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Abstract

The thesis analyzes a method [1] to determine the electric far-field radiated by elec-
trically large antennas (or antennas placed over structures) using few measured near field
samples of the electric field and numerically constructed expansion functions. Full test of
an antenna can be complex and time consuming. When working with classical expansion
functions, namely vector spherical harmonics for classical spherical range measurement, an
estimate on the number N of sampling points one needs to acquire is given by

N = 4πr2

(λ2 )2 (1)

where r is the radius of the minimum sphere enclosing the radiating structure and λ the
wavelength. When structures which are large in terms of wavelength are considered, as
antennas placed on satellite or other platforms, this number is so large that makes the
measurement easily impractical. The aim of this method is to use information about the
antenna, the scattering structure and the far-field of the antenna in isolation to drastically
reduce the number of sampling points needed to determine the radiated far-field of the
antenna mounted on the platform. The classic reconstruction method consists in measuring
spherical near field samples and then expand them through vector spherical wave functions
[6], i.e. a set of basis functions that is general and can be used to reconstruct the electric
field of any radiating structure. This method, instead, employs a numerical basis adapted
to the structure under test. More precisely, the antenna is enclosed in a virtual surface B,
where unknown electric and magnetic currents are placed. We determine these currents
imposing matching between the field radiated by the currents and the near-field samples
acquired, and then use them to evaluate the far-field. The radiation is computed with a
Green’s function that takes into account the presence of the platform where the antenna is
mounted. From a computational viewpoint, we construct triangular meshes of the surfaceB
and of the platform; we express the unknown electric and magnetic currents defined on B as
a linear combination of piecewise linear basis functions with limited support; we numerically
compute the field radiated by each of these elementary basis function; we enforce matching
between the measured samples of the field and the field due to a linear combination of the
fields radiated by each basis function. Once appropriate coefficients are determined, we
know the currents defined over B and are then able to evaluate the field radiated by these
currents in any point of the space outside B. In particular, we are able to evaluate the
far-field. The method requires a large computational effort to build the numerical basis,
but there are two main advantages in the method. The economic cost of the simulations is
much lower than the cost of acquiring many samples of the field radiated by the antenna;
once computed, we can reuse the fields due to basis functions to express the field radiated
by any antenna contained in the surface B working at the considered frequency, thus tests
of different antennas placed over the same structure become particularly fast.
We show results of reconstructions of simulated electric fields of

• a dipole over a plane mock-up at frequency 3 GHz,



• a reflector antenna at frequency 8 GHz,

while in the last chapter we show results of a reconstruction with measured near field
samples of the same reflector antenna.
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Chapter 1

A brief introduction

In this first chapter we want to introduce relations that involve electric and magnetic
currents defined over a surface and electric and magnetic fields they produce.

1.1 Maxwell’s equations
We recall Maxwell’s equations in vacuum and in free space without sources (electric/magnetic
currents) for electric field E and magnetic field H

curl E(r, t) = −µ ∂
∂t
H(r, t) (1.1)

curl H(r, t) = ε
∂

∂t
E(r, t) (1.2)

We list the main electromagnetic constants that we will use:

• ε ' 8.85410−12F/m is the permittivity of the vacuum;

• µ ' 4π10−7H/m is the permeability of the vacuum;

• k = ω
√
µε = 2π

λ is the wavenumber; [k] = 1
m

• λ = c
f is the wavelength and c is the speed of light c ' 3 · 108m

s ; [λ] = m

• f = ω
2π is the frequency; [f ] =Hz=1

s

• η =
√
µ/ε is the impedance.

We are interested to find a stationary solution of Maxwell’s equations so we will assume
that each quantity is a periodic function of time and that it can be expressed as

E(r, t) = <(E(r)ejωt) = <(E(r)) cos(ωt)−=(E(r)) sin(ωt) (1.3)

where j =
√
−1 is the imaginary unit and E : R3 −→ C3 a time independent function. We

note that fixed an r ∈ R3 the function t −→ E(r, t) is a curve: if <(E(r))× =(E(r)) = 0,
i.e. one of the vectors is zero or vectors are linearly dependent, then the curve becomes a
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line and the electric field is said to be linear polarized; instead if ||<(E(r))|| = ||=(E(r))||
and <(E(r)) ·=(E(r)) = 0 then the field is said to be circularly polarized; in the other cases
the field is said to be elliptically polarized. Through this hypotesis Maxwell’s equations
become time independent relations over space

curl E = −jωµH (1.4)

curl H = jωεE (1.5)
with the little disadvantage that new fields are complex valued functions. We will use these
equations in the exterior space of a body that we will model as a PEC (perfect electric
conductor), i.e. a material with infinite conductivity or equivalently zero resistivity. It is
known that in the region D enclosed by the PEC, the eletric and magnetic fields vanish
identically. In this first chapter we will assume that D ⊆ R3 is a bounded, connected open
set with C2-smooth boundary ∂D. Given x ∈ R3 we denote by |x| its norm |x| = x2

1 +x2
2 +

x2
3. In electromagnetism, given k > 0, the function G : {(x,y) ∈ R3×R3 s.t. x /= y} −→ C

G(x,y) = e−jk|x−y|

4π|x− y| x /= y (1.6)

plays a fundamental role and is called Green’s function. It can be checked that

∇xG(x,y) = − e−jk|x−y|

4π|x− y|3 (1 + jk|x− y|)
(

x− y
)

x /= y (1.7)

The function G appears in several integral operators that we will use, so now we recall a
lemma about the integrability of G(x, ·).

Lemma 1.1.1. [2] Let G : {(x,y) ∈ ∂D × ∂D s.t. x /= y} −→ C the Green’s function
defined in 1.6. Then

∫
∂D G(x,y)ds(y) exists ∀x ∈ ∂D and there exists c > 0 such that∫
∂D\B(x,τ)

|G(x,y)|ds(y) ≤ c ∀x ∈ ∂D ∀τ > 0 (1.8)

and ∣∣∣∣ ∫
∂D\B(x,τ)

∇xG(x,y)ds(y)
∣∣∣∣ ≤ c ∀x ∈ ∂D ∀τ > 0 (1.9)

We denote by n the unit normal vector to the surface ∂D, by C1(D) the set of functions
u : D −→ C such that u is differentiable in D, by C1(D,C3) the set

C1(D,C3) = {u : D −→ C3 : uj ∈ C1(D) for j = 1,2,3} (1.10)

Theorem 1.1.1 (Stratton-Chu formula). [2] Let ε, µ, ω > 0 real constants and E+,H+ ∈
C1(R3 \D,C3) ∩ C(R3 \D,C3) solutions of Maxwell’s equations

curl E+ + jωµH+ = 0 curl H+ − jωεE+ = 0 in R3 \D (1.11)

which satisfy also the Silver Muller radiation condition
√
εE+(x)−√µH+(x)× x

|x| = O( 1
|x|2 ) (1.12)
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1 – A brief introduction

uniformly with respect to x/|x| ∈ S2. Let E−,H− ∈ C1(D,C3) ∩ C(D,C3) solutions of
Maxwell’s equations

curl E− + jωµH− = 0 curl H− − jωεE− = 0 in D (1.13)

Then

curl
∫
∂D

G(x,y)n(y)× [E+(y)− E−(y)]ds(y)+

+ j

ωε
∇
∫
∂D

G(x,y)Div[n× (H− −H+)](y)ds(y)+

+jωµ
∫
∂D

G(x,y)n(y)× [H−(y)−H+(y)]ds(y) =

=
{

E+(x) x ∈ R3 \D
E−(x) x ∈ D

where Div denotes the surface divergence and

G(x,y) = 1
4π|x− y|e

−jk|x−y| x /= y (1.14)

is the Green’s function.

For an x ∈ ∂D we denote by
lim

x+→x
E(x+) (1.15)

the one-sided limit of E as x+ ∈ R3 \ D approaches x ∈ ∂D from the exterior region.
Similarly we denote by limx−→x E(x−) the one-sided limit of E as x− ∈ D approaches
x ∈ ∂D from the interior region. Given fields E,H solutions of Maxwell’s equations in
R3 \ ∂D the electric and magnetic currents J,M on ∂D are defined as

J(x) = n(x)×
[

lim
x+→x

H(x+)− lim
x−→x

H(x−)
]

x ∈ ∂D (1.16)

M(x) =
[

lim
x+→x

E(x+)− lim
x−→x

E(x−)
]
× n(x) x ∈ ∂D (1.17)

We can rewrite Stratton-Chu formula in the following form:

E = −jωA−∇φ− 1
ε
∇× F (1.18)

where we defined for r ∈ R3 \ ∂D

A(r) = µ

∫
∂D

J(r′)G(r, r′)ds(r′) (1.19)

F(r) = ε

∫
∂D

M(r′)G(r, r′)ds(r′) (1.20)

φ(r) = j

εω

∫
∂D

Div J(r′)G(r, r′)ds(r′) (1.21)
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1.2 The scattering problem
We now analyze a problem that will arise in next chapters: the scattering problem for a
PEC. Given incident fields Einc,Hinc that satisfy Maxwell’s equations

curlEinc + jωµHinc = 0 curlHinc − jωεEinc = 0 in R3 (1.22)

find the total fields Etot,Htot ∈ C1(R3 \D,C3) ∩ C(R3 \D,C3) that satisfy

curlEtot + jωµHtot = 0 curlHtot − jωεEtot = 0 in R3 \D (1.23)

Htot = Etot = 0 in D (1.24)

with boundary condition for Etot

n(x)× lim
x+→x

Etot(x+) = 0 ∀x ∈ ∂D (1.25)

and the scattered fields Es := Etot − Einc, Hs := Htot − Hinc satisfy the Silver Muller
radiation condition

√
εEs(x)−√µHs(x)× x

|x| = O( 1
|x|2 ) (1.26)

uniformly with respect to x/|x| ∈ S2.
Because total and incident fields satisfy Maxwell’s equations in R3 \ ∂D then also

scattered fields Es,Hs are solutions of them. It is clear that the solution in D for scattered
fields is Es = −Einc and Hs = −Hinc. The scattering problem is part of the following
exterior boundary value problem.

Exterior boundary value problem

Given a vector valued function such that f(x) · n(x) = 0 ∀x ∈ ∂D, i.e. a tangential field,
find E,H ∈ C1(R3 \D,C3) ∩ C(R3 \D,C3) that satisfy

curlE + jωµH = 0 curlH− jωεE = 0 in R3 \D (1.27)

n(x)× lim
x+→x

E(x+) = f(x) ∀x ∈ ∂D (1.28)

√
εE(x)−√µH(x)× x

|x| = O( 1
|x|2 ) (1.29)

uniformly with respect to x/|x| ∈ S2. Last condition is called Silver Muller radiation
condition.

Scattering problem

We will consider the Exterior boundary value problem for scattered fields Es,Hs with
f = −n × Einc. We can apply Stratton-Chu formula to Es and define currents J and
M with respet to the tangential jump of Es and Hs across the surface. Because Einc is
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1 – A brief introduction

continuous then Etot and Es have the same jump of the tangential component across the
surface, thus

M(x) =
[

lim
x+→x

Es(x+)− lim
x−→x

Es(x−)
]
× n(x) = Etot(x)× n(x) = 0 ∀x ∈ ∂D (1.30)

The electric scattered field Es is linked with the current J through

n× Es = −jωn×A− n×∇φ (1.31)

now applying the boundary condition n× (Einc + Es) = 0 we obtain that

− n(r)× Einc(r) = −jωn(r)×A(r)− n(r)×∇φ(r) ∀r ∈ S (1.32)

We define the operator L as

L(J) = jωn×A + n×∇φ (1.33)

or explicitly ∀r ∈ S

L(J)(r) = jωµn(r)×
∫
S
G(r, r′)J(r′)ds(r′)+ j

εω
n(r)×∇

∫
S
G(r, r′) Div J(r′)ds(r′) (1.34)

we obtain the following integral equation ∀r ∈ S

(n× Einc)(r) = jωµn(r)×
∫
S
G(r, r′)J(r′)ds(r′) + j

εω
n(r)×∇

∫
S
G(r, r′) Div J(r′)ds(r′)

(1.35)
We conclude this section with a little remark. There are two possible boundary con-

ditions for EFIE [19]. The first is the one that we use and is n × Etot = 0 and is called
N-EFIE while the second one is n× n×Etot = 0 and is called T-EFIE. These two formu-
lations are mathematically equivalent but obviusly their implementations are different and
one method, if it produces an ill-conditioned matrix, could be worse then the other one.

1.3 Far field
It is known that the electric field E generated by an electric current J and/or a magnetic
current M takes a simpler form in the case we compute E in a region far from the sources
J and M. We note that multiplying the Silver Muller radiation condition

√
εE(x)−√µH(x)× x

|x| = O( 1
|x|2 ) (1.36)

for the unit normal vector to S2 we have that the radial part of E(x) is

E(x) · x
|x| = O( 1

|x|2 ) (1.37)

uniformly with respect to x/|x| ∈ S2, while the tangential components have a slower decay.
More precisely we consider a surface S and an electric current J and a magnetic current
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M defined over S. We denote with D the diameter of the smallest sphere that encloses S.
Using spherical coordinates (r, θ, φ), the electric field can be decomposed as

E(r, θ, φ) = E∞(r, θ, φ) + o

(1
r

)
r → +∞ (1.38)

If r � λ and r ≥ 2D2/λ we can approximate the electric field E(r, θ, φ) ' E∞(r, θ, φ) with
the far field (for simplicity of notation we will still use the symbol "=" instead of "'"):

E(r, θ, φ) = −jω
[
θ̂(θ, φ) ·A(r, θ, φ)

]
θ̂(θ, φ)− jω

[
φ̂(θ, φ) ·A(r, θ, φ)

]
φ̂(θ, φ)+

+jωη
[
θ̂(θ, φ) · F(r, θ, φ)

]
φ̂(θ, φ)− jωη

[
φ̂(θ, φ) · F(r, θ, φ)

]
θ̂(θ, φ)

or briefly
E = −jω(θ̂θ̂ + φ̂φ̂) ·A + jωη(φ̂θ̂ − θ̂φ̂) · F (1.39)

where η =
√
µ/ε and

x · y =
3∑
i=1

xiyi (1.40)

and

A(r, θ, φ) = µ

4πre
−jkr

∫
S

J(r′)ejkr̂(θ,φ)·r′ds(r′) (1.41)

F(r, θ, φ) = ε

4πre
−jkr

∫
S

M(r′)ejkr̂(θ,φ)·r′ds(r′) (1.42)

where
r̂(θ, φ) = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) (1.43)

is the normal unit vector of the sphere and

θ̂(θ, φ) = (cos(φ) cos(θ), sin(φ) cos(θ),− sin(θ)) (1.44)

φ̂(θ, φ) = (− sin(φ), cos(φ),0) (1.45)

are the tangential vectors to the sphere.
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Chapter 2

The scattering problem

In this chapter we introduce the ambient space for the solution of the scattering problem
and then we report a theorem on the existence and uniqueness of the solution [2]. We don’t
introduce exhaustively notions and instruments needed for the theorem but we recall only
the fundamental results. For this chapter we decompose the electric field E as

E(r, t) = <(E(r)e−jωt) (2.1)

instead of
E(r, t) = <(E(r)ejωt) (2.2)

We note that if

E(r, t) = <(E2(r)e−jωt) = <(E(r)) cos(ωt) + =(E(r)) sin(ωt) (2.3)

E(r, t) = <(E1(r)ejωt) = <(E(r)) cos(ωt)−=(E(r)) sin(ωt) (2.4)

then the two different solutions are linked through

E2 = E1 (2.5)

where E1 is the complex coniugate of E1. Green function G is

G(r, r′) = 1
4π|r− r′|e

jk|r−r′| (2.6)

with k = ω
√
εµ. The scattering equation is ∀r ∈ S

jωµ

[
n(r)×

∫
∂D

J(r′)G(r, r′)ds(r′)
]
+ j

εω

[
n(r)×∇

∫
∂D

Div J(r′)G(r, r′)ds(r′)
]

= −n(r)×Einc(r)

(2.7)
where n is the normal unit vector to the surface S. Now defining the vector function

a := j

εω
J (2.8)

the scattering equation becomes

11
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k2
[
n(r)×

∫
∂D

a(r′)G(r, r′)ds(r′)
]
+
[
n(r)×∇

∫
∂D

Div a(r′)G(r, r′)ds(r′)
]

= −n(r)×Einc(r)

(2.9)
Now defining the trace operator γt such that γt(a) = n×a and introducing the symbolic

notation
< a, b >∂D=

∫
∂D

b(y)a(y)ds(y) (2.10)

where a is a scalar or vectorial function and b is a scalar function; the equation becomes

La = −γtEinc (2.11)

where L̃ is
L̃a(r) = k2 < a, G(r, ·) >∂D +∇ < Div a, G(r, ·) >∂D (2.12)

and L := γtL̃. Our aim is to study the existence and uniqueness of the equation La = f
for some vectorial function f which is tangential to the surface ∂D. In the following we
will denote vectors without bold text.

2.1 Preliminaries
We don’t give the definition of fractional Sobolev space, we will read it as image space
of a trace operator. For proofs, definitions and details we refer to [2]. In this chapter we
suppose that D ⊂ R3 is a bounded Lipschitz domain. We denote with Ck(D) the set of
functions u : D −→ C such that u is k times differentiable in D and all derivatives can be
continuosly extended to D. We also define

Ck(D,C3) = {u : D −→ C3 | uj ∈ Ck(D) for j = 1,2,3} (2.13)

Ck
0 (D) = {u ∈ Ck(D) : supp(u) is compact and supp(u) ⊆ D} (2.14)

Ck
0 (D,C3) = {u ∈ Ck(D,C3) : uj ∈ Ck

0 (D) for j = 1,2,3} (2.15)

Lp(D) = {u : D −→ C : u is Lebesgue measurable and
∫
D
|u|pdx <∞} (2.16)

Lp(D,C3) = {u : D −→ C3 : uj ∈ Lp(D) for j = 1,2,3} (2.17)

where the support of a measurable function u is defined as

supp(u) = ∩{K ⊆ D : K is closed and u(x) = 0 a.e. on D \K} (2.18)

Definition 2.1. A function v ∈ L2(D,C3) has a variational gradient if there exists
w ∈ L2(D,C3) such that∫

D
v · ∇ψdx = −

∫
D
w · ψdx ∀ψ ∈ C∞0 (D) (2.19)

In this case we define ∇v := w

12



2 – The scattering problem

Definition 2.2. A function v ∈ L2(D,C3) has a variational curl if there exists
w ∈ L2(D,C3) such that∫

D
v · curl ψdx =

∫
D
w · ψdx ∀ψ ∈ C∞0 (D,C3) (2.20)

In this case we define curl v := w

H1(D) := {u ∈ L2(D) : u has a variational gradient ∇u ∈ L2(D,C3)} (2.21)

H(curl,D) := {u ∈ L2(D) : u has a variational curl in L2(D,C3)} (2.22)
The scalar product on H1(D) is defined as

(u, v)H1(D) := (u, v)L2(D) + (∇u,∇v)L2(D) =
∫
D

[uv +∇u∇v]dx (2.23)

The scalar product on H(curl,D) is defined as

(u, v)H(curl,D) := (u, v)L2(D) + ( curl u, curl v)L2(D) (2.24)
It can be proved that H1(D) and H(curl,D) with their inner products are Hilbert spaces
[2]. We define the space H0(curl,D) as the closure of the space C∞0 (D,C3) in H(curl,D)
with respect to the scalar product previously defined.

Proposition 2.1.1. [2] The trace operators γ0 : H1(D) −→ H1/2(∂D) such that
γ0u = u|∂D and γt : H(curl,D) −→ H−1/2(Div, ∂D) such that γtu = n × u|∂D and
γT : H(curl,D) −→ H−1/2(Curl, ∂D) such that γTu = (n×u|∂D)×n are well defined and
bounded. Furthermore it holds that Ker(γt) = Ker(γT ) = H0(curl,D).

We recall that the normal vector n(x) exists for almost all x ∈ ∂D because D is a
Lipschitz domain.

Now we have to give a sense to the bilinear form < ·, · >∂D.

2.1.1 Definition of < ·, · >∂D

The space H−1/2(Div, ∂D) can be read as the space image of the trace operator γt or as
a subspace of H−1/2(∂D,C3) =

(
H1/2(∂D,C3)

)′. Similarly H−1/2(Curl, ∂D) is the image
space of the trace operator γT or a subspace of H−1/2(∂D,C3) =

(
H1/2(∂D,C3)

)′.
We define for ψ ∈ H−1/2(Curl, ∂D)

< a, ψ >∗=
∫
D
ψ̃ · curlã− ã · curlψ̃dx (2.25)

where ψ̃, ã ∈ H(Curl,D) are any functions such that ψ = γT ψ̃ and a = γtã; the right hand
side does not depend on the choice of extensions ψ̃, ã.

We recall that γ0 : H1(D) −→ H1/2(∂D), with abuse of notation we denote the vector
trace operator still with γ0 : H1(D,C3) −→ H1/2(∂D,C3) such that f γ0−→ f |∂D. It can be
proved that H1(D,C3) is boundedly embedded in H(curl,D), thus γT is well defined and
continuous on H1(D,C3).

13
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Theorem 2.1.1. [2] The space H−1/2(Div, ∂D) is contained in H−1/2(∂D,C3). The iden-
tification is given by the application a −→ la with a ∈ H−1/2(Div, ∂D) and
la ∈ H−1/2(∂D,C3) given by

< la, ψ >=< a, γT ψ̃ >∗ ψ ∈ H1/2(∂D,C3) (2.26)

with < ·, · >∗ as in 2.25 and ψ̃ ∈ H1(D,C3) is any extension of ψ such that γ0ψ̃ = ψ.

In the next step we define < a, ψ >∂D for a scalar function ψ. We define componentwise
< ·, · >∂D: H−1/2(Div, ∂D)×H1/2(∂D) −→ C3 as

(< a, ψ >∂D)k =< la, ψek >=< a, γT (ψ̃ek) >∗ k = 1,2,3 (2.27)

where {e1, e2, e3} is the canonical basis e1 = (1,0,0)′ e2 = (0,1,0)′ e3 = (0,0,1)′ of C3 and
ψ̃ ∈ H1(D) is any extension of ψ such that γ0ψ̃ = ψ. For smooth functions it holds that

< a, ψ >∂D=
∫
∂D

a(y)ψ(y)ds(y) (2.28)

It can be showed using the following theorem with A = ã and B = ejψ̃ for j = 1,2,3.

Theorem 2.1.2. [2] Let D ⊂ R3 be a bounded Lipschitz domain and A,B ∈ C1(D,C3) ∩
C(D,C3). Then ∫

D
(B · curlA− A · curlB)dx =

∫
∂D

(n× A) ·Bds (2.29)

We consider an extension ψ̃ of ψ such that γ0ψ̃ = ψ and a function ã defined in D such
that γtã = a, for j = 1,2,3 we have

(< a, ψ >∂D)j =< a, γT (ejψ̃) >∗=
∫
D
ψ̃ej · curlã− ã · curl(ψ̃ej) =

=
∫
∂D

ψ(n× ã|∂D) · ejds =
∫
∂D

ψa · ejds = ej ·
∫
∂D

ψa ds

2.1.2 Surface divergence
We recall that the projection onto the tangent plane with unit normal vector n of a vector
f ∈ R3 is f − (f · n)n = n × (f × n) = (n × f) × n. Let D ⊂ R3 a C2−smooth
domain with boundary ∂D with parametrizations {Ψj , j = 1, ...,m} and partition of
unity {φj , j = 1, ...,m}. We define

C1(∂D) = {f ∈ C(∂D) : (φjf) ◦Ψ ∈ C1 for j = 1, ...,m} (2.30)

C1(∂D,C3) = {F ∈ C(∂D,C3) : Fj ∈ C1(∂D) for j = 1,2,3} (2.31)

Ct(∂D) = {F ∈ C(∂D,C3) : F · n = 0} (2.32)

C1
t (∂D) = Ct(∂D) ∩ C1(∂D,C3) (2.33)
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Definition 2.3. [2] Let D ⊂ R3 a C2−smooth domain with boundary ∂D. Let f ∈
C1(∂D), F ∈ C1

t (∂D), U an open subset of R3 s.t. ∂D ⊂ U and f̃ ∈ C1(U) and F̃ ∈
C1(U,C3) extensions of f and F respectively. The surface gradient of f is

Grad f := n× (∇f̃ × n) on ∂D (2.34)

The surface divergence of F is

Div F := div F̃ − n× (F̃ ′n) on ∂D (2.35)

where n(x) is the exterior unit normal vector at x ∈ ∂D and F̃ ′(x) ∈ C3×3 is the Jacobian
matrix of F̃ at x ∈ U .

With the choice of U = R3 it can be proved that such extensions exist and definitions
of surface gradient and divergence are independent of the extension [2].

Lemma 2.1.1. [2] Let D ⊂ R3 a C2−smooth domain with boundary ∂D and f ∈ C1(∂D),
F ∈ C1

t (∂D) with extensions f̃ ∈ C1(R3) and F̃ ∈ C1(R3,C3) respectively. Then∫
∂D

f Div Fds = −
∫
∂D

F · Grad fds (2.36)

and ∫
∂D

Div Fds = 0 (2.37)

Now we will give the definition of the variational form of the surface divergence inspired
from the previous integral equality. It can be proved that for ψ̃ ∈ H1(D) it holds that
∇ψ̃ ∈ H(curl,D).

Definition 2.4. [2] Let a ∈ H−1/2(Div, ∂D). The surface divergence Div a ∈ H−1/2(∂D)
is defined as the linear bounded functional

< Div a, ψ >∂D= − < a, γT∇ψ̃ >∗ ψ ∈ H1/2(∂D) (2.38)

where ψ̃ ∈ H1(D) is an extension of ψ such that γ0ψ̃ = ψ.

It can be showed that this definition is independent of the choice of the extension ψ̃.
For smooth functions a, ψ we have that

< Div a, ψ >∂D=
∫
∂D

ψ Div a ds (2.39)

2.2 Existence and uniqueness
It is known that exist a set of values of k such that the scattering problem does not have
unique solution, fortunately these values are only countable and do not form a continuous
set.

15
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Definition 2.5. We say that k2 is not an eigenvalue of curl2 in D with respect to the
boundary condition n× E = 0 if the following problem

∫
D

[
curlE · curlψ − k2E · ψ

]
dx = 0 ∀ψ ∈ H0(curl,D) E ∈ H0(curl,D) (2.40)

has only the trivial solution E = 0.

Theorem 2.2.1. [18] The problem: find λ /= 0 such that exists a non-zero E ∈ H0(curl,D)
such that ∫

D

[
curlE · curlψ − λE · ψ

]
dx = 0 ∀ψ ∈ H0(curl,D) (2.41)

has a countable set of real and positive eigenvalues {λn, n ∈ N}. Furthermore each
eigenspace is finite dimesnional and all the eigenfunctions can be chosen to be real.

We now recall the exterior boundary value problem and then we state it in a variational
formulation.

Exterior boundary value problem

Given a vector valued function such that f(x) · n(x) = 0 ∀x ∈ ∂D i.e. a tangential field,
find E,H that satisfy

curlE − jωµH = 0 curlH + jωεE = 0 (2.42)

n× E = f (2.43)

√
εE(x)−√µH(x)× x

|x|
= O( 1

|x|2
) (2.44)

uniformly with respect to x/|x| ∈ S2. Last condition is the Silver Muller condition. We
define

Hloc(curl,R3 \D) := {u : R3 \D −→ C3 : u|B ∈ H(curl, B) for all balls B} (2.45)

In the variational form for the field E the exterior boundary value problem becomes:
given f ∈ H−1/2(Div, ∂D), find E ∈ Hloc(curl,R3 \D) such that∫

R3\D

[
curlE · curlψ − k2E · ψ

]
dx = 0 ∀ψ ∈ H0(curl,R3 \D) (2.46)

γtE = f (2.47)

and E and H satisfy the S.M. condition.
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The theorem

Let Q ⊆ R3 a bounded domain such that ∂D ⊆ Q . We define the operator L̃ by ∀x ∈ Q

L̃a(x) = ∇ < Div a,G(x, ·) >∂D +k2 < a,G(x, ·) >∂D ∀x ∈ Q (2.48)

where
G(x, y) = ejk|x−y|

4π|x− y| (2.49)

This operator is well defined [2] as operator

L̃ : H−1/2(Div, ∂D) −→ H(curl, Q) (2.50)

Define
L := γtL̃ (2.51)

The operator L is well defined and bounded [2] as:

L : H−1/2(Div, ∂D) −→ H−1/2(Div, ∂D) (2.52)

We consider positive constants ε > 0, µ > 0,ω > 0 and k = ω
√
µε and f ∈ H−1/2(Div, ∂D).

Theorem 2.2.2. [2] Let f ∈ H− 1
2 (Div, ∂D). Assume that k2 is not an eigenvalue of curl2

in D. Then the exterior boundary value problem has a unique solution (E,H) and there
exists a ∈ H−1/2(Div, ∂D) such that La = f and E = L̃a.

We report also a theorem for smoother domains.

Theorem 2.2.3. [10] Let D ⊆ R3 a bounded, connected open set with C∞-smooth boundary
∂D and ε, µ, ω > 0 positive real constants and k = ω

√
µε such that k2 is not an eigenvalue

of curl2. Then L is an isomorphism in Hs(Div, ∂D) ∀s ∈ R.
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Chapter 3

The method

The aim of the method is to determine the (far) electric field Etgt radiated by an antenna
placed over a structure using M measured near field samples {Etgt(rm)}1≤m≤M of the
electric field and numerically constructed expansion functions {ψn}. We want to find an
approximation of the exact Etgt in the form

Etgt =
N∑
n=1

αnψn + εN (3.1)

where εN is the reconstruction error; the coefficients {αn} ⊂ C are computed in order
to minimize the error εN in a least squares sense

min
{αn}
||Etgt −

N∑
n=1

αnψn|| (3.2)

The method works in the following manner:

• the antenna is enclosed in a virtual surface B that we will call "Box". The box has
to enclose the antenna but not the whole structure. For equivalence theory we know
that exist electric and magnetic currents J and M placed on B such that the field
radiated by these currents in the outer region of B is equal to the field Etgt. The
problem now is to reconstruct the currents J and M defined on B.

• currents are decomposed as linear combination of piecewise linear basis functions {fn}
with limited support (rwg basis functions), for example for the electric current J

J =
∑
n

αnfn (3.3)

A function fn is called an "elementary source" and the field radiated by it "elementary
field".

• the field Ψ(J,M) radiated by currents J and M is the linear combination of the fields
radiated by each elementary source

Ψ(J,M) =
∑
n

αnΨ(fn,0) +
∑
n

βnΨ(0, fn) (3.4)
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where Ψ(J,M) denotes the electric field given by an electric current J and magnetic
current M.

• the elementary field ψn := Ψ(fn,0) (or φn := Ψ(0, fn)) radiated by an electric (or
magnetic) elementary source fn has to take into account the presence of the structure.
For this reason each elementary field ψn is decomposed as sum of two fields: ψn =
ψ0
n+ψsn where ψ0

n is the field given by the elementary source in isolation (without the
structure) and ψsn is the scattered field due to the reflection of the structure. More
precisely ψsn is the field generated by a current over S due to an elementary source
over B.

• computed each elementary field ψn and φn we determine coefficients imposing match-
ing (in least squares sense) between the field radiated by the currents and the near-field
samples acquired. Once coefficients are determined, we know the currents defined over
B and are then able to evaluate the field radiated by these currents in any point of
the space outside S. In particular, we are able to evaluate the far-field.

We denote with Ext(B) the space outside the surface B. To compute the scattered
part ψs (or φs) of the electric field due to an elementary source J or M we

• compute the incident field Einc that the electric current J (or magnetic M) generates
on the scatterer through

Einc(r) = −LB(J)(r) +KB(M)(r) r ∈ Ext(B) (3.5)

where (differently from the previous chapter we denote with L the operator without
n×)

LB(J)(r) = jωµ

∫
B
G(r, r′)J(r′)ds(r′) + j

εω
∇
∫
B
G(r, r′) Div J(r′)ds(r′) (3.6)

KB(M)(r) =
∫
B

M(r′)×∇G(r, r′)ds(r′) (3.7)

The field in isolation ψ0 is computed through the same formula.

• compute the induced current Js generated by Einc on the scatterer S (modeled as a
PEC) through

n(r)× Einc(r) = n(r)× LS(Js)(r) r ∈ S (3.8)

• compute the electric field ψs generated by Js through

ψs(r) = −LS(Js)(r) r ∈ Ext(S) (3.9)

• compute the total field ψ = ψ0 +ψs due to an elementary source.
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3.0.1 A second glance on the method
We first consider the simpler case of a radiating source in vacuum, without a scattering
structure and then we will consider the standard case in presence of a scatterer S. The
surface equivalence principle states that given electric and magnetic fields E,H in R3 and
a closed smooth surface B with unit normal vector n, separating the outer region Ω+ and
the inner region Ω−, exist an electric current J and a magnetic current M defined over B
that radiate the same electric and magnetic fields E,H in Ω+ and radiate fields E′,H′ in
Ω− such that ∀x ∈ B

[
E+(x)− E′−(x)

]
× n(x) = M(x) n(x)×

[
H+(x)−H′−(x)

]
= J(x) (3.10)

and such that the electric field radiatied by J and M is equal to E in Ω+, i.e.

E(r) = −LB(J)(r) +KB(M)(r) ∀r ∈ Ω+ (3.11)

where
E±(x) := lim

x±∈Ω±,x±→x
E(x±) (3.12)

In the theorem E′,H′ in Ω− are degrees of freedom and the simplest choice is to enforce
E′ = H′ = 0; in this case the theorem is called also Love’s equivalence theorem and the
currents satisfy

E+ × n = M n×H+ = J (3.13)

A source in free space - no scatterer

We now analyze the case where a source generates an electric field Etgt. We enclose the
source with a surface B and then using the equivalence principle there exist an electric
current J and a magnetic current M defined on B that radiate Etgt in the outer region of
B. We consider a mesh over B with N interior edges and we search the unknown currents
in the form (with abuse of notation we still denote with J and M their approximations):

J =
N∑
n=1

αnfn M =
N∑
n=1

βnfn (3.14)

For linearity of operators LB and KB it holds that

ΨNF (J,M) =
N∑
n=1

αnΨNF (fn,0) +
N∑
n=1

βnΨNF (0, fn) (3.15)

We compute ψNFn := Ψ(fn,0) and φNFn := Ψ(0, fn) for 1 ≤ n ≤ N and then find coefficients
{αn}, {βn} ⊂ C through the least squares problem

min
{αn},{βn}

||
N∑
n=1

αnψ
NF
n +

N∑
n=1

βnφ
NF
n − ENF || (3.16)
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Found a possible choice of coefficients we are able to evaluate the electric field in any point
outside the box B, in particular in the far field region.

Implementation: We use theK samples of Etgt measured at some points of the near field
sphere related to angles {αk = (θk, φk)}1≤k≤K . We build vectors such that the first K com-
ponents are related to θ̂ and the others to φ̂, for example ENF = [Etgt

θ (αk); Etgt
φ (αk)]1≤k≤K .

The least squares problem is solved with the iterative solver LSQR. The matrix generated
of the previous least squares problem generally is not full rank, thus there exist more then
one choice of the coefficients {αn}, {βn} that minimize the previous quantity; in this case
we chose the minimum norm solution to the least squares problem. It can be proved that
the solution to the least squares problem plus the minimum norm condition is unique. One
problem is that such a choice of coefficients (minimum norm solution) does not ensure that
currents radiate null electric and magnetic fields in the interior part of the box B [11].

With scatterer

The previous procedure is theoretically applyable also to the case of an antenna with a
reflecting structure. It can be considered a surface B that encloses both antenna and the
structure and currents J and M over the virtual surface B. The problem is that usually
the scattering structure is much bigger then the antenna so we easily obtain a system with
too many unknowns. The method consider a surface B that encloses only the antenna and
not the whole structure, the field radiated by the antenna can be reconstructed through
equivalent sources on B but now the field radiated by an elementary source has to take
into account the presence of the scatterer. The advantage of this procedure is that the
complexity of the whole structure is now reduced to the complexity of the single antenna.

Adding E0

In the case we have also the electric field E0 of the antenna in isolation we can use it as a
basis function in the reconstruction

min
α,{βn},{γn}

||αENF
0 +

N∑
n=1

βnψ
NF
n +

N∑
n=1

γnφ
NF
n − ENF || (3.17)

where α, βn, γn ∈ C.

Method 2

In the previous section we decomposed each elementary field ψn = ψ0
n + ψsn and φn =

φ0
n +φsn where ψ0

n is the field given by an electric elementary source in isolation (without
the structure) and ψsn is the scattered field due to the reflection of the structure. Now
we decompose each elementary field as a linear combination of the field in isolation and
the scattered field, for example ψn = anψ

0
n + bnψ

s
n, for some an, bn ∈ C. We arrive to a

different least squares problem

min
{αn}},{βn},{γn},{ξn}

||
N∑
n=1

αnψ
0,NF
n +

N∑
n=1

βnφ
0,NF
n +

N∑
n=1

γnψ
s,NF
n +

N∑
n=1

ξnφ
s,NF
n −ENF ||

(3.18)
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Chapter 4

Discretization of the problem

The method of moments (MOM) uses the electric field integral equations (EFIE) to com-
pute the electric current J induced over a surface by an incident field Einc. We will treat
the case of a PEC. Using the boundary condition n × E = 0 we have that the magnetic
current M vanish identically over the surface. We consider a mesh over the surface of the
scatterer S and we consider a set of basis functions {fm, m = 1, ...,M} where M is the
number of interior edges of the mesh over S and fm : S −→ R3 is a function associated to
an interior edge of the mesh, for m = 1, ...,M . These functions were introduced by Rao
Wilton Glisson [4] and are called RWG basis functions or briefly RWGs and are strictly
linked with the finite elements of Raviart and Thomas.

A connection with lowest order Raviart and Thomas elements RT0

We have seen in previous chapters that integral equations that involve the electric current
J suggest us to search a solution in the space H1(div,Ω) i.e. the space of functions in
L2(Ω,C3) with a variational divergence. In this section we analyze a simpler case in a
planar domain Ω ⊂ R2. The space of Raviart and Thomas elements can be used to
approximate functions in H1(div,Ω). If we consider a triangle T ⊂ R2 the space RT0(T )
is defined as

RT0(T ) = {f : T −→ R2 s.t. ∃α ∈ R2, β ∈ R f(x) = α + βx ∀x ∈ T} (4.1)

We define the degrees of freedom ΣE for each edge E of the triangle T as

ΣE(f) = 1
|E|

∫
E

f · ndγ = 1
|E|

∫ b

a
f(γ(t)) · n(γ(t))||γ′(t)||dt (4.2)

where γ : [a, b] −→ E is a parametrization of the edge E and n the unit outward-pointing
normal vector of the edge E of T . It can be proved that the element(
T,RT0(T ), {Σj , j = 1,2,3}

)
is unisolvent.

In order to build a RWG basis function f we consider two triangles T+ and T− with
a common edge E and free edges A,B for T+ and C,D for T−. Then we consider f+ ∈
RT0(T+) and f− ∈ RT0(T−) and enforce
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A

B
C

D
E

T+ T−

f+
f−

• ΣA(f+) = ΣB(f+) = 0

• ΣC(f−) = ΣD(f−) = 0

• ΣE(f+) = 1 and ΣE(f−) = −1

The third condition ensures continuity of the current normal to the edge E. We define the
basis function as

f =
{f+ in T+

f− in T− (4.3)

In the next section we write an explicit formula for the basis function f for a generic triangle
of R3.

4.1 Mom
The method of moments (MOM) employs RWG basis functions to build an approximation
of the electric current J. Each function fm has compact support and vanishes on S except
in the two triangles attached to the edge m. We denote the interior part (the triangle
without adges) of these two triangles with T+

m and T−m , their area with A+
m and A−m , their

free vertexes (vertexes not on the common edge) with x+
m and x−m and the length of the

common edge with lm; then

fm(r) =


lm

2A+
m

(r− x+
m) r ∈ T+

m
lm

2A−
m

(x−m − r) r ∈ T−m
0 otherwise

See figure 4.1 where we defined ρ+
m := r − x+

m for r ∈ T+
m and ρ−m := x−m − r for r ∈ T−m .

RWGs have several nice properties:

• fm has no normal component across free edges (edges that are not the common edge
m)

• the normal component of fm across the common edge is continuous across that edge
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• the surface divergence of fm is

Div fm(r) =


lm/A

+
m r ∈ T+

m

−lm/A−m r ∈ T−m
0 otherwise

T+
m T−m

ρ+
m

ρ−m

x+
m

x−m

Figure 4.1. The basis function fm

The current J is expressed as linear combination of the basis functions {fm}; with abuse
of notation we continue to denote with J the current that solves the discrete problem and
that hopefully is a good approximation of the exact current that solves the continuous
problem.

J =
M∑
m=1

Imfm (4.4)

The electric scattered field Es is linked with the current J through

Es = −jωA−∇φ (4.5)

now applying the boundary condition n× (Einc + Es) = 0 we obtain that

− n(r)× Einc(r) = −jωn(r)×A(r)− n(r)×∇φ(r) ∀r ∈ S (4.6)

We define the operator L as

L(J) = jωn×A + n×∇φ (4.7)
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or explicitly ∀r ∈ S

L(J)(r) = jωµn(r)×
∫
S

J(r′)G(r, r′)ds(r′) + j

εω
n(r)×∇

∫
S

Div J(r′)G(r, r′)ds(r′) (4.8)

we obtain the following integral equation ∀r ∈ S

(n× Einc)(r) = jωµn(r)×
∫
S

J(r′)G(r, r′)ds(r′) + j

εω
n(r)×∇

∫
S

Div J(r′)G(r, r′)ds(r′)
(4.9)

Given two functions h,g : S −→ C3 we define the following symmetric product as:

(h,g) =
∫
S

h(r′) · g(r′)ds(r′) =
∫
S

3∑
i=1

hi(r′)gi(r′)ds(r′) (4.10)

Multiplying L(J) = n× Einc for a function fm we obtain

(L(J), fm) = (n× Einc, fm) ∀m = 1, ...,M (4.11)

and using the expansion

J =
M∑
m=1

Imfm (4.12)

we obtain that

M∑
n=1

In(L(fn), fm) = (n× Einc, fm) ∀m = 1, ...,M (4.13)

and we arrive to the linear system
ZI = V (4.14)

where I = [In] and Vm = (n× Einc, fm) and Zm,n = (L(fn), fm) or explicitly

(L(fn), fm) = jωµ

∫
S

fm(r) ·
[ ∫

S
fn(r′)G(r, r′)ds(r′)

]
ds(r)+

+ j

εω

∫
S

fm(r) · ∇
[ ∫

S
Div fn(r′)G(r, r′)ds(r′)

]
ds(r)

We note that if supp(fn) ∩ supp(fm) /= ∅ then the Green’s function has a singularity in
r = r′ so one must take care in the computation of integrals. It holds that∫
S

fn(r)·∇
(∫

S
Div fm(r′)G(r, r′)ds(r′)

)
ds(r) =

∫
S

fm(r)·∇
(∫

S
Div fn(r′)G(r, r′)ds(r′)

)
ds(r)

(4.15)
and

(fn,L(fm)) = (L(fn), fm) (4.16)

so the matrix Z is symmetric (but not hermitian).
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Resolution of MOM

Each linear system arising by MOM
Zx = b (4.17)

is solved with the iterative solver GMRES coupled with a fast algorithm to evaluate matrix-
vector product [5]. The Z is splitted as sum of two matrices Z = Znear + Zfar. The
domain is subdivided with an octree, interactions between each subgroup of basis functions
and its neighbors are computed exactly with the standard formula of the MOM and are
considered in the matrix Znear. Interactions between far groups (groups that are not near)
are considered in the matrix Zfar. More precisely we used a right-preconditioned version
of GMRES i.e. Flexible-GMRES (FGMRES) [9]. It is known that in the classic GMRES,
given a linear system Zx = b and a vector x0 and defined r0 = Zx0 − b we search the
solution in the space x0 + Km(Z,v1) where v1 = r0/||r0|| and Km(Z,v1) is the m-th
Krylov subspace related to the matrix Z and vector v1. At each iteration we have to
compute a matrix-vector product Zv in order to compute (when it is possible) a basis
{v1, ...,vm} of the Krylov subspace Km. Instead in FGMRES at the j− th iteration, given
a preconditioner Mj , we have to compute

pj = M−1
j vj (4.18)

and then the matrix-vector product Zpj . The main idea is to consider a preconditioner
Mj such that Mj ' (Znear)−1. We solve this inner linear system 4.18 with an iterative
method with an high residual in order to approximate the matrix-vector multiplication for
the inverse of the matrix due to near field interations only. To compute pj = M−1

j vj we
solved

Znearpj = vj (4.19)

with an inner GMRES with m′ << m as the maximum dimension of the Krylov subspace.
We have choosen m′ = 50 while the maximum dimension of the Krylov subspace for the
resolution of the main linear system is m = 2000.

We fixed a threshold of ε0 = 10−3 and we allowed a solution that generates a relative
residual smaller than ε0 i.e. FGMRES stopped when it found a solution x such that

||Zx− b||
||b|| < ε0 (4.20)

4.2 Computation of the incident field Einc

In this section we explain how we can determine the incident field Einc on the scatterer S
generated by an electric current J or a magnetic current M on the Box B using the MOM
matrix related to the system "Box+Scatterer". More precisely we will compute the term

(n× Einc, fs) (4.21)

for every fs with support contained on the scatterer S.
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From J to Einc

We consider the case of an elementary electric source Jl defined on the box B that radiates
an electric field Einc on the scatterer S. We consider a mesh over the box B and over the
scatterer S, then we put rwg basis functions over these surfaces. Our aim is to compute
(n×Einc, fm) for every fm defined over S using the Mom matrix Z related to both B and
S. The electric field Einc satisfies

− L(J) = n× Einc (4.22)

where n(r) is the unit normal vector to S in r ∈ S and

L(J)(r) = jωµn(r)×
∫
S

J(r′)G(r, r′)ds(r′)+ j

εω
n(r)×∇

∫
S

Div J(r′)G(r, r′)ds(r′) (4.23)

We use the decomposition Jl =
∑N
n=1 δnlfn = fl where fl is an rwg function with support

in B. We obtain
− Zs,l =: (n× Einc, fs) (4.24)

for all fs with support in S and where Z is the Mom matrix

Zs,l = (L(fl), fs) (4.25)

From M to Einc

As before we consider the case of an elementary magnetic source Ml defined on the box B
that radiates an electric field Einc on the scatterer S. The electric field Einc radiated is

Einc = −1
ε
curl F (4.26)

so multiplying for n×
n× Einc = −1

ε
n× curl F (4.27)

or more explicitly ∀r ∈ S

n(r)× Einc(r) = −n(r)× curl
∫
S

M(r′)G(r, r′)ds(r′) (4.28)

For the following equality

curl (GM) = G curl M +∇G×M (4.29)

we have that
n(r)× Einc(r) = −n(r)×

∫
S
∇rG(r, r′)×M(r′)ds(r′) (4.30)

multiplying for a rwg function fm with support over S we obtain

(n× Einc, fm) = −(n(·)×
∫
S
∇G(·, r′)×M(r′)ds(r′), fm) (4.31)
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Now using the decomposition of M as

M =
M∑
n=1

δnlfn = fl (4.32)

we obtain

(n× Einc, fm) =
(

n(·)×
∫
S

fl(r′)×∇G(·, r′)ds(r′) , fm
)

= Zm,l (4.33)

where Z is the Mom matrix related to a PMC (perfect magnetic conductor) i.e. the matrix
related only to the part of magnetic current.

4.3 Model order reduction
Given the n-th elementary electric source on the box B for n = 1, ..., N , where N is the
number of interior edges of the mesh on B, that generates an incident field Einc

n on the
scatterer S we have to solve the linear system for Jsn

ZJsn = Einc
n n = 1, ..., N (4.34)

where Z ∈ CM×M is the MOM matrix and M is the number of rwg basis functions over S.
We can rewrite previous equations as

ZJ = E (4.35)

where J ∈ CM×N is J(:, n) = Jsn and E ∈ CM×N is E(:, n) = Einc
n for n = 1, ..., N . Our

aim is to reduce the complexity of the model and solve only k < N linear systems. For this
reason we apply a SVD decomposition to the matrix E. For proofs and other properties
on SVD we refer to [3]. We recall that a matrix U ∈ CM×M is said to be unitary if
U′U = UU′ = Id, where U′ is the conjugate transpose of U. We denote with ||E|| the
Frobenius norm of the matrix E, i.e.

||E||2 =
M∑
i=1

N∑
j=1
|Eij |2 = trace(E′E) (4.36)

Theorem 4.3.1 (SVD decomposition). [3] Given E ∈ CM×N there exist unitary matrices
U ∈ CM×M and V ∈ CN×N and a diagonal matrix Σ ∈ RM×N with Σmn = δmnσn with
diagonal elements (called singular values) in non-increasing order i.e.
σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 with p = min(M,N) such that

E = UΣV′ (4.37)

The singular values {σj} are uniquely determined. Furthermore the rank of E coincides
with the number of non-zero singular values and it holds that

||E|| =

√√√√ p∑
j=1

σ2
j (4.38)

where || · || is the Frobenius norm of a matrix and V′ denotes the conjugate transpose
(Hermitian transponse) of the matrix V.
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We use an SVD decomposition for E = UΣV′ where U ∈ CM×M , V ∈ CN×N and
Σ ∈ RM×N with Σmn = δmnσn is the diagonal matrix with singular values in non-increasing
order {σn, n = 1, ...,min(N,M)}. Fixed an ε > 0 we consider the k such that

σk/σ1 > ε and σk+1/σ1 < ε (4.39)

and we use a truncated SVD (T-SVD) for E truncated at the k−th singular value σk. We
define Ẽ := ŨΣ̃Ṽ′ where Ũ ∈ CM×k, Σ̃ ∈ Ck×k, Ṽ ∈ CN×k such that Ũ := U(: ,1 : k)
and Ṽ := V(: ,1 : k) and Σ̃ := Σ(1 : k,1 : k). Denoting with ||E|| Frobenius norm of the
matrix E, we have that

||E− Ẽ|| =

√√√√ N∑
j=k+1

σ2
j (4.40)

The matrix J is approximated through

J = Z−1E ' Z−1ŨΣ̃Ṽ′ = YΣ̃Ṽ′ (4.41)

where Y ∈ CM×k solves ZY = Ũ. Denoting with uj := U(:, j) ∈ CM the j − th column
of U we prove that

||J− J̃|| =

√√√√ N∑
j=k+1

σ2
j ||Z−1uj ||2 (4.42)

We formalize this result in a lemma.

Lemma 4.3.1. Let A ∈ CM×M and E ∈ CM×N with M > N . Consider an SVD decom-
position of E = UΣV′ and consider its k-T-SVD Ẽ

Ẽ :=
k∑
j=1

σjujv′j (4.43)

Then

||A(E− Ẽ)|| =

√√√√ N∑
j=k+1

σ2
j ||Auj ||2 (4.44)

where uj and vj are the j−th column of U and V respectively.

Proof. Define B := A(E− Ẽ), our aim is to compute ||B||2 = tr(B′B) where we denote
with tr(B) the trace of the matrix B. It holds that

B = A(E− Ẽ) =
N∑

j=k+1
σjAujv′j (4.45)

Because {uj , j = 1, ...,M} is an orthonormal basis of CM then for each Auj ∈ CM exists
{λjz ∈ C, z = 1, ...,M} such that

Auj =
M∑
z=1

λjzuz (4.46)
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4 – Discretization of the problem

Thus

B =
N∑

j=k+1

M∑
z=1

σjλ
j
zuzv′j B′ =

N∑
i=k+1

M∑
t=1

σiλ
i
tviu′t (4.47)

In the second equality we use that u′tuz = δtz

B′B =
N∑

i,j=k+1

M∑
z,t=1

σiσjλ
j
zλ

i
tviu′tuzv′j =

N∑
i,j=k+1

M∑
z,t=1

σiσjλ
j
zλ

i
tviδtzv′j =

=
N∑

i,j=k+1

M∑
z=1

σiσjλ
j
zλ

i
zviv′j

Denoting with tr the trace of a matrix, it holds that

tr(B′B) =
N∑

i,j=k+1

M∑
z=1

σiσjλ
j
zλ

i
ztr(viv′j) =

N∑
i,j=k+1

M∑
z=1

σiσjλ
j
zλ

i
zδij =

=
N∑

i=k+1

M∑
z=1

σ2
i |λiz|2 =

N∑
i=k+1

σ2
i

M∑
z=1
|λiz|2 =

N∑
i=k+1

σ2
i ||Auj||2

because tr(viv′j) = v′jvi = δij and for i = 1, ...,M we have ||Aui||2 =
∑M
z=1 |λiz|2 for

the orthonormality of {uj}. Now using that ||B||2 = tr(B′B) we arrive to the desired
result.

The previous lemma can be applied with A = Z−1 to find

||J− J̃|| =

√√√√ N∑
j=k+1

σ2
j ||Z−1uj ||2 (4.48)

This procedure is applied also to incident fields on S due to elementary magnetic current
on the box B.

4.4 Computation of the far field
The value of the electric far field E depends obviusly on the distance between the source
and the observation point. We are interested in variations in module of the electric field
E and not in exact values of E because we want to find the directions where antenna
generates an high electric field in module and directions where the field generated is weak
in module. Thus for our purposes is not restrictive to study the far field E(r, θ, φ) on the
sphere S2, thus we put r = 1 and briefly write E(θ, φ) instead of E(r, θ, φ).

Electric current J

If we have an electric current J defined over the surface S while the magnetic current M
vanishes on S then
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E(θ, φ) = −jωµ4π e−jk(θ̂θ̂ + φ̂φ̂) ·
∫
S

J(r′)ejkr̂(θ,φ)·r′ds(r′) (4.49)

We consider a mesh of S, rwg basis functions {fm} and suppose to have the current J in
the form of

J =
M∑
m=1

Imfm (4.50)

for some coefficients {Im} ⊂ C. We obtain that

E(θ, φ) = −jωµ4π e−jk(θ̂θ̂ + φ̂φ̂) ·
M∑
m=1

Im

∫
S

fm(r′)ejkr̂(θ,φ)·r′ds(r′) (4.51)

We are interested in values of E(θ, φ) for some values of {(θl, φs)}l,s. Renumbering these
pairs of angles and defining αp := (θl, φs) for p = 1, ..., P we compute Eθ(αp) = E(αp)·θ̂(αp)
i.e. the component of E(αp) over θ̂(αp)

Eθ(αp) = −jωµ4π e−jk
M∑
m=1

Im

∫
S
θ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.52)

and the component Eφ(αp) = E(αp) · φ̂(αp)

Eφ(αp) = −jωµ4π e−jk
M∑
m=1

Im

∫
S
φ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.53)

We define the matrices Fθ and Fφ as

F θ
pm = −jωµ4π e−jk

∫
S
θ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.54)

F φ
pm = −jωµ4π e−jk

∫
S
φ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.55)

and defining the matrix F = [Fθ; Fφ] we obtain

FI = E (4.56)

where F ∈ C2P×M and I = [Im] ∈ CM and E = [Ej ] ∈ C2P where Ej is the component of
the electric far field over θ̂ for j = 1, ..., P and the component over φ̂ for j = P + 1, ...,2P .

Magnetic current M

If we have a magnetic current M defined over the surface S and the electric current J
vanishes over S then

E(θ, φ) = jωηε

4π e−jk(φ̂θ̂ − θ̂φ̂) ·
∫
S

M(r′)ejkr̂(θ,φ)·r′ds(r′) (4.57)
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We consider a mesh of S, rwg basis functions {fm} and suppose to have the current M in
the form of

M =
M∑
m=1

Imfm (4.58)

for some coefficients {Im} ⊂ C. Similarly to the case of electric current J we obtain
Eθ(αp) = E(αp) · θ̂(αp) as

Eθ(αp) = −jωηε4π e−jk
M∑
m=1

Im

∫
S
φ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.59)

and Eφ(αp) = E(αp) · φ̂(αp) as

Eφ(αp) = jωηε

4π e−jk
M∑
m=1

Im

∫
S
θ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.60)

and defining
F θ
pm = −jωηε4π e−jk

∫
S
φ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.61)

F φ
pm = jωηε

4π e−jk
∫
S
θ̂(αp) · fm(r′)ejkr̂(αp)·r′ds(r′) (4.62)

and defining F = [Fθ; Fφ] we obtain that

FI = E (4.63)

where F ∈ C2P×M and I = [Im] ∈ CM and E = [Ej ] ∈ C2P where Ej is the component of
the electric far field over θ̂ for j = 1, ..., P and the component over φ̂ for j = P + 1, ...,2P .

Far field of a translated body

We consider an electric current J0 defined over Ω0 and its far electric field E∞0 . We consider
the translate of Ω0 by r

Ω = {x ∈ R3|x− r ∈ Ω0} (4.64)

and define J(r) := J0(r− r) and its far field E∞. It holds that ∀r, θ, φ

E∞(r, θ, φ) = ejkr̂(θ,φ)·rE∞0 (r, θ, φ) (4.65)
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Chapter 5

Plane 3GHz

In this chapter we show results of the reconstruction of the far electric field of a dipole
placed on a plane mock-up. The reference field Etgt produced by the antenna is obtained
through a simulation so the method is tested on synthetic data. The frequency of the dipole
is 3GHz. The minimum sphere that encloses the whole structure has radius r = 0.8m ' 8λ
with λ = 0.1m. The lower bound on the number N of measures given by Nyquist criterion
is N = 4πr2/(λ/2)2 = 3215 that corresponds to a sampling step ∆φ = 4 degrees; for this
reason samples were measured at the sphere with radius r = 0.8m with sampling step
∆φ = ∆θ = 3 degrees. We have 617 RWGs on the mesh surrounding the antenna and
around 50.000 RWGs on the plane. Computing the sampling step for the dipole with the

6λ

12λ
2λ
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λ
5

λ
2

Figure 5.1. The dipole

formula [6]
∆φ = 1

2r
λ + 10

π

rad = 1
2r
λ + 10

π

180
π
degrees (5.1)

we obtain a step of ∆φ = 14 degrees. A generic measuring system that acquires spherical

0
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0

0.05

0

-0.05 -0.05

Figure 5.2. The box that encloses the antenna

near field samplings, for example with a uniform sampling step ∆θ = ∆φ = 1 degree, fixes
one of the angles θ or φ and then varies the second one. For example when it acquires
measures at the equator it fixes θ = 90 degrees and then varies φ = 0, ...,359 degrees.
Through this procedure when it measures the field ENF at north pole it takes 360 measures
for θ = 0 and φ = 0, ...,359 (the same situation happens at south pole). It is clear that
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5 – Plane 3GHz

ENF is projected onto different versors θ̂, φ̂ but it is always the same vector ENF . The
problem is that in the case of a measured field ENF each measure can be different from an
other one due to the presence of noise (the different configuration of the measuring system,
etc...).

SVD decomposition

We apply an SVD decomposition to the matrix of incident fields E and we truncate the
decomposition at k = 150 for both fields related to electric and magnetic elementary
sources. Through this truncation we solve only 150 linear systems instead of 617.
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Resolution of MOM

Each linear system arising by MOM
ZI = V (5.2)

is solved with the iterative solver FGMRES coupled with a fast algorithm to evaluate
matrix-vector product [5]. We fix a threshold of ε0 = 10−3 and we allow a solution that
generates a relative error smaller than ε0 i.e. FGMRES stops when it finds a solution I
such that

||ZI−V||
||V|| < ε0 (5.3)

Reconstruction

We reconstruct the electric field Etgt considering different sampling steps; obviously in-
creasing the sampling step we impose equality between reference and reconstructed field
in a smaller number of points so we expect that the error increases as the sampling step
grows. The considered sampling steps are: 3, 6, 9, 12, 15, 18, 30, 36, 45 degrees. Built our
numerical basis {ψi} we solve the following least squares problem through LSQR

min
{βi}
||
∑
i

βiψ
NF
i − ENF || (5.4)
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Figure 5.3. Mesh of the plane and the box

where ENF is the vector of the measured near field samplings. We report the singular
values of the matrix ψNF = [ψNFi ] and the relative residual

||ψNFβn − ENF ||
||ENF ||

(5.5)

at iteration n of LSQR.
Found a possible choice of coefficients {βi} we build the reconstructed far field as

Erec =
∑
i

βiψ
FF
i (5.6)
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Figure 5.4. Distribution of the electric current generated by the dipole over the plane
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Normalized singular values Relative residual
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Normalized singular values Relative residual
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Far Field error

The reconstruction error considered, on the far field, is the relative error with the norm of
L2(S2) for each tangential component Eθ, Eφ of the far electric field i.e.

ew =
||Etgt

w − Erec
w ||L2(S2)

||Etgt
w ||L2(S2)

(5.7)

where w = θ, φ and
||Ew||2S2 =

∫ 2π

0

∫ π

0
|Ew(θ, φ)|2 sin(θ)dθdφ (5.8)

The far field is sampled with a uniform step ∆θ = ∆φ = 1 degree. In the following we
show some plot of the reference and reconstructed near field and some plot of the reference
and reconstructed far field with a scale 20 log10 for y-axis. The reconstrution is made in
near field with a sampling step of ∆θ = ∆φ = 15 degrees.
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Noise
We studied the response of the method to introduction of noise in near field samplings.
We reconstructed the field through NF corrupted samplings and then we compute the
reconstruction error with respect to the original noise-free far field Etgt. We corrupt NF
samplings with noise with signal to noise ratio (SNR) levels of 40 and 30 dB. More precisely
if ENF ∈ CN is the vector of NF-samplings we consider Gaussian vectors X = (X1, ..., XN )
and Y = (Y1, ..., YN ) where X1, ..., XN , Y1, ..., YN ∼ N(0,1) are i.i.d standard normal ran-
dom variables. Then we define the noise R as

R = 10−snr/20||ENF || X + jY
||X + jY|| (5.9)

where j is the imaginary unit and snr = 40, 30. Through this choice of the noise R we
have that

10 log10
||ENF ||2

||R||2 = snr (5.10)

where ||ENF ||2 represents an approximation of the power of the electric near field and
||R||2 of the power of the noise. The corrupted NF is defined as Enoise := ENF + R.

We solve the least squares system

min
{βn}
||
∑
n

βnψ
NF
n − Enoise|| (5.11)

where {ψNFn } is our numerical basis described in previous chapters. Found a possible
choice of coefficients {βn} we evaluate the relative error

ew =
||Etgt

w − Erec
w ||L2(S2)

||Etgt
w ||L2(S2)

||Ew||2S2 =
∫ 2π

0

∫ π

0
|Ew(θ, φ)|2 sin(θ)dθdφ

(5.12)
where w = θ, φ and

Erec =
∑
n
βnψ

FF
n (5.13)

In the following we compare noise-free reconstruction and SNR-reconstruction through
some far field cuts. The sampling step considered is ∆θ = ∆φ = 18 degrees for both noise
free and snr reconstruction. The scale for y−axis is 20 log10. We also report in the plot
of relative error two vertical lines to show the Nyquist limit for the mounted antenna (3.5
degrees) and the isolated antenna (14 degrees).
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Figure 5.5. Relative error for the θ component

0 5 10 15 20 25 30 35 40 45
sampling step

10-3

10-2

10-1

100

re
la

tiv
e 

er
ro

r

NF-FF Rel. Error E  L2(S2), uni

noise free
snr=30
snr=40

Figure 5.6. Relative error for the φ component
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Noise free SNR=40
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Noise free SNR=30
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Method 2
We now reconstruct the target field with different coefficients for the scattered fields and
fields in isolation. We also use the field of the antenna in isolation E0. We solve

min
α,{βn},{γn},{ξn},{ηn}

||αE0+
N∑
n=1

βnψ
0,NF
n +

N∑
n=1

γnφ
0,NF
n +

N∑
n=1

ξnψ
s,NF
n +

N∑
n=1

ηnφ
s,NF
n −ENF ||

(5.14)
and then found a possible choice α, {βn}, {γn}, {ξn}, {ηn} of the coefficients we build the
reconstructed far electric field Erec as

Erec = αE0 +
N∑
n=1

βnψ
0,FF
n +

N∑
n=1

γnφ
0,FF
n +

N∑
n=1

ξnψ
s,FF
n +

N∑
n=1

ηnφ
s,FF
n (5.15)
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Figure 5.7. Relative error for θ component
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Figure 5.8. Relative error for φ component
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Chapter 6

Reflector 8GHz

In this chapter we reconstruct the far field of a parabolic antenna. The reference field
Etgt produced by the antenna is obtained through a simulation so the method is tested on
synthetic data. The frequency of the antenna is f = 8GHz. The minimum sphere that
enclose the whole structure has radius r = 0.55m ' 15λ with λ = 0.0375m. The lower

3λ

30λ

bound on the number N of measures given by Nyquist criterion is N = 4πr2/(λ/2)2 =
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10813 that corresponds to a sampling step ∆φ = 2.4 degrees; for this reason near field
samples were measured with a sampling step ∆φ = ∆θ = 1.125 degrees at the sphere with
radius r = 2.516m.

Figure 6.1. The mesh on the feed

Figure 6.2. Distribution of the current on the structure
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6 – Reflector 8GHz

Figure 6.3. The box that encloses the antenna

SVD decomposition and MOM

We truncated the SVD of the incident fields due to elementary electric currents for
εE = 5 · 10−2 and εM = 7 · 10−2 for incident fields due to elementary magnetic currents.
The k such that σk/σ1 > ε and σk+1/σ1 < ε is kE = 128 for electric sources and kM = 113
for magnetic sources. Using this truncation we solved only 128 + 113 = 241 linear systems
instead of 1956 + 1956 = 3912.
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Reconstruction

We reconstructed the electric field Etgt considering the following sampling steps: 1.125,
2.25, 4.5 ,5.625, 9, 11.25, 18, 22.5, 36 degrees. Computed the numerical basis {ψi} we
solve the following least squares problem through LSQR

min
{βi}
||
∑
i

βiψ
NF
i − ENF || (6.1)

where ENF is the vector of the measured near field samplings. We report the singular
values of the matrix ψNF = [ψNFi ] and the relative residual

||ψNFβn − ENF ||
||ENF ||

(6.2)

at iteration n of LSQR.
Found a possible choice of coefficients {βi} we build the reconstructed far field as

Erec =
∑
i

βiψ
FF
i (6.3)
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Far Field Error

The reconstruction error considered, on the far field, is the relative error with the norm of
L2(S2) for each tangential component Eθ, Eφ of the far electric field i.e.

ew =
||Etgt

w − Erec
w ||L2(S2)

||Etgt
w ||L2(S2)

(6.4)

where w = θ, φ and

||Ew||2S2 =
∫ 2π

0

∫ π

0
|Ew(θ, φ)|2 sin(θ)dθdφ (6.5)

The far field is sampled with a uniform step ∆θ = ∆φ = 0.5 degrees. In the following we
show some plot of the reference and reconstructed near field and some plot of the reference
and reconstructed far field with a scale 20 log10 for y-axis. The reconstrution is made in
near field with a sampling step of ∆θ = ∆φ = 9 degrees.
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6.1 Noise
We studied the response of the method to introduction of noise in near field samplings.
We reconstructed the field through NF corrupted samplings and then we compute the
reconstruction error with respect to the original noise-free far field Etgt. We corrupt NF
samplings with noise with signal to noise ratio (SNR) levels of 40 and 30 dB. More precisely
if ENF ∈ CN is the vector of NF-samplings we consider Gaussian vectors X = (X1, ..., XN )
and Y = (Y1, ..., YN ) where X1, ..., XN , Y1, ..., YN ∼ N(0,1) are i.i.d standard normal ran-
dom variables. Then we define the noise R as

R = 10−snr/20||ENF || X + jY
||X + jY|| (6.6)

where j is the imaginary unit and snr = 40, 30. Through this choice of the noise R we
have that

10 log10
||ENF ||2

||R||2 = snr (6.7)

The corrupted NF is defined as Enoise := ENF + R.
We solve the least squares system

min
{βn}
||
∑
n

βnψ
NF
n − Enoise|| (6.8)

where {ψNFn } is our numerical basis described in previous chapters. Found a possible
choice of coefficients {βn} we evaluate the relative error

ew =
||Etgt

w − Erec
w ||L2(S2)

||Etgt
w ||L2(S2)

||Ew||2S2 =
∫ 2π

0

∫ π

0
|Ew(θ, φ)|2 sin(θ)dθdφ

(6.9)
where w = θ, φ and

Erec =
∑
n
βnψ

FF
n (6.10)

In the following we compare noise-free reconstruction and SNR-reconstruction through
some far field cuts where we use a scale 20 log10 for the y−axis. The sampling step con-
sidered is ∆θ = ∆φ = 9 degrees for both noise free and snr reconstruction. We also report
in the plot of relative error two vertical lines to show the Nyquist limit for the mounted
antenna (2.4 degrees) and the isolated antenna (8 degrees).
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Figure 6.4. Relative error for the θ component of the electric field
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Figure 6.5. Relative error for the φ component of the electric field
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Chapter 7

Reflector 8GHz - Measured
Samples

We measured near field samples of the reflector antenna (the same of the previous chapter)
in the 5 x 5 x 4m anechoic chamber of LACE (Antenna and Electromagnetic Compatibility
Laboratory). The frequency of the antenna is f = 8GHz. The walls of the chamber are
covered of absorbers that operate at frequencies 700MHz-40GHz. Inside the chamber is

Figure 7.1. The anechoic chamber
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installed a Spherical Near Field Antenna Test Range, that can be used both for Near and
Far Field measurements. The minimum sphere that encloses the whole structure has radius
r = 0.55m ' 15λ with λ = 0.0375m. The lower bound on the number N of measures given
by Nyquist criterion is N = 4πr2/(λ/2)2 = 10813 that corresponds to a sampling step
∆φ = 2.4 degrees. Near field samples are measured with a sampling step ∆φ = ∆θ = 2.25
degrees at the sphere with radius r = 2.524m while our numerical basis is computed at the
near field sphere of radius r = 2.516m.

Figure 7.2. The reflector antenna

We show results for a reconstruction using a sampling step ∆θ = 4.5, ∆φ = 9 degrees
that produces 1640 points on the near field sphere (it’s eight times less than the number
of points produced using a sampling step of ∆θ = ∆φ = 2.25 degrees). In next plots
we don’t show the module of the difference between the reconstructed and the reference
far field because there was an error in the phase of near field numerical basis functions;
nevertheless the basis was able to reconstruct well the module of the reference far field.

The partial directivities of the antenna for the far field are defined [12] as

Dw(θ, φ) = 4π |Ew(θ, φ)|2
||E||2L2(S2)

(7.1)

for w = θ, φ. In the sequel we show some plots of the directivity normalized electric field√
4π|Ew(θ, φ)|/||E||L2(S2) and in these plots with abuse of notation we denote this quantity
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Figure 7.3. The probe

Figure 7.4. The parabolic antenna

still with E.
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Figure 7.5. The main beam and the reconstruction with a samplig step ∆θ =
4.5, ∆φ = 9 degrees

We discarded the reconstruction made using a samplig step ∆θ = ∆φ = 9 degrees
because there is an error greater than 0.5 dB in the reconstruction of the main beam.
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Figure 7.6. The main beam and the reconstruction with a samplig step ∆θ = ∆φ = 9 degrees
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Chapter 8

Conclusions

The thesis analyzes a method [1] to determine the electric far-field radiated by electrically
large antennas (or antennas placed over structures) using few measured near field samples
of the electric field and numerically constructed expansion functions. In chapters 5 and
6 we showed results of reconstructions using synthetic data i.e. near field samples of the
reference electric field acquired through simulations while in chapter 7 we used measured
samplings of the electric field. We analyzed:

• a dipole placed over a plane mock-up at frequency 3 GHz (synthetic data);

• a reflector antenna at frequency 8 GHz (synthetic data);

• the same reflector antenna at frequency 8 GHz (measured samples).

In order to test the robustness of the method, in the case of synthetic data, we corrupted
near field samplings with noise with signal to noise ratio (SNR) levels of 40 and 30 dB and
then we used these corrupted samplings to reconstruct the noise-free reference far field.
We show a table with the number of points that the analyzed method (M) and the classic
method (C) that uses spherical wave functions [6] need to reconstruct well the far electric
field.

M C
plane (synthetic data) 312 3215
reflector (synthetic data) 840 12960
reflector (measured samples) 1640 12960

In the case of measured samples we encountered some problems on the reconstruction of
the phase of the reference far field. This work can be used to continue the study of antennas
previously analyzed and solve such a problem. One can also improve the model using an
impedance boundary condition instead of the one used for a PEC. An other problem is that
the solution of the scattering equation is not unique for some frequencies called resonances.
We used EFIE equations to determine the current produced by an incident field but there
is a different set of equations (CFIE) that do not produce an ill conditioned matrix also
when one is working at a frequency near to a resonant one. We enforced equality on points
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on the sphere using a uniform step in θ and φ but it could be useful to find a better choice
of a grid on the sphere.
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