di Laurea in Ingegneria Informatica (Computer Engineering)

Tesi di Laurea Magistrale

Detection of Suspicious Users
Posting Claims about Cancer on

Twitter

Relatore:
prof. Elena Baralis

Candidato:
Massimo Piras

Anno accademico 2017-2018

To Dalia, always in our thoughts, forever in our hearts.

May you watch over us all.

ii

ACKNOWLEDGMENTS

I want to thank all the people that made this work possible. First, I would like to express

my gratitude to my advisor, professor Bing Liu, for giving me the opportunity of working with

him and for having followed and advised me in every step of this journey. His guidance was

essential to the success of this work. I want to thank professor Elena Baralis from my home

university, Politecnico di Torino, for her support. A thank you to professor Barbara Di Eugenio

for being interested in my research and accepting to become part of my committee. I want

also to thank all my friends and colleagues I shared this experience with, who helped make it

wonderful and unforgettable. Finally, I am very grateful to my family for their unconditioned

love and support.

MP

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Outline . 3

2 PREVIOUS WORK . 4

3 WHY TWITTER? . 13

4 DATA COLLECTION AND PROCESSING 17
4.1 Collecting Twitter Data . 17
4.2 Data Preprocessing . 18
4.2.1 Pooling Tweets by User . 20

5 TOPIC MODELING . 22
5.1 Topic Modeling Techniques . 22
5.2 Topic Extraction and Evaluation 27

6 COMPUTATION OF FEATURES AND RANKING 30
6.1 Behavioral Features . 31
6.1.1 Content Features . 31
6.1.2 Account Features . 35
6.2 Ranking . 41

7 LABELING PROCESS AND ANALYSIS OF EXTRACTED FEA-
TURES . 43
7.1 Labeling Process . 43
7.2 Cumulative Density Functions for Behavioral Features 49

8 CLASSIFICATION . 56
8.1 Bayesian Classifier . 57
8.2 SVM . 59
8.3 Neural Network . 62

9 EXPERIMENTAL RESULTS . 68
9.1 Classification using Behavioral Features 68
9.1.1 Bayesian Classifier . 68
9.1.2 SVM . 69
9.1.3 Neural Network . 69

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

9.2 Classification using Linguistic Features 71
9.2.1 Bayesian Classifier . 71
9.2.2 SVM . 71
9.2.3 Neural Network . 72
9.3 Classification using Combined Features 73
9.3.1 Bayesian Classifier . 74
9.3.2 SVM . 74
9.3.3 Neural Network . 75
9.4 Classification Results Overview 76

10 DETECTION OF GROUPS OF COLLUDING USERS 79
10.1 Extraction of Groups of Suspicious Users 79
10.2 Groups Evaluation . 80

11 CONCLUSION . 82
11.1 Future Work . 83

CITED LITERATURE . 85

VITA . 91

v

LIST OF TABLES

TABLE PAGE
I EXAMPLES OF DATA PREPROCESSING. 20
II TOPIC COHERENCE AVERAGE VALUES. 28
III REPRESENTATION OF THE MOST FREQUENT TOPICS. . . 29
IV BEHAVIORAL FEATURES - CM KERNEL NAIVE BAYES. . . 69
V BEHAVIORAL FEATURES - CM SVM DOT KERNEL. 70
VI BEHAVIORAL FEATURES - CM NEURAL NETWORK. 70
VII LINGUISTIC FEATURES - CM KERNEL NAIVE BAYES. . . . 72
VIII LINGUISTIC FEATURES - CM SVM DOT KERNEL. 72
IX LINGUISTIC FEATURES - CM NEURAL NETWORK. 73
X COMBINED FEATURES - CM KERNEL NAIVE BAYES. . . . 74
XI COMBINED FEATURES - CM SVM DOT KERNEL. 75
XII COMBINED FEATURES - CM NEURAL NETWORK. 76
XIII KERNEL BAYES - PERFORMANCE. 77
XIV SVM DOT KERNEL - PERFORMANCE. 78
XV NEURAL NETWORK - PERFORMANCE. 78

vi

LIST OF FIGURES

FIGURE PAGE
1 Graphical representation of LDA . 24
2 Distribution of suspicious users: top 2000 positions 46
3 Distribution of suspicious users . 47
4 CDF for spam score . 49
5 CDF for feature fraction of tweets referring to spam sources 51
6 CDF for feature number of YouTube links per tweet 51
7 CDF for feature fraction of tweets with YouTube links 52
8 CDF for feature number of URLs per tweet 52
9 CDF for feature fraction of tweets with URLs 53
10 CDF for feature fraction of tweets with mentions 53
11 CDF for feature number of tweets posted in October 54
12 CDF for feature maximum content similarity between documents . . 54
13 CDF for feature number of near-duplicate tweets 55
14 CDF for feature minimum time interval between tweets 55
15 Graphical representation of a layer in Neural Networks 64

vii

LIST OF ABBREVIATIONS

ASCII American Standard Code for Information Inter-

change

CDF Cumulative Density Function

CM Confusion Matrix

HDFS Hadoop Distributed File System

HTTP HyperText Transfer Protocol

LDA Latent Dirichlet Allocation

NLTK Natural Language Toolkit

POS Part Of Speech

RBF Radial Basis Function

RDD Resilient Distributed Dataset

SVM Support Vector Machines

TF Term Frequency

TF-IDF Term Frequency Inverse Document Frequency

UIC University of Illinois at Chicago

URL Uniform Resource Locator

viii

SUMMARY

Due to the massive success of social media, online user-generated content has increased

exponentially in the last years. Twitter, as a microblogging platform, allows users to share

information about their opinions or activities by means of short posts called tweets. However,

opinion spammers see social networks like Twitter as an opportunity to propagate their ideas,

promoting or discrediting some target product or service, without showing their true intentions.

In this study, we focused on detecting suspicious users who posted dubious claims about

cancer treatment and prevention on Twitter. We addressed the task with a supervised learn-

ing approach, a binary classification problem in which we had to predict whether users were

suspicious or genuine. We collected a set of 60 thousand tweets related to cancer posted in

October 2017, including more than 36 thousand users. Since manual labeling could be a very

complicated process, we elaborated a set of features for each user, both related to the content

of her posts and her behavior on Twitter, and combined them to compute a spam score. The

basic idea was that suspicious users would have different feature distributions with respect to

genuine users and that would help us to separate the two classes. Then, we generated a ranking

using the spam score and exploited it to assign the labels.

Finally, we ran a few classifiers on our labeled data, showing that suspicious users had

different textual and behavioral patterns which could be used to distinguish them from genuine

ones.

ix

CHAPTER 1

INTRODUCTION

Social Networks are one of the most popular and widely used applications of Web 2.0 [1].

Among them, Twitter offers a microblogging service which can count more than 330 million

active users per month. Through this platform, users can form social bonds and post updates

about their life experience and their opinions, communicating with friends exchanging short

messages. Twitter has become a system for obtaining real-time information since, as soon

as users post some content, their followers are immediately notified, allowing information to

be propagated incredibly fast. Unfortunately, opinion spammers can use Twitter as a vehicle

to spread misinformation, posting malicious links and deceptive messages which can influence

people’s opinion on some subjects for their personal gain. They usually target trending topics,

the most tweeted subjects in a short time window. Cancer cure and prevention is definitely a

trendy topic: people could be induced into believing anything if that means giving them hope

and finding a solution to such a delicate matter. In fact, when addressing cancer, it is easier for

malicious users to get people to trust their opinions. Hence, it is necessary to detect suspicious

users to ensure people that social media can be a trustworthy source of information.

In our research, we wanted to detect those users who posted some dubious and odd claims

about cancer treatment and prevention. Since we did not have either authority or the com-

petence to determine whether some claims were utterly wrong, we just defined the users with

ambiguous conduct on Twitter as suspicious. The problem of distinguishing genuine users from

1

2

suspicious ones can be seen as a binary classification problem, where the majority class is rep-

resented by normal users, and the minority class is associated with suspicious users. We used

Twitter APIs [2] to download a set of 60 thousand tweets related to cancer treatment and

prevention, posted by a total of 36 thousand users in October 2017.

In order to perform supervised learning, we needed a labeled dataset, so we had to assign a

label to each user. Manual labeling is a very complicated task, and we did not have either the

workforce or the time to do it from scratch. Therefore, we extracted a set of features for each

user, we combined them to compute a spam score, and then we generated a ranking. This score

represented the likelihood of a user being suspicious. We exploited our ranking to complete

the labeling task, making it easier: we performed a process composed of multiple steps, which

started analyzing the top users in the ranking, that allowed us to assign the labels without

having to go through every single user in our dataset.

Then, we tried different machine learning algorithms for classification to separate the two

classes of users and evaluated their performance. We used ten-fold cross-validation to divide

our dataset into multiple training sets and testing sets. We had three different sets of data:

feature dataset, text dataset, and combined dataset. In the feature dataset, we had all the

computed behavioral features for each user, and we tried to exploit them to predict the class

label, convinced that suspicious users would have different and peculiar feature distributions.

For the text dataset, we just used the content of the tweets posted by users to predict their labels.

In the third set, we combined both behavioral and linguistic features to perform classification.

Lastly, we investigated how suspicious users could collude, forming groups to have a more

3

significant impact on people’s opinions on cancer prevention and treatment. By analyzing

similar content and relationships between suspicious users, we found out that some of them

could be working together to achieve a common goal.

1.1 Outline

Our work is going to be divided into several chapters.

Chapter 2 gives an outline of the related work on fake review detection on commercial

platforms and opinion spam detection in social media. Chapter 3 describes Twitter as a mi-

croblogging platform, highlighting its essential features as a vehicle for spreading information.

Chapter 4 illustrates how we collected our dataset and which preprocessing steps we performed.

Chapter 5 explains how we performed topic modeling and extracted different topics from our

tweets. Chapter 6 deals with the computation of the behavioral features and the generation

of the ranking. Chapter 7 describes in detail our labeling process, how we assigned labels to

users and why. Chapter 8 illustrates the machine learning algorithms we used for classification

and also explains how we tuned the parameters. Chapter 9 describes the experimental results

obtained by running our classifiers. Chapter 10 deals with the detection of groups of suspicious

users who could be working together. Finally, chapter 11 summarizes our work and suggests

future directions for it.

CHAPTER 2

PREVIOUS WORK

Spam detection has been studied in many different fields, and the most studied types of

spam are probably email and web spam. However, due to the massive success of social media,

opinion spam has become more and more critical.

Since we were focusing on a specific topic, cancer prevention and treatment, and because

many products, drugs, and foods were claimed to be effective against cancer, our problem was

somehow related to fake review detection. Indeed, in our work we also exploited some features

which were used to identify fake reviewers. Similarly to opinion spamming on social networks

like Twitter, fake reviews may promote or damage some entities, influencing people’s opinions

and also damaging businesses.

Moreover, as for Twitter accounts, fake reviewers may be professional fake reviewers, who are

easier to find since they follow some recognizable behavioral pattern, and nonprofessional fake

reviewers, who mainly write to help themselves. Fake reviewers also collude, creating groups of

spammers who cooperate to promote or discredit target entities [3]. Since we could find many

similarities between fake reviews and opinion spamming in social media, we considered previous

work on detecting fake reviews as related to our study. The only significant difference was that

on Twitter we could not analyze and exploit rating behavior for users.

Furthermore, many studies have been done on spamming in social networks, including

Twitter. In many cases, the researchers wanted to find campaigns and groups of spammers

4

5

colluding to spread their information for a common hidden purpose. Because of the absence of

a gold-standard dataset for fake opinions and the dual behavior of some users, this is a very

complicated task, and no one has found an automated spamming detection method yet. To the

best of our knowledge, this is the first study of opinion spamming about cancer in social media.

Here we give a survey of the previous work on detection of fake reviews and opinion spamming

in social media.

In [4], A.Mukherjee et al. found a way to detect opinion spammers on review platforms

with an unsupervised model, called Author Spamicity Model. Expecting spammers to have

different behavioral patterns than genuine reviewers, they exploited behavioral footprints of

users to divide them into two clusters: spammers and non-spammers. This method was inno-

vative because it did not need any manually labeled data, but used an unsupervised Bayesian

framework to characterize users and create a separation margin between population distribu-

tions of the two groups. We exploited some of the behavioral features they extracted, such as

content similarity for reviews, maximum number of reviews, burstiness for reviews and number

of near-duplicates reviews. Most importantly, we got the idea of computing a spam score for

users to help us identify and label them. Indeed, we created a ranking based on the computed

score, and we fully exploited it to reduce the complexity of our labeling process.

In [5], F. Benevenuto et al. performed a classification task on a large manually labeled

Twitter dataset using textual and behavioral features of users. They conducted a study about

characteristics of tweets content and users behavior to detect spammers. In our research, we

used many of their features: number of URLs, hashtags and mentions, number of followers and

6

friends, reputation, i.e., number of followers per friend, the age of the account and many more.

Moreover, they noticed that their classifier misclassified about 30% of non-spammers: this was

due to the fact that many spammers showed a dual behavior, posting genuine tweets most of

the times and just a few ones considered as spam. Also in our study, some classifiers could not

accurately identify genuine accounts.

In [1], A. Wang tried to automatically detect spammers by using a graph model which

could adequately describe the non-reciprocal following relationships on Twitter. He modeled

the reputation as a way to measure the importance of a user on the platform: it was computed

as the ratio between the number of followers and the sum of followers and friends. As a matter of

fact, spam accounts try to follow as many users as they can to spread their information, while

prominent accounts are likely to have a considerable number of followers and fewer friends.

In addition to graph-based features, behavioral features were used to perform classification,

distinguishing spammers from non-spammers. They mostly used content-based features like the

number of duplicate tweets, and the number of HTTP links, hashtags, and mentions posted.

In [6], C. Grier et al. conducted a study on spammers behavior, clickthrough and on the

effectiveness of blacklists to prevent spam propagation on Twitter. They analyzed the content

of a large dataset of tweets, which contained over 2 billion URLs pointing to scams and phishing

pages and malware. To better understand and detect spammers, they also studied their behav-

ior, checking the number of mentions, hashtags, retweets posted by each user. They described

a particular activity, which we also found in our data, called Tweet hijacking: spammers tend

to retweet posts from authoritative users to be trusted, but then they modify the content to

7

suit their intentions better. Then, they observed the clickthrough on spam links, showing that

the most-clicked malicious URLs were phishing ones. Finally, they analyzed the effectiveness

of Twitter blacklists, proving that they were too slow to detect spam links correctly. Moreover,

they found out that shortened and obfuscated URLs were immune to the blacklists. Indeed,

shortening techniques are used by spammers to evade detection.

In [7], G. Fei et al. exploited the burstiness nature of reviews to identify spammers. Bursts

in reviews are usually generated by either increased popularity of the product or spam attacks.

They stated that malicious users usually work with other malicious users, while genuine users

appear in the same burst with other genuine users. Hence, they represented reviewers and their

relationships in a graph and then tried to link reviewers in the same burst. They proposed a

burst detection method based on kernel density estimation, and then they distinguished between

spam and genuine bursts. To better identify spammers, they also used a set of behavioral

features such as review burstiness and content similarity. Finally, they evaluated their detection

algorithm performing a supervised text classification, showing that reviews written by spammers

were different from the ones written by genuine users.

In [8], H. Li et al. studied an extensive dataset with more than 6 million reviews of all

restaurants in Shanghai, China, provided by Dianping. Differently from other works, they per-

formed spam detection exploiting spatial and temporal patterns. They observed how spammers

and non-spammers were distributed in China, showing that IP addresses that were most dis-

tant from Shanghai were mostly malicious. In our work, we also tried to exploit the registered

location for each user, but it was generally unavailable. Professional spammers often register

8

multiple accounts with different userids to avoid detection and to propagate their pieces of

information better. Since spammers may register many accounts in a short time period, they

also supposed that they could often change IP address while publishing reviews to evade spam

filters. Hence, they defined the Average Travel Speed, considering the location of the IP address

and the timestamp of the review. Finally, they also exploited behavioral features to perform

classification.

In [9], N. Jindal et B. Liu proposed a solution to the labeling problem in supervised learning

for opinion spam in reviews. Since manual labeling is very hard and requires much time, they

found a way to assign labels to reviews automatically. They supposed that spammers were

most likely to write duplicate or near-duplicate reviews because writing new, different ones

would require too much effort and would not allow them to propagate their ideas quickly

enough. Hence, they found all the duplicate and near-duplicate reviews and labeled them as

spam reviews. Then, they built a model to perform classification, based on a set of review,

user, and product features. Even if posts on Twitter and reviews on commercial platforms are

not the same, we also considered the similarity between tweets as a significant feature: it is

undoubtedly effective to re-post the same content over and over again to reach out to many

users and propagate ideas. However, we found that in our dataset many accounts posting a lot

of duplicate or near-duplicate tweets were genuine and they were just trying to spread useful

information. In most of the cases, they were authoritative and prominent users, such as journals

and universities.

In [10], A. Mukherjee et al. studied Yelp spam detection algorithm trying to understand

9

how it works. Differently from other studies, they had a real-life labeled dataset: Yelp’s filtered

and unfiltered reviews. They tried a supervised learning approach using both linguistic and

behavioral features. Indeed, they observed that linguistic features, such as n-grams and POS,

were not useful for real-life reviews leading to a maximum accuracy of 68%. However, this

result proved that there was a difference between filtered and unfiltered reviews on Yelp. On

the other hand, behavioral features, as content similarity, reviews length and number of posted

reviews, rendered a higher accuracy of 86%. Therefore, they concluded that Yelp filter, which

is known to be very good, might be using a behavioral-based approach. It is also likely that it

combines both behavioral and linguistic features, as we did in our study. Since they reported

that linguistic features did not perform well, we just exploited unigrams and bigrams as textual

features, without using POS.

In [11], A. Mukherjee et al. tried a supervised approach for fake reviews detection using

pseudo-fake reviews generated using Amazon Mechanical Turk crowdsourcing tool. Due to the

lack of gold-standard fake reviews data, they used those pseudo-reviews to obtain a labeled

dataset. However, they were different with respect to real fake reviews from commercial sites,

since the authors did not have the same state of mind of professional spammers. They built

a model based on linguistic features and then ran a classifier reaching an accuracy of almost

90%. With respect to Yelp’s data, which yielded 68% accuracy, the performance for this model

was much better, showing that fake review detection on real-life data was more complicated

than detection using AMT pseudo fake reviews. This was mostly due to the fact that AMT

authors used a different words distribution with respect to genuine users, making it easier to

10

separate fake and genuine reviews. On the other hand, Yelp fake reviewers had a more similar

words distribution to nonfake reviewers. This means that either Turkers did not do a good

job in creating pseudo fake reviews or that Yelp users were very good at faking. Finally, they

proposed a set of behavioral features that could help distinguish between genuine and malicious

users, as activity window, review count, review length and content similarity.

Group spamming has much more impact than single accounts, because a group of users

working together may post a lot more reviews and messages, propagating their ideas more

effectively. As a matter of fact, a single user might not be sufficient to influence people’s

opinions on a subject. Moreover, while a single user is easy to detect for abnormal behavior, in

a group of colluding users members do not appear as behaving suspiciously. Groups of malicious

users are very dangerous and they represent an issue both for reviews on commercial websites

and posts on social media.

In [12], A. Mukherjee et al. proposed a technique to identify spammer groups, based on

frequent itemset mining. Each itemset was represented by a set of users who reviewed the same

set of products. Once they extracted the candidate set of groups of users, they computed some

spam indicator values to identify malicious groups. These behavioral features included time

windows, content similarity for members, group sizes and early time frames. Then, they ranked

all the groups according to the likelihood of them being spam groups and used a set of labeled

groups to evaluate their model, showing promising results.

In [13], X. Zhang et al. focused on detecting promoting and spamming campaigns on Twit-

ter. To identify users in a campaign, they used an URL-driven estimation method to measure

11

the similarity between users and then they used a graph-based approach to find users that were

linked to a candidate campaign. Finally, they exploited a set of behavioral features to distin-

guish between promoting and spam campaigns. Among these features, the most relevant ones

were average posting intervals, content similarity for messages, number of URLs posted, and

average number of URLs per tweet for the account. Then, they built a classifier that correctly

predicted the class of candidate campaigns, showing the effectiveness of their technique.

In [14], Z. Chu et al. used a supervised approach based on both content and behavioral

features to distinguish between spam campaigns and legitimate ones. They defined a spam

campaign as a collection of multiple accounts manipulated by a spammer, used to spread

information on Twitter with malicious intent. First, they grouped users into clusters which

represented campaigns, by relating the ones sharing the same URLs. Then, they computed a

set of features which would be used during classification to learn a model to distinguish between

spam and genuine campaigns correctly. They also analyzed the text of the tweets, checking

whether they contained spam words or blacklisted URLs, and the accounts characteristics,

such as the number of followers and friends, reputation, number of hashtags and mentions,

registration date, self-similarity score and posting time intervals. Finally, they ran different

classifiers which could accurately predict class labels.

In [15], K. Lee et al. investigated the problem of campaigns detection in social media. They

proposed a content-driven graph-based framework for identifying and extracting campaigns

from Twitter. They defined a campaign as a set of users and posts linked together by a

common goal. Hence, they linked messages with similar content, building a message graph,

12

where each node corresponded to a message, and each edge connected two correlated messages.

They extracted different campaign graphs from it via graph mining techniques. Since they used

a dataset of labeled campaigns, they could evaluate the performance of their extraction method,

presenting promising results. Therefore, they showed that campaigns could be detected using

automated techniques.

For group, we mean a set of multiple userids. However, a group does not have to be

composed of different users, but of different accounts. There could be a single person that

registers multiple userids and posts from many accounts to increase her impact and to avoid

detection. Since an author with multiple accounts can be regarded as a group, identifying users

with multiple userids is a very similar task to finding spamming groups.

In [16], Quian and Liu investigated the problem of detecting users who use multiple userids

to post on social media. They used a particular supervised learning approach that learned

in similarity space, where each document was represented by a similarity vector. Indeed, to

assign a document to a user, the classifier exploited documents belonging to other users instead

of documents from the same author: the method could determine whether a document was

written by an author without using any of her documents in training.

CHAPTER 3

WHY TWITTER?

In the last years, Social Networks have made their way into our lives, allowing anyone to

follow the lives of her friends and relatives and to communicate with them, despite the distance.

The usage of these platforms has grown more and more, such that nowadays, they represent

a critical and powerful tool. As a matter of fact, due to the incredibly large number of users,

they can carry a considerable amount of information, especially from a commercial and political

point of view: users share their opinions and feelings about events, products or their personal

experience. Companies and political parties may collect and exploit this data for their own

business.

Among these social networks, Twitter is an “online news and social networking service on

which users post and interact with messages known as tweets”, which can count more than

330 million monthly active users. It offers a microblogging service, which may be accessed

through its website interface, through Short Message Service (SMS) or mobile-device application

software (”app”) [17]. Every message, or tweet, is 140 characters long1. This constraint sets

up an environment of concise statements that leads to relatively easy posting and reading, as

people do not need to put much effort in either thinking about what they write thoroughly nor

reading tweets posted by others. Since less time is needed to post content, the frequency of the

1Twitter extended the maximum tweet length to 280 [18]

13

14

updates is increased as well. Updates may be either direct or indirect: directs updates aim to

specific users, mentioned by the ‘@’ mechanism, while indirect updates are meant to be read

by anyone.

Unlike most social networks, the relationship between users is not reciprocal. Following a

user implies receiving notification of each tweet posted by the followed user, but the user being

followed does not need to follow back [19]. This peculiar relationship makes the Twitter social

network a directed graph, in which users represent the vertices and the following relationship

is a directed link from the follower to the followed. However, as shown in [20], this graph has

a very high degree of correlation and reciprocity, which highlights close mutual acquaintances

among users. Furthermore, people interact with a subset of the users in their network. If we

consider only this subset, which we can call friends, we can notice that users have a number of

friends which is way smaller with respect to the number of followers and followees they declare

[21]. Therefore, the link between two users does not automatically imply an interaction between

them.

As a micro-blogging platform, Twitter allows people to form social bonds and to propagate

their ideas, writing brief text updates and sharing information about their opinions or activities.

Since it is a powerful tool for spreading ideas, it is essential to understand why people use it

and which are their intentions. [19] presents a taxonomy of user intentions on Twitter:

• Daily chatter: most people use twitter just to share their activities and update their

friends on what is going on with their lives. This class represents the majority of Twitter

users.

15

• Conversations: since there is no direct way for users to chat, the only way they can

directly interact is by exploiting the mentioning mechanism, with ‘@’ followed by the

username. 14% of the posts in the gathered collection contained mentions.

• Sharing information: Many posts in the collection contained URLs, almost 67%. Due

to the 140 characters limitation, it is difficult for users to express their ideas fully. There-

fore, URLs are often used to redirect the reader to a web page where the whole concept

is fully described. Moreover, URLs are shortened in order to make the posts fit in the

140 characters. This was the most interesting category of users for this study because we

found many people spreading misinformation among them.

• Reporting news: Many users post tweets to report the latest news or to share their

opinion about current events or trending topics on Twitter. These are interesting as well:

they could report fake news or fake events and discoveries for many different reasons.

Since the usage of Twitter and the generated content is increasing, alongside with the fact that

a huge amount of information is shared, all this produced data may be used for opinion mining

and sentiment analysis [22]. Indeed, due to the heterogeneity of the users, it is possible to collect

tweets from users of different social and interests groups, coming from many different countries.

Companies may analyze all this data and extract information for a better business decision

making. They can collect opinions on products, suggestions on how they should modify them

and even which new features they should develop, according to what the audience demands.

Also, politics may benefit from such a massive amount of data: we just have to think about the

U.S. Presidential Elections in 2012, which were surrounded by huge online traffic of breaking

16

news, statements, debates and voters’ opinions. Back in 2012, Twitter reported over 100 million

active users worldwide with a posting rate of 250 million tweets per day; more than two-thirds of

U.S. Congress members had created a Twitter account, trying to reach out to their constituents

[23].

Because Twitter is such a powerful platform for spreading information, the content of the

posts is relevant for many tasks, such as news detection, sentiment analysis, and recommenda-

tion systems. Moreover, it has become a widely used system for obtaining real-time information.

Therefore, it is essential to distinguish between good and malicious sources, since users have to

be ensured that social media like Twitter can be a trustworthy source of information.

CHAPTER 4

DATA COLLECTION AND PROCESSING

4.1 Collecting Twitter Data

To perform and evaluate spamming detection techniques, we needed a real dataset of tweets.

By means of the Twitter streaming APIs [2], using the function filter, we collected more

than 60 thousand tweets posted in October 2017, containing at least one of the following set of

keywords:

• cancer cause

• cancer drug

• cancer food

• cancer prevention

• cancer risk

• cancer treatment

As a matter of fact, we were interested in all the statuses which somehow referred to means

and techniques to either prevent or cure cancer, and in those tweets reporting causes for cancer.

We were looking for claims about foods or drugs helping to prevent or treat cancer, and for

statements on lifestyles and diets which were said either to increase cancer risk or to eradicate

it. Therefore, exploiting those keywords helped us to collect a proper dataset for this study.

17

18

We chose to collect tweets from October because it is the Breast Cancer Awareness Month

[24]. Hence, cancer was going be one of the trending topics and more people were likely to

talk about it and propagate their ideas. For each tweet, we gathered a set of useful pieces of

information. The ones we used included timestamps, username, number of retweets and likes,

the id and, of course, the text of messages.

We collected more than 36 thousand users who posted at least one status update containing

the above keywords, in the defined time period. To obtain additional useful information for

every user, we once again used the Twitter APIs, in particular, the function get user. This

procedure allowed us to obtain the creation date, the total statuses number, the number of

followers and followees, and the number of lists for each account. It is worth mentioning that

by the time this operation was completed, almost 200 user accounts could not be found since

they were suspended by Twitter [25] as considered spam accounts. Nevertheless, we were going

to consider them in our study and analyze whether they posted fake claims about cancer or

not.

4.2 Data Preprocessing

Twitter posts are basically pieces of informal text, which means that the quality of the

collected data was not high. Data is usually incomplete, noisy and inconsistent. There could

be misspelling errors, informal intensifiers as all-caps and character repetitions to increase the

intensity of a word, special characters which do not add any significant meaning to the sentence

[26]. Of course, to low-quality data corresponds low-quality data mining results. Therefore,

we needed to execute some data preprocessing operations to increase the quality of our data.

19

We performed similar steps to what had been done in [27], but with a few differences because

our final goal was not sentiment analysis, but spam detection. The following operations were

performed:

• Data transformation: every capital letter was turned into lowercase, accents were

removed and HTML tags parsed. Differently from what was done for sentiment analysis

purposes, we kept URLs because they may not be good indicators for sentiments, but they

surely have an important role in opinion spamming. We kept retweets as well because

they could help find groups of users cooperating to spread information.

• Tokenization: tweets were split into tokens by a pre-trained Twitter model, which kept

hashtags, emoticons, and other special symbols.

• Normalization: to reduce each word to its stem, we used the Snowball Stemmer al-

gorithm [28]. Stemming is a common technique in text mining, mostly used to improve

effectiveness and decrease indexing size, by combining words with the same root.

• Filtering: we had to remove all words and characters which were not useful for our task.

Stopwords removal was performed to improve effectiveness and reduce indexing size. Also,

punctuation digits and special characters were filtered, as well as tokens shorter than three

digits and tokens containing non-ASCII characters.

Every post was processed using Orange [29], an open-source data visualization, machine learning

and data mining toolkit based on Python that can also be used as a Python library. The

20

TABLE I: EXAMPLES OF DATA PREPROCESSING.

Raw Text ‘INHALING just *ONE* radioactive hot particle can cause cancer http://’

Processed Text ‘inhal one radioact hot particl caus cancer http://’

Raw Text ‘Strawberries can improve vision and also help to reduce cancer risk’

Processed Text ‘Strawberri improv vision also help reduc cancer risk’

Raw Text ‘Get #Prostate #Cancer Prevention > http:// #IBOtoolbox’

Processed Text ‘get #prostat #cancer prevent http:// #ibotoolbox’

Text Mining plugin [30], which is based on the NLTK [31] library, allowed us to obtain the

preprocessed version of the text for each tweet.

In Table I we show some examples of anonymized preprocessed tweets.

4.2.1 Pooling Tweets by User

Since our goal was to determine whether a user had to be considered suspicious or not,

we aggregated all the updates posted by the same user to obtain one single text document

for each one of them. Due to the fact that this operation was very memory consuming and

computationally expensive, we could not run the program on a single machine. Therefore, we

used the Polito cluster [32] that allowed us to have access to multiple computers working in

parallel, using the PySpark programming framework [33]. Apache Spark [34] is an open-source

cluster-computing framework which provides the programmers with an interface that takes care

of the distributed part of the applications, such as parallelism, fault-tolerance, task scheduling

21

and synchronization. It is a fast and general engine for large-scale data processing which

grants low-latency and generality, based on the Hadoop Distributed File System. “The Hadoop

Distributed File System (HDFS) is a distributed file system designed to run on commodity

hardware”. It is highly fault-tolerant and provides high availability and high throughput access

to application data [35]. Differently from other frameworks for big data like MapReduce, Spark

allows the programmer to create and execute complex, iterative jobs, including multiple input-

output operations on the same data. This is made possible because data is read only once from

the HDFS and then split across many servers and stored in their main memory, granting an

increase in performance as well. The data is stored and represented as Resilient Distributed

Dataset, or RDD: “a collection of elements partitioned across the nodes of the cluster that

can be operated on in parallel” [36]. As their name suggests, they are particularly resistant to

failures, since Spark keeps track of the chain of operations which led to the creation of each

RDD, being able to recompute the lost data when needed. They are also immutable, meaning

that once an RDD is created, it cannot be modified. RDDs may be created and manipulated by

means of parallel operations: transformations, operations on RDDs which return new RDDs,

and actions, that elaborate the content of RDDs and store the results in variables in memory.

To group all tweets by user, we first had to feed the cluster with the input file containing

all the posts, which was then distributed across multiple servers. We stored the content into an

RDD; then we applied some transformations to obtain new RDDs, concatenating all the tweets

to form a single document for each user. Finally, using an action, we stored the resulting data

structure and printed it.

CHAPTER 5

TOPIC MODELING

Once we obtained the preprocessed data, we wanted to analyze the most trending topics

discussed by users in their posts and the most frequent and relevant words associated with them.

The goal of topic models is to extract short descriptions of each document in a collection to

enable efficient processing of such collection, while still preserving essential relationships useful

for data mining tasks, such as classification and summarization [37].

5.1 Topic Modeling Techniques

A topic is a subject discussed in one or more documents, tweets in this case, and each topic

is represented by distribution over words [38]. One of the most important weaknesses of topic

models is that they need a large amount of data to generate coherent topics and provide reliable

statistics [39]. Considering every post as a document, we had more than 60 thousand tweets,

which was more than enough for the topic model to work and produce a good result. However,

as proved in [40], tweets are usually too short and may not contain sufficient information to

learn the topic patterns. Therefore, all the tweets posted by the same author were aggregated

into pseudo-documents to increase the co-occurrences of important terms within a document.

It was likely that a user posted updates about the same few topics, so aggregating all the posts

into a single document could increase the co-occurrences of relevant words [41].

22

23

We ran topic models for two different datasets, distinguished by the way documents were

defined, and then we compared the results:

• “tweet” dataset: composed of documents represented by single tweets. This collection

contained every tweet we gathered, therefore more than 60 thousand documents.

• “user” dataset: composed of documents which contained all the posts of a single user.

Basically, a document was generated by grouping all the tweets posted by the same user

and concatenating them. Performing topic modeling on such data could be seen as an

application of the author-topic model to tweets [42]. This dataset was obtained using

the pooling preprocessing described in section 4.2.1. We had more than 36 thousand

documents in this collection.

[43] showed that aggregating tweets by user improved the quality of LDA-based topic modeling.

It also pointed out that pooling tweets by hashtag led to even better results. However, for the

purpose of this study, we just performed the aggregation by user because they were the main

target and, by grouping tweets by hashtag, we would not have got any additional information

about the way they posted. We chose to use the Latent Dirichlet Allocation [37] algorithm to

extract topics, since it is widely used and it is the one used in the related works on Twitter.

LDA is a generative probabilistic model of a corpus that specifies a probabilistic procedure by

which documents are generated. Like many other topic model algorithms, LDA is based on

Bayesian networks and can be graphically represented.

A corpus is a collection of D documents, where each document d is represented by a vector

of Nd words, where wn represents nth word of the sequence. Each word, instead, is represented

24

Figure 1: Graphical representation of LDA

by a unit-basis vector of size V, being V the number of different words in the vocabulary. The

number of topics K is known and predefined.

It is a two-level model, where documents are characterized by a multinomial distribution θ

over K topics and topics are characterized by a multinomial distribution Φ over words. Both

distributions θ and Φ have a Dirichlet prior distribution [44], with hyper-parameters α and β.

Dirichlet priors simplify the problem of statistical inference because the Dirichlet distribution

is the conjugate prior of the multinomial distribution.

For each document, the following generative process is repeated Nd times, being Nd the

number of words in document d: given a word wn in a document d, a topic t is sampled from

the multinomial distribution θ for document d and a word w is sampled from the distribution

Φ for topic t. Learning the various distributions is a problem of Bayesian inference [45]. To

25

obtain the distributions θ and Φ, two main algorithms, variational inference [37] and Gibbs

sampling [3] were proposed.

for each topic t ∈ TK do
draw a word distribution for topic t, Φt ∼ Dirichlet(β)

end
for each document d ∈ DM do

draw a topic distribution for document d, θd ∼ Dirichlet(α)
for term wi, i ∈ WNd

do
draw a topic for word w, ti ∼ Multinomial(θd)
draw a word, wi ∼ Multinomial(Φti)

end

end
Algorithm 1: LDA algorithm

where TK is the set of topics of size K, DM is the collection of documents of size M and

WNd
represents the collection of words for document d of size Nd.

We had to specify the parameter K, which corresponded to the number of topics we extracted

with our algorithm. Usually, users of topic models prefer to extract a large number of topics in

order to get high resolution and domain-specific fine-grained topics. Unfortunately, the number

of topics is somehow related to the probability of having bad topics that make no sense to

human judgment: increasing the total number of topics, the number of poor and small topics

increases as well. They usually represent about 10% of the extracted topics, and they are often

hidden from users because, otherwise, their confidence in topic models would be reduced [46].

26

In order to find the best number K of topics, we had to run the algorithm with different

values for K. We also needed some evaluation measure which could tell us the quality of the

extracted topics at each run. Traditionally, topic models quality was defined using predictive

measures, such as perplexity [47]. However, models which achieve higher perplexity are often

less interpretable and even without logical meaning when evaluated by human judgment [48].

Therefore, we needed another metric that corresponded well with human judgment.

As proposed in [46], we used Topic Coherence measure. Each topic t was represented by

a list of the ten words with highest probabilities for t: this was a more adequate way to

describe topics with respect to labels, which would have been meaningless in this case, leading

to information loss. The basic idea is that, for good topics, pairs of words belonging to the

same subject co-occur within a single document related to that subject. On the other hand,

bad topics are likely to have a few words that co-occur, making them easily detectable.

The Topic Coherence for a given topic t is measured as follows:

C(t;W
(t)
M) =

MX
m=2

m−1X
l=1

log
D(w

(t)
m , w

(t)
l) + 1

D(w
(t)
l)

(5.1)

where W
(t)
M is the set of the M most probable words w for topic t. Given a topic t, we

define D(w
(t)
i) as the document frequency for word wi, i.e., the number of documents which

contain wi at least once, and D(w
(t)
m , w

(t)
l) is defined as document co-frequency, i.e., the number

of documents containing wm and wl at least once. A smoothing count of 1 is added to avoid the

27

possibility of computing log(0). A higher value of Topic Coherence indicates a higher quality

topic.

5.2 Topic Extraction and Evaluation

In order to perform topic extraction, we used the Orange data mining tool, in particular,

the Text Mining extension [30]. Both the “tweet” and “user” datasets were fed to the process

multiple times with different values of K.

The output of the program consisted of:

• corpus file which contained the probability distributions over topics for each single doc-

ument

• topic file which contained the probability distributions over words for each topic

From those files, we obtained the most probable topic for each document and the set of most

probable words for each topic.

Then, we computed the value of Topic Coherence for every topic in all the obtained models.

We measured the document frequencies and the document co-frequencies for each topic and

then obtained the values of coherence. Table II shows the average values of coherence for all

the topics extracted from both datasets with different values for K.

We could confirm that the pooling operation helped to extract more coherent topics, since,

for every selected number of topics K, the coherence was higher for the “user” dataset. There-

fore, that dataset was used to determine which topic had to be associated with each user.

As expected, the larger K, the higher the number of poor topics with low coherence we

found. However, this was balanced by the higher values obtained for good topics. As a matter

28

TABLE II: TOPIC COHERENCE AVERAGE VALUES.

10 Words K = 10 K = 20 K = 30 K = 40 K = 50

Tweet Dataset -176.83 -172.79 -169.68 -162.72 -159.96

User Dataset -152.23 -151.81 147.35 -139.77 -137.25

of fact, the average values of coherence increased while increasing K, leading to higher quality

and finer-grained topics. Since we had to analyze and understand the obtained topics, we needed

a feasible number for K. By looking at Table II, we chose the value for which the immediate

information gain was higher, an approach very similar to the elbow method used to determine

the optimal number of clusters for K-means clustering. In our case, the elbow was represented

by K equal to 40. Hence, the chosen topic model was the one of the “user” dataset with 40

extracted topics.

Table III presents the most relevant topics in the selected model. We described each topic

by showing the top 10 most frequent words which appeared in the tweets related to that topic.

Topics 6 and 23 were by far the hottest topics since they were associated with respectively 34%

and 27% of all our tweets. Topics 4, 32 and 14 appeared in less than 20% of the documents,

instead. Of course, we did not consider cancer in the list of the most relevant words since it

would have been frequent in every topic.

We exploited topic models to extract information from our dataset, to better understand

29

TABLE III: REPRESENTATION OF THE MOST FREQUENT TOPICS.

Topic 6 Topic 23 Topic 4 Topic 32 Topic 14

risk caus treatment drug treatment

breast food risk approve new

caus treatment use lung #health

reduc drug percent treatment gene

increas via get share fund

new death high patient medic

woman eat help fda dure

prevent good give die tip

awar skin healthi think narrow

help like prevent talk effect

what users were posting about cancer. Moreover, we wanted to observe the topic distributions

for genuine and spammer users, to determine whether they were different.

CHAPTER 6

COMPUTATION OF FEATURES AND RANKING

Performing supervised learning to detect spam is very difficult because there are no large-

scale ground truth datasets which can be used to train a model to separate the two classes:

spammers and non-spammers. Some previous works used pseudo fake reviews or exploited some

mechanism to assign labels to documents automatically [11; 8]. As a matter of fact, one of the

bottlenecks for classification is the labeling process. Traditionally, many documents have to be

labeled to obtain a significant amount of information, but this operation is often done manually

and therefore, it requires a lot of time and effort [49]. Moreover, labeling documents by reading

them is a very difficult task, because spammers may craft those documents and make them

look just like genuine ones. Since we did not have neither the time nor workforce to go through

every single tweet for each user and label them manually, we had to come up with an alternative

solution. Similarly to what was done in [4], we defined and computed some behavioral features

which could help us determine the likelihood of a user being suspicious. Since spammers and

non-spammers have different goals, we expected them to have different behaviors: genuine

users are more likely to interact with each other, while spammers try to spread information and

communicate with as many people as they can. We combined the features to obtain a spam

score for each user and then we ordered them in descending order generating a ranking.

30

31

6.1 Behavioral Features

We extracted two types of features:

• Content features, which were derived from the text and the content of tweets posted

by every user.

• Account features, which were computed according to the user information retrieved

with the get user operation. Since almost 200 accounts were banned before we could

perform the search for users’ information on Twitter, we could not assign values to any

of those features for those users.

Every single feature was normalized dividing by the maximum attribute value, in order to make

their values fall between 0 and 1.

6.1.1 Content Features

Here follows the list of content features:

• Number of replies received: the higher the authority of the user posting the update,

or the source associated with the content, the higher the probability of the message to

be replied [5]. In fact, spammers and users spreading misinformation are more likely to

be ignored by the population of Twitter. However, in the whole collection, a very low

percentage of tweets had been replied, about 10%, so this feature just helped to identify

authoritative accounts. We computed both the total number of replies received and the

fraction of tweets replied for each user.

32

• Number of retweets: similarly to the number of replies, spammers are less likely to have

their tweets retweeted with respect to genuine users. The only exception is that people

belonging to the same spamming group, who cooperate to propagate misinformation,

may retweet the posts of their associates. Indeed, the percentage of tweets retweeted was

higher than the one of tweets being replied, slightly below 20%. Broadly, we could say

that a lower number of retweets corresponded to spammers. We computed both the total

number of retweets and the fraction of tweets retweeted for each user.

• Maximum content similarity: we calculated the content similarity of all the tweets

posted by the same user. We chose cosine similarity [50] as a measure for similarity:

after having transformed each document into a TF-IDF vector, following the bag of words

approach, we computed the similarities among vectors with this formula, which represents

the angle between two vectors A and B:

similarity = cos(θ) =
A ·B

||A|| · ||B||
=

Pn
i=1AiBiqPn

i=1A
2
i

qPn
i=1B

2
i

(6.1)

where Ai and Bi are the components of vectors A and B.

Spammers do not usually spend as much time and effort writing tweets as genuine users

do, so they often post the same or similar messages multiple times. This way they can

saturate the platform with their content. However, an account may be considered as

spam on Twitter if it posts duplicate updates: spammers evolved to adapt to anti-spam

strategies by adding mentions or hashtags to duplicate messages to avoid being detected

33

[1]. As in [4], we considered tweets to be near-duplicate if their cosine similarity value was

higher or equal to 0.7. We computed the maximum value of content similarity between

two messages and the number of near-duplicate posts for each user.

• Number of URLs: opinion spammers tend to spread advertisement or misinformation,

and they usually include links to suspicious websites in their messages, which can contain

a lot more information with respect to the short, specific post updates. According to

what we found working on our dataset, the malicious URLs pointed to fake news or

advertisement websites, and bad, removed or not existing links. On the other hand, URLs

posted by authoritative accounts, i.e., accounts associated with journals or universities,

led to websites containing articles written by trusted sources. Even if Twitter is using a

blacklist mechanism to find URLs linking to malicious sites and filter tweets considered as

spam, the possibility of shortening URLs represents a great vulnerability, allowing users

to evade blacklists completely. The URLs shortening provides a redirection service from

a short URL to an arbitrary length URL, helping the link to fit into the post too [6].

We computed both the number of URLs per tweets and the fraction of tweets containing

URLs for each user. If a post contained ‘http://’, ‘https://’, or ‘www.’ it was considered

having an HTTP link.

• Number of links to YouTube videos: this is a brand-new feature that, to the best

of our knowledge, had never been exploited before. By going through the messages in a

temporary version of the ranking, we realized that a high percentage of users posting links

to YouTube videos had to be considered suspicious. Many videos were about advertising

34

some product or some special treatment, while many others were removed because of the

YouTube policy [51]. A lot of them, instead, promoted a specific food, drug or lifestyle

as a solution for cancer prevention or treatment, but without providing logical reasons or

quoting any trusted source. Moreover, the vast majority of these videos were published

by poorly followed accounts. Therefore, we computed both the number of YouTube links

per tweet and the fraction of tweets containing a YouTube link for each user. If a post

contained ‘/youtu.be’ or ‘youtube’, it was considered having a YouTube link.

• Number of hashtags: users may post the symbol ‘#’ followed by a term to name a topic

on Twitter. Trending topics are the most mentioned and popular subjects of the moment:

if many messages contain the same topic, it may become a trending topic. Spammers tend

to post a lot of tweets referring to many trending topics, even if they are not related to

the content in any way, just to lure users into reading their posts [1]. It is a way to make

sure that their ideas are propagated and gain other users’ attention. We computed both

the number of hashtags per tweet and the fraction of tweets containing hashtags for each

user. If a post contained the symbol ‘#’, it was considered having a hashtag.

• Number of mentions: by inserting ‘@’ followed by a username in their messages, people

may address to specific users. Users exploit this mechanism to keep track of conversations

and to discover each other on Twitter. Unfortunately, spammers abuse of this service to

send unsolicited messages to other users, who are not often even friends with them, just

as a way to reach out to as many people as possible with their malicious content. We

35

computed both the number of mentions per tweet and the fraction of tweets containing

mentions for each user. If a post contained ‘@’, it was considered having a mention.

• Average length of messages: the length of a post, i.e., the number of words it is

composed of, might be significant in detecting suspicious users. It is likely that users with

some information to propagate, possibly with suspicious intentions, will make full use of

all the 140 characters to describe their ideas better. Therefore, for all users, we computed

the average number of terms contained in their messages.

6.1.2 Account Features

Here is the list of extracted features associated with each account:

• Age of the user account: Since the infringement of Twitter rules [25] may lead to

the suspension of the account, spammers are most likely to create and be associated to

new accounts, because previous ones may have been suspended. Moreover, even without

considering suspensions, the activity window of suspicious users is different from the one

of genuine users: they may register and post content in a short burst [11] when they need

to propagate their ideas, and they do not behave as longtime members. It was showed

that it is useful to exploit the freshness of accounts in spamming detection. Hence, we

computed the age as the timestamp difference between the last day of October 2017 and

the account creation date. Intuitively, the shortest the age, the higher the probability of

a user being a spammer [5].

• Location: It would have been useful to analyze the spatial distribution of users. Observ-

36

ing it could have led to finding spatial patterns and groups of cooperating accounts, but

it could also have been a way to understand users’ activity better [8]. Unfortunately, this

information was neither available nor reliable for most users in our dataset, and therefore

we could not exploit it.

• Number of tweets posted in the considered time period: posting many tweets

may indicate an abnormal behavior. Indeed, spammers tend to post as many messages

as they can to spread information and reach out to more users. Furthermore, many of

them may post the same message over and over, with the very same content and minor

modifications. Therefore, the higher the number of messages posted during the studied

period, the higher the probability that users had suspicious intentions.

• Statuses count: As for the number of tweets posted in the considered time period, also

the total number of messages from the account creation date may be a good indicator

of the user’s intentions. As a matter of fact, a user posting many updates is more likely

to have many pieces of information to share, possibly even malicious ones. Therefore,

the higher the total number of messages, the higher the probability that the user had

suspicious intentions. We computed both the total statuses count and the number of

statuses per day for each user.

• Time between tweets: the size of the time windows between posts from the same

users is critical in detecting their intentions. As a matter of fact, some time periods were

bursty [7], meaning that the concentration of posts was very high. While genuine users

use their accounts to post tweets from time to time with a more uniform time distribution,

37

suspicious users may post many messages about the same topic in a short period of time

to overfill the platform with their content. This posting policy helps them to reach out

to more users and propagate their messages. Moreover, users with different accounts may

cooperate in the burst, meaning that many users could work together and post a massive

amount of messages on targeted topics. Group spamming is very dangerous, since due

to the larger number of users involved, it can take total control of the sentiment on a

product or service, misleading people reached by that malicious content [3]. In order to

observe and analyze time distribution of posts, we computed the average, maximum and

minimum size of the time windows for each user. Each time window was computed by

difference of timestamps between two posts: the maximum was computed between the

last and first message in the studied month, while the minimum was computed between

the two closest messages.

• Followers count: Commonly, the number of followers of a user is associated with her

popularity, but also to her trustworthiness. Usually, spam and malicious accounts do

not have a large number of followers [1]. However, in some cases, they may have many

followers. This may be achieved by collusion of many different spam accounts, which

follow each other to increase their credibility, but also by luring genuine users to follow

them. In the majority of cases, suspicious users had fewer followers with respect to

genuine ones, also because genuine accounts posting news, associated with journals or

authoritative sources, had a very large number of followers.

• Friends count: as a matter of fact, malicious users try to reach with their content as

38

many people as they can. In order to do that, in addition to exploiting mentions and

retweets, they usually follow a large number of users. A friend is an account followed

by the user. However, due to Twitter spam-policy, users may follow a limited amount of

accounts in a given time period. They cannot perform an aggressive following [25], which

happens when users start following a large number of accounts in a rather short period.

Therefore, we determined that, for the computation of the spam score for each user, the

higher the number of followees or friends, the higher the probability of the user being

suspicious.

• Reputation: one important indicator of users’ intentions is the correlation between the

followers and friends count. Indeed, trustworthy users, like journals or popular characters,

are likely to have many followers and a smaller amount of friends. On the other hand,

spam accounts have a high ratio of followers per followees in comparison to non-spammers

[5]. We computed the reputation according to the formula:

Reputation =
#Followers

#Followers+ #Friends
(6.2)

Our reputation may be compared to the Degree Prestige value [49] for Social Networks

analysis. Given a directed graph defining the structure of the social network, with a set

of actors representing its vertices and the links among them as edges, the importance of

an actor is related to the number of links connecting her to other actors. In particular,

the prestige is a measure of the prominence of an actor in a social network that focuses

39

only on in-going links to define the importance of a node: an important actor is one with

many in-links. The degree prestige is computed as:

Pd(a) =
dI(a)

n− 1
(6.3)

where dI(a) is the in-degree for actor a, and n is the total number of actors in the network.

Similarly, in our case, the network was composed of the set of followers and friends for a

given user. We computed the in-degree as the number of followers and the total degree as

the sum of followers and friends. Intuitively, a suspicious user is supposed to have a lower

reputation with respect to genuine and authoritative ones. Indeed, we expected them to

have a number of followers much lower if compared to the number of friends.

• Number of lists: other available piece of information for an account was the number of

lists it was enrolled in. A list is an alternative method by which a user may follow other

users on Twitter. It is an organized group of users: by accessing the list, the members

may see what has been posted by all the enlisted accounts [52]. Usually, lists are related

to particular topics and group together users with the same interests. Being part of a list

is another way to communicate with many users. Hence, suspicious users are supposed to

try and become members of lists to propagate their ideas better. The higher the number

of lists they were part of, the higher the probability of users being malicious.

• Flag found: because almost 200 Twitter accounts had been banned, we could not collect

all the needed information for those users. To represent that condition, we added this flag

40

which was not used for the computation of the spam score but was useful for classification.

It is worth mentioning that we did not consider all of those accounts as suspicious: more

than two-thirds were labeled as genuine users since their behavior was not considered

malicious, at least for their posts regarding cancer.

• Spam sources: instead of using a list of spam words as in [5], we generated a list of

untrustworthy sources which posted dubious claims without evidence. We included in the

list mostly websites which were known to publish unverified information. Of course, all

tweets pointing to those websites were considered suspicious, because they were contribut-

ing to spreading misinformation, even if unwittingly. Therefore, we computed the number

of references to those untrusted sources per tweet. However, we did not use this feature to

compute the spam score, but it helped our classifiers a lot to distinguish between genuine

users and suspicious ones.

• Username: as a matter of fact, many users in social media such as Twitter register

multiple accounts to post messages multiple times [16] avoiding suspension. They often

collude, posting many tweets on the same topic at the same time to have a greater impact

on the subject. When users make use of multiple accounts, they usually do not waste

much time thinking about different usernames, and quite often they use similar ones. As

for the spam sources feature, we did not use the username to compute the spam score,

but it was exploited for classification: indeed, a user with a name which was very similar

to a suspicious username was likely to be suspicious as well.

41

6.2 Ranking

Once all the features had been extracted, we finally had to combine them in order to compute

a spam score for each user obtaining a final ranking. We also had to weigh them, according

to their relevance, to improve the quality of the ranking. However, we did not require very

accurate scores since we only had to get approximate values which could help us identify the

top users in our list. Indeed, we needed to obtain a rough ordering for the users in order to

start analyzing and labeling the ones in the highest positions of the ranking.

We calculated a total of 26 features, and we normalized them to have values falling between

0 and 1. We simply added them up to compute the final spam score. The normalization process

was done by dividing each attribute by the maximum value associated with that attribute. In

some cases, due to the peculiar value distribution of some features, we first computed the log

of both values and then we performed the division. The reason behind this process lied in

the fact that for some features the maximum value was incredibly larger than average values.

Therefore, we thought that the logarithmic scale could better represent the distribution of

values. We performed this logarithmic scaling on the following features: number of tweets

during the considered month, the total number of statuses and the number of statuses per day,

followers count, friends count and reputation.

Finally, by summing up all the features multiplied by their weights, we obtained the spam

scores for all users. Of course, for those users who had been suspended by Twitter, we could

not compute all the features related to the account, and we did not calculate the spam score

42

either. Hence, we treated suspended users differently during the labeling process, analyzing

their activity independently from their ranking position.

CHAPTER 7

LABELING PROCESS AND ANALYSIS OF EXTRACTED FEATURES

Due to the lack of large-scale gold-standard data which could be used to design and evaluate

spam detection algorithms, performing supervised learning for spam detection on an extensive

collection of documents is a complex task. As a matter of fact, classification needs a labeled

training set to create the model which can be used to predict the class for each record in

the dataset correctly. Moreover, as opinions in social media have been exploited more and

more, opinion spamming is becoming sophisticated, making the detection problem even more

complicated [3]. Indeed, it is very hard to recognize fake opinions by manually reading them. In

this chapter, we describe in detail our labeling process and then illustrate the value distributions

for our most relevant computed features to verify that users labeled as suspicious followed

specific behavioral patterns.

7.1 Labeling Process

In our dataset, we had more than 36 thousand users to label, and we could not afford to

read all of their posts because it would have taken too much time. Hence, we had to come

up with an alternative solution. As we already said, it is very difficult to distinguish between

genuine and malicious posts. To detect whether a user was suspicious or not, and to assign

labels, we performed multiple checks:

• Message content: of course, we first analyzed the content of the messages. In some

43

44

cases, they contained dubious claims about foods, drugs or natural products which could

prevent or even treat cancer. One remarkable example concerned camel milk and its

curative properties for cancer. However, in the majority of cases, we could not tell the

difference between suspicious and genuine users, just by reading the tweets.

• URLs analysis: since many tweets contained URLs, we had to understand the intentions

of the users sharing those links. Usually, they pointed to some web page supporting and

better illustrating the content of the message: it could be a research study published by

some journal or university, but also magazine articles and blog posts. Our policy here

was to draw a neat line and distinguish between trusted and unreliable sources. All the

content coming from authoritative sources were considered genuine since they intended to

spread useful information. On the other hand, posts coming from personal blogs or articles

on websites which are not regarded as trustworthy were considered suspicious, because

their statements were not supported by evidence and they often tried to induce the user

to purchase some product. Moreover, many tweets contained also URLs pointing to

advertisement websites or even to phishing, malicious and not existent links. One specific

activity we found in our dataset was Twitter Hijacking [6]: suspicious users retweeted

messages posted by other users, usually prominent and authoritative ones, modifying

them and appending spam URLs. This way they exploited the trust gained by those

prominent users to spread malicious links and misinformation. Finally, one particular

type of URL was the YouTube link: many messages linked to videos. Similarly for HTTP

links, we found genuine videos with trusted sources and supported by concrete evidence,

45

and suspicious ones, with odd claims, advertisements or removed videos [51]. All the users

posting this kind of content were considered suspicious.

• User behavior: the last step in our analysis concerned how the user behaved on the

platform. We were looking for standard spammer features: number of friends, number

of followers, ratio followers per friends, time activity windows, posting frequency, topics

and trending topics in their messages. This analysis helped us to find many users that we

could consider suspicious. It is worth mentioning that a few users we defined as suspicious

were pretty popular, with some thousands of followers too. We were able to detect their

malicious activity because they are known fake news and untrustworthy sources who

suggest dubious methods for cancer treatment and prevention.

Due to the complexity of the analysis described above, it is clear that we could not perform

such an investigation on every single user. As a matter of fact, it was a very time-consuming

study. In order to be able to individuate suspicious users without having to go through the

whole dataset, we performed a labeling process composed of multiple steps. As shown in [1],

the percentage of spam on Twitter is close to 3%, therefore our goal was to reach about one

thousand suspicious users. The basic idea was to extract a list containing a subset of users and

to study only the accounts in the list.

• First, we used the top 700 users of the ranking as the initial seeds for our list, the ones

who were most likely to be malicious. Hence, we analyzed this set of users. We chose 700

arbitrarily, as a compromise between the effectiveness of the analysis and its feasibility.

As a matter of fact, it was incredibly time consuming and we could not afford to go

46

Figure 2: Distribution of suspicious users: top 2000 positions

through thousands of users. Moreover, our ranking was proved to be quite effective since

a high percentage of this set of users was labeled as suspicious, the 37%. However, this

percentage would decrease when considering lower positions in our ranking. Figure 2 and

Figure 3 show the distribution of suspicious users over the ranking positions, proving that

suspicious users were likely to occupy the top positions in our ranking.

• As second step, we tried to look for all the users with content similar to the ones posted

by the previously found malicious users. Once again, we used the cosine similarity to

measure the distance between documents. We used the same threshold to define near-

duplicate tweets, which was 0.7. This way, we extended the list of potential suspicious

users. We went through all the users in this list and labeled them. This second step was

47

Figure 3: Distribution of suspicious users

repeated multiple times to extend the list further, as it was growing. By looking at the

results of this process, we could already determine that many accounts were cooperating

to spread the very same information. Indeed, this step helped us define groups of users

posting near-duplicate messages who could have been working together.

• As third step, we expanded the list by adding all the users whose messages contained some

unique keywords. Since some claims, also dubious ones, were particularly popular on the

platform, we wanted to individuate all the accounts posting about that specific subject

and analyze their activity. First, we looked at all the messages referring to sources which

were known as untrustworthy, either because of their lack of evidence or because they

were maliciously advertising some product. All the accounts posting messages referring

48

to those sources were labeled as suspicious. Moreover, we inserted in the list all the users

who tweeted with the following keywords: alternative, astrology, natural, marijuana,

cannabis, nutrition, chiropractic, acupuncturist, holistic, and many others. This way we

could study what users said about these trending topics, and we found out that a lot

of them were spreading suspicious information. Mostly due to untrusted sources and

references, almost one-third of users posting messages containing those specific keywords

were labeled as suspicious.

• As last step, we added some random users to the list in order to reduce the bias in our

analysis. However, the percentage of malicious accounts we found, in this case, was a lot

lower. We picked users randomly from the ranking, and, as expected, the likelihood of

the ones at the bottom being suspicious was lower with respect to the ones with higher

spam scores.

• Finally, we performed a special analysis for those accounts that were suspended by Twit-

ter. For that set of users, we could not find information about the account features, and

we did not compute the spam score. Hence, we added them all to our list and analyzed

their messages. Unexpectedly, less than one-third of them satisfied the requirements for

being defined as suspicious. It is likely that they were suspended for their wrong behavior,

but at the same time, they did not behave maliciously in posting tweets related to cancer.

As a matter of fact, many users had a dual behavior, sometimes acting as spammers,

sometimes as genuine. Because of this double nature, the accuracy of class prediction

49

Figure 4: CDF for spam score

decreased, since the trained models had a hard time assigning the proper label to bivalent

users.

At the end of this process, we reached more than one thousand suspicious users, an amount

which was consistent with the expected 3%. However, we cannot exclude that more users, who

were not included in our list, could potentially be suspicious.

7.2 Cumulative Density Functions for Behavioral Features

After we completed our labeling process, we wanted to verify whether our features could be

useful in distinguishing suspicious users from genuine ones. As a matter of fact, we exploited

those features to compute the spam score and generate the ranking, which was the critical

element in building our list to assign labels. Observing Figure 4, which shows the Cumulative

50

Density Function for the spam score, we could state that the spam score was positively correlated

to the way we assigned labels to users. Indeed, the CDF showed how suspicious users had higher

scores with respect to normal users.

Furthermore, we computed the correlation values between our normalized features and the

assigned labels. The correlation measures the degree of association between two attributes, rep-

resented as a value between -1 and -1, where +1 expresses the strongest possible agreement and

-1 the strongest possible disagreement. It was computed using Person Correlation Coefficient

[53]:

ρ(a, b) =
E(a, b)

σaσb
(7.1)

where E(a, b) is the covariance or cross-correlation between a and b, and σa and σb are respec-

tively the standard deviation of a and b.

For the most relevant features, we obtained values between 0.09 and 0.5. Here we show the

CDF for the most discriminative features, i.e., the ones that were the most useful to identify

behavioral patterns which could help distinguish between suspicious users and genuine users.

As expected, suspicious users had different and specific values for those features with respect

to normal ones, for they were likely to have larger values.

Finally, we analyzed the topic distributions for suspicious users and genuine users, but we

could not find any significant difference. This means that suspicious users were very good at

disguising, talking about the same subjects and using word distributions similar to the ones of

normal users.

51

Figure 5: CDF for feature fraction of tweets referring to spam sources

Figure 6: CDF for feature number of YouTube links per tweet

52

Figure 7: CDF for feature fraction of tweets with YouTube links

Figure 8: CDF for feature number of URLs per tweet

53

Figure 9: CDF for feature fraction of tweets with URLs

Figure 10: CDF for feature fraction of tweets with mentions

54

Figure 11: CDF for feature number of tweets posted in October

Figure 12: CDF for feature maximum content similarity between documents

55

Figure 13: CDF for feature number of near-duplicate tweets

Figure 14: CDF for feature minimum time interval between tweets

CHAPTER 8

CLASSIFICATION

Once we assigned a label to each user, we wanted to try a supervised learning approach to

determine whether the textual content of the posts and the features we extracted could be used

to separate the users into suspicious and genuine classes correctly. As a matter of fact, as shown

in [7; 11], linguistic features could be sufficient to divide the two classes of users properly. This

means that posts written by malicious users might follow a particular textual pattern, showing

some linguistic differences if compared to genuine ones. Furthermore, we were expecting our

computed features to be useful for class prediction too.

For each classifier, we built and evaluated many models for each of the three different

training sets we used:

• Behavioral features: for this set of data, we trained and evaluated the model using only

the features we previously computed. Each user was represented by a vector of features,

which were normalized with values from 0 to 1.

• Linguistic features: in this case, we performed the classification task considering the

text of the messages only. We used the user dataset described in section 4.2.1, in which

for each user we had all her posts concatenated into a single document. We used the

bag-of-words model [49]: the text was represented as a bag of its words, and for each

word we stored the number of occurrences. It is important to underline that many other

56

57

features could be used for this task, which are proposed for future work, but we only used

word occurrences as linguistic features.

• Combined features: finally, we combined both the linguistic and behavioral features,

expecting to improve the performance. In this case, we represented each user as a vector,

created by appending the features vector to the bag-of-words vector.

To perform supervised learning, we used the most popular machine learning algorithms, as

SVM and Bayes classifier, and then we built a Neural Network. Since we did not have any

labeled testing set, we used 10-fold cross-validation to evaluate the overall performance. We

picked ten as the number of folds since it is the most commonly used value. We divided our

dataset into ten folds, with stratified sampling for keeping the same label distribution in the

different folds. Then, iteratively, each fold was used as testing set, while the others were used

as training set to create a classification model which classified the records in the testing set. Of

course, this procedure was run ten times, as ten was the number of folds.

Now, we illustrate the machine learning algorithms we used to perform class prediction,

underlining their most relevant characteristics.

8.1 Bayesian Classifier

“Naive Bayes is a high-bias, low-variance classifier, and it can build a good model even with

a small dataset” [55]. Moreover, it is simple to use and computationally efficient.

Classification problems basically consists in computing the following posterior probability:

Pr(C = Cj |A1 = a1, ..., An = an) (8.1)

58

where Cj is a specific class and ai is a possible value for attribute Ai.

The predicted class is the one for which the posterior probability is maximal. In our case, the

attributes were the behavioral and linguistic features, while the classes represented suspicious

and genuine users. According to Bayes theorem, the posterior probability may be computed as:

Pr(C = Cj |A1 = a1, ..., An = an) =
Pr(A1 = a1, ..., An = an|C = cj)Pr(C = cj)

Pr(A1 = a1, ..., An = an)
(8.2)

where Pr(C = Cj) is the class prior probability, that can be computed by analyzing the

training set [49]. The Bayesian classifier is called naive, because of the conditional independence

assumption: it assumes that all attributes are conditionally independent given the class Cj. In

other words, the values of some feature in a class are unrelated to any other feature. Although

this is a very strong assumption which is often not true, the Naive Bayes classifier performs

reasonably well in many different tasks. Moreover, to handle continuous attributes without

performing discretization, we modeled the conditional probability distributions for attributes

in a given class as Gaussian probability densities. Using the naive assumption, we can assign a

class to each instance computing:

C = arg max
cj

Pr(cj)

|A|Y
i=1

Pr(Ai = ai|C = cj) (8.3)

However, if in the training data some attribute value never occurs in a class, the conditional

probability Pr(Ai = ai|C = cj) is equal to 0. Of course, when this 0 value is multiplied with

59

all the other probabilities, the result will still be 0. To avoid this problem, Laplace correction

is used: we made sure that no 0 values occurred by simply adding 1 to each count.

In addition to the Naive Bayesian classifier, we also tried a variant, the Kernel Naive Bayes,

where multiple Gaussians are combined to create a kernel density [54] to properly model con-

ditional probability distributions. A kernel-based Bayesian classifier estimates the density of

continuous variables using nonparametric kernel-based estimators, instead of parametric Gaus-

sian ones. Kernel-based estimators were proven to be more flexible since they do not have any

fixed structure and depend only on the data to reach an estimate. As for all the other classifiers

we tried, we used Rapidminer [55], a software platform for data mining based on Java. We used

both its Naive Bayes and Kernel Naive Bayes implementations to run the classification task.

8.2 SVM

Support Vector Machines are linear binary classifiers that find a hyperplane to separate

two classes of data, positive and negative, suspicious and genuine users. Each instance x in

the dataset may be represented as a point in an n-dimensional space, being n the number of

features. Each point x ∈ Rn has a class label.

The goal of the SVM is to find a hyperplane, also called decision boundary, which can

correctly separate the positive and negative training data [49]. The hyperplane is in the form:

hw · xi + b = 0 (8.4)

where x is a point, w is the vector of weights and b is the bias. The target decision boundary

is the one with the largest margin, which minimizes the error. The margin is defined as the

60

distance between the hyperplane and the closest points belonging to the class. We can define

two margin hyperplanes H+ and H−. Hence, the classification task becomes an optimization

problem which can be solved with the Lagrangian method. The final decision boundary is given

by:

hw · xi + b =
X
i∈SV

yiaihxi · xi + b = 0 (8.5)

where SV is the set of support vectors and yi and ai are respectively the desired output

and the Lagrangian multiplier for support vector xi. The support vectors are all the points on

the margin hyperplanes H+ and H−.

Once the decision boundary has been found, to classify any point x, we need to substitute

it into the formula and calculate the sign of the obtained result: if it is positive, the point is

assigned to the positive class, otherwise to the negative class. SVM is considered one of the

best classifiers, suitable for many different kinds of data. However, it has two weaknesses.

First of all, data may not always be separable. To overcome this limitation, we just have to

relax the constraints by introducing slack variables and inserting the errors in the cost function

which has to be minimized by the optimization problem. This algorithm is called soft-margin

SVM.

Another problem is related to the fact that the two classes are not always linearly separable:

it means that a straightforward hyperplane cannot correctly divide them. If data cannot be

separated in the input space, we have to transform it into a higher-dimensional space such that

a linear decision boundary can perform the classification task in the new space, called feature

61

space. Basically, the process consists in mapping the input data from the input space to a

feature space F via a nonlinear mapping Φ that takes a point from the input space and returns

a new point of the feature space.

The main problem with this transformation is that the feature space may be huge and

therefore applying the SVM algorithm on such a space might be computationally infeasible.

Furthermore, the computation alone of the new values in the feature space could be a very

complex and demanding process as well. Fortunately, the explicit transformation is not required.

The decision boundary computed by solving the optimization problem in the new feature space

F becomes:

hw · xi + b =
X
i∈sv

yiaihΦ(xi) · Φ(x)i + b = 0 (8.6)

There is no need to explicitly compute the transformations, since we only have to calculate

the dot product between Φ(xi) and Φ(x). Kernel functions allow us to compute this product,

without even knowing the feature vectors Φ(xi) and Φ(x). Indeed, given two points x and z:

K(x, z) = hΦ(x)Φ(z)i (8.7)

So, to calculate the decision boundary, we only need to compute the Kernel function for the

required points. This procedure is called kernel trick. There are many types of kernel functions;

we used two of them:

62

• dot kernel: it is simply defined as the dot product between two points x and y.

K(x, z) = hx · yi (8.8)

• RBF kernel: it is defined by

K(x, z) = e(−g||x−y||
2) (8.9)

where g is specified by the kernel gamma parameter. It is critical to tune this parameter

since it has a significant influence on the overall performance.

In our classification task, the dot kernel performed better than the RBF. Again, we used

Rapidminer to implement the SVM classifier.

8.3 Neural Network

“A neural network is a massively parallel distributed processor made of simple processing

units”, the neurons, which is particularly suited for storing knowledge and make it available for

a later use [56]. Those neurons are interconnected and work in parallel within the network. It

works similarly to the brain, since:

• Knowledge is acquired through a learning process

• Knowledge is stored by means of synaptic weights, representing the strength of connections

between neurons

63

The learning algorithm is the procedure which defines how knowledge is acquired and stored: the

learning process is accomplished through dynamic updates of the synaptic weights associated

with each neuron [57]. Inputs are iteratively fed to the network, and the weights are repeatedly

adjusted according to the training data and the cost function, which represent the distance of

the current output from the desired output. Each iteration is called epoch. Synaptic weights

are usually represented with a matrix W and updated using the generic formula:

W (n+ 1) = W (n) + ηC (8.10)

where n refers to the epoch number, η is the learning rate parameter, and C is the cost function.

This process is a typical supervised learning task, in which the network learns the expected

output associated with each input value. Moreover, neural networks have many important

properties which make them suitable for machine learning algorithms:

• non-linearity: neurons may be linear or non-linear, according to their activation func-

tion. A network made of non-linear neurons can perform well on nonlinear data.

• adaptivity: the network may change its synaptic weights according to the surround-

ing environment. This means that neural networks could be very robust in performing

machine learning tasks since they can be easily re-trained to deal with modifications.

• fault-tolerance: due to their highly distributed nature, neural networks will keep work-

ing and producing good results even with minor damages. It requires big damage to

degrade their performance.

64

Figure 15: Graphical representation of a layer in Neural Networks

• evidential response: they can provide confidence values for their decisions, showing the

trustworthiness of their outputs.

The basic processing units, the neurons, may be combined to form different architectures which

are organized in layers. In Figure 15, we show the basic structure of a layer in a neural network.

The white dots represent the inputs for layer l, Yl−1, while black dots are the neurons of layer

l. Wl represents the matrix of weights, φ is the activation function for neurons of layer l and

Yl is the output vector. Typically, the neurons of each layer take as input the output of the

previous layer.

The output y for a neuron n may be computed as:

65

yn = φ(

mX
i=1

wnixi) (8.11)

where φ is the activation function for neuron n, xi is the ith input and wni is the synaptic

weight between neuron n and neuron i.

Traditionally, in classification tasks, the input layer represents the input data as a vector,

and the output layer is the one responsible for class prediction, producing as output the value

corresponding to the predicted class. Other layers are called hidden layers because they are

not seen directly either by the input or the output of the network. A neural network may be

feedforward, if the information flows only from the input to the output layer, or recurrent, if

there is at least one feedback loop, meaning that the output is propagated back to the input.

To perform our task, we used the RapidMiner implementation of neural networks in which

we had to tune all the required parameters and chose the optimal architecture. We used a

feedforward network with two hidden layers of 50 neurons with rectifier activation function,

although usually, one hidden layer is good enough to perform supervised learning tasks [58].

We tried different configurations and this architecture gave us the best results for class predic-

tion. It was trained with the backpropagation algorithm over ten epochs. The backpropagation

algorithm adjusts the synaptic weights of each neuron by applying a correction which is pro-

portional to the partial derivative of the cost function with respect to the weight of the neuron

itself, using the formula:

W (n+ 1) = W (n) − ηg (8.12)

66

where g is the gradient of the loss function and W is the matrix of all synaptic weights.

Intuitively, as we reach the minimum of the cost function, the gradient will decrease, and

the updates will be smaller until convergence. The value for the learning rate is critical because

a value which is too large would produce big jumps during training which could make the model

skip the optimum value for the cost function, while a value which is too small would lead to

slow convergence. In order to overcome these issues, we used an adaptive learning rate, which

decreased in value while approaching the local minima.

As cost function, or loss function, we chose cross-entropy because it was the one which

performed best, yielding the highest accuracy. When training neural network classifiers, cross-

entropy has many advantages with respect to the quadratic squared-error function [59]:

• while the squared-error function assumes a normal distribution for data, cross-entropy is

designed for binary classification, making it suitable for our task.

• squared-error function may be strongly influenced by records with large errors, but cross-

entropy exploits a log-linear error function which reduces the impact of outliers.

• squared-error is based on absolute errors, while cross-entropy relies on relative errors,

making it work better with both small and large data.

As also stated in [60], average cross-entropy is slightly better at training neural network clas-

sifiers with respect to the squared-error function. Moreover, it was successfully used for text

classification by previous works as [61]. We also used L1 regularization to prevent weights to

increase exponentially. As a matter of fact, we included an additional term in the cost function,

a weighted penalty that added a fraction of the sum of the absolute values of the weight.

67

The resulting cost function for binary classification:

C =
1

N

X
i∈N

(di log(yi) + (1 − di) log(1 − yi)) + λ
X
i=1

|wi| (8.13)

where N is the size of the training set, di is the desired output and yi is the actual output for

the ith input, and wi is the weight associated with the ith neuron.

L1 regularization had the effect of constraining the absolute value for the weights and setting

some of them to 0, to reduce complexity and overfitting. Another important technique used

to escape from overfitting was early stopping. Early stopping consists in performing class

prediction on the testing set at each epoch and storing the results and the current values for

the weights while training the network. In the end, we kept the set of synaptic weights which

yielded the highest accuracy. This way we would avoid overfitting, since, even if after some

epochs the network performed too well on the training data and poorly on the testing data, we

could use the previous weights which worked better on the testing set.

CHAPTER 9

EXPERIMENTAL RESULTS

We ran three different classifiers for every dataset using 10-fold cross-validation with strat-

ified sampling to preserve label distributions, since our class distribution was extremely unbal-

anced. We obtained different performance for each classifier according to the dataset used to

train and evaluate the model, but all of them could classify at least one dataset with reasonable

accuracy if compared to related work.

9.1 Classification using Behavioral Features

We trained many models using the computed user features, convinced that suspicious users

would have different feature distributions than genuine ones. We represented each user as a

vector of normalized features, and we fed them to the machine learning algorithms. We wanted

to exploit them to find behavioral patterns that could be used to identify suspicious users.

9.1.1 Bayesian Classifier

We tried both Naive Bayes and Kernel Naive Bayes classifiers and we obtained better results

with the kernel estimator. This is due to the fact that the kernel could better estimate the

density of the features, as continuous values between 0 and 1. We could detect suspicious users

with almost 70% recall. Actually, it was also pretty good also at recognizing genuine users,

with more than 96% recall. However, since the class distribution was very unbalanced, the

68

69

TABLE IV: BEHAVIORAL FEATURES - CM KERNEL NAIVE BAYES.

Predicted Class

Accuracy 95.97% Suspicious Genuine Class Recall

True Class
Suspicious 723 319 69.39%

Genuine 1143 34087 96.76%

Class Precision 38.75% 99.07%

misprediction errors on good users affected a lot the precision for suspicious users, taking it

down to less than 40%.

9.1.2 SVM

We ran SVM algorithm using both dot and RBF kernels. The linear kernel performed a

lot better than RBF, as we expected, since it is crucial to tune the gamma parameter to make

RBF work correctly. With respect to the Bayesian classifier, SVM could better detect genuine

users, hardly mistaking them for malicious ones with a recall higher than 98%, but it was less

accurate at recognizing suspicious users, with almost 58% recall. The overall accuracy was also

higher, but due to the fact that our dataset was very unbalanced, this was not a good quality

indicator for the classifier.

9.1.3 Neural Network

The Neural Network was the one performing worst for class prediction using behavioral

features. It could not properly detect suspicious users by analyzing their features, reaching a

70

TABLE V: BEHAVIORAL FEATURES - CM SVM DOT KERNEL.

Predicted Class

Accuracy 97.06% Suspicious Genuine Class Recall

True Class
Suspicious 598 444 57.39%

Genuine 621 34609 98.24%

Class Precision 49.06% 98.73%

TABLE VI: BEHAVIORAL FEATURES - CM NEURAL NETWORK.

Predicted Class

Accuracy 97.86% Suspicious Genuine Class Recall

True Class
Suspicious 325 717 31.19%

Genuine 61 35169 99.83%

Class Precision 84.20% 98.00

very low recall of 31%. Basically, it assigned the genuine label to the great majority of the

users. Indeed, it had the highest recall for normal users, very close to 100% and yielded the

highest overall accuracy.

71

9.2 Classification using Linguistic Features

We trained our models for class prediction using the linguistic features extracted from the

messages posted by the users. The goal was to determine whether suspicious users followed

specific linguistic patterns which could be used to identify them. We used the bag-of-words

approach, representing each user as a vector of word occurrences. We also tried to use TF

and TF-IDF representation, but they lead to lower accuracy. During text preprocessing, we

computed bigrams too, but they did not improve the overall performance. Moreover, we did

not exploit POS because they usually do not help in this kind of tasks.

9.2.1 Bayesian Classifier

We used Naive Bayes classifier both with Gaussian and kernel estimators and, again, Kernel

Naive Bayes was the one performing best. However, the overall performance was slightly worse

with respect to features classification, meaning that with our dataset the algorithm could better

predict class labels using behavioral features with respect to linguistic ones. However, it yielded

almost 90% recall for genuine users and 67% for suspicious ones. The overall accuracy was

significantly lower because it was not as good at identifying normal users as the model which

worked with behavioral features.

9.2.2 SVM

While SVM could predict the class labels for users with reasonable accuracy when using

behavioral features, it was pretty bad at detecting suspicious users using linguistic features. The

linear kernel was again the one performing the classification task better. However, it yielded

a low 28% recall for suspicious users. Similarly to what happened when we used the neural

72

TABLE VII: LINGUISTIC FEATURES - CM KERNEL NAIVE BAYES.

Predicted Class

Accuracy 88.97% Suspicious Genuine Class Recall

True Class
Suspicious 637 316 66.84%

Genuine 3613 31051 89.58%

Class Precision 14.99% 98.99%

TABLE VIII: LINGUISTIC FEATURES - CM SVM DOT KERNEL.

Predicted Class

Accuracy 97.83% Suspicious Genuine Class Recall

True Class
Suspicious 292 750 28.02%

Genuine 37 35193 99.89%

Class Precision 88.75% 97.91%

network with behavioral features, the classifier assigned the genuine label to the great majority

of users, reaching the highest recall for normal users.

9.2.3 Neural Network

The neural network was the classifier which performed worst when using behavioral features.

On the other hand, it was by far the best with linguistic features. Not only it reached a very

73

TABLE IX: LINGUISTIC FEATURES - CM NEURAL NETWORK.

Predicted Class

Accuracy 98.74% Suspicious Genuine Class Recall

True Class
Suspicious 775 267 74.38%

Genuine 189 35041 99.46%

Class Precision 80.39% 99.24%

high recall for suspicious users of 74%, but also yielded a precision of 80%. Differently from

other classifiers, it could properly identify both suspicious users and genuine ones. Indeed, it is

worth mentioning that both recall and precision for normal users were above 99%. Hence, we

can state that the neural network found linguistic patterns which could be used to distinguish

between suspicious and genuine users accurately.

9.3 Classification using Combined Features

Finally, we tried to perform supervised learning using both linguistic and behavioral fea-

tures. In order to do that, we simply appended the feature vector associated with each user

to the document vector containing the occurrences of each word for the user. Since the behav-

ioral features were almost 30 and the size of the dictionary was a lot larger, we expected the

addition of those features to modify the performance obtained by performing text classification

slightly. As a matter of fact, in our final vector, the linguistic features outnumbered the behav-

ioral features by far. Therefore the contribution of behavioral features to class prediction was

74

TABLE X: COMBINED FEATURES - CM KERNEL NAIVE BAYES.

Predicted Class

Accuracy 90.15% Suspicious Genuine Class Recall

True Class
Suspicious 669 286 70.05%

Genuine 3225 31450 90.70%

Class Precision 17.18% 99.10%

small. However, since behavioral patterns matched linguistic patterns, we boosted the overall

performance obtained with text classification.

9.3.1 Bayesian Classifier

We observer that, by adding behavioral feature values to the word occurrences vector for

each user, we slightly improved the performance. Once again, the algorithm using kernel

estimation performed best. Recall increased to 70% for suspicious users and above 90% for

genuine ones. Overall accuracy and precision for both classes were improved too. However,

the results obtained exploiting behavioral features only for classification were better, showing

that Bayesian classifier was more accurate with behavioral features than with linguistic ones to

distinguish between genuine and suspicious users.

9.3.2 SVM

SVM performed a lot better with behavioral features with respect to linguistic features.

Hence, we expected to improve the accuracy of text classification, but still obtaining worse

75

TABLE XI: COMBINED FEATURES - CM SVM DOT KERNEL.

Predicted Class

Accuracy 98.12% Suspicious Genuine Class Recall

True Class
Suspicious 400 642 38.39%

Genuine 40 35190 99.89%

Class Precision 90.91% 98.21%

performance than when using behavioral features only. Indeed, we raised precision and recall for

suspicious users respectively to almost 91% and 38%. However, when comparing the obtained

performance with the ones yielded by features classification, it was clear that SVM was by far

better suited to distinguish between suspicious and genuine users using behavioral features than

with linguistic ones. Since linear kernel SVM performed better than RBF SVM on both the

previous tasks, it had better performance also combining the features.

9.3.3 Neural Network

Differently from both Bayesian classifier and SVM, the neural network performed a lot

better with linguistic features with respect to behavioral ones. In fact, it was the best at text

classification and the worst at behavioral classification. However, when combining behavioral

features with linguistic features, the algorithm performed even better. Precision and recall

for both classes slightly improved, yielding respectively 75% and 81% for suspicious class.

Exploiting behavioral features helped the network to identify suspicious and genuine users

76

TABLE XII: COMBINED FEATURES - CM NEURAL NETWORK.

Predicted Class

Accuracy 98.79% Suspicious Genuine Class Recall

True Class
Suspicious 783 259 75.14%

Genuine 180 35050 99.49%

Class Precision 81.31% 99.27%

better. Indeed, the model learned on this dataset was the one which performed the classification

task most accurately.

9.4 Classification Results Overview

We give a final overview of the results obtained with different algorithms and different

datasets. We observed that Kernel Naive Bayes and SVM algorithms worked a lot better using

behavioral features than using linguistic ones. On the other hand, the Neural Network did

the exact opposite, detecting both suspicious and genuine users accurately when using the

text associated with each user and performing poorly on behavioral features. The difficulty in

distinguishing between suspicious users and normal ones laid in the fact that suspicious users

have become very good at spamming opinions, disguising as good users and making it harder

to detect them. As a matter of fact, they often showed a dual behavior which did not help our

classifiers to catch the differences with normal users. They might post normal messages with

genuine content and, sometimes, malicious ones, or they could be associated with accounts with

77

TABLE XIII: KERNEL BAYES - PERFORMANCE.

Kernel Naive Bayes
Suspicious Class Genuine Class

Precision Recall Fscore Precision Recall Fscore

Behavioral Features 38.75% 69.39% 49.73% 99.07% 96.76% 97.90%

Linguistic Features 14.99% 66.84% 24.49% 98.99% 89.58% 94.05%

Combined Features 17.18% 70.05% 27.59% 99.10% 90.70% 94.71%

good reputation, which could have been bought and then used to propagate misinformation.

However, our classifiers were able to detect some abnormal linguistic and behavioral patterns

associated with the users we defined as suspicious and exploited these patterns to distinguish

them from genuine ones properly.

78

TABLE XIV: SVM DOT KERNEL - PERFORMANCE.

SVM Dot Kernel
Suspicious Class Genuine Class

Precision Recall Fscore Precision Recall Fscore

Behavioral Features 49.06% 57.39% 52.90% 98.73% 98.24% 98.48%

Linguistic Features 88.75% 28.02% 42.59% 97.91% 99.89% 98.89%

Combined Features 90.91% 38.39% 53.98% 98.21% 99.89% 99.04%

TABLE XV: NEURAL NETWORK - PERFORMANCE.

Neural Network
Suspicious Class Genuine Class

Precision Recall Fscore Precision Recall Fscore

Behavioral Features 84.20% 31.29% 45.63% 98.00% 99.83% 98.91%

Linguistic Features 80.39% 74.38% 77.27% 99.24% 99.46% 99.35%

Combined Features 81.31% 75.14% 78.10% 99.27% 99.49% 99.38%

CHAPTER 10

DETECTION OF GROUPS OF COLLUDING USERS

A group of spammers has the workforce to post many messages which could influence peo-

ple’s opinion on target subjects. They might promote or discredit products or services without

revealing their hidden intentions. Moreover, when cooperating with others, malicious users are

harder to detect since they do not directly show such abnormal behavior as single spammers

do. For instance, they do not exceed the maximum number of posted URLs, mentions, tweets.

As a matter of fact, they can distribute the load of tweets to be posted, each member sharing

just a few messages, reducing the chance of being discovered. We consider a group of suspicious

users as a set of userids [3]. There could be either a single person or different users behind

multiple ids. However, in our work, we briefly investigated the problem of groups of colluding

users, without focusing on how many people manipulated the accounts of a suspicious group.

10.1 Extraction of Groups of Suspicious Users

We proposed a simple graph and content-based approach to detect groups of suspicious users

who might be cooperating. First, we used Twitter APIs [2] to obtain the list of followers and

friends for each user who was labeled as suspicious. Clearly, we could not get such information

for those accounts which were suspended by Twitter. We built a directed graph exploiting the

relationships between users: each vertex represented a user, while each directed edge modeled

the following relationship, in which if a user a followed a user b, an edge was drawn from a to

79

80

b. Then, we extracted a sub-graph from our previously created graph by removing all nodes

referring to users who did not belong to our set of suspicious users. As a matter of fact, we

wanted to discover groups of possibly malicious users and we were not interested in genuine

ones for this analysis. Moreover, we needed proof that the members of the discovered groups

were actually cooperating, posting the same content and propagating the same information

to achieve some common goal. We expected them to collude and post specific messages on

target subjects to influence the opinion of the other users on Twitter. Hence, we reduced again

our graph, including only connected users who posted similar messages. As we did during the

computation of our features, we focused on users posting duplicate and near-duplicate tweets:

we measured the cosine similarity to compute the similarity between documents, and we used

the 0.7 as a threshold to determine whether two tweets were near-duplicate or not. From a set

of more than one thousand suspicious users, we obtained about 40 groups of users who could

be possibly working together.

10.2 Groups Evaluation

We extracted about 40 groups composed of suspicious users from our dataset. They were

pretty small in size: the great majority was formed by four or fewer members, and the biggest

one counted ten users. We now present the most relevant topics shared by members of the same

groups:

• the biggest group posted many tweets about astrology, claiming that it could be exploited

to predict and prevent cancer.

81

• some groups, even composed of just a few members, advertised fake clinics for cancer

treatment or special therapies to cure cancer.

• many groups proposed natural remedies, including foods, as a solution for cancer preven-

tion and cancer cure, referring to untrustworthy sources.

• other groups posted some dubious claims about particular objects or activities causing

cancer without supporting them with evidence.

We could have exploited some other features as timestamps and time windows, posted URLs

and mentions to better understand the relationships between users. However, even if we did

not perform an in-depth analysis to detect groups of colluding users as in related works, we

were able to find small groups of suspicious users who were possibly cooperating to propagate

information and achieve a common goal. In our dataset, they mostly tried to propose dubious

solutions for cancer treatment and prevention and to warn people, discrediting some products

which were said to cause cancer.

CHAPTER 11

CONCLUSION

This study focused on finding suspicious users who posted dubious claims about cancer

prevention and treatment on Twitter. As social media are becoming more and more popular

and used, nowadays, they represent an important source of information. On Twitter, users

may share posts about their lives and their opinions on any subject, communicating with their

friends with short messages and allowing to spread information very fast. Malicious users may

exploit these features, by posting deceptive messages to promote or discredit target product

or service with hidden intentions. They usually target trending topics, like cancer. Therefore,

it is crucial to distinguish genuine users from malicious ones. Since we did not have either

the knowledge or the authority to separate utterly wrong claims from legitimate ones, we just

defined users with abnormal behavior as suspicious.

We collected a set of more than 60 thousand tweets posted in October 2017. Due to the

complexity of manual labeling, we extracted a set of behavioral features for each user and

combined them to compute a spam score, i.e., the likelihood of a user being suspicious. We

exploited that spam score to create a ranking which was used to assign labels to users more

efficiently. In our labeling process, we did not have to go through the whole dataset, but we

only analyzed the set of users belonging to a list we generated from the ranking.

Then, we ran multiple classifiers on three different datasets, in which users were respec-

tively described by their behavioral features, linguistic features, and combined behavioral and

82

83

linguistic features. We found out that machine learning algorithms could quite accurately de-

tect suspicious users by learning from those features. Apparently, suspicious users followed

some abnormal linguistic and behavioral patterns which allowed our classifiers to identify and

distinguish them from genuine ones. However, due to the dual behavior they manifested, some

normal users were mistaken for suspicious ones by our algorithms.

Finally, we briefly investigated the problem of detecting groups of colluding users. By

analyzing the content of their posts and their relationships on Twitter, we were able to find

some sets of users who could be possibly working together, propagating misinformation to

achieve a common goal.

11.1 Future Work

In our work, we used an alternative method to perform manual labeling on our dataset,

without having to analyze every single user, which turned out to be effective in identifying

suspicious users. We generated a ranking by combining a set of behavioral features extracted

from our dataset and by computing a spam score. Future work may focus on improving the

accuracy and the effectiveness of similar rankings, especially adjusting the weights associated to

each attribute to compute the final spam score. If accurate enough, this could represent a valid

alternative to the complex and time-consuming manual labeling process in spam detection.

Moreover, we performed text classification with a neural network. Another approach using

linguistic features is the vector representation of words, also called “word embedding”. It

exploits Vector Space Models, which basically represent words in a continuous space where

semantically similar words are mapped to nearby points [62]. Future work might deal with

84

the word vector representation, which could even provide better results at text classification

with respect to the methods we used. Furthermore, more advanced linguistic features might be

exploited to boost the performance of text classification.

Finally, we tried a simple procedure to detect groups of suspicious users who could be

cooperating to spread misinformation. However, we only exploited the content of tweets and

the relationships between users to determine whether they were working together or not. In

future work, the detection procedure could be made more effective, by exploiting other features

as timestamps, locations, and URLs posted, which could allow to identify colluding users more

accurately.

CITED LITERATURE

1. Wang, A. H.: Don’t follow me: Spam detection in twitter. In Security and cryptography
(SECRYPT), proceedings of the 2010 international conference on, pages 1–10.

IEEE, 2010.

2. Twitter docs. https://dev.twitter.com/docs. Accessed: 2018-04-10.

3. Liu, B.: Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge Uni-
versity Press, 2015.

4. Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M.,
and Ghosh, R.: Spotting opinion spammers using behavioral footprints.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 632–640. ACM, 2013.

5. Benevenuto, F., Magno, G., Rodrigues, T., and Almeida, V.: Detecting spammers on
twitter. In Collaboration, electronic messaging, anti-abuse and spam conference
(CEAS), volume 6, page 12, 2010.

6. Grier, C., Thomas, K., Paxson, V., and Zhang, M.: @ spam: the underground on 140
characters or less. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 27–37. ACM, 2010.

7. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., and Ghosh, R.: Exploiting
burstiness in reviews for review spammer detection. Icwsm, 13:175–184, 2013.

8. Li, H., Chen, Z., Mukherjee, A., Liu, B., and Shao, J.: Analyzing and detecting opinion
spam on a large-scale dataset via temporal and spatial patterns. In ICWSM, pages
634–637, 2015.

9. Jindal, N. and Liu, B.: Opinion spam and analysis. In Proceedings of the 2008
International Conference on Web Search and Data Mining, pages 219–230. ACM,
2008.

10. Mukherjee, A., Venkataraman, V., Liu, B., and Glance, N. S.: What yelp fake review filter
might be doing? In ICWSM, 2013.

85

86

CITED LITERATURE (continued)

11. Mukherjee, A., Venkataraman, V., Liu, B., and Glance, N.: Fake review detection: Classifi-
cation and analysis of real and pseudo reviews. Technical Report UIC-CS-2013–03,
University of Illinois at Chicago, Tech. Rep., 2013.

12. Mukherjee, A., Liu, B., Wang, J., Glance, N., and Jindal, N.: Detecting group review
spam. In Proceedings of the 20th international conference companion on World
wide web, pages 93–94. ACM, 2011.

13. Zhang, X., Zhu, S., and Liang, W.: Detecting spam and promoting campaigns in the twitter
social network. In Data Mining (ICDM), 2012 IEEE 12th International Conference
on, pages 1194–1199. IEEE, 2012.

14. Chu, Z., Widjaja, I., and Wang, H.: Detecting social spam campaigns on twit-
ter. In International Conference on Applied Cryptography and Network Security,
pages 455–472. Springer, 2012.

15. Lee, K., Caverlee, J., Cheng, Z., and Sui, D. Z.: Content-driven detection of cam-
paigns in social media. In Proceedings of the 20th ACM international conference
on Information and knowledge management, pages 551–556. ACM, 2011.

16. Qian, T. and Liu, B.: Identifying multiple userids of the same author.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1124–1135, 2013.

17. Twitter. https://en.wikipedia.org/wiki/Twitter. Accessed: 2018-04-10.

18. Twitter to test doubling tweet length to 280 characters. https://www.nytimes.com/2017/
09/26/technology/twitter-280-characters.html. Accessed: 2018-04-10.

19. Kwak, H., Lee, C., Park, H., and Moon, S.: What is twitter, a social network or a
news media? In Proceedings of the 19th international conference on World wide
web, pages 591–600. ACM, 2010.

20. Java, A., Song, X., Finin, T., and Tseng, B.: Why we twitter: understanding mi-
croblogging usage and communities. In Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 workshop on Web mining and social network analysis, pages 56–

65. ACM, 2007.

21. Huberman, B. A., Romero, D. M., and Wu, F.: Social networks that matter: Twitter under
the microscope. arXiv preprint arXiv:0812.1045, 2008.

87

CITED LITERATURE (continued)

22. Pak, A. and Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining.
In LREc, volume 10, 2010.

23. Wang, H., Can, D., Kazemzadeh, A., Bar, F., and Narayanan, S.: A system for real-time
twitter sentiment analysis of 2012 us presidential election cycle. In Proceedings of
the ACL 2012 System Demonstrations, pages 115–120. Association for Computa-

tional Linguistics, 2012.

24. Breast cancer awareness month. http://www.nationalbreastcancer.org/

breast-cancer-awareness-month. Accessed: 2018-04-10.

25. The twitter rules. https://help.twitter.com/en/rules-and-policies/

twitter-rules. Accessed: 2018-04-10.

26. Kouloumpis, E., Wilson, T., and Moore, J. D.: Twitter sentiment analysis: The good the
bad and the omg! Icwsm, 11(538-541):164, 2011.

27. Hemalatha, I., Varma, G. S., and Govardhan, A.: Preprocessing the informal text for effi-
cient sentiment analysis. International Journal of Emerging Trends & Technology
in Computer Science (IJETTCS), 1(2):58–61, 2012.

28. Snowball stemmer. http://snowball.tartarus.org/. Accessed: 2018-04-10.

29. Orange. https://orange.biolab.si. Accessed: 2018-04-10.

30. Orange text mining documentatio. https://media.readthedocs.org/pdf/

orange3-text/latest/orange3-text.pdf. Accessed: 2018-04-10.

31. Bird, S. and Loper, E.: Nltk: the natural language toolkit. In Proceedings of the ACL 2004
on Interactive poster and demonstration sessions, page 31. Association for Compu-

tational Linguistics, 2004.

32. Big data polito. https://bigdata.polito.it/. Accessed: 2018-04-10.

33. Pyspark documentation. http://spark.apache.org/docs/2.1.0/api/python/pyspark.
html. Accessed: 2018-04-10.

34. Apache spark. https://spark.apache.org/. Accessed: 2018-04-10.

88

CITED LITERATURE (continued)

35. Hdfs architecture guide. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
Accessed: 2018-04-10.

36. Spark rdd programming guide. https://spark.apache.org/docs/latest/

rdd-programming-guide.html. Accessed: 2018-04-10.

37. Blei, D. M., Ng, A. Y., and Jordan, M. I.: Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

38. Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., and Li, X.: Comparing twitter
and traditional media using topic models. In European Conference on Information
Retrieval, pages 338–349. Springer, 2011.

39. Chen, Z. and Liu, B.: Mining topics in documents: standing on the shoulders of big data.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1116–1125. ACM, 2014.

40. Hong, L. and Davison, B. D.: Empirical study of topic modeling in twitter. In Proceedings
of the first workshop on social media analytics, pages 80–88. ACM, 2010.

41. Jónsson, E. and Stolee, J.: An evaluation of topic modelling techniques for twitter.

42. Steyvers, M., Smyth, P., Rosen-Zvi, M., and Griffiths, T.: Probabilistic author-topic models
for information discovery. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 306–315. ACM, 2004.

43. Mehrotra, R., Sanner, S., Buntine, W., and Xie, L.: Improving lda
topic models for microblogs via tweet pooling and automatic labeling.
In Proceedings of the 36th international ACM SIGIR conference on Research and
development in information retrieval, pages 889–892. ACM, 2013.

44. Dirichlet distribution. https://en.wikipedia.org/wiki/Dirichlet_distribution. Ac-
cessed: 2018-04-10.

45. Bayesian inference. https://en.wikipedia.org/wiki/Bayesian_inference. Accessed:
2018-04-10.

46. Mimno, D., Wallach, H. M., Talley, E., Leenders, M., and McCallum, A.: Optimizing
semantic coherence in topic models. In Proceedings of the conference on empirical

89

CITED LITERATURE (continued)

methods in natural language processing, pages 262–272. Association for Computa-
tional Linguistics, 2011.

47. Perplexity. https://en.wikipedia.org/wiki/Perplexity. Accessed: 2018-04-10.

48. Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., and Blei, D. M.: Reading tea leaves:
How humans interpret topic models. In Advances in neural information processing
systems, pages 288–296, 2009.

49. Liu, B.: Web data mining: exploring hyperlinks, contents, and usage data. Springer Sci-
ence & Business Media, 2007.

50. Cosine similarity. https://en.wikipedia.org/wiki/Cosine_similarity. Accessed:
2018-04-10.

51. Youtube policies. https://www.youtube.com/yt/about/policies/. Accessed: 2018-04-
10.

52. Twitter lists. https://help.twitter.com/en/using-twitter/twitter-lists. Ac-
cessed: 2018-04-10.

53. Benesty, J., Chen, J., Huang, Y., and Cohen, I.: Pearson correlation coefficient. In Noise
reduction in speech processing, pages 1–4. Springer, 2009.

54. Rapidminer. https://docs.rapidminer.com/. Accessed: 2018-04-10.

55. Pérez, A., Larrañaga, P., and Inza, I.: Bayesian classifiers based on kernel density
estimation: Flexible classifiers. International Journal of Approximate Reasoning,
50(2):341–362, 2009.

56. Haykin, S. S., Haykin, S. S., Haykin, S. S., and Haykin, S. S.: Neural networks and learning
machines, volume 3. Pearson Upper Saddle River, NJ, USA:, 2009.

57. Hepner, G., Logan, T., Ritter, N., and Bryant, N.: Artificial neural network classification
using a minimal training set- comparison to conventional supervised classification.
Photogrammetric Engineering and Remote Sensing, 56(4):469–473, 1990.

58. Dreiseitl, S. and Ohno-Machado, L.: Logistic regression and artificial neural network clas-
sification models: a methodology review. Journal of biomedical informatics, 35(5-
6):352–359, 2002.

90

CITED LITERATURE (continued)

59. Kline, D. M. and Berardi, V. L.: Revisiting squared-error and cross-entropy functions for
training neural network classifiers. Neural Computing & Applications, 14(4):310–
318, 2005.

60. Why you should use cross-entropy instead of classification er-
ror or mean squared error for neural network classifier train-
ing. https://jamesmccaffrey.wordpress.com/2013/11/05/

why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/.
Accessed: 2018-04-10.

61. Tang, D., Qin, B., and Liu, T.: Document modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the 2015 conference on empirical
methods in natural language processing, pages 1422–1432, 2015.

62. Vector representation of words. https://www.tensorflow.org/tutorials/word2vec. Ac-
cessed: 2018-04-10.

63. N-gram. https://en.wikipedia.org/wiki/N-gram. Accessed: 2018-04-10.

64. Part of speech. https://en.wikipedia.org/wiki/Part_of_speech. Accessed: 2018-04-
10.

VITA

NAME Massimo Piras

EDUCATION

Master of Science in Computer Science, University of Illinois at
Chicago, May 2018, USA

Specialization Degree in Data Science for Computer Engineering, Jul
2018, Polytechnic of Turin, Italy

Bachelor’s Degree in Computer Engineering, Jul 2016, Polytechnic of
Turin, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2016 - IELTS examination (7.5/9)

A.Y. 2017/18 One Year of study abroad in Chicago, Illinois

A.Y. 2016/17. Lessons and exams attended exclusively in English

SCHOLARSHIPS

Fall 2017 full tuition waiver at UIC

Fall 2017 Italian scholarship for TOP-UIC students

TECHNICAL SKILLS

Basic level Assembly 8086 programming,

Average level Matlab, UNIX shell and scripting, HTML, CSS, Javascript, PHP

Advanced level GO, C, Python, Java, SQL and PL/SQL, IBM BPM Platforms

WORK EXPERIENCE AND PROJECTS

Ongoing GO implementation of a load balancer proxy for HTTP servers

Fall 2017 Neural Network classifier for Twitter Sentiment Analysis on US 2012
Presidential Election

91

92

VITA (continued)

Fall 2017 Java implementation of Apriori algorithm for frequent itemsets extrac-
tion with multiple minimum supports

Fall 2017 Matlab implementation of a Neural Network for digit classification us-
ing MNIST data set

Fall 2017 GO implementation of a recursive program for file archiving

2016 - 2017 Back end software developer

Software development for a leading Italian electricity and gas manu-
facturer and distributor. Use of Oracle database for new application
developments, as procedures, packages and triggers, and maintenance
of previous applications. IBM BPM Integration Designer, software de-
velopment tool that renders IT assets into service components for reuse
in service-oriented architecture solutionsand Process Designer. IBM
Procee Designer, graphical user interface tool used for modeling and
implementing business processes and providing masks and interfaces
for end users

