
POLITECNICO DI TORINO

Master of Science in Computer and Communication Networks
Engineering

Master Thesis

Introducing Flexible SDN/NFV
Services on an Real Campus

Network

Supervisor
prof. Fulvio Risso

Candidate
Farman Ullah

October 2017

To my family.

i

Contents

List of Figures v

1 Introduction 1
1.1 Goal of the thesis . 2

2 Introducing Flexible SDN/NFV Services on Multi-Domain Net-
works using Real User 6
2.1 Current networks conception problems 6
2.2 The ongoing evolution . 7
2.3 Software Defined Networking . 8
2.4 Network Functions Virtualization . 10
2.5 Technological transition . 10
2.6 Beyond network functions . 11
2.7 Deploying the FROGv4, Orchestrators unaligned APIs and Extended

support for multi-domain . 12
2.8 Current domain categorization . 13

3 Background 14
3.1 The international context . 14
3.2 The ETSI proposal . 15

3.2.1 ETSI goals . 16
3.2.2 High level framework . 17
3.2.3 Network services . 18
3.2.4 NFV architecture . 19
3.2.5 Templates . 21

3.3 OpenFlow . 23
3.3.1 Benefits of OpenFlow-Based SDN 24

3.4 DoubleDecker . 25

ii

4 FROG General Architecture 27
4.1 Software architecture . 27
4.2 Data models . 31

4.2.1 Service graph . 31
4.2.2 Forwarding graph . 32
4.2.3 Infrastructure graph . 37
4.2.4 Functions Template . 37
4.2.5 Domain abstraction . 39

4.3 Dynamic functions instantiation . 41

5 Extension and validation of the FROG 43
5.1 FROG4 Orchestrator . 43
5.2 Security Manger . 45

5.2.1 Users authentication API and token system Implementations . 47
5.3 FROG4 Orchestrator Northbound API 47

5.3.1 NFFGs Deployments/Create/POST Request 48
5.3.2 NFFGs List/Read/GET Request 49
5.3.3 NFFG Update/PUT Request 51
5.3.4 NFFGs Deletion Request . 52

5.4 FROG4 Web GUI . 52
5.4.1 GUI Southbound API for NFFGs and Connection to word

FROG4 Orchestrator . 53
5.5 FROG4 Datastore . 56

5.5.1 Rest API Implementation and communication channel be-
tween Datastore and Web GUI 57

6 Implementation of unaligned APIs and extended support for multi-
domain 59
6.1 FROG4 Orchestrator Southbound API 60

6.1.1 Authentication and Token system for infrastructure Domains . 62
6.1.2 NFFG deployments/Create/POST operation on the infras-

tructure Domains . 63
6.1.3 NFFG Update/PUT operation on the infrastructure Domains 65
6.1.4 NFFG deletion . 67

6.2 SDN Domain Orchestrator REST API for NFFGs 67
6.3 Open Stack Domain Orchestrator REST API 73
6.4 Deploying graph on a single domain orchestrator using new APIs . . 79
6.5 Deploying graphs on multiple infrastructure domains 81

iii

6.5.1 NFFG Splitting . 82

7 Deploying services on a real campus network 84
7.1 Scenario . 84
7.2 Challenges . 85
7.3 Equipment involved . 86
7.4 Implementation . 88
7.5 Universal node . 88

7.5.1 The network controller . 90
7.5.2 The compute controller . 91

7.6 Integrating various components . 91
7.7 Deploying graph for LAN connection 96
7.8 Deploying graph for WAN connection 101

8 Results Validation 107
8.1 Hardware platform . 107
8.2 Graph instantiation time . 108
8.3 Graph update time . 110
8.4 Latency and throughput . 110

9 Conclusions and future works 112

References 116

iv

List of Figures

1.1 Deploying NFV services on the FROG. 3

2.1 General Architecture SDN . 9

3.1 High-level view of the ETSI framework 18
3.2 End-to-end network service . 19
3.3 Detailed NFV framework architecture 20
3.4 DoubleDecker’s hierarchical architecture (Source: Unify [9]) 26

4.1 Overall view of the system architecture 29
4.2 Service graph example . 32
4.3 Forwarding graph example . 34

5.1 Global orchestrator supported the CRUD (create/POST, read/GET,
update/PUT, delete) operations for NFFGs 50

6.1 NFFG deployments on the FROG . 64
6.2 NFFG Update on the FROG . 66
6.3 NFFG Deletion . 67
6.4 NFFG instantiation on Single domain 80
6.5 NFFG splitting on muti-domain . 83

7.1 Cisco ISR router network topology setup 85
7.2 Universal Node Orchestrator architecture 89
7.3 Cisco 2921 ISR Router configuration 92
7.4 Cisco 2921 ISR, Deploying graph for LAN connection 96
7.5 Cisco 2921 ISR, Deploying graph for WAN connection 100

8.1 Scenario used for architecture validation. 108
8.2 Deployment time for different graphs 109
8.3 Graph Update time for different graphs 110

v

8.4 Latency and throughput of different test 111

vi

Listings

4.1 High-level view of a NFFG . 34
4.2 High-level view of a VNF . 34
4.3 High-level view of the ports list . 35
4.4 High-level view of a flowrule . 35
4.5 High-level view of an endpoint . 36
4.6 Example of a function template . 37
4.7 OpenConfig data model, with NetGroup customizations (JSON) . . . 39
5.1 Login POST request example . 46
5.2 Successful user Login response example 46
5.3 Old Login request example . 46
5.4 NFFG UUID Example . 49
5.5 List of the all the deployed graphs . 50
5.6 Example of use of the token . 55
6.1 OpenFlow Domain Orchestrator NFFG UUID Example 69
6.2 List of the all the OpenFlow Domain Orchestrator deployed graphs . 70
6.3 Open Stack Domain Orchestrator NFFG UUID Example 75
6.4 List of the all the OpenStack Domain Orchestrator deployed graphs . 76
7.1 Cisco 2921 ISR configuration for UCSE-Router link 93
7.2 Cisco 2921 ISR configuration for UCSE-EHWIC link 94
7.3 Ubuntu interfaces configuration (/etc/network/interfaces) 95
7.4 Deploying NFFG for LAN connection 96
7.5 Deploying NFFG for WAN connection 101

vii

Chapter 1

Introduction

The cloud computing model is based on the idea of resource virtualization, many
kinds of physical resources can be gathered together and the service provider will
advertise an abstracted view of them to the external users. This paradigm indicates
remarkable technical advantages. One of the most important breakthroughs con-
sists in the opportunity of giving on-demand benefits; this advancement has been
accomplished by a more accurate resources management which makes the resources
more adaptable, maximizes their usage and reducing human technical interventions.
From the specialized side, the main advantage is the overall cost reduction of some
operations. At the same time, a user can take advantage of the possibility of request-
ing and obtaining service rapidly. Initially, the main virtualization techniques were
mainly focused on computing and storage resources. Over the most recent couple
of years, the accentuation has shifted to the virtualization of the physical network
since new paradigms, for example, Software Defined Networking (SDN) and Net-
work Function Virtualization (NFV) have emerged. The combination of these two
paradigms permits the virtualization of an entire physical network.

SDN provides a centralized view of the distributed network for more efficient
control, orchestration and automation of the network and their services. SDN ap-
proach is based on the partition of the control plane from the data plane. The
control plane is managed by the SDN controller, a key part of the SDN which is
able to act as the “brain” of the network, the data plane acts as the “muscles”
of the network and keeps its working standards substantially unaltered. The SDN
controller orchestrates traffic on the network and relays information to switches and
routers through a southbound interface, while it communicates with applications
through a northbound interface. One of the well-known protocols used by SDN
Controllers is OpenFlow, it was defined to implement the communication between

1

1 – Introduction

the controller and the switches, which became internally simpler devices since they
don’t self-sufficiently take any decision about the traffic forwarding yet they work
in accordance with the flow-rules received from the controller.

NFV is related to the deployment and management of network services, which
are composed of network functions entirely implemented in software (they are then
called Virtual Network Functions, or VNFs). Examples of network functions are
network address translation, firewalling, intrusion detection and domain name ser-
vice; being all software, these components can run using standard virtualization
technologies. NFV brings flexibility for deployment, accelerating service provision-
ing and innovation, particularly within the service provider environments. NFV is
a complementary approach to SDN. The end user has the possibility to install their
preferred services on the operator’s network. It is important to recall that network
functions and services need an underlying network technology for talking to each
other.

1.1 Goal of the thesis

This thesis aims to extend and validate the functionality of the FROG, which is
SDN/NFV/Cloud orchestration architecture capable of deploying VNFs in multiple
heterogeneous technological domains. FROG is an open source architecture devel-
oped by the NetGroup [1] research group at Polito, made of several components such
as Open Stack cloud domains, SDN/Open Flow network domains, home gateways
etc. All of these components are using different restful APIs to communicate within
the FROG, which makes the whole system complex and. Then, it was decided that
all the APIs of the FROG components must be clearly defined by following a coher-
ent and consistent design, in order to provide a more agile and usable experience to
the end users which is the purpose of this thesis as well.

In addition, there was a need to define a new communication standard which
could be usable through a proper user interface so that it can easily be used by the
end user. Our solution provides a new efficient and usable way to communicate to
the various services of FROG from the easily used web-based GUI. Our solution em-
powers several performing actors (e.g., real end users, network providers and so on.).
The graphical user interface of this solution permits to design complex virtualized
service graphs. It can connect and communicate both with the Global orchestra-
tor and with the particular domain orchestrator. Another important functionality

2

1 – Introduction

of this solution is that it also communicates with the Datastore via the GUI. The
datastore is a helper module that contains NFFGs, VNF images and templates. Us-
ing this user can save the graphs, retrieve the graphs for future use and also deploy
these graphs on the Global orchestrator using Restful standard APIs.

Figure 1.1. Deploying NFV services on the FROG.

The most important aspect of this thesis was to investigate the SDN and NFV
technologies when end users use it in a single domain. In our solution, we introduce
a flexible service such as exploiting these innovations on a multi-domain infrastruc-
ture. By accepting it, under the control of a single regulatory element, the so-called
FROG orchestrator, it permits to create, modify and view complex network func-
tion forwarding graph by using standard APIs. Moreover, we permit the deployment
of NFV services over various domains, even if different in terms of infrastructures.
These domains can be specifically associated, connected to another domain or like-
wise connected to the Internet. This case is especially valuable to distribute services
over domains portrayed by various capabilities, for instance, we can assume that
we need to instantiate two NFV services (a DHCP and a Firewall) on two distinct
domains, associated with a domain that does not support the deployment of NFVs,
but rather it offers just network capabilities. For instance, it can be reasonable
to deploy the Firewall on the user’s domain; while the DHCP can be sent on an
alternate domain where can serve numerous users.

Our work enables and helps that use cases searching for the ideal approach to
deploy and associate virtual services, when conceivable. This can be exceptionally
productive for network operators who need to distribute their network functions and

3

1 – Introduction

administrations over the network, achieving a high level of flexibility and scalability
not given by the present work.

The whole network infrastructure is controlled by a service logic that performs
the identification of the user that is connecting to the network itself. consequent
to successful identification proof, the best possible set of network functions picked
by the user is instantiated in one of the nodes (perhaps, even the home gateway)
accessible on the provider network, and the physical infrastructure is configured to
convey the user traffic to the above set of functions. This prompts an infrastructure
which can deal with all the important and wanted services, conceivably sample for
a user. This turns out to be more essential the fast Internet of things approach is
developing, as a matter of fact, a lot of new connected device can’t stand to have
a same level of security as a traditional computer or cell phones, because of their
restricted resources and this solution can give similar functionalities to all devices.

Another big challenge was an integration of changes. As all the components
of FROG are interrelated, they are somehow dependent on each other, so making
changes to one component used to disturb many other components and hence we
needed to track all the necessary changes in the other components and implement
them as well. We also, analyze the advantages and disadvantages of the orches-
tration of SDN/NFV services over various domains of heterogeneous technologies.
Obviously, the GUI and the orchestrators need to know some details about the un-
derlying infrastructures to make more profitable decisions. These specific domains
can be linked directly or can be reachable each other through another domain or
even through the Internet. The connection will be conceivable by setting up a direct
tunnel over the Internet using GRE or VLAN.

This thesis is structured as follows:–

• Chapter 2: Explains in an exhaustive manner the problems that this thesis is
proposed to solve, describing the state of the art of solutions and architectures
used in the context of network service orchestration.

• Chapter 3: Proposes an overview of the architectures on which this thesis is
based and of the technologies used.

• Chapter 4: Describes the architecture of the FROG, the reference software
framework for this project and in which the thesis work lies.

• Chapter 5: Describes the architecture and we will expose the details of our
solution, used in this thesis.

4

1 – Introduction

• Chapter 6: Describes the Implementation of unaligned APIs of the FROG
components and extended support for multi-domain

• Chapter 7: Explains how to deploying services on a real campus network,
using Cisco ISR router.

• Chapter 8: provides an overview of performance evaluations of some use
cases detailed in previous chapters.

• Chapter 9: Exposes the conclusions and provides some projects that will
follow this thesis work.

5

Chapter 2

Introducing Flexible SDN/NFV
Services on Multi-Domain
Networks using Real User

This chapter describes the orchestration scheme prevailing in the SDN/NFV and
the problems it faces in cases where it is intended to support general defects. We
introduce the issue that this thesis is proposed to solve, depicting the state of the
art architectures and solutions used as a part of network service orchestration. New
services, for example, cloud computing and the expanding host’s mobility, alongside
the growing demand for content delivery, security and quality of service convey too
much more dynamic demands on the communication infrastructure. Customer net-
works need, within seconds, to be equipped with the associated network functions
such as switching, routing, firewalling and load balancing. This network functions
should be able to be dynamically moved from one computing device to another
one when needed and the necessary configuration changes must be made automat-
ically. Consequently, the large cloud providers like Amazon and Google decided to
push towards a Software Defined Networking approach. This choice makes network
definitely agiler than before.

2.1 Current networks conception problems
The previous 30 years have been set apart by the networking principle of distributed
intelligence. Switches and routers basically used to choose independently where they
would have forwarded packets and what information they would have exchanged
with neighboring devices. None of these devices used to know the whole network

6

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

topology however just a little part of the end-to-end path. This approach ended up
being extremely steady and scalable, yet in increasingly sluggish and not really flex-
ible. For example, the need of even little changes in network configuration requires
the reconfiguration of all devices, which is very time-consuming. Current networks
are implemented with hard, inflexible and super-fast hardware, and then it is very
difficult for a service provider to offer to final users and companies a flexible and
innovative service with extreme effortlessness. Therefore, a hardware-centric net-
working approach prompts slower innovation. Truth be told, we are now still using
network technologies which were introduced many decades ago. Baking the software
into silicon circuits dramatically lengthens production cycles and reduces the num-
ber of features which can be incorporated into one system; in the long run, once
baked in, the hardware can’t be effectively modified. Firmware only softens this
compromise, yet it doesn’t really change the underlying choice. Besides, all the de-
vices needed on nowadays networks come from different vendors, with very different
proprietary solutions and firmware; this gets the re-configuration issue even worse.
The need of even little changes in network configuration requires the reconfiguration
of all devices, which is very time-consuming.

2.2 The ongoing evolution

The software is infinitely flexible; however, it is still much slower than hardware.
However, expanding hardware performances and multi-core processing is slowly nar-
rowing the gap in performance, while new software development practices, virtual-
ization and open standards have made software much more modular, flexible and
simple to develop than ever. These principles allowed the recent fast progress in
Information Technology. Software and computing already experienced deep changes
because of these innovations, in any case, nowadays, it is computer networking which
is experiencing the greatest change since 1970, when they were born. From now on,
networks should not be configured at the device level anymore, but as a whole sys-
tem. This makes possible to build networks which are more agile, flexible, robust
and secure than yesterday networks.

The so-called Software Defined Networking approach intends to grant this
extraordinary flexibility changing the basics of networking as we know it, by in-
troducing a centralized controller which manages lots of simple general-purpose de-
vices that can be re-configured in a glance just changing a bunch of networking
rules via software. This is because of the abstraction level reached by this kind
of solution, where networks become more and more independent from underlying

7

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

hardware devices and easily programmable. That also introduces a degree of op-
erational flexibility never seen before in this environment; now it becomes possible
to do an extremely precise traffic management, making rules based on transport or
even application layer details and, also, load balancing and asymmetrical paths are
now truly simple to realize, contrasted with the past

On the other hand, Network Functions Virtualization [2] approach wants
to harness innovations brought from software-defined networks and merge them
with the benefits of virtualization and cloud computing. This consists in converting
all typical functions of computer networks (switching, routing, so forth...) and
collateral ones (security, contents delivery, etc...) from dedicated hardware platform
to software virtual functions which can be executed on almost any computing device.
The advantages introduced from this approach are countless, starting from flexibility
and cost reduction arriving at better integration between IT and TLC worlds. It
seems clear that we are in front of a paradigm change which will probably bring to
a robust evolution of telecommunication networks and services provided by network
operators, yet the continuous transformation is not only a technical innovation yet
includes also a cultural revolution.

2.3 Software Defined Networking

SDN is rapidly becoming a fundamental part in telecommunication networks evolu-
tion, starting a deep modification in how these networks are organized and managed.
It allows overcoming all the problems of traditional networks thanks to the central-
ization of the controller logic and an open and standardized interface for network
nodes configuration. The first characteristic allows abandoning the old distributed
network state concept transferring the control to an external software entity, which
bases its decisions on an abstract, the global and consistent vision of the whole
network. The second one allows collecting information regarding the state of the
network and configuring all the devices in a unique standard way, without dealing
with different hardware, firmware or vendor solutions.

Summarizing, the main aspect of SDN approach is to separate the control of the
network behaviour from the physical infrastructure itself. This allows generalizing
decisional processes about packet traffic and their actuation. Moreover, it simplifies
the creation of virtualized partitions of the physical network (named slices) which
will then be assigned to a different centralized controller; thus dividing the unique
physical network into many separated logical networks, each one with its network

8

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

protocols, forwarding rules and addressing plans. From the functional point of view,
the SDN approach can be divided into three sub-layers. Applications determine
high-level politics about how packets should flow into the abstract model of the
network (or a sub-partition) exported from the control plane. In this way, appli-
cations do not have to worry about all the complexity of the physical network and
the underlying system. Applications interact with the network controller through
an interface, called northbound API.

Figure 2.1. General Architecture SDN

The control plane is performed by a network operating system, which builds
and presents to applications the abstract model of the whole network or one single
slice, maintaining the correspondence with the effective physical topology. Moreover,
the controller translates applications high-level policies in pre-defined instructions
for the physical devices. Interactions with network nodes happen through a stan-
dardized interface called southbound API; actually, OpenFlow [3] is the standard
de-facto in this role. The control plane can be a unique controller or a group of
software components, where everyone manages a precise functionality. These com-
ponents can both be allocated to a single node or can be distributed on many nodes,
thus realizing a distributed controller

9

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

2.4 Network Functions Virtualization
SDN introduces virtualization into the networking world and, combined with other
technologies which are becoming mainstream like cloud computing and data cen-
ters, prepares the road for the introduction of virtualization into applications, poli-
cies and services. More generally, we talk about Network Functions Virtualization
(NFV), a term invented by ETSI Industry Specification Group to refer to abstract
software entities which implement network functions (NAT, firewall, etc..) running
on commodity servers (often virtual machines on hypervisors). The main goal of
these virtual functions is to eliminate the need of dedicated network appliance, like
routers, switches and firewalls.

While SDN has been created by researchers and data-center architects, NFV has
been ideated by a group of Internet service providers (ISPs). SDN moves network
control from hardware network devices to software processes and NFV moves all
functions (control and services) from dedicated devices to general-purpose comput-
ing machines. While SDN aims to provide a centralized vision of the network for
orchestration and a more efficient automation of network services, NFV focuses on
optimizing these services themselves. Even if they are two different topics, they are
not completely unrelated but rather they complete each other. NFV goals could
be reached also without SDN techniques; however, using an SDN approach based
on control and data planes separation can simplify operative procedures, improve
performances and compatibility between different physical implementations. On the
other hand, NFV can be used to host SDN software modules into its infrastructure.

2.5 Technological transition
SDN and NFV have all the credentials to become mainstream solutions for networks
of the future yet, right now it is too early for their massive deployment on production
infrastructures. With respect to the development process, NFV is still some step
behind SDN. The second one isn’t yet an entire system; the standardization process
isn’t finished yet (there is not a unique northbound API and every vendor has it’s
one) and furthermore the existing components are still work in progress (from the
most famous controllers to the OpenFlow protocol itself), however it is starting to
be used by big companies networks like Amazon and Google.

Rather, NFV is as yet a pure research topic and it requires a great deal of research
in order to discover all its advantages and downsides. A lot of difficulties still have to
be faced before reaching a satisfying implementation of NFV, for instance where to

10

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

place the computing resources into a SDN and NFV geographical network scenario (if
into big datacenters far from the final users or distributed at the edge of the network)
or how to reduce the expenses of a massive transition from traditional networks to
this new infrastructure. Nobody knows whether this will truly transform into the
revolution it is expected to be yet the quality of the research work that universities
and service providers will do in this field can play a fundamental role to determine
whether it will be a win or a disappointment.

2.6 Beyond network functions

As we have seen, the revolution of computer networking began with the progress of
hardware platform and software virtualization, which prompted the birth of Cloud
Computing. This approach permitted optimizing and improving typical comput-
ing services like web hosting and data storage then, the SDN approach started to
redesign networks, trying to bring the benefits typically generated from software
flexibility into this hardware-centric world. That opened the road to a lot of new
approaches and research scenarios, for example, NFV which aims to collapse all the
best features of cloud computing and SDN to provide flexible network services to
end users.

The NFV approach is rather restricted since its definition; actually, it focuses par-
ticularly only network functions, which are the classic functions we use in everyday
networking (NAT, DHCP, Firewall, etc...) however it doesn’t consider applicative
functions at all. Surely, it appears reasonable that, if we can realize in software
and virtualized functions which are so bound to hardware, such as switching and
routing, we can also introduce in the similar architecture functions which are much
simpler to realize in software or which are already implemented in this way. These
considerations explain why we decided to expand the concept of network functions
virtualization and to include also this kind of features which are not proper net-
work functions but are anyway extensively used by users over the Internet, like web
servers, email servers and all that wide range of applicative servers (and customers,
obviously!) effectively existing.

11

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

2.7 Deploying the FROGv4, Orchestrators unaligned
APIs and Extended support for multi-domain

Since we are introducing flexible SDN/NFV services on a real campus network,
using FROG architecture, as we have been facing many problems, the list of these
problems is following.

• The problem was how to define a standard APIs that allows the FROG com-
ponents to accept stander pattern.

• Each component of the FROG was problematic, having issues because of the
usage of different APIs and standards. One of the main problems was the lake
of coherency and consistency among the different components. This problem
was preventing FROG to perform as a one unit having all its component aware
of each other’s and communicating each other for the end results.

• After defining the standard pattern of the APIs, we need to implement this
pattern in each component of the FROG e.g. the Universal Node, the Open-
Stack domain, the OpenFlow domain, the Global orchestrator, the Web GUI,
and the DataStore. This was a very challenging task because these components
have been developed using different technologies. We needed to understand
all of these components first and then update the code for our changes. An-
other big challenge was an integration of changes. As all the components of
FROG are interrelated, they are somehow dependent on each other, so making
changes to one component used to disturb many other components and hence
we needed to track all the necessary changes in the other components and
implement them as well.

• The FROG4-orchestrator control multi-domain environment, once the graph
deployed on FROG4 orchestrator and then it wants to split the graph and
sends to different domains, but currently it’s not working properly and the
more critical problem was when we want to update the already deployed graph
on different domains. So under the update request, we needed DELETE, PUT,
POST methods. DELETE was required when in the updated graph want to
delete the old domain, PUST was wanted when the updated graphs use the
same domain and post was demanded when the updated request added the
new domain. As we had required this logic for the multi-domain environment.

• It was also causing duplication of NFFGs. Another problem with the existing
architecture was that of the deadlock. Different APIs standards and because

12

2 – Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User

of that, the poor communication among the components lead to inefficiency
and deadlocks, For example, if two different users want to deployed different
graphs using the same component of the FROG and both users using the same
NFFG-ID, even the graphs was totally different but as result, we had fined
one NFFG. There was also the security problem for the FROG.

• The FROG4-orchestrator operations (create, read, update, delete) was not
working properly.

• We do not have the communication channel between FROG-orchestrator and
FROG web GUI.

• We don’t have security manager for user authentication to keep track of the
users that have been authenticated in the system, without user authentication,
it is not possible to draw a graph on GUI and then deploy graph on FROG-
orchestrator.

• We don’t have the connection between GUI and Datastore.

• We don’t have CRUD (create, read, update, delete) APIs for NFFGs in
FROG4 datastore.

• We needed to test real user on Cisco router using SDN/NFV services, which
was the black box for me.

2.8 Current domain categorization
In the context of the management of network services through new technologies such
as SDN and NFV, technological domain means a set of physical resources under the
control of a single centralized entity that is part of the infrastructure on which
the services are instantiated. The services provided by each domain can be very
different from the node in the node, depending on the nature of each of them and
the resources it is able to offer at a particular time. The orchestrator, the central
component that coordinates the provisioning of services across domains, must take
into account when scheduling the capabilities of each node so that each request can
be distributed on an infrastructure that can satisfy it. In order to meet this need,
the approach currently adopted is to categorize domains based on the presence or
absence of generic computing capability.

13

Chapter 3

Background

The international research scenario about SDN and NFV is wide and extremely
variegated, due to the wide range of connected topics.

3.1 The international context
Worldwide studies about SDN could be classified depending on the levels involved:
physical infrastructure, control plane and applications.

SDN contributed to renew the interest in software switches realized on generic
hardware platform, usually cheap and easily accessible. SDN software switches also
allow realizing a simple and fast traffic commutation between virtual machines, thus
introducing the possibility to integrate hypervisor capabilities into commutation de-
vices. From this point of view, the most interesting software switches projects are
the ones based on OpenWRT [4], a Linux distribution for embedded systems and,
especially, the OpenvSwitch project [5], a production quality and multilayer virtual
switch licensed under the open source Apache 2.0 license, which will be extensively
used in this thesis work.

Even if SDN is focused on software, its growth is pushing also a certain innova-
tion in the hardware devices world; network appliance vendors are changing their
product lines to include SDN-capable devices and to find efficient ways to imple-
ment in hardware some of the SDN basics, like packet classification functions with
the support of Ternary Content Addressable Memories (TCAMs) and flow-based
packet forwarding with specialized Network Interface Controllers (NICs).

Control plane is the principal aspect of the SDN paradigm, since SDN itself
is based on the existence of a centralized controller which can convert applications

14

3 – Background

requests coming from the northbound interface into packet forwarding instructions
for devices linked through the southbound interface and to collect network status
information from nodes. Seen its fundamental role, many research activities focused
on the control plane and the results are a series of different controller implemen-
tations, diverging for the programming language used (C++, Python, Java, Ruby,
etc..), for performances obtained and features offered and also for the southbound
protocol used, even though OpenFlow is rapidly becoming the only one. The most
famous open source controllers, developed thanks to the collaboration of many dif-
ferent actors in international projects, are OpenDaylight and FloodLight (both
based on OpenFlow).

Application layer is actually the least explored part of SDN world and, then,
the most open to innovation. For SDN applications, it is intended the software
which implements high-level control and management functions of the network, in-
teracting with the controller through the northbound interface. In other words, if
the controller defines how an SDN network works, applications define what that net-
work should do. The most studied topics at the moment are the problems regarding
packet forwarding (load balancing, cross-layer design, etc..), network management
(failure resilience, diagnostics), mobility support, security and energetic efficiency.
Also the solutions considered in this thesis work are part of this wide group of SDN
applications for network management and services virtualization.

Another aspect of interest in SDN networks is the possibility to compose flexible
chains of virtualized network functions, thanks to the NFV approach defined by
ETSI. Also this aspect is still almost unexplored and only recently some interna-
tional research projects, made up of universities and private IT and TLC companies,
started to analyse the possibilities offered from this innovative paradigm.

3.2 The ETSI proposal

The European Telecommunications Standard Institute (ETSI) is an institution that
produces globally-applicable standards for Information and Communications Tech-
nologies (ICTs). It ranges from fixed to mobile, radio, aeronautical, broadcast and
Internet technologies and is officially recognized by the European Union as a Euro-
pean Standards Organization. In November 2012 seven of the world leading network
operators selected the ETSI to be the home of the Industry Specification Group
(ISG) for Network Function Virtualization (NFV). Now, three years later, a large
community of experts are working intensely to develop the required standards for

15

3 – Background

Network Functions Virtualization as well as sharing their experiences of NFV de-
velopment and earlier implementations. In order to better understand what exactly
NFV approach is, we are now presenting the principal guidelines of the relative ETSI
proposal [6] [7].

3.2.1 ETSI goals
From a high level view, the objectives of the ETSI NFV group are:

• Improve capital efficiencies, if comparing NFV to the one obtained through
dedicated hardware implementations. This is achieved by using “commer-
cial off-the-shelf” (COTS) hardware - general purpose servers and storage
devices to provide Network Functions (NFs) through software virtualization
techniques. Because of their nature, these functions are commonly referred as
Virtualized Network Functions (VNFs). Also the sharing of hardware and re-
ducing the number of different physical server architectures in a network will
contribute to this objective in the sense of allowing larger stock orders and
hardware re-usage.

• Improve flexibility in assigning VNFs to hardware. This aids both
scalability and largely separates functionality from location, which allows soft-
ware to be located in the most appropriate places - referred to from now on
as NFV Infrastructure Points of Presence (NFVI-PoPs). In the following ex-
ample VNFs may be deployed at customers’ premises, at network exchange
points, in central offices, datacenters and so on. These features enable time of
day re-usage, support for test of alpha/beta and production versions, enhance
resilience through virtualization and facilitate resource sharing.

• Provide and support a rapid service innovation throughout automated
software-based deployment.

• Improve operational efficiency resulting from common automation and
operating procedures.

• Reduce power usage; this will be achieved by migrating workloads and
powering down unused hardware (i.e., an idling server can be shut down).

• Provide standardized and open interfaces between virtualized network
functions, the infrastructure and associated management entities so that such
decoupled elements can be provided by different vendors.

16

3 – Background

3.2.2 High level framework
Network Functions Virtualization envisages the implementation of NFs as pure soft-
ware entities that run over the NFV Infrastructure (NFVI). As evident from figure
3.1, three main working domains are identified in network function virtualization
framework.

• NFV Infrastructure (NFVI), including the diversity of physical resources
and the way in which they can be virtualized. NFVI supports the execution
of the VNFs.

• Virtualized Network Function, in the sense of the software implementation
of a NF, which is capable of running over the NFVI.

• NFV Management and Orchestration, which covers the arrangement and
life-cycle governance of physical and/or software resources that support the
infrastructure virtualization other than the life-cycle management of VNFs.
This point focuses on all virtualization-specific management tasks necessary
in the NFV framework.

The NFV framework enables dynamic construction and management of VNF
instances and the relationships between them in terms of data, control, management,
dependencies and other attributes. To this end there are at least three architectural
views of VNFs that are focused on different points of view and contexts of a VNF.
These perspectives include:

• A virtualization deployment/on-boarding angle where the context can be a
VM.

• A vendor-developed software package perspective where the context can be
several inter-connected VMs and a deployment template that describes their
attributes.

• An operator point of view where the context can be the operation and man-
agement of a VNF received in the form of a vendor software package.

Within each of the just mentioned contexts, at least the following relations exist
between VNFs:

• A VNF Set covers the case where the connectivity between VNFs is not spec-
ified.

17

3 – Background

Virtualized network functions (VNFs)

NFV Infrastructure (NFVI)

NFV Management
and Orchestration

VNF VNF VNF

Virtual
Compute

Virtual
Storage

Virtual
Network

Virtualization layer

Hardware resources
(Compute, Storage, Network)

Figure 3.1. High-level view of the ETSI framework

• A VNF Forwarding Graph (VNF-FG) covers the case where network connec-
tivity does matter, for instance a chain of VNFs in a web server tier (e.g.,
firewall, NAT, load balancer).

3.2.3 Network services
An end-to-end network service (e.g., mobile voice/data, Internet access, a virtual
private network, etc..) can be described by a Network Function Forwarding Graph
(NF-FG) of interconnected Network Functions (NFs) and end-points. The termi-
nation points and the NFs of the network service are represented as nodes and
correspond to devices, applications, and/or physical server applications. A NF-FG
can have network function nodes connected by logical links that can be unidirec-
tional, bidirectional, multicast and/or broadcast.

In figure 3.2 is shown an example of an end-to-end network service and the
different layers that are involved in its virtualization process. The depicted example
offers a clear view of the abstraction (upper part) and how it is remapped on the
underlying physical infrastructure (NFVI). It consists in an end-to-end network

18

3 – Background

VNF

VNF VNF

Endpoint Endpoint

Hardware
resources in
physical
location

End-to-end network service

NFVI - PoP Physical link

Legend

Logical link Virtualization

VNF

Virtualization layer

Figure 3.2. End-to-end network service

service composed of five general purpose VNFs and two termination (end) points.
The decoupling of hardware and software in NFV is realized by a virtualization
layer. This layer abstracts hardware resources of the NFV Infrastructure.

3.2.4 NFV architecture
The NFV architectural framework identifies functional blocks and the main reference
points between such blocks. The functional blocks are:

• Virtualized network function (VNF)

• Element management system (EMS)

• NFV infrastructure, including:

– Hardware and virtualized resources
– Virtualization layer

• Virtualized infrastructure manager(s)

• Orchestrator

• VNF manager(s)

19

3 – Background

• Service, VNF and infrastructure description

• Operations and Business support systems (OSS/BSS)

The illustrated architectural framework focuses on the functionalities necessary
for the virtualization and the consequent operation of operators’ networks. It does
not specify which network functions should be virtualized, as that is solely a decision
of the network owner.

NFVI

NFV Management and Orchestration

EMS EMS

Virtual
Compute

Virtual
Storage

Virtual
Network

OSS/BSS

Virtualized
Infrastructure

Manager(s)

Service, VNF and Infrastructure
description

Orchestrator

VNF
Manager(s)

VNF
Manager(s) VNF

Manager(s) VNF VNF

Virtualization layer

Hardware resources
(Compute, Storage, Network)

Execution reference points Other reference points Main NFV reference points

Os - Ma

Se - Ma

Ve - VnfM

Nf - Vi

Vl - HW

Vn - Nf

Or - Vi

Figure 3.3. Detailed NFV framework architecture

A functional block defined by the ETSI is the basic unit and consists of:

• A set of input interfaces

• A state

• A transfer function

• A set of output interfaces

20

3 – Background

A fundamental property of functional blocks is the complete and formal sepa-
ration of the static from the dynamic. Using a more IT oriented terminology, the
input, output, and internal (i.e., state) data structures and all the methods (i.e.,
the transfer function) are static. They shall not change. Only the values given
as input parameters, and therefore the outputs, can change; these values are the
only things labelled as dynamic. Functional blocks are linked together following two
fundamental rules:

• They can be interconnected, by connecting an output interface of one func-
tional block with the input interface of another functional block.

• When a number of functional blocks are interconnected together forming a
topology, some input and some output interfaces may remain disconnected.
In this case the resulting topology is, in turn, considered as a functional block
itself in which the inputs and outputs are the endpoints that remained unlinked
in the previous passage. The new obtained functional block follows the very
same rules as a standard one.

3.2.5 Templates
ETSI introduces five descriptor for deployment and life-cycle management of virtual
network functions (VNF) and network services (NS):

• Network Service Descriptor (NSD)

• VNF Descriptor (VNFD)

• VNF Forwarding Graph Descriptor (VNFFGD)

• Virtual Link Descriptor (VLD)

• Physical Network Function Descriptor (PNFD)

A Network Service Descriptor is a deployment template for a Network Ser-
vice referencing all other descriptors which, in turn, describe components that are
part of that Network Service. In addition of containing descriptors, NSD also con-
tains connection points and, optionally, dependencies between VNFs. The con-
nection point is an information element representing the virtual and/or physical
interface that offers connectivity between instances of NS, VNF, VNF Component
(VNFC), Physical NF Descriptor (PNF) and a Virtual Link (VL).

Examples of virtual and physical interfaces are virtual ports, virtual NIC ad-
dresses, physical ports, physical NIC addresses or endpoints of an IP VPN. The

21

3 – Background

meaning of dependencies between VNFs is quickly explained throughout an exam-
ple; a function must exist and be connected to the service before another can be
deployed and connected.

A VNF Descriptor (VNFD) is a deployment template which describes the
way a VNF has to be deployed and its operational behaviour requirements. It is
primarily used by the VNF Manager during the process of instantiation and life-
cycle management of a VNF instance. The information provided in the VNFD is
also used by the NFV Orchestrator to manage and orchestrate Network Services
and virtualized resources all over the NFV Infrastructure. The VNFD also contains
information for management and orchestration layer (MANO) functional blocks that
allow establishing appropriate virtual links with NFVI between its VNF Component
(VNFC) instances or between a VNF instance and the endpoint interface that has
to be linked to the other network functions.

A VNF Forwarding Graph Descriptor (VNFFGD) is a deployment tem-
plate that differs from the others because it takes care of describing the topology
of a Network Service (or a portion of it) by referencing VNFs, Physical NFs (PNF)
and Virtual Links that interconnect them. Essentially, it defines the paths that
different kinds of traffic have to follow and the ordered list of VNFs that they must
go through.

A Virtual Link Descriptor (VLD) is a deployment template which describes
the resource requirements that are needed for a link that will be used to connect
VNFs, PNFs and endpoints of the network service; requirements could be expressed
by various link options that are available in the NFVI. The NFV Orchestrator can
select an option after consulting the VNFFG to determine the appropriate NFVI
to be used. The choice can be based on functionality (e.g., two distinct paths to
provide resiliency) and/or other needs (e.g., network physical topology, regulatory
requirements, etc..).

Finally, the Physical Network Function Descriptor delineates the connec-
tivity, the interface and key performance indicator requirements of virtual links that
are terminated on one side by a Physical Network Function (PNF); this flexibility
is needed if hardware devices are incorporated in a Network Service, for example to
facilitate the transition toward a fully virtualized environment.

22

3 – Background

3.3 OpenFlow

The Open Networking Foundation (ONF) [3], a user-led organization dedicated to
promotion and adoption of software-defined networking, manages the OpenFlow
standard. ONF defines OpenFlow as the first standard communications interface
defined between control and forwarding layers of an SDN architecture.

OpenFlow allows direct access to and manipulation of the forwarding plane of
network devices such as switches and routers, both physical and virtual (hypervisor-
based). It is actually the most diffused protocol implementing the SDN southbound
interface and enables controllers to determine the path of network packets through
the network of switches. This separation of the control from the forwarding, together
with the flexibility of software, allows a more sophisticated traffic management than
what is feasible using access control lists (ACLs) and classic routing protocols. In
fact, OpenFlow provides packet filtering from network to transport layer and sup-
ports a lot of protocols. Also, OpenFlow allows switches from different suppliers,
often each with their own proprietary interfaces and scripting languages, to be man-
aged remotely using a single, open protocol.

OpenFlow allows remote administration of packet forwarding tables of a layer
3 switch, by adding, modifying and removing packet matching rules and actions.
This way, routing decisions can be made periodically or ad hoc by the controller
and translated into rules and actions with a configurable lifespan, which are then
deployed to the Flow Table of a switch, leaving the actual forwarding of matched
packets to the switch at wire speed for the duration of those rules. Packets which
are unmatched by the switch can be forwarded to the controller. The controller can
then decide to modify existing flow table rules on one or more switches or to deploy
new rules, to prevent a structural flow of traffic between switch and controller. It
could even decide to forward the traffic itself, provided that it has told the switch
to forward entire packets instead of just their header.

Actually, this protocol represents one of the most concrete successes of the
software-defined networking evolution process. A number of network switch and
router vendors have announced intent to support or are shipping supported switches
for OpenFlow, including Alcatel-Lucent, Brocade, Huawei, Cisco, Dell, IBM, Ju-
niper, Hewlett-Packard, NEC, and others.

23

3 – Background

3.3.1 Benefits of OpenFlow-Based SDN
The benefits that enterprises and carriers can achieve through an OpenFlow-based
SDN architecture include:

• Centralized control of multi-vendor environments: SDN control soft-
ware can control any OpenFlow-enabled network device from any vendor, in-
cluding switches, routers, and virtual switches. Rather than having to manage
groups of devices from individual vendors, IT can use SDN-based orchestra-
tion and management tools to quickly deploy, configure, and update devices
across the entire network.

• Reduced complexity through automation: OpenFlow-based SDN offers a
flexible network automation and management framework, which makes it pos-
sible to develop tools that automate many management tasks that are done
manually today. These automation tools will reduce operational overhead, de-
crease network instability introduced by operator error, and support emerging
IT-as-a-Service and self-service provisioning models. In addition, with SDN,
cloud-based applications can be managed through intelligent orchestration and
provisioning systems, further reducing operational overhead while increasing
business agility.

• Higher rate of innovation: SDN adoption accelerates business innovation
by allowing IT network operators to literally program-and reprogram—the
network in real time to meet specific business needs and user requirements as
they arise. By virtualizing the network infrastructure and abstracting it from
individual network services, for example, SDN and OpenFlow give IT and,
potentially even users, the ability to tailor the behavior of the network and
introduce new services and network capabilities in a matter of hours.

• Increased network reliability and security: SDN makes it possible for
IT to define high-level configuration and policy statements, which are then
translated down to the infrastructure via OpenFlow. An OpenFlow-based
SDN architecture eliminates the need to individually configure network de-
vices each time an end point, service, or application is added or moved, or a
policy changes, which reduces the likelihood of network failures due to config-
uration or policy inconsistencies. Because SDN controllers provide complete
visibility and control over the network, they can ensure that access control,
traffic engineering, quality of service, security, and other policies are enforced
consistently across the wired and wireless network infrastructures, including

24

3 – Background

branch offices, campuses, and data centers. Enterprises and carriers benefit
from reduced operational expenses, more dynamic configuration capabilities,
fewer errors, and consistent configuration and policy enforcement.

• More granular network control: OpenFlow‘s flow-based control model
allows IT to apply policies at a very granular level, including the session, user,
device, and application levels, in a highly abstracted, automated fashion. This
control enables cloud operators to support multitenancy while maintaining
traffic isolation, security, and elastic resource management when customers
share the same infrastructure.

• Better user experience: By centralizing network control and making state
information available to higher-level applications, an SDN infrastructure can
better adapt to dynamic user needs. For instance, a carrier could introduce a
video service that offers premium subscribers the highest possible resolution
in an automated and transparent manner. Today, users must explicitly select
a resolution setting, which the network may or may not be able to support,
resulting in delays and interruptions that degrade the user experience. With
OpenFlow-based SDN, the video application would be able to detect the band-
width available in the network in real time and automatically adjust the video
resolution accordingly.

3.4 DoubleDecker
DoubleDecker [8] is a hierarchical distributed message system based on ZeroMQ
which can be used to provide messaging between processes running on a single ma-
chine and between processes running on multiple machines. It is hierarchical in
the sense that message brokers are connected to each-other in a tree topology and
route messages upwards in case they don’t have the destination client beneath them-
selves. DoubleDecker currently supports two types of messaging, Notifications, i.e.
point-to-point messages from one client to another, and Pub/Sub on a topic. The
Pub/Sub mechanism furthermore allows scoping when subscribing to a topic. This
means that a client can restrict the subscription to messages published only within
a certain scope, such as to clients connected to the same broker, a specific broker,
or different groups of brokers. DoubleDecker supports multiple tenants by authen-
ticating clients using public/private keys, encrypting messages, and enforcing that
messages cannot cross from one tenant to another. Additionally there is a special
tenant called ‘public’ that can cross tenant boundaries. This can be used in order to

25

3 – Background

connect clients that are intended to provide a public service, such as a registration
service for all tenants, a name-lookup service, or similar.

Figure 3.4. DoubleDecker’s hierarchical architecture (Source: Unify [9])

In this thesis DoubleDecker has been used as a message broker, in order to
manage the connectivity between various software modules, that not necessarily are
in the same machine, used in the architecture that will be presented later. We used
mainly the Pub/Sub type of messaging in a single broker architecture with the idea
that a software module should subscribe only to topics that are relevant for its tasks.
On the other hand, information published are always related to a topic, so only who
previously subscribed such topic will receive the message. Furthermore, we use the
secure version of the message broker where all messages are encrypted and every
software that uses DoubleDecker has its keys.

26

Chapter 4

FROG General Architecture

A recent work done at Polytechnic University of Turin proposes a model in which
network service functions can be deployed per-user, by means of lightweight virtual
machines [10]. In this scenario, each user is potentially allowed to customize his ser-
vice chain through the insertion of functions that, operating in the network, are able
to process the traffic independently from the physical terminal in use (smartphone,
laptop). Elaborating more on that proposal, we can imagine that multiple actors
(end users, corporate ICT managers, service providers, network providers) may be
allowed to instantiate different functions, operating on the traffic of a selected group
of users. In this case, the global service experimented by each user will be the com-
position of his own functions with the ones under the control of other actors; for
example a corporate ICT manager can activate a function that prevents corporate
employees from sending confidential documents to external recipients.

The system developed follows ETSI guidelines illustrated in the previous para-
graph and harnesses various open source “off-the-shelf” products. it adds an ad-
ditional orchestration layer which is capable of managing and organizing the work
done by all these different pieces of software to achieve a global common result.

This chapter gives more details about how this orchestration layer is designed.

4.1 Software architecture
The FROG4 is software that is able to orchestrate NFV/cloud services across multi-
ple heterogeneous domains. The FROG is based on multiple domain orchestrators,
each one responsible for a single infrastructure domain, that cooperate by timely ex-
porting the capabilities and the available resources in each domain to an overarching
orchestrator, which has to coordinate the deployment of the service across the entire

27

4 – FROG General Architecture

infrastructure. Supported domains include not only traditional infrastructures with
a network (e.g., Open Flow only) or compute (e.g., OpenStack) capabilities, but
also resource-limited SOHO home gateways, properly extended to make it compat-
ible with the FROG orchestrator. The set of capabilities and resources exported
by each single domain, coupled with the constraints specified by the service itself
(e.g., the IPSec client endpoint must stay on the tenant home gateway and not on
the data centre) determines how the orchestrator splits the service graph, originat-
ing the proper set of sub-graphs that are deployed on the selected infrastructure
domains. The FROG overarching orchestrator that will receive a service request
will query the different infrastructure domains for their capabilities/resources and it
will dynamically partition the requested service graph across the selected available
infrastructure domains, determining also the network parameters that have to be
used in the interconnections between domains. For instance, the orchestrator will
be able to set up either the proper GRE tunnels, or VLAN-based connections, or
OpenFlow paths, based on the resource exported by the involved domains, the cost
of the solutions, and the constraints given by the service. This demo shows also the
possibility to integrate resource-constrained devices, such as existing home gateways,
in the controlled infrastructure. For instance, we will show how an home gateway,
extended with NFV support, can dynamically recognize a new user connecting to
it and consequently create a GRE tunnel to deliver that traffic to the proper set of
VNFs that are instantiated in the operator data centre. Furthermore, some more
powerful home gateways are shown as well that can execute a limited number of
VNFs that is implemented as a “native software”, i.e., applications running on the
bare hardware, in addition to the traditional VM-based or Ducker based VNF sup-
port. Finally, the FROG architecture relies on an intermediate message bus instead
of using the traditional REST API to interconnect the different components. This
solution provides a clear advantage when the recipient of the information published
is not known such as in the bootstrapping process, or when different components
(e.g., service layer and orchestrator) need to know the same information coming
from the infrastructure domains to perform their job.

The FROG orchestration architecture heavily relies on an intermediate message
bus, which complements the traditional REST API to interconnect the different
components. This solution provides a clear advantage when the recipient of the
information published is not known such as in the bootstrapping process, or when
different components (e.g., service layer and orchestrator) need to know the same
information coming from the infrastructure domains to perform their job.

This system is logically composed of three main sub-modules; the service layer,
the orchestration layer and the infrastructure layer.

28

4 – FROG General Architecture

Gl
ob

al
	
 O
rc
he

st
ra
to
r	
 Orchestrator	
 Northbound	
 API	

Orchestrator	
 (technology-­‐independent)	

Control	
 Adapter	
 Northbound	
 API	

Control	
 adapter	
 for	
 an	

integrated	
 node	

Control	
 adapter	
 for	
 an	

OpenStack	
 node	

[FG]	

Infrastructure	

layer	

OrchestraOon	

layer	

	

AbstracOons:	

CPU,	

networking	

and	
 storage	

Service	
 layer	
 Service	
 layer	

(adaptaOon	
 funcOons)	

OrchestraOon	

Controller	
 adaptaOon	

Infrastructure	
 controller	

Local	
 resource	
 manager	

(network	
 +	
 compute	
 +	

storage)	

OrchestraOon	
 layer	

Service	
 provider	

Users	
 (Service	
 +	
 SLA)	

Se-­‐Sl	

Si-­‐Or	

Or-­‐Ca	

Ca-­‐Col	

Co-­‐Rm	

OpenStack	
 Heat	

OpenStack	
 	

Nova	
 scheduler	

OpenStack	
 Neutron	

Node	
 resource	
 manager	

xDPd	
 (DPDK)	

DPDK	
 process	
 Docker	

Service	
 Layer	
 ApplicaOon	

[Service	
 Graph]	

Nova	
 compute	

agent	

OpenvSwitch	

VM	
 Docker	

OVS	
 network	

agent	

[FG]	

New	
 user	
 ‘Alice’	

connected	

[Heat	
 JSON	
 format]	

[OpenStack	
 REST	
 interface]	

[OS	
 Nova	
 on	
 RabbitMQ]	
 [OVSDB]	

Dashboard	

OpenDayLight	

[ODL	
 REST	
 interf.]	

Figure 4.1. Overall view of the system architecture

The service layer represents the external interface of our system and allows the
different actors that can potentially use our solution (e.g., end users, the network
provider, third-party organizations) to define their own network services. The input
of this architectural part is hence a per-actor service description, expressed in a
high level formalism (called service graph) capable of describing every type of service
and also the potential interactions among different services. In order to facilitate the
service creation, the actors should be provided with a graphical interface that makes
available the components of the service (e.g., the VNFs), and which is integrated with
a marketplace that enables the selection of a precise VNF among the many available.
Given the above inputs, the service layer should be able to translate the service
graph specification into an orchestration-oriented formalism, namely the forwarding
graph. This new representation provides a more precise view of the service to be
deployed, both in terms of computing and network resources and interconnections
among them. As depicted in figure 4.1, the service layer includes a component
implementing the service logic (identified with the service layer application block),

29

4 – FROG General Architecture

in addition to an interface that can be called when specific events occur (e.g., a new
end user attaches to the network) and that triggers the deployment/update of a
service graph.

The orchestration layer sits below the service layer, and it is responsible of two
important phases in the deployment of a service. First, it manipulates the forwarding
graph in order to allow its deployment on the infrastructure; these transformations
include the enriching of the initial definition with extra-details required from below
layers. Second, it implements the scheduler that is in charge of deciding where to
instantiate the requested service functions. It is composed of three different logi-
cal sub-layers. First, the orchestration sub-layer implements the orchestration logic
(forwarding graph transformation and scheduling) in a technology-independent ap-
proach, without dealing with details related to the infrastructure implementation.
The next component, called controller adaptation sub-layer, implements instead
the technology-dependent logic that is in charge of translating the (standard) for-
warding graph into the proper set of calls for the northbound API of the different
infrastructure controllers. These controllers correspond to the bottom part of
the orchestration layer, and are in charge of applying the above commands to the
resources available on the physical network; the set of commands needed to actu-
ally deploy a service is called infrastructure graph. In practice, the infrastructure
controllers transform the forwarding graph into the proper set of calls for the north-
bound API of the different infrastructure controllers, to be executed on the physical
infrastructure in order to deploy the service. The infrastructure controllers should
also be able to identify the occurrence of some events in the infrastructure layer
(e.g., a new packet from an unknown device arrives to one node), and to notify it to
the upper layers of the architecture. As shown in figure 4.1, different kind of nodes
require different implementations for the infrastructure controllers (in fact, each
type of nodes has its own controller), which in turn require many control adapters
in the controller adaptation sub-layer. Moreover, the orchestration sub-layer and
the controller adaptation sub-layer are merged together into the global orchestrator
module.

The infrastructure layer sits below the orchestration layer and includes the
physical resources where the required service is actually deployed. From the point
of view of the orchestration layer, it is organized in nodes, each one having its
own infrastructure controller; the global orchestrator can potentially schedule the
forwarding graph on each one of these nodes. Given the heterogeneity of modern
networks, we envision the possibility of having multiple nodes implemented with
different technologies. Each node of this kind actually consists of a cluster of physical
machines managed by the same infrastructure controller.

30

4 – FROG General Architecture

4.2 Data models
Data models used are inspired by ETSI NFV standards which propose a service
model composed of functional blocks connected together to flexibly realize a desired
service. All these data models are stored and manipulated as JSON files which
contain all the required information.

4.2.1 Service graph

A service graph is a high level representation of the service to be implemented
on the network, and it includes both aspects related to the infrastructure (e.g.,
which network functions implement the service, how they are interconnected among
each other) and to the configuration of these network functions (e.g., network layer
information, etc..). From the point of view of the infrastructure, the SG consists of
the set of basic elements which describe the service.

The basic elements of a service graph are:

• Network function: it represents a functional block that may be lately trans-
lated into one (or more) VNF images. Each network function is associated with
a template describing the function itself in terms of RAM and CPU required,
number and types of ports, and other information.

• Active port: it defines the attaching point of a network function that needs
to be configured with an IP address, either dynamic or static.

• Transparent port: it defines the attaching point of a network function whose
associated virtual network interface card (vNIC) does not require any network
level address.

• LAN: The availability of this primitive facilitates the creation of complex
services that include not only transparent VNFs, but also traditional host-
based services that are usually designed in terms of LANs and hosts.

• Link: it defines the logical wiring among the different components, and can
be used to connect two VNFs together, to connect a port to a LAN, and more.

• Traffic splitter and merger: functional block that allows to split the traffic
based on a given set of rules, or to merge the traffic coming from different
links.

31

4 – FROG General Architecture

• Endpoint: it represents the external attaching point of the SG. It can be
used to attach the SG to the Internet, to an end user device, but also to the
endpoint of another service graph, if several of them have to be cascaded in
order to create a more complex service.

As cited above, the SG also includes aspects related to the configuration of the
network functions required by the service; particularly, this information includes
network aspects such as the IP addresses assigned to the active ports of the VNFs,
as well as VNF-specific configurations, such as the filtering rules for a firewall. In
fact, they represent important service-layer parameters to be defined together with
the service topology, and that can be used by the control/management plane of the
network infrastructure to properly configure the service.

Service	
 graph	
 symbols	

Network	
 func9on	

Link	

Ac9ve	
 Port	
 LAN	

Endpoint	

Transparent	
 Port	

Traffic	
 spliAer	

DHCP	

server	

BiAorrent	

client/server	

Firewall	

URL	

filter	

Network	

monitor	
 Router	

Network	
 segment	
 1	

Network	
 segment	

Network	

segment	
 2	

web	
 traffic	

non-­‐web	

traffic	

all	

traffic	

Internet	

Figure 4.2. Service graph example

4.2.2 Forwarding graph
The service graph provides a high level formalism to define network services, but it
is not adequate to be deployed on the physical infrastructure of the network, since

32

4 – FROG General Architecture

it does not include all the details needed by the service to operate. Hence, it must
be translated into a more resource-oriented representation, namely the forwarding
graph (FG), through the so called lowering process.

The sequence of operations which composes the lowering process is:

• The service is enriched with the control and management network, which
may be used to properly configure the VNFs of the graph. In fact, most net-
work functions require a specific vNIC dedicated to the control/management
operations; although this may be an unnecessary detail for the user requiring
the service, those network connections have to be present in order to allow the
service to operate properly.

• All the LANs expressed in the SG are replaced with VNFs implementing the
MAC learning switch. This step is needed in order to translate the abstract
LAN element available in the SG into a VNF actually realizing the broadcast
communication medium.

• The graph is analysed and enriched with those functions that have not been
inserted in the SG, but that are required for the correct implementation and
delivery of the service, for example DHCP and NAT services.

• A VNF may be decomposed in a number of VNFs, properly connected in a
way to implement the required service. Moreover, these new VNFs are in turn
associated with a template, and can be recursively expanded in further sub-
graphs; this is an implementation of the recursive functional blocks concept
provided by NFV definition in ETSI standard.

• Consolidation, through the replacement with a single VNF, of those VNFs
implementing the L2 forwarding that are connected together, in order to limit
the resources required to implement the LANs.

• The graph endpoints can be converted in physical ports of the node on which
the graph will be deployed; tunnel endpoints (e.g., GRE) used to connect two
pieces of the same service but on different physical servers or endpoints of
another FG, if many graphs must be connected together in order to create a
more complex service.

• Finally, the flowrules definition concludes the lowering process. In particular
the connections among the VNFs, as well as the traffic steering rules (expressed
through the traffic splitter/merger components in the SG) are represented with

33

4 – FROG General Architecture

a sequence of rules, each one indicating which traffic has to be delivered to
a specific VNF (on a given port of that VNF), or the physical port/endpoint
through which the traffic has to leave the graph.

URL filter

Network
monitor

Low-level forwarding graph (user “green”)

NAT +
Router DHCP

server
Stateless
firewall

Web
traffic

Non web
traffic

L2 switch (control and management network)

Internet

Bittorrent
client/server

L2 switch

Figure 4.3. Forwarding graph example

As already introduced, the formalism used for graphs is JSON. At the first level,
the structure of the FG is the following:

1 {
2 "Forwarding -graph": {
3 "VNFs": [],
4 " endpoints ": [],
5 "name": " Forwarding_graph_name "
6 }
7 }

Listing 4.1. High-level view of a NFFG

Essentially, it presents a list of virtual network functions and a list of endpoints,
plus a unique identifier and a name for the user’s profile. Virtual network functions
are characterized by a descriptor, a list of ports, a name and an identifier.

1 "VNFs":[
2 {
3 " vnf_descriptor ":" manifest ",
4 "ports":[],
5 "name":" VNF_name ",

34

4 – FROG General Architecture

6 "id":"VNF_id"
7 },
8 ...
9],

Listing 4.2. High-level view of a VNF

The ports described in VNFs JSON object are the ports actually used by a VNF,
while a complete list of ports available for a VNF is contained in the VNF template.
The descriptor is an URL containing the manifest of the virtual network function.

The port list contains an id, an ingoing label, and an outgoing label. The port id
is composed of two different parts, the part before the column identifies the label of
the port; the second part is an id for all ports with same label. The outgoing label
contains flow rules that only identify outgoing traffic from the port, while ingoing
label contains flowrules only for ingoing traffic to that port. While the outgoing
labels are mandatory, the ingoing labels are needed only when a port is connected
to an endpoint, since the endpoint does not have any flowrule associated. In addi-
tion, flowrules contained in an ingoing label have an additional field to identify the
endpoint from which the traffic comes. This field is called ingress endpoint and it is
a leaf of flowspec object. Finally, the flowrule object, as discussed before, contains
a list of matches on packets and the relative action.

1 "ports":[
2 {
3 "id":" port_id ",
4 " ingoing_label ":{
5 " flowrules ":[]
6 },
7 " outgoing_label ":{
8 " flowrules ":[]
9 }

10 }
11],

Listing 4.3. High-level view of the ports list

1 " flowrules ":[
2 {
3 "id": " flowrule_id ",
4 "action":{

35

4 – FROG General Architecture

5 "VNF":{
6 "id":"VNF_id",
7 "port":" VNF_port "
8 },
9 "type":"output"

10 },
11 " flowspec ":{
12 " matches ":[
13 {
14 " priority ":" priority ",
15 "id":" match_id "
16 }
17]
18 }
19 }

Listing 4.4. High-level view of a flowrule

The flowspec supports all the fields defined by Openflow 1.0 (although new fields
can be defined), while the action can refer to a forwarding of packets either through
a physical port, through a logical endpoint, or through a port of a VNF. Hence, the
FG is actually a generalization of the OpenFlow data model that specifies also the
functions that have to process the traffic into the node, in addition to define the
(virtual) ports the traffic has to be sent to. It is worth noting that all the flowrules
of a single port must forward the totality of traffic, hence, a rule of a specific port
cannot purge the traffic, and if we want to drop some kind of traffic we must do
that in a VNF (for example in a firewall function).

1 " endpoints ":[
2 {
3 "name":" endpoint_name ",
4 "type":" endpoint_type ",
5 "id":" endpoint_id ",
6 " interface ":" physical_interface "
7 },
8],

Listing 4.5. High-level view of an endpoint

The endpoints are the termination of graph. In the FG, instead of the SG, the

36

4 – FROG General Architecture

endpoints can assume various characterizations like tunnel terminations, physical
ports or virtual ports. This characterization is needed to effectively connect graphs
among each other and map the endpoint concept on physical resources. With regard
to name, it provides a tool to implement the logic of connection between graphs.

4.2.3 Infrastructure graph
An infrastructure graph consists instead of the sequence of commands to be executed
on the physical infrastructure in order to properly deploy the required VNFs and to
create the paths among them. The IG is obtained through the so called reconcilia-
tion process, which consists in the mapping of the FG description on the resources
available on the infrastructure, thanks to the infrastructure managers APIs. For ex-
ample, it convert the endpoints of the graph into physical ports of the node on which
it is going to be deployed and, if required, instruct the infrastructure controller to
create GRE tunnels to connect graphs.

4.2.4 Functions Template
Each network function is associated with a template, which describes the VNF itself
both in terms of infrastructure and in terms of configuration.

1 {
2 " CPUrequirements ": {
3 " platformType ": "x86",
4 "socket": [
5 {
6 " coreNumbers ": 1
7 }
8]
9 },

10 "memory -size": 2048 ,
11 "name": " firewall ",
12 "functional - capability ": " firewall ",
13 "ephemeral -file -system -size": 0,
14 "vnf -type": "docker",
15 "uri -image -type": "docker - registry ",
16 "swap -disk -size": 0,
17 " expandable ": false,

37

4 – FROG General Architecture

18 "ports": [
19 {
20 "name": "eth",
21 "min": "1",
22 "label": "inout",
23 "ipv4 -config": "none",
24 " position ": "0-10",
25 "ipv6 -config": "none"
26 }
27],
28 "root -file -system -size": 40 ,
29 "uri -image": " firewall "
30 }

Listing 4.6. Example of a function template

As evident from listing example, the template contains information related to the
hardware required by the VNF, namely the amount of memory and CPU, as well as
the architecture of the physical machine that can execute it and the requirements of
disk in terms of swap, root file system and ephemeral file system size. Moreover, the
boolean element expandable indicates if the VNF consists of a single image, or if it is
actually a sub-graph composed of several VNFs connected together. In the former
case, the uri element refers to the image of the VNF, while in the latter it refers to
a graph description, which must replace the original VNF in the forwarding graph.
In case of non-expandable VNF, the template also specifies the type of the image;
for instance, the firewall described is implemented as a single virtual machine.

Moreover, the template provides a description of the ports of the VNF, each one
associated with several parameters. In particular, the label specifies the purpose
of that port, and it is useful in the definition of the SG, since it helps to properly
connect the VNF with the other components of the service. The label could assume
any value, and it is meaningful only in the context of the VNF. The parameter
ipv4-config, instead, indicates if the port cannot be associated with an IPv4 address
(none), or if it can be statically (static) or dynamically (DHCP) configured, the
same applies to ipv6-config. The field position specifies both the number of the
ports of a certain type and the internal index of the interfaces. The number of ports
is given by the difference between the second and the first number of the range more
one (e.g. "position": "1-2" means there are 2 ports of that label). Position specifies
also, along to the field name, the effectively name of the internal interface of VNF.
In particular, the first number in the range of field position acts as an offset for the

38

4 – FROG General Architecture

id used to reference a port in FG. For example, if in the FG there is a port with id
equals to "internal:2" (hence we have at least three ports labelled as internal), the
name of the internal interface of the VNF is "eth4", because the value position for
ports labelled as internal is "2-N" and the value of field name is "eth".

4.2.5 Domain abstraction
A single domain orchestrator manages computing and networking infrastructures
whose technical details have to be kept from the outside world whereas its resources
and capabilities should be provided “as a Service”. Therefore, the DO exports an
abstract idea of itself according to the Big-Switch Approach: the DO is characterized
as a switch with several endpoints, resources and capabilities. Every endpoint has in
turn some characteristics (e.g., subinterfaces, neighbors, VLAN tags, GRE tunnels,
etc.).

The domain abstraction is stated in a manually written file by the domain admin-
istrators; moreover, since the forwarding graphs cause internal changes (e.g. resource
consumption), this file is dynamically updated by the DO in order to always export
the actual status of its resources and capabilities.

This file is written in JSON format and complies with the OpenConfig [11]
data model; some addictions and customizations have been made by the NetGroup.
Listing 4.7 gives an example about the JSON structure.

1 {
2 "netgroup -domain: informations ": {
3 "name": " domain_1 ",
4 "type": "UN",
5 "netgroup -network - manager : informations ": {
6 "openconfig - interfaces : interfaces ": {
7 "openconfig - interfaces : interface ": [
8 {
9 "name": "eth1",

10 "config": {
11 "type": " ethernetCsmacd ",
12 " enabled ": true
13 },
14 "openconfig - interfaces : subinterfaces ": {
15 "openconfig - interfaces : subinterface ": [
16 {
17 "config": { ... },

39

4 – FROG General Architecture

18 " capabilities ": {
19 "gre": "true"
20 },
21 "netgroup -if -gre:gre": [
22 {
23 "config": {
24 "name": " gre_500 ",
25 " enabled ": true
26 },
27 "state": { ... },
28 " options ": {
29 " local_ip ": " 3.3.3.3 ",
30 "key": "156"
31 }
32 }
33]
34 }
35]
36 },
37 "openconfig -if - ethernet : ethernet ": {
38 "openconfig -if - ethernet :config": {
39 "mac - address ": "aa:bb:cc:dd:ee:ff"
40 },
41 "openconfig -vlan:vlan": {
42 "openconfig -vlan:config": {
43 "interface -mode": "TRUNK",
44 "trunk -vlans": ["1..20",25 ,39 ,65]
45 }
46 },
47 "netgroup - neighbor : neighbor ": [
48 {
49 "domain": " domain_2 ",
50 " interface ": "eth3"
51 }
52]
53 }
54 }
55]

40

4 – FROG General Architecture

56 }
57 }
58 }
59 }

Listing 4.7. OpenConfig data model, with NetGroup customizations (JSON)

Digging into details this is the resource abstraction provided by a domain orches-
trator that regards the domain “domain_1” as evident looking at the name field. It
contains information related to the interface “eth1”. Line 19 tells that this interface
is able to create GRE tunnels. Starting from line 21, there is description of GRE
tunnels that insist on that interface. From line 37 we can see the description of the
interface at the ethernet level and VLAN configuration of this interface, if any. In
this case this interface is in trunk mode and a list of free VLAN tags is provided.
Finally, the neighbor field claims that this interface is directly connected to the
interface “eth3” of “domain_2”.

All these information are used by the global orchestrator to take decisions when
a graph is intended to be split. For this purpose, the most valuable information are
those regarding GRE and VLAN capabilities and also the neighbor element. The
latter can be set to “internet” if such interface has connectivity to the Internet; in
that case a GRE tunnel is suitable to connect such interface to another domain
. Furthermore, free VLAN tags are very important when connecting to another
domain because the orchestrator has to perform a sort of negotiation phase, looking
for, eventually, VLAN tags free on both parts; otherwise, if there are no available
VLAN tags, VLANs cannot be used to interconnect those interfaces. It is worh
pointing out that this formalism supports single and ranges of VLANs; referring to
this example free VLAN tags are from 1 to 20 (included) and 25, 39 and 65.

4.3 Dynamic functions instantiation

In order to dynamically instantiate users’ network functions graphs, the service
layer must be able to recognize when a new end user attaches to the network and
authenticate him. Since the infrastructure layer does not implement any (processing
and forwarding) logic by itself, this operation requires the deployment of a specific
graph which only receives traffic belonging to unauthenticated users, and which
includes some VNFs implementing the user authentication. Moreover, in order to
enable the resource consolidation, this authentication graph is shared among several
end users.

41

4 – FROG General Architecture

In addition, the user SG must be completed with a way to inject, in the graph
itself, all the traffic coming from/going to the end user terminal, so that the service
defined by an end user operates only on the packet belonging to that user. This
characteristic allows attaching and clearly detaching the user device dynamically
from a certain SG. This may allow the user device to communicate on a certain SG
and be suddenly detached and reattached on another graph when a certain event
happens (e.g.: user’s device has been authenticated). This abstraction is massively
leveraged by the service layer, which is in charge of managing the application logic.

The service layers application designed for dynamic instantiation supposes that
all the users are always connected to the authentication graph through a rule that
sends all the traffic to that graph. In this way, the user can immediately reach the
authentication web portal and authenticate himself. The application is then able
to intercept the event of a new flow available in a node at the edge of the network,
and receives, through a proper API, from the lower layers of the architecture the
update of the authentication graph, so that it can properly handle the traffic of the
new user device. Through this API, the application also knows the source MAC
address of the new packets, which can be used to uniquely identify all the traffic
belonging to the new end user. Hence, the authentication graph is enriched with a
rule matching the specific MAC address; this way, the new packets enter into the
graph for the user authentication, wherever the graph itself have been deployed.
Finally, the updated graph is provided to the orchestration layer, which takes care
of applying all the operations on the physical infrastructure, as explained before.
This modification permits a dynamic connection of users to our network service,
and makes it much more flexible.

As expected, the user authentication triggers the instantiation of his own SG
and, at this point, the application retrieves the proper JSON graph description from
database and starts the lowering process aimed at translating this high level view of
the service into a FG. Before being finally provided to the orchestration layer, the
FG is completed with a rule matching the MAC address of the user device, so that
only the packets belonging to the user himself are processed into his own graph.

Moreover, the orchestrator keeps track of user sessions, in order to allow a user
to connect to his own SG through multiple devices at the same time without any
duplication of the graph itself. In particular, when an already logged-in user attaches
a new device to the network, the service application retrieves the FG already created
from the orchestration layer; extends it by adding rules so that also the traffic coming
from/going to the new device is injected into the graph and, eventually, sends the
new FG to the orchestration layer.

42

Chapter 5

Extension and validation of the
FROG

This chapter deals with the Integration and validation of a FROG4-Orchestrator.
Beyond the standard features described in Chapter 4, this orchestrator has some
more specific characteristics that we will illustrate in details. As a consequence
of the idea to create an extremely flexible working environment to support the
users and offer them a very simple mechanism to implement and then manage their
independent virtual spaces using multi-domain environment.

5.1 FROG4 Orchestrator
The Global orchestrator [12] corresponds to the first two levels of the orchestration
layer, and consists of a technology dependent part and a technology independent
part; we replace a technology dependent part with southbound API. We have no
more technology dependent part. The technology independent part receives the
user login requests and NFFGs created by the web GUI or service layer, through
the northbound API. It manipulates the requests and gives them to the southbound
API; which sends the resulting NFFGs to the proper infrastructure domains. It is
worth noting that our architecture consists of a single global orchestrator that sits on
top of multiple infrastructure domains, even implemented with different technologies
e.g. the Universal Node, the OpenStack domain, and the OpenFlow domain. When
the technology independent part of the global orchestrator receives the NFFG, it
executes the following operations.

The global orchestrator creates virtual topology basing on current domain infor-
mation (which outlines capabilities and neighbor Information). The virtual topology

43

5 – Extension and validation of the FROG

is created using the following information:

• The “neighbor” parameter indicates whether a connection between two inter-
faces (of different domains) may exist or not.

• A virtual channel is established between two interfaces per each pair they
have in common, Virtual channels can be established also through domains
attached to a legacy network.

At this point, the global orchestrator schedules the NFFGs on the proper infras-
tructure domains. Although the general model presented in Section 4.2.5 supports
a scheduling based on the set of capabilities and resources exported by each single
domain, coupled with the constraints specified by the service itself. The FROG
orchestrator sees the network infrastructure as a set of domains

• Associated with a set of functional capabilities

• Interconnected through “virtual channels”

• The FROG orchestrator is not aware of the nature of the domain (e.g., it does
not know whether the selected domain is an SDN network or a data center)

The resulting NFFG is then provided to the southbound API, it takes care of
translating the NFFG provided by the technology independent part into a formalism
accepted by the all the infrastructure domains, which send the commands to the
infrastructure layer. Moreover, they convert the endpoints of the graph into physical
ports of the domain on which it is going to be deployed and, if required, instruct the
infrastructure domain, to create a GRE tunnel or VLAN on the infrastructure layer.
GRE tunnel could be used to connect together two pieces of the same service but
deployed on different domain of the infrastructure layer; a GRE tunnel or VLAN
is required when the NFFG associated with an end user is deployed on a different
domain than the one used by his traffic to enter in the provider network, but also
to bring the traffic generated by new end users to the authentication graph.

However, since the current implementation of the scheduler splits a graph into
multiple parts but it does not work properly, As a final remark, the global orches-
trator now support the updating of existing graphs which was a more difficult task.
In fact, when it receives an NFFG from the web GUI, it checks if this graph (i.e.,
an NFFG with the same identifier) has already been deployed; in this case, the
Global orchestrator computes an operation to discover the differences between the

44

5 – Extension and validation of the FROG

two graphs and according to the outcome of this operation the graph is updated,
preserving unchanged parts, deleting removed parts and adding new parts. For ex-
ample, if the updated graph contains the information for the same domain and also
addressed to a different domain compared to the graph already instantiated. The
graph will be split, the updated subgraph is sent to the same domain orchestrator
of the existing graph using PUT method. The new graph is instantiated on the new
domain by means of the appropriate domain orchestrator, but using POST request
and finally, the old graph is deleted from the old domain through the concerned
domain orchestrator. In the conclusion, under the update splitting graph request
there are PUT, POST, and DELETE operations take place.

At the current status of development, the abstraction level described above has
not yet been reached. The northbound and southbound interfaces are not pure mag-
netic interfaces. Currently, the “magnetic paradigm” is only used for the resource
description; therefore, a “magnetic interface” only reads and exports services, re-
sources and capabilities whereas data are exchanged via the REST interface of each
component.

As the Global Orchestrator is a special component; it doesn’t control any in-
frastructure domains directly however it coordinates several domains to deploy the
requested NFV and SDN services. Basically, this orchestrator performs the following
operations:

• User Authentication and Token system

• Receives the NF-FG from upper layer (Web-GUI or service layer), which out-
lines NFV and SDN services Using standard APIs

• Receives the Domain Information from Infrastructure domains, which outlines
Capabilities and Hardware Information

• Figures out which domains must be included with the deployment

• Split the NF-FG into many sub-graphs and sends each sub-graph to some
particular domains Using standard APIs

5.2 Security Manger
Global orchestrator and domain orchestrator both are requiring the authentication;
indeed, every REST request must include valid authentication data, otherwise, the

45

5 – Extension and validation of the FROG

orchestrator returns the HTTP response “401 Unauthorized”. To improve security,
a token-based authentication is implemented to avoid a continuous exchange of
username and password; these credentials are only used when a new token is needed.
To get a new token, orchestrator provides a specific REST URL where an HTTP
POST request has to be sent.

Request URL: "/ login"
Request Method : POST
Header :

Content -Type: application /json
Payload (example):

{" username ":" demo", " password ":" demo "}

Listing 5.1. Login POST request example

The HTTP POST response only returns the token, it will compliant if user not
used a proper JSON schema. All the subsequent REST requests must include this
token value inside the header field “X-Auth-Token”. This is an example response,
when the credentials are valid:

Status Code: 200 OK
Payload (example):

6a188b06 -3786 -4 c38 -9a2c -4 ac1910975

Listing 5.2. Successful user Login response example

Request URL: "/ login"
Request Method : POST
Header :

Content -Type: application /json
Payload (example):

{" username ":" demo", " password ":" demo",
" tenant ":" demo_tenant "}

Listing 5.3. Old Login request example

As old method had three types of parameters (username, password, and tenant)
and there was no concept of a token-based verification and every time before any
operation we continuous exchange of username, password and tenant. For instance,
we want to draw a graph on GUI and then want to deploy the same graph on
FROG afterwards we should use Username, Password, and Tenant, but we don’t
need the tenant field from GUI, So we removed the tenant parameter from Global
orchestrator.

46

5 – Extension and validation of the FROG

5.2.1 Users authentication API and token system Imple-
mentations

In FROG the users must authenticate themselves before performing any operation.
After the user authentication, the FROG contacts the Domain orchestrators through
the southbound API and triggers the deployment of the proper NFFGs on the in-
frastructure domain. This service is intended to provide authentication.

Global orchestrator stores password and username for each approved user, the
approval procedure includes getting a token to be used later to give a proof of per-
sonality. Once the token has been acquired, the user can perform many operations,
such as deploying, modifying and deletion of the NFFGs on the FROG. A token
is made once user authentication has been checked, we can also set the time limit
from the configuration file of the FROG-orchestrator, after the time limit the token
will expire and user needs to get a new token. Credentials are just used when an-
other token is required. To get another token, FROG-orchestrator gives a particular
REST URL where a POST request must be sent.

• POST /login: login, so as to identify the users who make the requests for
further operations and in the response of user identification, user will get a
token;

5.3 FROG4 Orchestrator Northbound API
The REST interface that is available thanks to a HTTP server, it is submodule
of the FROG-orchestrator that interacts with the web GUI and service layer in
order to perform some operations needed to deploy a new graph, update an existing
graph, delete an existing graph, get the list of already deployed graphs, get the list
of domain information and authenticate to GUI.

The PUT API of Global-Orchestrator at the URL is; {Global_Orchestrator
_Address/NF-FG} while the PUT API of un-orchestrator at the URL is; {Do-
main_Orchestrator _Address/NF-FG/Graph-id}. When GUI deploys a graph on
Global-Orchestrator using PUT API {Global _Orchestrator_Address /NF-FG/Graph-
id}, this method was not allowed in the PUT API of Global-Orchestrator. We made
some changes in the APIs; we decided to use the PUT API for an update of the
graphs and created new POST API for new deploying graphs.

The CRUD (create/POST, read/GET, update/PUT, delete) operations are now
supported for NFFGs. The main new REST commands available are detailed in the

47

5 – Extension and validation of the FROG

remainder of this section.

• POST /NF-FG/: New instantiation of a graph on the FORG-Orchestrator;

• PUT /NF-FG/nffg-id: Update an already deployed graph on the FORG-
Orchestrator;

• GET /NF-FG/: Returns already deployed graphs on the FORG-Orchestrator;

• GET /NF-FG/status/nffg-id: Returns the status of an instantiated graph on
the FORG-Orchestrator;

• DELETE /NF-FG/nffg-id: Deletes an instantiated graph on the FORG-Orchestrator;

• GET /NF-FG/nffg-id: Get a JSON representation of a graph instantiated on
the FORG-Orchestrator;

• POST /login: login, so as to identify the users who make the requests for
further operations and in the response of user identification, user will get a
token;

• GET /Domain-information/: Returns an active domain in the FORG-Orchestrator;

5.3.1 NFFGs Deployments/Create/POST Request
This is the main operation supported by our architecture and the most used. It
corresponds to an HTTP POST operation performed on the global orchestrator
through northbound API, a new instantiation of NFFGs using HTTP POST method.

http://Global_Orchestrator_Address:port/NF-FG/
Where we set the Global-orchestrator address and port, the global orchestrator is
listing to mention port. We don’t declare the graph id, because it will decide by the
FROG, and sent back to the response of this POST operation.

The northbound API receives the POST request, created by the web GUI or
REST client. At first, the users must give a proof of personality as a token, once
the token verifies the farther operations take place. After the user authentication,
orchestrator validates the NFFG JSON schema. If the request does not follow the
standard JSON schema, it returns the validation error message. The graph ID is a
unique identifier for each graph; we had mentioned the graph-id in two places one
in the request path and other one keeps inside the JSON of the graph. We removed
the graph-id from the graph JSON. The new POST request must be sent without
using the graph id.

48

5 – Extension and validation of the FROG

After the validation of the graph, the orchestrator starts exploring the graph
json sent from the upper layers, we suppose that we already received domains in-
formation. It creates virtual topology base on current domain information. The
virtual topology has created a base on the “neighbour” parameter indicates whether
a connection between two interfaces (of different domains) may exist or not and
A virtual channel is established between two interfaces per each pair they have in
common, Virtual channels can be established also through domains attached to a
legacy network. If the virtual topology finds feasible domains then it performs the
scheduling algorithm, tag NFFG untagged elements with the best domain. For more
details, you can check the Southbound API section 6.1

At this stage, we stored the NFFG details in the database, as we needed this
information for an update, delete and get operations. NFFG-Id is assigned by the
FROG4 Orchestrator. We set the UUID as a string, for example

1 {
2 "nffg -uuid":"99a18b46 -3786 -4c38 -5t2c - 4a75c1910975 "
3 }

Listing 5.4. NFFG UUID Example

After the successful deployment of the graph, return the graph-id which is used
for updating, deletion and getting the graphs.

5.3.2 NFFGs List/Read/GET Request
All the active graphs of the Global orchestrator can be retrieved by the GUI, contact-
ing the northbound API interface through the GET method. In particular the GUI
can ask for the specific graph, or all the active graphs of the FROG orchestrator.
Two different types of GET APIs implemented which were not present.

• only one specified graph retrieved and URL is

http://Global_Orchestrator_Address:port/NF-FG/graph-id:

• All active graphs retrieved and URL is

http://Global_Orchestrator_Address:port/NF-FG/:

The FROG-orchestrator receives this request, first, it checks the user’s token,
once the token verifies, it checks the existence of the graph indicated by the GUI,
and if it doesn’t find the correspondent graph, responds with a 404 NOT FOUND
message. Otherwise, it starts building of the correspondent NFFG JSON model and

49

5 – Extension and validation of the FROG

Figure 5.1. Global orchestrator supported the CRUD (create/POST, read/GET,
update/PUT, delete) operations for NFFGs

exports the graphs. Since Graph ID is deleted from the json of NFFG, so when we
retrieved all the deployed graphs, they are formatted as follows:

1 {
2 "NF -FG": [
3 {
4 "Forwarding -graph": {
5 "name": "Test NFFG 1",
6 "VNFs": [...],
7 "end -points": [...],
8 "big -switch": {
9 "flow -rules": [...]

50

5 – Extension and validation of the FROG

10 }
11 },
12 "nffg -uuid": "1ace6489 -2e27 -4990 -b7f0 - a74ac4594bb8 "
13 },
14 {
15 "Forwarding -graph": {
16 "name": "Test NFFG 2",
17 "VNFs": [...],
18 "end -points": [...],
19 "big -switch": {
20 "flow -rules": [...]
21 }
22 },
23 "nffg -uuid": "f703c8b8 -f19d -4cad -b258 - 46f36c4572eb "
24 }
25]
26 }

Listing 5.5. List of the all the deployed graphs

The retrieved graph contains all the information of NFFG including the “do-
main” tag when the FROG sends NFFG to underline domains then this “domain”
parameter is omitted by the FROG.

5.3.3 NFFG Update/PUT Request

All the deployed graphs of the Global Orchestrator can be updated by the GUI,
contacting the northbound API interface of the FROG orchestrator through the
PUT operation. The GUI can ask for the specific graph which is going to update.
This is the main operation, now supported by our architecture.It corresponds to an
HTTP PUT operation performed on the Global orchestrator through northbound
API. The PUT method URL is:

http://Global_Orchestrator_Address:port/NF-FG/graph-id

The Global orchestrator receives PUT request, first, it checks the user’s token
and checks its validity, once the token verifies, it checks the existence of the graph
with the same graph-id, indicated by the GUI, and if it doesn’t find the correspon-
dent graph, responds with a 404 NOT FOUND message. After the checking of the
existence graph, orchestrator validates the NFFG JSON schema; if the request does

51

5 – Extension and validation of the FROG

not follow the standards JSON schema, it returns the validation error message. The
orchestrator starts exploring the graph JSON schema sent from the upper layers.
It calculates the difference between the old deployed graph and new update graph.
The remaining procedure is quite the same of the one for the POST method.

At this point, the updated NFFG are now saving in the database. After the
successful updating of the graph, it doesn’t return the Graph ID, because we already
have it and it only returns status “202”.

5.3.4 NFFGs Deletion Request
The global orchestrator obviously supports for the deletion of instantiated graphs.
The GUI contacting the northbound API interface of the Global orchestrator through
the DELETE operation. The GUI asks for the specific graph which is going to be
deleted. In this case, the operation performed on the REST APIs of the orchestrator
is an HTTP DELETE containing the ID of the Forwarding Graph that should be
deleted. The DELETE request at URL is:

http://Global_Orchestrator_Address:port/NF-FG/graph-id

The FROG orchestrator receives DELETE request, first, it checks the user’s
token and checks its validity, once the token verifies, it checks the existence of
the graph indicated by the GUI, and if it doesn’t find the correspondent graph,
responds with a 404 NOT FOUND message. After the checking of the existence
graph, it deletes the graph from the orchestrator. In the other cases, it returns an
error message to specify if the graph wasn’t finding. After the successful deletion of
the graph, it just returns status “204”.

5.4 FROG4 Web GUI
Now it is possible to add a GUI on top of the FROG4-Orchestrator and of each
domain orchestrator The GUI can be used to:

• Draw a service graph (on load it from an external file) and deploy it through
the interaction with the underlying orchestrator

• View and modify service graphs already deployed, through the interaction with
the underlying orchestrator

• Upload NF images, templates and Network Function Forwarding Graph in the
Datastore.

52

5 – Extension and validation of the FROG

Graphical User Interface [13] that permits to create, modify and view complex
virtualized service graphs. It can connect both with the Global orchestrator and
with the particular domain orchestrator. Nonetheless, it is just a proof of concept
and can be replaced by other service layers. The GUI facilitates the end users
interested in using the underlying orchestrator without knowing its implementation
aspects by providing a user-friendly graphical user interface that avoids the direct
use of the REST APIs to communicate with the underlying orchestrator.

You can do the following through the GUI:

• Create a new document: Starting from an empty Graph, appropriate but-
tons allow the creation and characterization of service access points, the ad-
dition of network functions, and the creation of flow rules that link endpoints
and VNFs through specified matches and actions user;

• View instantiated graphs: the GUI is able to query the underlying orches-
trator and return the list of graphs deployed on the domains. through a select
box is you can decide which graph is to display;

• Save/load a graph: Once you’ve built a graph, you can choose to save it
on a json file (with the formal NF-FG) for future use or a possible sharing.
Similarly, you can load one graph from the outside, in order to use or make
changes; moreover you can also save this graph in datastore for future use.

• Instantiate a graph: through a simple click, the user may choose to instan-
tiate the service graph on the underlying orchestrator or modify a pre-existing
one, so that it can take advantage of the new service.

5.4.1 GUI Southbound API for NFFGs and Connection to
word FROG4 Orchestrator

The GUI should also define some APIs to be exported to the FROG4 orchestrator
the code could need to be slightly changed to adapt to the new compunctions chan-
nel. The REST interface that is available thanks to Southbound API, it interacts
with the Global orchestrator in order to perform some operations needed to deploy a
new service graph, update an existing service graph, delete an existing service graph,
get the list of already deployed service graphs. The PUT API of Global Orchestra-
tor at the URL is; {Global_Orchestrator_Address/NF-FG}.When GUI deploys a
graph on Global Orchestrator using PUT API {Global_Orchestrator_Address/NF-
FG/Graph-id}, this method is not allowed in the PUT API of FROG. We made

53

5 – Extension and validation of the FROG

some change in the APIs; we choose to use PUT API for updating of the service
graphs and create new POST API for deploying new service graphs on the GUI. The
CRUD (create/POST, read/GET, update/PUT, delete) operations are supported
for service graphs.

The main new REST commands available are.

• POST /NF-FG/: New instantiation of a service graph on the underlying or-
chestrator;

• PUT /NF-FG/: nffg-id: update the already deployed service graph on the
underlying orchestrator;

• GET /NF-FG/: Returns an already deployed service graphs on the underlying
orchestrator;

• GET /NF-FG/status/nffg-id: Returns the status of an instantiated service
graph on the underlying orchestrator;

• DELETE /NF-FG/nffg-id: Deletes an instantiated service graph on the un-
derlying orchestrator;

• GET /NF-FG/nffg-id: Retrieved a JSON representation of a service graph
instantiated on the underlying orchestrator;

• POST /login: login, so as to identify the users who make the requests for
further operations and in the response of user identification, user will get a
token;

Create/POST is the main operation supported by the GUI. It corresponds to an
HTTP POST operation performed on the underlying orchestrator through north-
bound API, new deploying of service graph using the HTTP POST request and the
URL is.

http://Underlying_orchestrator_Address: port/NF-FG/
At the beginning of the deploying service graph, when we click on the new docu-
ment button the service graph id was generated automatically by the GUI, which
was incorrect, the graph-id will returns after the deploying service graph on the
Underlying orchestrator, then Update the service graph id at the top corner of GUI,
and from now GUI will not decide the Service Graph ID, it is also deleted from the
JSON of the graph. To send this POST request to Global orchestrator, it add token
into the header of the request, if the token is not valid it receive error message for
the token. Example of use of the token:

54

5 – Extension and validation of the FROG

Request URL: "/NF -FG/"
Request Method : POST
Header :

Content -Type: application /json
X-Auth -Token: 6a188b06 -3786 -4 c38 -9a2c -4 ac1910975

Payload :
...

Listing 5.6. Example of use of the token

All the active Graphs of the FROG orchestrator can be updated by the GUI
contacting the northbound API interface of the FROG-orchestrator through the
PUT request. It corresponds to an HTTP PUT operation performed on the global
orchestrator through northbound API. The PUT method URL is:

http://Underlying_orchestrator_Address: port/NF-FG/graph-id

To send this PUT request to Global orchestrator, it add token into the header
of the request, if the token is not valid it receive error message for the token. If the
updated graph not found in the FROG-orchestrator, it receives a 404 NOT FOUND
message.The GUI also supports for the deletion of instantiated graphs. The GUI
contacting the northbound API interface of the FROG-orchestrator through the
DELETE request. The operation performed on the REST APIs of the GUI is an
HTTP DELETE containing the ID of the service graph that should be deleted. The
DELETE request at URL is:

http://Underlying_orchestrator_Address: port/NF-FG/graph-id

The token and the Graph existence will be checked by FORG orchestrator, if it
doesn’t find the correspondent graph, GUI will receive 404 NOT FOUND message.
All the active graphs of the frog-orchestrator can be retrieved by the GUI, contact-
ing the northbound API interface through the GET method. When we use GUI to
deploy graph on the frog, we have element name Gui-position in graph Json but this
element was missing in nffg-library in JSON Schema. We added this parameter in
many places in Graph JSON schema.

From the northbound API of GUI, we created two interfaces one is used by
the Global orchestrator and domains orchestrators, which supports all the CRUD
(create/POST, read/GET, update/PUT, delete) operations are supported for ser-
vice graphs. Another interface is used for the Data Store which also managed the
CRUD (create/POST, read/GET, update/PUT, delete) operations are supported

55

5 – Extension and validation of the FROG

for NFFGs.

5.5 FROG4 Datastore
Now it is possible to add a Datastore [14] for the GUI to stores NF-FGs, the datastore
is a helper module that contains Network Function Forwarding Graphs, NF images
and NF templates. The Datastore can be used to:

• NF-FG: file that describes a network functions forwarding graph, written
according to a proper schema.

• NF template: file that describes the characteristics of the network function,
such as its capability (e.g., firewall, NAT), required resources (e.g., amount
of CPU, amount of memory), required execution environment (e.g., KVM
hypervisor, Dockers, etc), number and type of virtual interfaces, and more.
Examples of templates, which have to follow a proper schema, are available in
sample-templates;

• NF Capability: list of all the functional capabilities supported by the FROG
v.4 architecture. Such a list is updated each time a template with a new
capability is uploaded into the datastore.

• NF image: a raw image of the NF (e.g., VM disk, archive file). The NF image
can be installed either directly in the Datastore, or in a different backend (e.g.,
Open Stack Glance);

• YANG model: schema used to validate the configuration forwarded to the
VNF by means of the configuration service

• YIN model: JSON representation of a YANG model, it is used by the GUI
in order to provide the users with a simple with interface for the management
of their services

• User: stores all the user information (username, password and broker keys).
Moreover, the data store provides a rudimental authentication service that can
be exploited by all the FROG v.4 architecture components.

• VNF Configuration: configuration that will be loaded into a VNF at boot-
ing time

56

5 – Extension and validation of the FROG

• Active VNF: stores information of the VNF that are currently active (in-
stance ID, bootstrap configuration and REST endpoint that can be used in
order to configure the VNF)

5.5.1 Rest API Implementation and communication chan-
nel between Datastore and Web GUI

The Datastore should also define some APIs to be exported to the GUI, The REST
interface that is available thanks to northbound API, it interacts with the GUI
in order to perform some operations needed to stored a new NF-FGs, update an
existing NF-FGs, delete an existing NF-FGs, get the list of already stored NF-
FGs. The CRUD (create/POST, read/GET, update/PUT, delete) operations are
supported for Network Function Forwarding Graphs. The new REST APIs for
Network Function Forwarding Graphs available are.

• POST /v2/NF-FG/: New insertion of a Graph in the datastore;

• PUT /v2/NF-FG/nffg-id: Update an already stored Graphs in the datastore;

• GET /v2/NF-FG/: Returns JSON demonstration of an already stored Graphs
in the datastore;

• GET /v2/NF-FG/nffg-id: Retrieved a JSON representation of a graph saved
on the in the datastore;

• DELETE /v2/NF-FG/nffg-id: Delete the stored graph in the datastore;

• GET /v2/NF-FG/digest:Returns the names and graph-ids of the all saved
graphs in the datastore;

• GET /v2/NF-FG/capability: Returns the list of all the functional capabilities
supported by the FROG architecture.

Since we don’t have Rest APIs for Network Function Forwarding Graphs in
the Datastore. The first API that we created was the POST API, it is the main
operation supported by Datastore and it corresponds to an HTTP POST operation
performed in the datastore through northbound API, new insertion of NF-FGs using
HTTP POST method.

http://Data_store_Address:port/v2/NF-FG/

57

5 – Extension and validation of the FROG

We don’t have mention graph-id because it is chosen by the datastore, it will
send back to the response of this POST request.

The northbound API receives the POST request, created by the web GUI. The
data store checks the validation of the Network Function Forwarding Graphs JSON
schema; if the request does not follow the standard JSON schema, it returns the
validation error message. After the validation we stored the NFFG in a database,
Graph ID is assigned by the datastore. After the successful saving of the graph,
return the graph ID, which is using for updating, deletion and listing of the graphs.
All the saved graphs of the datastore can be updated by the GUI contacting the
northbound API interface of the Datastore through the PUT request. It corresponds
to an HTTP PUT operation performed on the data-store through northbound API,
The PUT method URL is:

http://Data_store_Address:port/v2/NF-FG/nffg-id

The data store checks the validation the NFFG JSON schema; if the method
does not follow the standard JSON, it returns the validation error note. At this
point, the updated NFFG are now saving in the datastore. After the successful
updating of the graph, it doesn’t return the graph id because we already have it
and it returns the status “202”. The datastore also supports for the deletion of
saved graphs. The GUI contacting the northbound API interface of the datastore
through the DELETE request. The operation performed on the REST APIs of the
Datastore is an HTTP DELETE containing the ID of the forwarding graph that
should be deleted. The DELETE request at URL is:

http://Data_store_Address:port/v2/NF-FG/nffg-id

The graph existence will be checked by the data store, if it doesn’t find the
correspondent graph, GUI will receive 404 NOT FOUND message. All the saved
graphs of the datastore can be retrieved by the GUI, contacting the northbound
API interface of the datastore through the GET request.

From the northbound API of GUI, we created two interfaces one is used by the
Global orchestrator and domains orchestrators, which supports all the CRUD (cre-
ate/POST, read/GET, update/PUT, delete) operations are supported for service
graphs. Another interface is used for the Data Store which also managed the CRUD
(create/POST, read/GET, update/PUT, delete) operations are supported for NF-
FGs. Now when a user using GUI, wants to save their graphs in the datastore and
then later wants to retrieve the graph at the same time, a user can deploy it on
FROG4 orchestrator.

58

Chapter 6

Implementation of unaligned APIs
and extended support for
multi-domain

In this chapter, we discuss how graphs can be deployed on the infrastructure domain
using standards REST APIs. It is a strong base for the multi-domain support that
is discussed in this chapter.

The operations supported by the FROG orchestrator from North to south:

• From FROG Orchestrator to domain orchestrators

• Carries service graphs described according to the NF-FG formalism

• Based on a REST interface

• CRUD (create, read, update, delete) operations supported on service graphs

The operations supported by the FROG orchestrator from South to north:

• Carries the domains description from domain orchestrators to the FROG or-
chestrator

• Based on a message bus that allows communication through the publisher/-
subscriber paradigm
– The interested modules (e.g., the FROG orchestrator) subscribe to a specific
topic
– The domain orchestrators publish the domains description on that specific
topic

59

6 – Implementation of unaligned APIs and extended support for multi-domain

• A broker module is actually in between all the modules that are part of FROG

• The message bus allows the FROG architecture to be easily extended with new
modules that are interested in information about domains E.g., new service
layer applications

We have defined three domain orchestrators, capable to deploy service graphs in
different domains

• OpenStack-based data center:
– OpenStack to manage virtual machines and intra-domain traffic steering
– (optional) ONOS/OpenDaylight to manage the inter-domain traffic steering

• SDN network under the control of ONOS or OpenDaylight

• Universal node orchestrator.
– Lightweight orchestrator for resource-constrained devices (e.g., CPE)
– Can start VNFs in virtual machines, Docker containers and on the bare
metal

6.1 FROG4 Orchestrator Southbound API
The interaction between the infrastructure Orchestrator and the FROG-orchestrator
are possible thanks two different technologies. The first one is the Double Decker
bus, that was explained before, and that is used by the infrastructure Orchestrator,
to export the domain Information, which outlines capabilities and hardware informa-
tion. The second one is the REST technology, which allows the FROG-orchestrator
to contact the infrastructure Orchestrator and send commands to it. The problem
was how to define a standard APIs that allows the infrastructure Orchestrator to
accept the FROG-orchestrator pattern. The REST interface that is available thanks
to a HTTP server, it is sub module of the FROG-orchestrator that interacts with
the infrastructure Orchestrator in order to perform some operations needed to de-
ploy a new graph, update an existing graph, delete an existing graph, get the list of
already deployed graphs, and authentication of the user. The CRUD (create/POST,
read/GET, update/PUT, delete) operations are supported for NFFGs.

The main new REST APIs available are detailed in the reminder of this section.

• POST /NF-FG/: New instantiation of a Network Function Forwarding Graph
on the infrastructure domains;

60

6 – Implementation of unaligned APIs and extended support for multi-domain

• PUT /NF-FG/nffg-id: Update an already deployed Network Function For-
warding Graph on infrastructure domains;

• GET /NF-FG/: Returns an already instantiated Network Function Forward-
ing Graph on infrastructure domains;

• GET /NF-FG/status/nffg-id: Returns the status of a deployed Network Func-
tion Forwarding Graph on the infrastructure domains;

• DELETE /NF-FG/nffg-id: Deletes an instantiated NFFG on the infrastruc-
ture domains;

• GET /NF-FG/nffg-id: Get a JSON representation of a Graph deployed on the
infrastructure domains;

• POST /login: login, so as to identify the users who make the requests for
further operations and in the response of user identification, user will get a
token;

In addition to FROG components, there is a module that implements the REST
descript interfaces, and another that has the Double-decker client function, which
as described in the previous chapter, deals with exporting an abstract template
describing the domain information, which outlines capabilities and hardware in-
formation. Each domain orchestrator maintains and publishes a description of its
resources. The description includes the nodes/interfaces of each domain that may
be used to reach other domains, including the supported technologies (e.g., GRE
tunnels, VLAN). When a domain orchestrator sends the description on the mes-
sage bus for the first time, the FROG orchestrator becomes aware of such domain
and learns how to contact it. Resources descriptions examples can be found in the
configuration directory of each domain orchestrator repository. Particularly, it is
important to set the domain orchestrator IP and port in the management-address
field, to choose a domain name in the name field and to describe each interface. This
information will be used by the FROG orchestrator to eventually split and deploy
over multiple domains an incoming service graph.

Anyway, we are not diving into the source code but we are just illustrating it
from its behaviour. The source code is open and available in our public repository
[15], for a person who wants to read it. The main operations are presented below.

61

6 – Implementation of unaligned APIs and extended support for multi-domain

6.1.1 Authentication and Token system for infrastructure
Domains

Every operation requested to the global orchestrator requires a preliminary authen-
tication phase and the same applies between the global orchestrator and the domain
orchestrators. To achieve this, every orchestrator has its copy of the user’s database
and at every interaction the requester identity is verified. This can be seen as a
limitation but we assume that the global orchestrator and the various domain or-
chestrators can be in very different environments. From our point of view domain
orchestrators can be even inside the Customer Premise Equipment (CPE) and it
should have a local database, provided that the latter should be light and simple
because we have to support also resource-constrained devices.

The global orchestrator requires that every request received by its northbound
API contains the user’s token. In case the token is not valid no action is performed
and an error message is returned. Otherwise, if a token is correct, the operation
requested could involve also one or more domain orchestrators. If this is the case,
another authentication phase is needed, between the global and the domain orches-
trators:

1. Username and password are sent to the domain orchestrator’s authentication
URL through an HTTP POST operation

– If credentials are correct the domain orchestrator replies with a token that
is used in all subsequent operations.

– If credentials are not valid the process is stopped and an error is returned.

2. The global orchestrator stores the token related to that specific domain or-
chestrator and includes it in every request till the token is valid.

3. If the token stored by the global orchestrator is expired, the first operation
that includes it will fail and the login described in point 1 is repeated.

The login is performed only at the first interaction between the global orches-
trator and that specific domain orchestrator. All subsequent interactions, until the
token expires, include the token in the HTTP header. In addition, some domain or-
chestrators’ northbound API supports HTTPS; therefore all data including sensitive
information are secure. It Sends authentication request to the domain orchestrator
on basis of current operation and just only to an involved domain.

62

6 – Implementation of unaligned APIs and extended support for multi-domain

6.1.2 NFFG deployments/Create/POST operation on the
infrastructure Domains

This is the main operation supported by Southbound API of the Global orches-
trator. It corresponds to an HTTP POST operation performed on the infrastructure
Domains northbound API. We already have the domain information, thanks to the
domain descriptions exported by domain orchestrators; the FROG orchestrator sees
the network infrastructure as a set of domains

• Associated with a set of functional capabilities

• Interconnected through “virtual channels”

• The FROG orchestrator is not aware of the nature of the domain (e.g., it does
not know whether the selected domain is an SDN network or a data center)

The first phase is to create virtual topology basing on current domain informa-
tion. The virtual topology is created using the following information

• The “neighbor” parameter indicates whether a connection between two inter-
faces (of different domains) may exist or not.

• A virtual channel is established between two interfaces per each pair they
have in common, Virtual channels can be established also through domains
attached to a legacy network.

The second step is fetching a list of feasible domains for each Network Functions
and endpoints of the NFFGs. Then perform the scheduling algorithm, selects the
most suitable domain(s) involved in the graph deployment. Based on the description
of each domain provided by the domain orchestrator. Identify best domain(s) that
will actually implement the required Network Functions, links and endpoints. The
FROG orchestrator uses a greedy approach that minimizes the distance between two
VNFs/endpoints directly connected in the service graph. Some endpoints are forced
to be mapped to specific domain interfaces because they represent the entry point
of the user traffic into the network. A VNF must be executed in a domain that
advertises the corresponding functional capability and Links between VNFs/end-
points deployed in different domains require the exploitation of virtual channels for
inter-domain traffic.

The third step is to generate a sub graph for each involved domain. This sub-
graph includes

63

6 – Implementation of unaligned APIs and extended support for multi-domain

• VNFs assigned to that domain

• Possibly, new endpoints generated during the placement process

• Originated by links that connects VNFs/endpoints mapped to different do-
mains

• Two endpoints originated by the same link are connected through a virtual
channel

• If VNFs are assigned to two domains connected by means of a third domain

• An additional sub-graph is generated for the intermediate domain as well, This
sub-graph just includes network connections and endpoints

• Obviously, if all elements are tagged with the same domain the splitting is
not necessary and in this case, the entire graph will be instantiated on that
domain.

Figure 6.1. NFFG deployments on the FROG

64

6 – Implementation of unaligned APIs and extended support for multi-domain

At this stage, the subgraph is ready to deploy for each involved domain. Save
the sub-graph information in the database which is different than the main graph
received by Northbound API, some information like the “domain” field is omitted,
if graph also uses VLAN or GRE information, this information is also saved in the
database of the FROG4- orchestration, this information is useful for updating case.
Then deploy the subgraph on each involved domain using POST API.

Once the subgraph deploys on each involved domain, FORG orchestrator waits
for an ACK from domain orchestrators, it sent back the subgraph ID, which is used
for updating, deletion of the sub-graph.

Looking at figure 6.1, we omitted Double Decker because we suppose that the
global orchestrator has already received the domains information from the depicted
domains. In this example NFFG, whose snippet is shown in the upper part of the
figure, arrives to the global orchestrator through an HTTP POST and the latter
forwards the POST operation to the appropriate domain orchestrator (domain or-
chestrator 1 in this case), that will actually deploy the NFFG on the underlying
domain

6.1.3 NFFG Update/PUT operation on the infrastructure
Domains

When the Network Function Forwarding Graph arrives through an HTTP PUT
operation to the orchestrator, it checks if a graph with the same ID is already
instantiated, and if it doesn’t find the correspondent graph, responds with a 404
NOT FOUND message. After the checking of the existence graph, if the graph
already exists. then it follows the same step as we already described in the previous
section, we can check this details in section 6.1.2 . And requires more steps to
complete the update operation on the infrastructure Domains

Depending on which domain the updated graph is intended to be deployed on
each involved domain, the global orchestrator will organize the appropriate oper-
ations. The FROG-orchestrator computes an operation to discover the differences
between the two graphs and according to the outcome of this operation the graph
is updated, preserving unchanged parts, deleting removed parts and adding new
parts. If the updated graph is addressed to a different domain compared to the
graph already instantiated, the old graph is deleted from the old domain through
the concerned domain orchestrator. The new graph is instantiated on the new do-
main by means of the appropriate domain orchestrator, but using POST request
not PUT request on each involved domain.

65

6 – Implementation of unaligned APIs and extended support for multi-domain

If the updated graph is targeted to the same domain of the graph already instan-
tiated, the updated graph is sent to the same domain orchestrator of the existing
graph using PUT method.

If the updated graph contains the information for the same domain of the graph
and also addressed to a different domain compared to the graph already instanti-
ated. The graph will be split, the updated sub graph is sent to the same domain
orchestrator of the existing graph using PUT method. The new graph is instan-
tiated on the new domain by means of the appropriate domain orchestrator, but
using POST request each involved domain and finally, the old graph is deleted from
the old domain through the concerned domain orchestrator. In the conclusion, un-
der the update graph request there are PUT, POST, and DELETE operations take
place.

Figure 6.2. NFFG Update on the FROG

The figure 6.2 follows the previous example and describes the last case explained
in this section: this is an update, because a NFFG with the same graph ID is already
instantiated, but the new NFFG is addressed to the domain 3, while the currently
NFFG is on domain 1 and domain 2. This situation triggers the deletion of the
NFFG instantiated on domain 1 through the domain orchestrator 1, the update
of the old NFFG on domain 2 through the domain orchestrator 2 and the new
instantiation of the new NFFG on domain 3 through the domain orchestrator 3.

66

6 – Implementation of unaligned APIs and extended support for multi-domain

6.1.4 NFFG deletion
The global orchestrator obviously supports also the deletion of instantiated graphs.
In this case, the operation performed on the REST APIs of the orchestrator is
an HTTP DELETE containing the ID of the graph that has to be deleted. the
orchestrator forwards that delete operation to the correct domain orchestrator, who
oversees the actual deletion of the graph from its domain and then notifies the global
orchestrator about the outcome of the operation.

Following the running example of this chapter, figure 6.3 deletes the NFFG that
is instantiated on domain 1, by means of the domain orchestrator 1.

Figure 6.3. NFFG Deletion

6.2 SDN Domain Orchestrator REST API for NF-
FGs

The OpenFlow domain [16] is a group of OpenFlow switches managed by an SDN
controller (we support ONOS and OpenDaylight). The SDN domain orchestrator
interacts with the controller in order to retrieve domain information to be exposed
on the message bus E.g., boundary interfaces and available VNFs. VNFs are im-
plemented as software bundles executed in the SDN controller to create network
paths and start the software bundles implementing the required VNFs Use VLAN

67

6 – Implementation of unaligned APIs and extended support for multi-domain

tags to set up intra-domain paths. SDN domain orchestrator knows all the internal
details of the underlying domain through its northbound API, interacts with the
infrastructure-specific domain controller to fulfil requests coming from the FROG
orchestrator.

The Open Flow Domain Interface provides a set of REST APIs which the external
users can use to interact with the orchestration actions. List of all these REST APIs
explains how to compose the HTTP requests and illustrates the respective HTTP
responses. The REST interface that is available thanks to a HTTP server, is the
submodule of the OpenFlow Domain Orchestrator that interacts with the web GUI
and FROG-orchestrator in order to perform some operations needed to deploy a new
graph, update an existing graph, delete an existing graph, get the list of already
deployed graphs, and user authentication. The CRUD (create/POST, read/GET,
update/PUT, delete) operations are supported for NFFGs.

The new main REST APIs available for NFFGs.

• POST /NF-FG/: New instantiation of a graph on the OpenFlow Domain
Orchestrator;

• PUT /NF-FG/nffg-id: Update an already deployed graph on the OpenFlow
Domain Orchestrator;

• GET /NF-FG/: Returns an already instantiation graphs on the OpenFlow
Domain Orchestrator;

• GET /NF-FG/status/nffg-id: Returns the status of an instantiated graph on
the OpenFlow Domain Orchestrator;

• DELETE /NF-FG/nffg-id: Delete a deployed graph on the OpenFlow Domain
Orchestrator;

• GET /NF-FG/nffg-id: Get a JSON representation of a graph instantiated on
OpenFlow Domain Orchestrator;

• POST /login: login, so as to identify the users who make the requests for
further operations and in the response of user identification, user will get a
token;

The POST/create is the main operation supported by OpenFlow Domain Or-
chestrator. It corresponds to an HTTP POST operation performed on the OpenFlow
Domain Orchestrator through northbound API. We made some changes in the APIs,

68

6 – Implementation of unaligned APIs and extended support for multi-domain

we decided to use PUT API for an update of the NFFGs and created new POST
API for new instantiation graph. The POST method URL is:

http://OpenFlow_Domain_Orchestrator_Address:port/NF-FG/

The northbound API receives the POST request, created by the web GUI or
FROG-orchestrator. At first, the users must give a proof of personality as token,
once the token verifies the farther operations take place. After the user authentica-
tion, orchestrator validates the NFFG JSON schema; if the request does not follow
the standard JSON format, it returns the validation error status. The orchestrator
starts exploring the graph Json sent from the upper layers

✓ Set up GRE tunnels if any

✓ Send flow rules to Network Controller

✓ Activate needed applications

✓ Update the resource description

At this stage, we stored the NFFG in the database, as we need this information
for an update, delete and get operations. NFFG ID is assigned by the OpenFlow
Domain Orchestrator. We set the UUID [17] as a string, for example

1 {
2 "nffg -uuid":"0b2451e1 -13a3 -4747 -ba0e - d66281c92702 "
3 }

Listing 6.1. OpenFlow Domain Orchestrator NFFG UUID Example

After the successful deployment of the graph, return the graph-id which is used
for updating, deletion and getting the graphs. All the active graphs of the OpenFlow
Domain Orchestrator can be retrieved by the GUI or FROG-orchestrator, contacting
the northbound API interface through the GET method. In particular, the GUI
can ask for the specific graph or all the active graphs of the OpenFlow Domain
Orchestrator. Two types of Getting APIs implemented which were not present
before.

• Only one specified active graph retrieved and the URL is :
– http://OpenFlow_Domain_Orchestrator_Address:port/NF-FG/graph-id

• All active graphs retrieved and the URL is
– http://OpenFlow_Domain_Orchestrator_Address:port/NF-FG/:

69

6 – Implementation of unaligned APIs and extended support for multi-domain

The OpenFlow Domain Orchestrator receives GET request, first, it checks the
user’s token, once the token verifies, it checks the existence of the graph indicated
by the GUI, and if it doesn’t find the correspondent graph, responds with a 404
NOT FOUND message. Otherwise, it starts building of the correspondent graph
JSON schema and exports the graphs, when we retrieved all the graphs, they are
formatted as follows:

1 {
2 "NF -FG": [
3 {
4 "forwarding -graph": {
5 "name": "Test NFFG 1",
6 "VNFs": [
7 {
8 "id": " 00000001 ",
9 "name": "nat",

10 "functional - capability ": "nat",
11 " vnf_template ": "nat",
12 "ports": [
13 {
14 "id": "inout:0",
15 "name": "data -port"
16 }
17]
18 }
19],
20 "end -points": [
21 {
22 "id": " 00000001 ",
23 "name": " ingress ",
24 "type": " interface ",
25 " interface ": {
26 "if -name": "s2 -eth1"
27 }
28 }
29],
30 "big -switch": {
31 "flow -rules": [

70

6 – Implementation of unaligned APIs and extended support for multi-domain

32 {
33 "id": " 000000001 ",
34 " priority ": 1,
35 "match": {
36 " port_in ": " endpoint : 00000001 "
37 },
38 " actions ": [
39 {
40 " output_to_port ":

"vnf: 00000001 :inout:0"
41 }
42]
43 }
44]
45 }
46 },
47 "nffg -uuid": "d8765271 -d27b -41d2 -8b00 - 7cd538ec6903 "
48 },
49 {
50 "forwarding -graph": {
51 "name": "Test NFFG 2",
52 "VNFs": [..],
53 "end -points": [..],
54 "big -switch": {
55 "flow -rules": [...]
56 }
57 },
58 "nffg -uuid": "7989f810 -1860 -47ce -9cec - 24979c99418a "
59 }
60]
61 }

Listing 6.2. List of the all the OpenFlow Domain Orchestrator deployed graphs

All the active graphs of the OpenFlow Domain Orchestrator can be updated
by the Global orchestrator or GUI contacting the northbound API interface of the
OpenFlow Domain Orchestrator through the PUT request. In particular, the FROG
orchestrator or GUI can ask for the specific graph which is going to be updated,
it corresponds to an HTTP PUT operation performed on the OpenFlow Domain

71

6 – Implementation of unaligned APIs and extended support for multi-domain

Orchestrator through northbound API. The PUT method URL is:
http://OpenFlow_Domain_Orchestrator_Address:port/NF-FG/graph-id

The OpenFlow Domain Orchestrator receives PUT request, it checks the existence
of the graph with the same graph-id, indicated by the GUI, and if it doesn’t find
the correspondent graph, responds with a 404 NOT FOUND message. After the
checking of the existence graph, the orchestrator starts exploring the graph JSON
sent from the upper layers

✓ The OpenFlow Domain Orchestrator computes an operation to discover the
differences between the two graphs and according to the outcome of this op-
eration the graph is updated, preserving unchanged parts, deleting removed
parts and adding new parts.

✓ Delete useless endpoints and flow rules, from database and Network Controller.

✓ Update the database.

The remaining procedure is quite the same of the one for the POST method. At
this point, the updated NFFG are now saving in the database. After the successful
updating of the graph, it doesn’t return the graph-id because we already have it
and it just returns status “202”. The OpenFlow Domain Orchestrator supports
for the deletion of instantiated graphs. The FROG-orchestrator or GUI contacting
the northbound API interface of the OpenFlow Domain Orchestrator through the
DELETE request. The GUI asks for the specific graph which is going to delete.
In this case, the operation performed on the REST APIs of the orchestrator is
an HTTP DELETE containing the ID of the graph that should be deleted. The
DELETE request at URL is:

http://OpenFlow_Domain_Orchestrator_Address:port/NF-FG/NF-FG/graph-
id

The OpenFlow Domain Orchestrator receives DELETE request, first, it checks
the user’s token and checks its validity, once the token verifies, it checks the existence
of the graph indicated by the GUI, and if it doesn’t find the correspondent graph,
responds with a 404 NOT FOUND message. After the checking of the existence
graph, it deletes the graph from the orchestrator, in the other cases, it returns an
error message to specify if the graph wasn’t found. After the successful deletion of
the graph, it just returns status “204”.

72

6 – Implementation of unaligned APIs and extended support for multi-domain

6.3 Open Stack Domain Orchestrator REST API
This orchestrator controls an OpenStack domain [18] . It is able to deploy ser-
vice graphs according to the NF-FG used throughout the FROG architecture. In
addition to the creation of NFV service chains, it allows steering traffic from an
OpenStack port to another OpenStack port or to an external port and vice versa
(e.g., a port that connects to the user located outside the OpenStack domain). This
result is achieved by interacting with the SDN controller which in turn has to be
configured as the mechanism driver of the OpenStack’s Neutron module.Currently,
this domain orchestrator works with OpenStack Mitaka and ONOS 1.9 as (optional)
SDN controller. Support of OpenDaylight is instead deprecated.

To deploy a service graph, the domain orchestrator executes the following steps:

• Interacts with Neutron to create
– One internal network for each link of the service graph

• Interacts with Nova in order to start the VNFs (as virtual machines)
– Virtual machines images are store in the OpenStack image repository (i.e.,
Glance)
– Nova, in turn, interacts with Neutron to create VNF ports and connect them
to the proper internal network

• Interacts with the SDN controller to create links towards the external world
and set up the inter-domain traffic steering
– OpenStack is in fact not able to manage such connections, but only connec-
tions among virtual machines (i.e., intra-domain)
- Through the SDN controller, the domain orchestrator
• Creates the proper links towards the external world
• Configures the network so that traffic that exits/enters the datacenter is
properly encapsulated/decapsulated, according to the information associated
with the graph endpoints

The REST interface that is available in the OpenStack Domain Orchestrator
that interacts with the FROG-orchestrator and web GUI. In order to perform some
operations needed to deploy a new graph, update an existing graph, delete an ex-
isting graph, get the list of already deployed graphs, and authenticate User. The
CRUD (create/POST, read/GET, update/PUT, delete) operations are supported
for NFFGs.

73

6 – Implementation of unaligned APIs and extended support for multi-domain

The main new REST APIs available are:

• POST /NF-FG/: New instantiation of a graph on the Open Stack Domain
Orchestrator;

• PUT /NF-FG/nffg-id: Update an already deployed graph on the Open Stack
Domain Orchestrator;

• GET /NF-FG/: Returns already instantiated graphs on the Open Stack Do-
main Orchestrator;

• GET /NF-FG/status/nffg-id: Returns the status of an already deployed graph
on the Open Stack Domain Orchestrator;

• DELETE /NF-FG/nffg-id: Delete a deployed graph on the Open Stack Do-
main Orchestrator;

• GET /NF-FG/nffg-id: Get a JSON representation of a graph instantiated on
the Open Stack Domain Orchestrator;

• POST /login: login, so as to identify the users who make the requests for
further operations and in the response of user identification, user will get a
token;

The main operation supported by this Orchestrator is POST operation. It
corresponds to an HTTP POST operation performed on the OpenStack Do-
main Orchestrator through northbound API, a new instantiation of NFFGs
using HTTP POST method. We made some changes in the APIs; we choose
to use PUT API for updating of the graphs and created new POST API for a
new deploying graph. The POST method URL is:

http://Open_Stack_Domain_Orchestrator_Address:port/NF-FG/

The northbound API receives the POST request, created by the FROG-
orchestrator or web GUI. The first operation performs by OpenStack Domain
Orchestrator is, to check the user’s proof of personality as a token. Once the
token verifies the farther operations take place. After this operation, orches-
trator validates the Network Function Forwarding Graph JSON schema; if the
request does not follow the standard JSON schema, it returns the validation
error message. The orchestrator starts farther exploring of the graph JSON,
sent from the upper layers

74

6 – Implementation of unaligned APIs and extended support for multi-domain

✓ Instantiate Endpoints

✓ Openstack Resources Instantiation

✓ Instantiate Flowrules

✓ Update the resource description

At this stage we stored the NFFG in database, as we need this information
for update, delete and get operations. NFFG ID is assigned by the OpenStack
Domain Orchestrator We set the UUID as a string, for example

1 {
2 "nffg -uuid":"907d0e0a -5340 -403e -aa85 - 1d2a5b70f7b4 "
3 }

Listing 6.3. Open Stack Domain Orchestrator NFFG UUID Example

After the successful deployment of the graph, return the graph-id which is used
for updating, deletion and getting the graphs. All the active graphs of the
OpenStack Domain Orchestrator can be retrieved by the FROG-Orchestrator
or GUI, contacting the northbound API interface through the GET method.
The GUI can ask for the specific graph or all the active graphs of the Open-
Stack Domain Orchestrator. Two types of Getting APIs implemented which
were not present in the current architecture.

– Just one active graph retrieved
http://Open_Stack_Domain_Orchestrator_Address:port/NF-FG/graph-
id:

– All active deployed graphs retrieved
http://Open_Stack_Domain_Orchestrator_Address:port/NF-FG/ :

The OpenStack Domain Orchestrator receives GET request, first, it checks
the user’s token, once the token verifies, it checks the existence of the graph
indicated by the GUI, and if it doesn’t find the correspondent graph, responds
with a 404 NOT FOUND message. Otherwise, it starts building of the cor-
respondent graph JSON schema and exports the graphs, since Graph ID is
deleted from the JSON of NFFG, so when we retrieved all the graphs, they
are formatted as follows:

75

6 – Implementation of unaligned APIs and extended support for multi-domain

1 {
2 "NF -FG": [
3 {
4 "nffg -uuid":

"d1f90d99 -b537 -4333 -84e4 - eb899755cf6e ",
5 "forwarding -graph": {
6 "name": " Forwarding graph",
7 "VNFs": [
8 {
9 "id": " 00000001 ",

10 "name": "vnf1",
11 " vnf_template ": "D8YW44",
12 "ports": [
13 {
14 "id": "inout:0"
15 }
16]
17 }
18],
19 "end -points": [
20 {
21 "id": " 00000001 ",
22 "name": " ingress ",
23 "type": " interface ",
24 " interface ": {
25 "node -id": " 130.192.225.182 ",
26 "if -name": "eth1"
27 }
28 }
29],
30 "big -switch": {
31 "flow -rules": [
32 {
33 "id": "1",
34 " priority ": 40001 ,
35 "match": {
36 " port_in ": " endpoint : 00000001 "

76

6 – Implementation of unaligned APIs and extended support for multi-domain

37 },
38 " actions ": [
39 {
40 " output_to_port ":

"vnf: 00000001 :inout:0"
41 }
42]
43 },
44 {
45 "id": "2",
46 " priority ": 40001 ,
47 "match": {
48 " port_in ": "vnf: 00000001 :inout:0"
49 },
50 " actions ": [
51 {
52 " output_to_port ":

" endpoint : 00000001 "
53 }
54]
55 }
56]
57 }
58 }
59 },
60 {
61 "Forwarding -graph": {
62 "name": "Test NFFG 2",
63 "VNFs": [...],
64 "end -points": [...],
65 "big -switch": {
66 "flow -rules": [...]
67 }
68 },
69 "nffg -uuid":

"ebb57b3f -2b19 -450f -9d17 - ccddf0a16871 \n"
70 }
71]

77

6 – Implementation of unaligned APIs and extended support for multi-domain

72 }

Listing 6.4. List of the all the OpenStack Domain Orchestrator deployed graphs

The retrieved graph contains all the information of NFFG. All the active
graphs of the OpenStack Domain Orchestrator can be updated by the FROG-
Orchestrator or web GUI communicating the northbound API interface of the
OpenStack Domain Orchestrator through the PUT request. The web GUI
asks for the specific graph which is going to be updated. It corresponds to
an HTTP PUT operation performed on the OpenStack Domain Orchestrator
through northbound API. The PUT method URL is:

http://Open_Stack_Domain_Orchestrator_Address:port/NF-FG/graph-id

The OpenStack Domain Orchestrator receives PUT request, the operation
performs by OpenStack Domain Orchestrator is, to check the user’s proof of
personality as a token and check its validity. Once the token verifies, it checks
the existence of the graph with the same graph-id, indicated by the GUI, and
if it doesn’t find the correspondent graph, responds with a 404 NOT FOUND
message. After the checking of the existence graph, orchestrator validates
the NFFG JSON schema; if the request does not follow the standards JSON
schema, it returns the validation error message. The orchestrator starts ex-
ploring the graph JSON sent from the upper layers. It calculates the difference
between the old deployed graph and newly updated graph. The remaining pro-
cedure is quite the same of the one for the POST method. At this point, the
updated NFFG are now saving in the database. After the successful updating
of the graph, it doesn’t return the graph-id because we already have it and it
just returns status “202”.

The global orchestrator supports for the deletion of instantiated graphs. The
GUI contacting the northbound API interface of the OpenStack Domain Or-
chestrator through the DELETE request. The GUI asks for the specific graph
which is going to delete. In this case, the operation performed on the REST
APIs of the orchestrator is an HTTP DELETE containing the ID of the for-
warding graph that should be deleted. The DELETE request at URL is:

http://Open_Stack_Domain_Orchestrator_Address:port/NF-FG/graph-id

The OpenStack Domain Orchestrator receives DELETE request, first, it checks
the user’s token and checks its validity. Once the token verifies, it checks
the existence of the graph indicated by the GUI, and if it doesn’t find the
correspondent graph, responds with a 404 NOT FOUND message. After the

78

6 – Implementation of unaligned APIs and extended support for multi-domain

checking of the existence graph, it deletes the graph from the orchestrator,
in the other cases, it returns an error message to specify if the graph wasn’t
found. After the successful deletion of the graph, it just returns status “204”.

6.4 Deploying graph on a single domain or-
chestrator using new APIs

The figure 6.4 shows the typical architecture of a single domain controlled by
its domain orchestrator that, in turn, is controlled by the global orchestra-
tor. Between the global orchestrator and the domain orchestrator, there is
the Double-decker bus which is responsible for the communication from the
bottom to the upper part of the architecture. Communications that follow the
inverse direction are done through REST APIs bypassing the Double-decker
component, as shown in the figure. It is clear that the three software compo-
nents are not constrained to be on the same machine; in fact, the distribution
of the software modules across different machines gives scalability to the whole
system.

Each domain orchestrator exports the domain information (which outlines ca-
pabilities and hardware information), to the global orchestrator. The content
of that information is not needed in this use case because the graph will be
instantiated on a single domain and we are not interested in neighbour do-
mains, but the communication between the two parties itself is necessary to
the global orchestrator in order to:

• Be informed about the existence of a domain orchestrator along with the
domain it controls.

• Know how that domain orchestrator can be reached.

Lacking this sort of handshake or communication between the global and the
domain orchestrators, the former has no information on that particular domain
and it will be unable to deploy graphs on it. Network Function Forwarding
Graphs need to be explaining with the “domain” tag, either in the root of the
NFFG or in each element of the NFFG. In this section we are presenting the
first case, where the entire graph has to be instantiated on a single domain.

Assuming that the global orchestrator has knowledge of the domain orches-
trator, we can see a high-level view of the operations made by the global

79

6 – Implementation of unaligned APIs and extended support for multi-domain

Figure 6.4. NFFG instantiation on Single domain

orchestrator when a Network Function Forwarding Graph, with the “domain”
fieldset, arrives at its northbound API:

– It determines if that graph is already instantiated in the specified domain.
In this case, an update operation of the previous graph is performed.

– the scheduler module checks the validity of both the domain field set in
the NFFG and the related information previously stored (e.g., IP address
and port of the domain orchestrator that is actually in charge of deploying
the graph).

– It performs the authentication on the domain orchestrator.

– It sends the NFFG to the domain orchestrator and waits for the result.

The NF-FG sent in the final step is slightly modified compared to the original

80

6 – Implementation of unaligned APIs and extended support for multi-domain

graph in order to be fully comprehensible by every domain orchestrator; some infor-
mation like the “domain” field is omitted because unnecessary beneath the global
orchestrator’s level. The abstraction the global orchestrator can support domains
very different and heterogeneous. Once the global orchestrator has performed the
above-mentioned operations, the deployment of the Network Function Forwarding
Graph is a matter of the involved domain orchestrator. We can think of domain or-
chestrators as software modules similar to the Global orchestrator but closer to the
practical aspects of the NFFG deployment. They share also the same internal archi-
tecture: in fact, Now they have a REST northbound interface, same like the global
orchestrator, that support the same NF-FG and many operations are mapped one-
to-one between the Global and the domain orchestrators. It is through the domain
orchestrator’s REST APIs that the global orchestrator performs the authentication,
sends the graph and waits for a response. Then the global orchestrator notifies the
result to whom has originally triggered the operation.

6.5 Deploying graphs on multiple infrastructure
domains

Deploying a graph on multiple infrastructure domains is not an easy task. It requires
a series of operations in order to establish whether this is possible. This section is
intended to present steps needed to perform this operation, starting with the need to
know information regarding the underlying domains, the actual graph splitting phase
followed by the capabilities match between domains and, finally, the characterization
of split endpoints that makes the sub graphs ready to be deployed on the chosen
domains through the appropriate domain orchestrators. In the last paragraph, it is
worth pointing out that those concepts are valid also in this scenario but they are
not repeated here. For example, the graph deployment, deletion, update and the
authentication are the same of the FROG4 Orchestrator Southbound API section
6.1, but applied multiple times if more than one domain orchestrator is concerned.

Each domain orchestrator exports information, which as described in the pre-
vious chapter, deals with exporting an abstract template describing the domain
information, which outlines capabilities and hardware information. Each domain
orchestrator maintains and publishes a description of its resources. The descrip-
tion includes the nodes/interfaces of each domain that may be used to reach other
domains, including the supported technologies (e.g., GRE tunnels, VLAN). When
a domain orchestrator sends the description on the message bus for the first time,
the FROG orchestrator becomes aware of such domain and learns how to contact

81

6 – Implementation of unaligned APIs and extended support for multi-domain

it. Resources descriptions examples can be found in the configuration directory of
each domain orchestrator repository. Particularly, it is important to set the domain
orchestrator IP and port in the management-address field, to choose a domain name
in the name field and to describe each interface. This information will be used by
the FROG orchestrator to eventually split and deploy over multiple domains an
incoming service graph.

The prerequisite of deploying a graph on multiple infrastructure domains is that
such domains have to export to the orchestrator some information. This informa-
tion concerns the topology and the interconnections between domains, describing
capabilities of external interfaces of each domain. Capabilities include, for example,
support for GRE tunnels or to VLAN tags. It is clear that only if the orchestrator
has this kind of information can try to split a graph. In the absence of domains
information, the orchestrator is obliged to deploy the incoming graph on a single
domain and this is the scenario detailed in the previous section. For more details
about the formalism of domains information and how they are exported see section
Domain abstraction 4.2.5

6.5.1 NFFG Splitting

Keeping in mind the end goal to deploy a graph on multiple infrastructure domains
it is important to split it into no less than two sub-graphs. This is the base operation
for supporting different domains. The operation comprises of :

✓ VNFs assigned to that domain

✓ Possibly, new endpoints generated during the placement process

✓ Originated by links that connects VNFs/endpoints mapped to different do-
mains

✓ Two endpoints originated by the same link are connected through a virtual
channel

✓ If VNFs are assigned to two domains connected by means of a third domain

✓ An additional sub-graph is generated for the intermediate domain as well, This
sub-graph just includes network connections and endpoints

✓ Deleting elements, on each sub-graph that have a place with the opposite side

82

6 – Implementation of unaligned APIs and extended support for multi-domain

✓ Obviously, if all elements are tagged with the same domain the splitting is
not necessary and in this case, the entire graph will be instantiated on that
domain.

Figure 6.5. NFFG splitting on muti-domain

The split function needs to know which endpoints and VNFs have to be on one
side and which ones on the other side. In this prototype we let the user annotate
every VNF and endpoint with the “domain” tag that indicates where that element
will be instantiated. In this way, directly from the NF-FG we have exactly what
the split function needs to work: the two sets of elements that have to be on the
left and on the right sub graphs after the splitting. The scheduler is the software
module whose tasks are to call this function and to process the resulting graphs.
A graph obtained by a split operation can be further split. Looking at the figure
6.5. Example of NF-FG splitting resulting in two couples of generated endpoints we
can see, as an example, that the user’s endpoint is marked with domain 1 while the
other elements are marked with domain 2. Executing the split function with these
inputs, the resulting graphs, with two couples of generated endpoints, are shown in
the same figure. The left sub graph will be then instantiated on domain 1 while the
right on domain 2, if the following phases will be successful.

83

Chapter 7

Deploying services on a real
campus network

This chapter considers the design and implementation of a functions virtualization
system in a Real Campus Network. It will operate over a local area network, made
of commercial network equipment, and will enrich it with the possibility of running
virtual machines on its edge nodes. It will turn the corporate network in a sort of
“datacenter” with functions running really close to final users, thus optimizing the
outgoing and incoming traffic whether compared to a solution where functions run
in a centralized data-center placed somewhere in the enterprise campus.

7.1 Scenario
The setup we created is a simplified version of the complete scenario just described
and simulates a branch office network connected to the main enterprise network,
and then to the Internet, by an edge router enriched with the capability to execute
the above mentioned per-user virtualized network functions. The result will be the
prototype of a distributed and customizable user-oriented NFV platform for local
and wide networks. The idea is to create a network which is able to recognize
the user who is currently connecting to the edge router and, based on his profile,
configure the network to force his traffic to traverse a given set of functions, which are
dynamically instantiated on the router itself. The user will be able to configure his
own functions through a management system, for example a web GUI which allows
to select functions from a marketplace-like datastore and to design functions graphs,
and could have multiple profiles, with different functions. In a further evolution of
the system, the corporate ICT manager would be able to add also some additional

84

7 – Deploying services on a real campus network

function to the ones added by the users. The actual service provided by the whole
enterprise network will be the composition of a set of functions selected by different
corporate entities.

Figure 7.1. Cisco ISR router network topology setup

7.2 Challenges
While there are already formal definitions and some research works which try to
solve similar issues regarding NFV; realizing the use case illustrated presents some
new challenges and problems. First of all, it is necessary to choose carefully which
kind of networking devices to use in the developing and testing phases. In fact, NFV
requires hardware platforms with some precise features and technical details:

• High-level performances, again, virtualization is not a problem in general
purpose hardware but networking devices usually have limited resources and
common routers probably could not support the CPU and memory load re-
sulting from tens of virtual machines running on them.

• Hardware virtualization support: it is quite obvious why this feature is
needed but, while it is already a mainstream characteristic in computation
hardware, it is not so common in networking devices.

• Software virtualization support: networking devices usually run dedi-
cated operating systems (e.g.: Cisco IOS, etc. . .) which are optimized to
do their job perfectly but they cannot be extended to do things which are
commonly associated to hypervisors

Then, know that both for performances and security reasons, the system con-
troller logic should not be placed in a device at the edge of the corporate network

85

7 – Deploying services on a real campus network

but we should also find a way to get the most optimal traffic path as possible, with-
out unnecessary delays in the delivery of packets. This involves designing proper
network functions services but also avoiding packets to often transit in the con-
troller or in another point not included in the natural path. For what concerns the
software necessary to run VMs, manage Network Functions Forwarding Graphs, au-
thenticate users and all the other things, the best way seems to be re-using existing
software, open-source official products (e.g., KVM, etc. . .) and research proto-
types. This approach, thus allowing not wasting time-solving problems someone else
already solved in the past, involves some efforts to integrate all these heterogeneous
products in a unique coordinate system.

7.3 Equipment involved
All the devices involved in this test-bed are commercial systems available on the
global professional network appliance market. This is very important because one of
the basic goals of this thesis work is to prove that the network functions virtualization
approach, still, a research topic for the moment is effectively realizable on common
commercial devices and in a realistic production environment. The edge router we
decided to use, after considering all bounds explained in the previous paragraph, is
not exactly a common low-level router but rather a quite complex system, composed
of three main sub-components:

✓ Cisco 2921 Integrated Service Router (ISR) with a slot for an inte-
grated service module and many slots for additional interfaces cards [19].

✓ Cisco UCS E150S M4 integrated server for general purpose computing
[20].

✓ Cisco enhanced high-speed WAN interface card (EHWIC) which
provides four additional Gigabit Ethernet switched interfaces [21].

The Cisco 2921 ISR router is a new generation router designed to act as an
access router in branch offices or small businesses. It has all the typical features
of this kind of devices but, for our purposes, the most important characteristic is
its expandability. In fact, we need some general purpose computing device with
hardware virtualization technology where to run our virtual Functions. This has
been accomplished installing the UCS integrated server into the dedicated slot. Our
2921 router has installed Cisco IOS 15.4; this is important because UCS blades are
fully supported only on IOS versions equal or greater than 15.2M.

86

7 – Deploying services on a real campus network

This high-density, a single-socket blade server is designed to introduce virtu-
alization and hypervisors directly into branch office routers, so it fits perfectly our
scenario requirement. Its hardware features provide good performances, even though
the number of virtual functions which can be run at the same time is rather limited
for a scenario where every connected user has a set of virtual machines draining
resources. However, this problem can be mitigated either using more performing in-
tegrated servers or lightening virtual services, or even substituting them with more
lightweight containers, as explained in the last paragraph of this chapter. The hard-
ware specifications of the UCS server used in our testbed are the following:

• CPU : one Intel Xeon processor E3-1105C v2 with 4 cores, each one with a
1.00 GHz frequency rate and a 6MB cache.

• Memory : 32GB (four 8GB DIMM modules)

• Interfaces : 2 internal and 2 external Gigabit Ethernet NICs

• Hardware virtualization support

It is worth to underline the particular connection system that internally links
the UCS blade with its host router because it has been exploited deeply during the
design phase of the system, as explained in the next section.

At first sight it results a bit difficult to understand but, from the logical point
of view, the blade and the router share two different internal links:

• A PCIexpress interface which provides an internal layer 3 Gigabit Ethernet
link between the router and the E-Series Server.

• An MGF VLAN interface which provides an internal layer 2 Gigabit Ethernet
link between the router and the E-Series Server

While the first one is quite intuitive to understand and use, the second one is
more complicated but, at the same time, offers better configuration alternatives
and flexibility. It is realized through a high-speed backplane switch module called
Multi-Gigabit Fabric (MGF) [22] which provides layer 2 connections between the
router CPU and all the additional modules included the UCS server and also the
EHWIC interfaces expansion. In fact, this additional four ports module has been
added exactly for the purpose of getting a layer 2 trunk link where connecting the
branch office network with the UCS server. This is needed cause of the logic of the
software part, which exploit some layer 2 functions, like DHCP and MAC learning.
In the end, it is needed also a canonical server where the controller logic will be

87

7 – Deploying services on a real campus network

installed. It could be any kind of commercial server with hardware virtualization.
In alternative, the machines of the controller could also be separated on different
servers, but it seems to be more logical to have them in the same place.

7.4 Implementation
Instead of creating another ad-hoc system for our use case, we decided to work with
the already existing solution for NFV detailed in 4 and try to extend and configure
it to cover this use case too. The software which performs almost all the logic of this
scenario is based on that solution. However, it required to be customized in order to
fit this scenario requirement; in fact, it had been thought to realize a single integrated
node where every software module runs, while we are trying to apply this approach
in a distributed local area network with real networking devices. We decided to
follow this way because that system already provides some of the characteristics we
needed. The most important are:

• User’s authentication and dynamic functions deployment.

• Support for a large number of network function and general services.

• Possibility to concatenate different graphs.

• Compatibility with the ETSI NFV group guidelines.

7.5 Universal node
Universal node [23] usage in this architecture represents an interesting choice for
legacy compatibility, as well as it allows us to reuse all the features it already im-
plements. The Universal Node can be considered a sort of “datacenter in a box”,
hence providing functions similar to an OpenStack cluster, but limited to a single
server. In a nutshell, it handles the orchestration of compute and network resources,
hence managing the complete lifecycle of computing containers (e.g., VMs, Docker,
DPDK processes) and networking primitives (e.g., OpenFlow rules, logical switch-
ing instances, etc). It receives commands through a REST API according to the
Network Functions Forwarding Graph (NF-FG) formalism and takes care of imple-
menting them on the physical node. Due to its peculiar characteristics, it can be
executed either on a traditional server (e.g., workstation with Intel-based CPU) or
on a resource-constrained device, such as a residential gateway.

88

7 – Deploying services on a real campus network

Figure 7.2. Universal Node Orchestrator architecture

More in detail, when it receives a command to deploy a new NF-FG, it does all
the operations required to actually implement the requested graph:

• retrieve the most appropriate images for the selected virtual network functions
(VNFs) through the datastore;

• configure the virtual switch (vSwitch) to create a new logical switching instance
(LSI) and the ports required to connect it to the VNFs to be deployed;

• deploy and start the VNFs;

• Translate the rules to steer the traffic into OpenFlow flow mod messages to
be sent to the vSwitch (some flow mod are sent to the new LSI, others to the
LSI-0, i.e. an LSI that steers the traffic towards the proper graph.)

Similarly, the un-orchestrator takes care of updating or destroying a graph, when
the proper messages are received.

89

7 – Deploying services on a real campus network

A high-level overview of this software is given by the figure 7.2.
As evident in the figure 7.2 the un-orchestrator includes several modules; the

most important ones are the network controller and the compute controller, which
are exploited to interact respectively with the vSwitch and the hypervisor(s).

The VNF-selector selects instead the best implementation for the required VNFs,
according to some parameters such as the amount of CPU and RAM available on
the Universal Node, or the efficiency of the network ports supported by the VNF
itself (e.g., standard virtio vs. optimized ports). Moreover, the VNF scheduler
optimizes the binding VNF/CPU core(s) by taking into account information such
as how a VNF interacts with the rest of the NF-FG. While the network and compute
controllers are detailed in the following sections,

7.5.1 The network controller

The network controller is the sub-module that interacts with the vSwitch. It consists
of two parts:

• the OpenFlow controller(s): a new OpenFlow controller is created for each
new LSI, which steers the traffic among the ports of the LSI itself;

• The switch manager: it creates/destroys LSIs, virtual ports, and more. In
practice, it allows the un-orchestrator to interact with the vSwitch in order to
perform management operations. Each virtual switch implementation (e.g.,
xDPd, OvS) may require a different implementation for the switch manager,
according to the API exported by the vSwitch itself.

Currently, the un-orchestrator supports OpenvSwitch (OvS), the extensible DataP-
ath daemon (xDPd) and the Ericsson Research Flow Switch (ERFS) as vSwitches.
Note that, according to the figure 7.2, several LSIs may be deployed on the UN.
In particular, in the boot phase, the network controller creates a first LSI (called
LSI-0) that is connected to the physical interfaces and that will be connected to
several other LSIs. Each one of these additional LSIs corresponds to a different
NF-FG; hence, it is connected to the VNFs of such an NF-FG, and takes care of
steering the traffic among them as required by the graph description. Instead, the
LSI-0, being the only one connected to the physical interfaces of the UN and to all
the other graphs, dispatches the traffic entering into the node to the proper graph,
and properly handles the packets already processed in a graph.

90

7 – Deploying services on a real campus network

7.5.2 The compute controller
The compute controller is the sub-module that interacts with the virtual execu-
tion environment(s) (i.e., the hypervisor) and handles the lifecycle of a Virtual
Network Function (i.e., creating, updating, destroying a VNF), including the op-
erations needed to attach VNF ports already created on the vSwitch to the VNF
itself. Each execution environment may require a different implementation for the
compute controller, according to the commands supported by the hypervisor itself.

Currently, the prototype supports virtual network functions as (KVM) VMs,
Docker, DPDK processes and native functions, although only a subset of them can
be available depending on the chosen vSwitch. Also, in this case, further execution
environments can be supported through the implementation of a proper API. The
un-orchestrator natively supports the deployment of NF-FGs described with initial
JSON-based format defined in WP5 and used in the initial part of the project. For
more detailed, the Netgroup public repository available on Github [23]

7.6 Integrating various components
The whole system is made of extremely different components, from commercial
hardware network platform to complex open source software. Putting all together
in a correctly working system has not been an easy task. The software components
used have been designed for use-cases that are quite different from our scenario, so
it required some ad-hoc configurations and modifications. The following paragraphs
illustrate the choice made from theoretical point of view; the basic steps for setting
the router and the UCS-E blade up can be found in related links in Bibliography,
in particular [19] and [20]. Particularly, the interesting part of the second manual is
from the beginning till the “Accessing CIMC” section, where there is explained how
to access it for the first time. This could not be so easy if you have no experience
with these kinds of stuffs. At this point, we are assuming that the basic configuration
of the devices is already completed.

First of all the router and the UCS server had to be configured in order to force
all the incoming and outgoing traffic passing into the virtual functions running on
the server.

Figure 7.3 shows how we configured the router to meet our requirements. The
UCSE interfaces represent the internal high-speed connection between router and
server, ucse1/0 is the layer 3 interface and ucse1/1 is the layer 2 one. These interfaces
can be seen from server operating system as normal Gigabit Ethernet interfaces (in
our case Ubuntu names them enp3s0f0 and enp3s0f1). Since the link between branch

91

7 – Deploying services on a real campus network

Figure 7.3. Cisco 2921 ISR Router configuration

office LAN and the server had to be a layer 2 connection, ucse1/1 has obviously been
chosen to play this role. On the other side, the LAN had to be plugged to one of
the EHWIC module interfaces, because these are the only ones with direct access
to the MGF internal switch, letting us create a direct layer 2 “connection” between
the EHWIC interfaces and the ucse1/1 port, where to force all the traffic coming
from the branch office to reach the internal enp3s0f1 server interface. To achieve
this behaviour, a “layer 2 VLAN” between these interfaces has been created. This
VLAN spans only from EHWIC to ucse1/1 interface, which is both access ports, so
802.1Q tags are not propagated outside the router. Then, this hack is not visible to
users and nor to virtual functions. With this configuration, all the traffic that reach

92

7 – Deploying services on a real campus network

EHWIC interfaces is brought to the server internal enp3s0f1, and the vice versa,
thus simulating a direct cable connection to the server. The link between the server
and the router CPU, which is used to communicate with the corporate network and
the Internet, is then the layer 3 link through ucse1/0 interface. Basically, it could
be configured in two different ways:

✓ Public subnet even if this is the best choice for performances, it brings to a huge
waste of addresses because every per-user network functions chain requires one
address from this subnet.

✓ private subnet with NAT this solution saves a lot of addresses because NAT can
be configured with overloading, thus turning it into a PAT which aggregates
all the NFs chains on a single address using instead different layer 4 ports.
In addition, this configuration adds a certain separation between the physical
network and virtual functions, which is a great thing for security.

We added a DHCP daemon that dynamically assigns addresses from that subnet
to network functions chains when they are launched, in order to increase flexibility
and avoid static addresses as much as possible.

1 ip dhcp excluded - address 10.10.0.1
2 ip dhcp excluded - address 10.10.0.2
3 ip dhcp pool dhcp -pool
4 import all
5 network 10.10.0.0 255.255.255.0
6 default -router 10.10.0.1
7 dns -server 8.8.8.8
8
9 ip nat pool natpool 130.192.225.238 130.192.225.238

prefix -length 25
10 ip nat inside source list 7 pool natpool overload
11 ip nat inside source static 10.10.0.2 130.192.225.242
12 ip route 0.0.0.0 0.0.0.0 GigabitEthernet0 /1

130.192.225.254
13
14 access -list 7 deny 10.10.0.2
15 access -list 7 permit 10.10.0.0 0.0.0.255
16

93

7 – Deploying services on a real campus network

17 interface GigabitEthernet0 /1
18 ip address 130.192.225.244 255.255.255.128
19 ip nat outside
20
21 interface ucse1 /0
22 ip address 10.10.0.1 255.255.255.0
23 ip nat inside

Listing 7.1. Cisco 2921 ISR configuration for UCSE-Router link

Since the first case is easier to configure, we presented an example which illus-
trates the configuration with NAT we had in our test bed for ucse1/0. Please note
that ACL denies the static management address to avoid possible conflicts between
static and dynamic NAT translations. The link that connects users through the
EHWIC module is needed is an address-less VLAN for letting layer 2 packets pass
and each of the EHWIC Gigabit Ethernet interface we had assigned different VLAN,
for different users. From the router interface ucse1/1 to MGF internal switch we
had used VALN trunk.

1 interface ucse1 /1
2 switchport mode trunk
3 no ip address
4
5 interface GigabitEthernet0 /0/0
6 switchport access vlan 2
7
8 interface GigabitEthernet0 /0/1
9 switchport access vlan 3

10 no ip address
11
12 interface GigabitEthernet0 /0/2
13 switchport access vlan 4
14 no ip address
15
16 interface GigabitEthernet0 /0/3
17 switchport access vlan 5
18 no ip address
19
20

94

7 – Deploying services on a real campus network

21 interface Vlan2
22 no ip address
23 no spanning -tree vlan 2
24
25 interface Vlan3
26 no ip address
27 no spanning -tree vlan 3
28
29 interface Vlan4
30 no ip address
31 no spanning -tree vlan 4
32
33
34 interface Vlan5
35 no ip address
36 no spanning -tree vlan 5

Listing 7.2. Cisco 2921 ISR configuration for UCSE-EHWIC link

After configurations, modifications and installation of the Universal node or-
chestrator, the only thing left to configure is the Ubuntu networking configuration.
Follows an example of that configuration, where the addresses used are the same of
the example configuration explained in the previous page:

1 auto enp3s0f0
2 iface enp3s0f0 inet static
3 address 10.10.0.2
4 netmask 255.255.255.0
5 gateway 10.10.0.1
6 dns - nameservers 8.8.8.8 4.4.4.4
7
8 auto enp3s0f1
9 iface enp3s0f1 inet manual

Listing 7.3. Ubuntu interfaces configuration (/etc/network/interfaces)

Once we configured the router we had to deploy the NFV services in order to
test and validate our work. After deployment, the user can use the NFV services.
The User traffic goes through the NFV service and they can reach to the internet.
Hence, we successfully configured a router which can be used as a default gateway

95

7 – Deploying services on a real campus network

for a small office or a lab which could manage customized services for real users.

7.7 Deploying graph for LAN connection

Figure 7.4. Cisco 2921 ISR, Deploying graph for LAN connection

we deployed a graph 7.4 on the one universal node using Cisco router for LAN, 8
flow rules, 4 endpoints and 1 Network Function used. When the user graph has been
instantiated and all virtual Functions are running, server interface sends the traffic
towards to MGF internal switch then to Brach office user interface. Of course, the
response packet will follow the same path but in the opposite direction. Brach office
user can now ping to each other. For example, if we connect the Lab9 network cable
to one of the EHIWC interfere the others branch office User traffic goes through the
NFV service and they can reach to the internet.

1 {
2 "forwarding -graph": {
3 "name": "Cisco test 1",
4 "VNFs": [

96

7 – Deploying services on a real campus network

5 {
6 "id": " 00000001 ",
7 "name": "nat",
8 "functional - capability ": "nat",
9 " vnf_template ": "3SZCDP",

10 "ports": [
11 {
12 "id": "inout:0",
13 "name": "data -port"
14 },
15 {
16 "id": "inout:1",
17 "name": "data -port"
18 },
19 {
20 "id": "inout:2",
21 "name": "data -port"
22 }
23]
24 }
25],
26 "end -points": [
27 {
28 "id": " 00000001 ",
29 "name": " ingress ",
30 "type": "vlan",
31 "vlan": {
32 "vlan -id": "2",
33 "if -name": " enp3s0f1 "
34 }
35 },
36 {
37 "id": " 00000002 ",
38 "name": "egress",
39 "type": "vlan",
40 "vlan": {
41 "vlan -id": "3",
42 "if -name": " enp3s0f1 "

97

7 – Deploying services on a real campus network

43 }
44 },
45 {
46 "id": " 00000003 ",
47 "name": "egress",
48 "type": "vlan",
49 "vlan": {
50 "vlan -id": "4",
51 "if -name": " enp3s0f1 "
52 }
53 }
54],
55 "big -switch": {
56 "flow -rules": [
57 {
58 "id": " 00000001 ",
59 " priority ": 1,
60 "match": {
61 " port_in ": " endpoint : 00000001 "
62 },
63 " actions ": [
64 {
65 " output_to_port ": "vnf: 00000001 :inout:0"
66 }
67]
68 },
69 {
70 "id": " 00000002 ",
71 " priority ": 2,
72 "match": {
73 " port_in ": "vnf: 00000001 :inout:0"
74 },
75 " actions ": [
76 {
77 " output_to_port ": " endpoint : 00000001 "
78 }
79]
80 },

98

7 – Deploying services on a real campus network

81 {
82 "id": " 00000003 ",
83 " priority ": 3,
84 "match": {
85 " port_in ": " endpoint : 00000002 "
86 },
87 " actions ": [
88 {
89 " output_to_port ": "vnf: 00000001 :inout:1"
90 }
91]
92 },
93 {
94 "id": " 00000004 ",
95 " priority ": 4,
96 "match": {
97 " port_in ": "vnf: 00000001 :inout:1"
98 },
99 " actions ": [

100 {
101 " output_to_port ": " endpoint : 00000002 "
102 }
103]
104 },
105 {
106 "id": " 00000005 ",
107 " priority ": 5,
108 "match": {
109 " port_in ": " endpoint : 00000003 "
110 },
111 " actions ": [
112 {
113 " output_to_port ": "vnf: 00000001 :inout:2"
114 }
115]
116 },
117 {
118 "id": " 00000006 ",

99

7 – Deploying services on a real campus network

119 " priority ": 6,
120 "match": {
121 " port_in ": "vnf: 00000001 :inout:2"
122 },
123 " actions ": [
124 {
125 " output_to_port ": " endpoint : 00000003 "
126 }
127]
128 }
129]
130 }
131 }
132 }

Listing 7.4. Deploying NFFG for LAN connection

Figure 7.5. Cisco 2921 ISR, Deploying graph for WAN connection

100

7 – Deploying services on a real campus network

7.8 Deploying graph for WAN connection
We deployed another graph on the one universal node using Cisco router for WAN.
10 flow rules, 5 endpoints and 1 Network Function used, when the user or network
operator graph has been instantiated and all virtual Functions are running, server
interface sends the traffic towards the CPU and then to internet port. Another in-
terface of the server sends the traffic towards to MGF internal switch which forwards
it to the EHWIC. Of course, the response packet will follow the same path but in
the opposite direction. The User traffic goes through the NFV service, router CPU,
and they can reach to the internet as shown in figure 7.5.

1 {
2 "forwarding -graph": {
3 "name": "Cisco tesing graph 2",
4 "VNFs": [
5 {
6 "id": " 00000001 ",
7 "name": "switch",
8 "functional - capability ": "switch",
9 " vnf_template ": "3SZCDP",

10 "ports": [
11 {
12 "id": "inout:0",
13 "name": "data -port"
14 },
15 {
16 "id": "inout:1",
17 "name": "data -port"
18 },
19 {
20 "id": "inout:2",
21 "name": "data -port"
22 },
23 {
24 "id": "inout:3",
25 "name": "data -port"
26 },
27 {

101

7 – Deploying services on a real campus network

28 "id": "inout:4",
29 "name": "data -port"
30 }
31]
32 }
33],
34 "end -points": [
35 {
36 "id": " 00000001 ",
37 "name": "egress",
38 "type": " interface ",
39 " interface ": {
40 "if -name": " enp3s0f0 "
41 }
42 },
43 {
44 "id": " 00000002 ",
45 "name": " ingress ",
46 "type": "vlan",
47 "vlan": {
48 "vlan -id": "2",
49 "if -name": " enp3s0f1 "
50 }
51 },
52 {
53 "id": " 00000003 ",
54 "name": " ingress ",
55 "type": "vlan",
56 "vlan": {
57 "vlan -id": "3",
58 "if -name": " enp3s0f1 "
59 }
60 },
61 {
62 "id": " 00000004 ",
63 "name": " ingress ",
64 "type": "vlan",
65 "vlan": {

102

7 – Deploying services on a real campus network

66 "vlan -id": "4",
67 "if -name": " enp3s0f1 "
68 }
69 },
70 {
71 "id": " 00000005 ",
72 "name": " ingress ",
73 "type": "vlan",
74 "vlan": {
75 "vlan -id": "5",
76 "if -name": " enp3s0f1 "
77 }
78 }
79],
80 "big -switch": {
81 "flow -rules": [
82 {
83 "id": " 00000001 ",
84 " priority ": 1,
85 "match": {
86 " port_in ": "vnf: 00000001 :inout:0"
87 },
88 " actions ": [
89 {
90 " output_to_port ": " endpoint : 00000001 "
91 }
92]
93 },
94 {
95 "id": " 00000002 ",
96 " priority ": 1,
97 "match": {
98 " port_in ": " endpoint : 00000001 "
99 },

100 " actions ": [
101 {
102 " output_to_port ": "vnf: 00000001 :inout:0"
103 }

103

7 – Deploying services on a real campus network

104]
105 },
106 {
107 "id": " 00000003 ",
108 " priority ": 1,
109 "match": {
110 " port_in ": " endpoint : 00000002 "
111 },
112 " actions ": [
113 {
114 " output_to_port ": "vnf: 00000001 :inout:1"
115 }
116]
117 },
118 {
119 "id": " 00000004 ",
120 " priority ": 1,
121 "match": {
122 " port_in ": "vnf: 00000001 :inout:1"
123 },
124 " actions ": [
125 {
126 " output_to_port ": " endpoint : 00000002 "
127 }
128]
129 },
130 {
131 "id": " 00000005 ",
132 " priority ": 1,
133 "match": {
134 " port_in ": "vnf: 00000001 :inout:2"
135 },
136 " actions ": [
137 {
138 " output_to_port ": " endpoint : 00000003 "
139 }
140]
141 },

104

7 – Deploying services on a real campus network

142 {
143 "id": " 00000006 ",
144 " priority ": 1,
145 "match": {
146 " port_in ": " endpoint : 00000003 "
147 },
148 " actions ": [
149 {
150 " output_to_port ": "vnf: 00000001 :inout:2"
151 }
152]
153 },
154 {
155 "id": " 00000007 ",
156 " priority ": 1,
157 "match": {
158 " port_in ": "vnf: 00000001 :inout:3"
159 },
160 " actions ": [
161 {
162 " output_to_port ": " endpoint : 00000004 "
163 }
164]
165 },
166 {
167 "id": " 00000008 ",
168 " priority ": 1,
169 "match": {
170 " port_in ": " endpoint : 00000004 "
171 },
172 " actions ": [
173 {
174 " output_to_port ": "vnf: 00000001 :inout:3"
175 }
176]
177 },
178 {
179 "id": " 00000009 ",

105

7 – Deploying services on a real campus network

180 " priority ": 1,
181 "match": {
182 " port_in ": "vnf: 00000001 :inout:4"
183 },
184 " actions ": [
185 {
186 " output_to_port ": " endpoint : 00000005 "
187 }
188]
189 },
190 {
191 "id": " 000000010 ",
192 " priority ": 1,
193 "match": {
194 " port_in ": " endpoint : 00000005 "
195 },
196 " actions ": [
197 {
198 " output_to_port ": "vnf: 00000001 :inout:4"
199 }
200]

Listing 7.5. Deploying NFFG for WAN connection

106

Chapter 8

Results Validation

In previous chapters, we proposed a way to deploy generic virtual services on dif-
ferent networking scenarios. Solutions provided seem to accomplish well to their
duty but, in order to verify if they can really fit real-world production use-cases,
a performance evaluation phase is necessary. We decided to focus on the aspects
which are more interesting in a user-oriented service: deployment time, updating
time, latency and throughput.

8.1 Hardware platform

The testing phase has been done on the FROG, which have powerful Cisco UCS
E150S M4 integrated server. Since in the LAN scenario a similar server has been
used, it is evident that conclusions obtained after these performance tests can be
easily extended to that scenario as well. The server has the following hardware
configuration:

• Two Intel Xeon E5-2430L CPU with 6 cores and 12 threads each

• 15MB L3, 250KB L2 and 32KB L1 caches

• Intel Hyper-Threading and Virtualization technologies

• 32GB RAM DDR3 memory

107

8 – Results Validation

Figure 8.1. Scenario used for architecture validation.

8.2 Graph instantiation time
To test the deployment time of a user’s graph and to analyze how much time is
taken from every software component of the solution, many graphs have been de-
ployed, measure the time taken for the deployment in different situations. It is very
important to take these measures because we have built a system which dynamically
deploys users’ graphs when needed, so a long deployment time would mean a long
wait for the user before being able to use required services.

We start to measure the time taken from the four test graphs, in order to dis-
cover the influence on performances of the number of virtual functions and also the
time consumed from the different sub-modules composing our solution. This anal-
ysis could be useful in the future, in an eventual performances optimization phase.
The FORG was evaluated by measuring the amount of time spent to deploy several
kinds of NFFGs on a Cisco router. Being a system, which dynamically instantiates
services, the most important evaluation parameter was the reactivity of this oper-
ation. The time taken to deploy a services chain is the time the user has to wait
before being able to use it. For this purpose we performed various tests as discussed

108

8 – Results Validation

below:

Figure 8.2. Deployment time for different graphs

• Test# 1: In this test, we deployed a graph on the one universal node (the
one on UN_LA) using Cisco router for LAN, 8 flow rules, 4 endpoints and 1
Network Function are used.

• Test# 2: In the second test we deployed a graph on the one universal node
using Cisco router for WAN. 10 flow rules, 5 endpoints and 1 Network Function
are used. The deploy time is more than test because it has more flows.

• Test# 3: We deployed a graph on Global orchestrator, it split the graph and
sent it to the two universal nodes (the left sub-graph on UN_1_C, this node
inside the Cisco router and the right one on UN_2, is in the corporate LAN).we
used 8 flow rules 3 endpoints and 2 Network Functions.

• Test# 4: Is the same of the test #3 except we replaced the second node on the
SDN domain (which in the corporate LAN). We used 6 flow rules, 3 endpoints
and 1 Network Function on the main NFFG for the Global orchestrator. Total
time is the same for the Global orchestrator because once the graph is spilt it
sends that to the one domain and after receiving the ACK then it sends the
other part of the graph to another domain and waits for the ACK. So, global
orchestrator shows the total time of the graph deployment.

All these tests measure the time between when the command is received from
the global orchestrator on its northbound API and when all resources are actually
deployed. Results obtained are coherent with what we expected, at first Global
orchestrator have to prepare data, then infrastructure controllers REST APIs are
called to deploy resources. As usually, REST APIs returns immediately but effective
deployment times are very different; in fact, if Universal Node flows installation is
almost immediate, the OpenFlow domain orchestrator is the slowest because it has
to deal with the actual network controller. The orchestrator returns only when all
NFV operations are finished.

109

8 – Results Validation

8.3 Graph update time
After measuring the time needed to instantiate an entire graph from scratch, it is
interesting to analyze the time needed to update a graph. Of course, it changes
depending on how much and what type of resources have to be updated, so we
established many different tests to verify the most common case

• All tests, a virtual function is substituted by another one.

As usual, start time is taken at the moment the instantiation request is received
and end time is taken when the last resource is correctly deployed. All tests are
done with the deferent graphs of figure 8.3, as usual.

Figure 8.3. Graph Update time for different graphs

8.4 Latency and throughput
The third phase of performance evaluation has been dedicated to analyzing network
performances of our graphs. The test considers completely different situations. The
first test considers from one branch office user to same branch office user or to
different Brach office user. As for the second test, it examines form the branch office
of all users to the internet or to same branch office users. For example, now the
branch office user can use the NFV services can easily reach to the internet. The
third one regards form the user of the UN_2 (which is in the corporate LAN) to the
UN_1_C (that is inside the router) and then goes to the internet. Of course, the
response packet will follow the same path but in the opposite direction. The last
test is identical to the third one, but we only replace UN_2 with the SDN domain.

In the last phase, the throughput is measured with the tool iperf. The user acts
as an iperf client and sends traffic to an iperf server on the internet side, the traffic
is using TCP. We measure the bit rate of transmitting on the client, and the bit
rate of receiving on the server.

The goal of the validation phase was to prove that our solution can be really
used in the real world and to understand if further work on this prototype could be

110

8 – Results Validation

Figure 8.4. Latency and throughput of different test

useful. From this point of view, tests gave encouraging results and underlined which
aspects are critical in order to improve performances. Despite that, the deployment
time for different graphs is intolerable for the user. If we consider that our VMs
are not optimized for performances at all (they can be lightened or even substituted
with other lighter containers, like Dockers), then, from this test, we can immediately
learn a lesson, in a future hypothetical production environment. Results obtained
from the second test are pretty coherent with what we were expecting. The time
consumed by the Global orchestrator is linked to code execution time, database
operations and waiting for ACK from the domains orchestrator and it’s because to
know that our NFV service is correctly deployed. Tests on the update functions
gave a good result for user’s access point change and that alone confirmed its utility.
The benefit of updating could have been greater with more complex graphs.

111

Chapter 9

Conclusions and future works

The thesis work turned out to be more interesting and challenging of what had been
envisioned at the beginning, because of the power of the technologies we used and
the many problems and choices that came out during this way. The limitations and
impossibility to solve easily some uses cases, forced us to think to more various and
creative solutions to keep the project as coherent as possible to the initial idea.

The Global orchestrator corresponds to the first two levels of the orchestration
layer, and consists of a technology dependent part and a technology independent
part; we replace a technology dependent part with southbound API. We have no
more technology dependent part. The technology independent part receives the
user login requests and NFFGs created by the web GUI or service layer, through
the northbound API. It manipulates the requests and gives them to the southbound
API; which sends the resulting NFFGs to the proper infrastructure domains. It is
worth noting that our architecture consists of a single Global orchestrator that sits on
top of multiple infrastructure domains, even implemented with different technologies
e.g. the Universal Node, the OpenStack domain, and the OpenFlow domain. The
REST interface that is available to each component of FROG through an HTTP
server interacts with the web GUI in order to perform all the operations needed to
deploy a new graph, update an existing graph, delete an existing graph, get the list
of already deployed graphs and provide a security layer to authenticate the user.
Previously, each component of the FROG was problematic, having issues because
of the usage of different APIs. One of the main problems was the lake of coherency
and consistency among the different components. This problem was preventing
FROG to perform as a one unit having all its component aware of each other’s and
communicating each other for the end results. It was also causing duplication of
Network Function Forwarding Graphs (FFGs). Another problem with the existing
architecture was that of the deadlock. Different APIs standards and because of that,

112

9 – Conclusions and future works

the poor communication among the components lead to inefficiency and deadlocks.
There was also the security problem for the FROG. By implementing new standard
well defined REST APIs for each of components of the FROG, most of the problems
with the existing architecture have been solved. In the new design, all the APIs
for different components now follow the same usage and design pattern hence the
complexities have been removed by adopting a common pattern. A new security
layer was added to the Global orchestrator which works as security manager by
taking care of the user authentication by using a token-based authentication. This
kind of security solution avoids a continuous exchange of username and password
and hence improves security. The new design is much more efficient and usable as
compared to the older one. The CRUD (create/POST, read/GET, update, delete)
operations can be performed very easily and efficiently on the NFFGs. The different
patterns are listed below.

• POST /NF-FG/: New instantiation of an NFFG on each component of the
FROG;

• PUT /NF-FG/nffg-id: Update an already deployed NFFG on each component
of the FROG;

• GET /NF-FG/: Returns an already deployed NFFGs on each component of
the FROG;

• GET /NF-FG/status/nffg-id: Returns the status of an instantiated NFFG on
each component of the FROG;

• DELETE /NF-FG/nffg-id: Delete an already deployed NFFG on each com-
ponent of the FROG;

• GET /NF-FG/nffg-id: Get a JSON representation of a graph on each compo-
nent of the FROG;

• POST /login/: login; to identify the users who make the requests for further
operations and in the response of user authentication, user will get a token.

After defining the standard pattern of the APIs, we implemented this pattern in
each component of the FROG e.g. the CPE, the OpenStack domain, the Open-
Flow domain, the Global orchestrator, Web GUI, and DataStore. This was a very
challenging task because these components have been developed using different tech-
nologies. We needed to understand all of these components first and then update
the code for our changes. Another big challenge was an integration of changes. As

113

9 – Conclusions and future works

all the components of FROG are interrelated, they are somehow dependent on each
other, so making changes to one component used to disturb many other components
and hence we needed to track all the necessary changes in the other components
and implement them as well.

The newly implemented global orchestrator functionalities are create/POST,
read/GET, update, delete. The FG formalism previously used has been modified in
order to support not covered use cases and a multi-domain instantiation of services.
The main contribution of this work lies in the ability of splitting graphs and the
subsequent capabilities match phase that supports a variety of possible intercon-
nections between the involved domains, starting from the case of domains directly
connected and supporting also domains not directly in contact. This has been pos-
sible thanks to the Big-Switch approach that provides to the global orchestrator
data useful to take adequate decisions in every situation. Also implemented new
functionality when the splitting NFFG is going to update, the Global orchestrator
computes an operation to discover the differences between the two graphs and ac-
cording to the outcome of this operation the graph is updated, preserving unchanged
parts, deleting removed parts and adding new parts. For example, if the updated
graph contains the information for the same domain and also addressed to a different
domain compared to the graph already instantiated. The graph will be split, the
updated sub graph is sent to the same domain orchestrator of the existing graph
using PUT method. The new graph is instantiated on the new domain by means of
the appropriate domain orchestrator, but using POST request and finally, the old
graph is deleted from the old domain through the concerned domain orchestrator.
In the conclusion, under the update splitting graph request there are PUT, POST,
and DELETE operations take place. From the northbound API of GUI, we created
two interfaces one is used by the Global orchestrator and domains orchestrators,
which supports all the CRUD operations for NFFGs. Another interface is used for
the data store which managed the backend of the NFFGs. In order to validate
our prototype, tests have been carried out also on a campus network and this has
confirmed the potentialities of this solution. In particular, the test concerning three
different domains has been encouraging because it has put successfully together this
work and other works that play different roles in the whole architecture but, at the
same time, need to be in close contact to reach an efficient outcome. We tested the
multi-domain orchestration capability involved end users equipments. It was a great
result implemented on the Universal Node domain orchestrator inside a user’s home
gateway and then orchestrating services based on the user’s preferences.

Finally, I worked on the Cisco 2921 Integrated Service Router (which features
computing blades and switched network ports). I started working on this which was

114

9 – Conclusions and future works

a Black Box for me, and then successfully configured the UCS blade and Router.
After configuration of the router, I worked on the installation and moved Universal
node orchestrator into the router. I performed all of these configurations and oper-
ations through the very complex console port of the UCS blade and router. Once
we configured the router we had to deploy the NFV services in order to test and
validate our work. After deployment, the user can use the NFV services, The User
traffic goes through the NFV service and they can reach to the Internet. Hence, we
successfully configured a router which can be used as a default gateway for a small
office or a lab which could manage customized services for real users.

As a plan for the future, we foresee that some component of this system can
be improved in order to fit a production scenario, for example introducing virtual
machines live migration during the graph update. Moreover, we are planning to ex-
tend the compatibility of the domain orchestrator’s, in order to support dynamically
domain orchestrator’s resources exportations and validations and Network Function
to Network Function links in SDN Domain Orchestrator.

115

Bibliography

[1] Computer Networks Group (NetGroup) - Polytechnic University of Turin. url:
http://netgroup.polito.it/.

[2] SDN and OpenFlow World Congress. «Network Functions Virtualization white
paper». In: Oct. 2012. url: http://portal.etsi.org/NFV/NFV_White_
Paper.pdf.

[3] Open Networking Foundation website. url: https://www.opennetworking.
org.

[4] OpenWRT project website. 2015. url: https://openwrt.org/.
[5] OpenvSwitch project website. 2015. url: http://openvswitch.org/.
[6] NFV ETSI Industry Specification. «Network Functions Virtualization; Archi-

tectural framework». In: Oct. 2013. url: http://www.etsi.org/deliver/
etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf.

[7] Ersue Mehmet. ETSI NFV Management and Orchestration - An Overview.
url: http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-
6.pdf.

[8] DoubleDecker public git repository. url: https : / / github . com / Acreo /
DoubleDecker.

[9] UNIFY website. url: https://www.fp7-unify.eu.
[10] Mignini Fabio. «User-oriented Network Service on a Multi-domain Infrastruc-

ture». Politecnico di Torino, Dec. 2014.
[11] OpenConfig working group website. url: http://www.openconfig.net.
[12] FROG4 - Overarching orchestrator submodule - Public git repository. url:

https://github.com/netgroup-polito/frog4-orchestrator/.
[13] Graphical User Interface for the FROG4 orchestration - Public git repository.

url: https://github.com/netgroup-polito/frog4-gui.

116

http://netgroup.polito.it/
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.opennetworking.org
https://www.opennetworking.org
https://openwrt.org/
http://openvswitch.org/
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
https://github.com/Acreo/DoubleDecker
https://github.com/Acreo/DoubleDecker
https://www.fp7-unify.eu
http://www.openconfig.net
https://github.com/netgroup-polito/frog4-orchestrator/
https://github.com/netgroup-polito/frog4-gui

BIBLIOGRAPHY

[14] Datastore - Public git repository. url: https://github.com/netgroup-
polito/frog4-datastore.

[15] Main Public git repository of FROG v.4, a cloud/NFV orchestrator supporting
heterogeneous infrastructure. url: https://github.com/netgroup-polito/
frog4.

[16] SDN Domain Orchestrator Public git repository. url: https://github.com/
netgroup-polito/frog4-sdn-do.

[17] Universally unique identifier wikipedia website. url: https://en.wikipedia.
org/wiki/Universally_unique_identifier.

[18] OpenStack Domain Orchestrator Public git repository. url: https://github.
com/netgroup-polito/frog4-openstack-do/.

[19] Cisco ISR 2921 details and documentation. url: https://www.cisco.com/
c/en/us/products/routers/2921-integrated-services-router-isr/
index.html.

[20] Cisco UCS E-series Getting Started Guide. url: http://www.cisco.com/c/
en/us/td/docs/unified_computing/ucs/e/1-0/gs/guide/b_Getting_
Started_Guide/b_Getting_Started_Guide_chapter_010.html.

[21] Cisco Gigabit Ethernet EHWIC description. url: http://www.cisco.com/
c / en / us / products / collateral / routers / 3900 - series - integrated -
services-routers-isr/data_sheet_c78-612808.html.

[22] Cisco ISR G2 Multi Gigabit Fabric documentation. url: http://www.cisco.
com/c/en/us/td/docs/routers/access/interfaces/software/feature/
guide/mgfcfg.html.

[23] Universal Node Orchestrator public repository. url: https://github.com/
netgroup-polito/un-orchestrator.

117

https://github.com/netgroup-polito/frog4-datastore
https://github.com/netgroup-polito/frog4-datastore
https://github.com/netgroup-polito/frog4
https://github.com/netgroup-polito/frog4
https://github.com/netgroup-polito/frog4-sdn-do
https://github.com/netgroup-polito/frog4-sdn-do
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://github.com/netgroup-polito/frog4-openstack-do/
https://github.com/netgroup-polito/frog4-openstack-do/
https://www.cisco.com/c/en/us/products/routers/2921-integrated-services-router-isr/index.html
https://www.cisco.com/c/en/us/products/routers/2921-integrated-services-router-isr/index.html
https://www.cisco.com/c/en/us/products/routers/2921-integrated-services-router-isr/index.html
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/e/1-0/gs/guide/b_Getting_Started_Guide/b_Getting_Started_Guide_chapter_010.html
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/e/1-0/gs/guide/b_Getting_Started_Guide/b_Getting_Started_Guide_chapter_010.html
http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/e/1-0/gs/guide/b_Getting_Started_Guide/b_Getting_Started_Guide_chapter_010.html
http://www.cisco.com/c/en/us/products/collateral/routers/3900-series-integrated-services-routers-isr/data_sheet_c78-612808.html
http://www.cisco.com/c/en/us/products/collateral/routers/3900-series-integrated-services-routers-isr/data_sheet_c78-612808.html
http://www.cisco.com/c/en/us/products/collateral/routers/3900-series-integrated-services-routers-isr/data_sheet_c78-612808.html
http://www.cisco.com/c/en/us/td/docs/routers/access/interfaces/software/feature/guide/mgfcfg.html
http://www.cisco.com/c/en/us/td/docs/routers/access/interfaces/software/feature/guide/mgfcfg.html
http://www.cisco.com/c/en/us/td/docs/routers/access/interfaces/software/feature/guide/mgfcfg.html
https://github.com/netgroup-polito/un-orchestrator
https://github.com/netgroup-polito/un-orchestrator

	List of Figures
	Introduction
	 Goal of the thesis

	Introducing Flexible SDN/NFV Services on Multi-Domain Networks using Real User
	Current networks conception problems
	The ongoing evolution
	Software Defined Networking
	Network Functions Virtualization
	Technological transition
	Beyond network functions
	Deploying the FROGv4, Orchestrators unaligned APIs and Extended support for multi-domain
	Current domain categorization

	Background
	The international context
	The ETSI proposal
	ETSI goals
	High level framework
	Network services
	NFV architecture
	Templates

	OpenFlow
	Benefits of OpenFlow-Based SDN

	DoubleDecker

	FROG General Architecture
	Software architecture
	Data models
	Service graph
	Forwarding graph
	Infrastructure graph
	Functions Template
	Domain abstraction

	Dynamic functions instantiation

	Extension and validation of the FROG
	FROG4 Orchestrator
	Security Manger
	Users authentication API and token system Implementations

	FROG4 Orchestrator Northbound API
	NFFGs Deployments/Create/POST Request
	NFFGs List/Read/GET Request
	NFFG Update/PUT Request
	NFFGs Deletion Request

	FROG4 Web GUI
	GUI Southbound API for NFFGs and Connection to word FROG4 Orchestrator

	FROG4 Datastore
	Rest API Implementation and communication channel between Datastore and Web GUI

	Implementation of unaligned APIs and extended support for multi-domain
	FROG4 Orchestrator Southbound API
	Authentication and Token system for infrastructure Domains
	NFFG deployments/Create/POST operation on the infrastructure Domains
	NFFG Update/PUT operation on the infrastructure Domains
	NFFG deletion

	SDN Domain Orchestrator REST API for NFFGs
	Open Stack Domain Orchestrator REST API
	Deploying graph on a single domain orchestrator using new APIs
	Deploying graphs on multiple infrastructure domains
	NFFG Splitting

	Deploying services on a real campus network
	Scenario
	Challenges
	Equipment involved
	Implementation
	Universal node
	The network controller
	The compute controller

	Integrating various components
	Deploying graph for LAN connection
	Deploying graph for WAN connection

	Results Validation
	Hardware platform
	Graph instantiation time
	Graph update time
	Latency and throughput

	Conclusions and future works
	References

