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Abstract:  
  

Predicting equivalent permeability in fractured reservoirs requires an analysis of the fractures 

network geometry and apertures. A good understanding of the fracture network implies 

understanding of fracture location, orientation, and connectivity which is the key point to 

fractured reservoir characterization. Transport properties in the fractures strongly depend on 

the aperture size and its distribution, thus the ability to investigate fracture aperture would 

provide extensive amount of information for reservoir characterization and monitoring. This 

work investigates, using numerical modelling, the effect of aperture heterogeneity on the flow 

through a fractured network. A fully coupled hydro-mechanical (HM) finite element model is 

used to reconstruct the behavior of the fracture aperture. The model accounts for the 

mechanical deformation, related to the change in the external stress which cause alteration of 

the fracture aperture. It accounts also for the fluid flow in the fractures and rock matrix. Fracture 

were generated according to a computational model developed by a previous research (Welch et 

al., 2018). This study shows that aperture heterogeneity tends to overestimate the equivalent 

permeability of a fracture network. In order to describe the heterogeneity behavior, a 

permeability ratio, K Homogeneous/ K heterogeneous, was introduced that represents the 

equivalent permeability of the network assuming uniform aperture over the equivalent 

permeability of the same network assuming heterogeneous aperture. Results showed that this 

ratio increases with increasing fracture density, up to a threshold where it starts to decreases 

again, where accounting for aperture heterogeneity became negligible at high density network. 

The reason for this behavior is because the fluid tends to select a path through the most 

transmissive fracture; as more fracture intersect themselves, they offer additional larger 

transmissivity shortcuts and deviations, enhancing thus the equivalent network permeability and 

neglecting the effect of heterogeneity.  
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Chapter 1: Introduction    
  

1.1 Overview  

Modelling naturally fractured reservoirs requires mapping fracture network and estimation of 

their properties such as porosity and permeability (Berkowitz et al., 2002). These tasks are not 

easy to achieve, as the data are mostly limited to well scale measurement, outcrops studies and 

seismic maps. In other words, more information are required.  Thus, for a static modelling, any 

data extracted from these sources about fracture network studies are crucial to initiate the 

modelling preparation in order to be able to achieve accurate assessment of reservoir 

performance. Permeability is considered the most challenging parameter to be analyses.  

Despite the vast work on characterizing fractured rocks studied over the last few decades, 

predicting fluid flow within the host rocks is still a challenging work (Ebigbo et al., 2016 ).   

  

 Naturally fractured reservoir are regarded as heterogeneous porous media often found in 

sandstones, carbonate reservoirs and other formations (Jaafari et al., 2013). The matrix system 

which are mostly the main part of a fractured reservoir have low permeability and high storage 

volume while the fracture system have high permeability but contains very little fluid. Therefore, 

the rock matrix acts as the primary source of hydrocarbon and the fracture serves as the main 

path for fluid flow. Reservoir are recognized as primary ``fractured ´´ if the fractures form an 

interconnected network (Bogdanov et al., 2007). Fractures that are more permeable than host 

rock can act as preferential or at least additional pathways for fluid to flow through the rock 

which is relevant in several areas of earth science and engineering, exploitation of 

hydrocarbons, geothermal reservoirs, and hydraulic fracturing (Saeed et al., 2017). Recently, it 

attracted the attention in connection with the problem of geological isolation of radioactive 

waste (Ji et al., 2011). Natural fracture media displays a strong hydraulic complexity coming 

from the arrangement of the fractures in complex networks, their interaction with the 

environing rock matrix (Dreuzy et al., 2012). Thus, the contribution of flow through fracture to 

total reservoir flow is difficult to analyses, and in predicting the flow through fractured rock, the 

effective permeability is a crucial parameter as it requires understanding the 3-D fracture 
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geometry network and depends on many properties (Jarrahi et al., 2017). The range influence of 

fracture can be attributed to their spatial variations in fracture density, orientation, aperture, 

spacing and conductivity (Li et al., 2018). Fracture network connectivity and fracture aperture 

distribution are the two key factor which dominate flow behavior in fracture network. In fact, 

Fracture connectivity could be used to study most of the fundamental properties of fracture 

network (Sun et al., 2014). It can be evaluated by the percolation theory which is a powerful tool 

for analyzing numerous transport phenomenon of rocks (Ma et al., 2017).  

  

 Fracture aperture is less commonly investigated, and the spatial heterogeneity, ubiquitous in 

geologic formations, strongly affects the flow behavior as small variation in aperture have large 

implication on rock flow and transport properties which might lead to large incertitude in fluid 

flow modeling (Guo et al., 2016). Estimation of aperture is provided through borehole imaging 

tool but with uncertainty because of the absence of accurate calibration (Bisdom et al., 2016). 

Most of the previous fractures model assumed parallel plate fracture or smooth fracture and 

fracture properties such as permeability were easily estimated. However, those model were 

idealized and further improvement were required in order to match the available geological and 

well logging data. One has to investigate whether large aperture, long fracture dominate 

performance of compared to short, small aperture. The aperture of a  rock fracture can be 

statistically represented by a spatially auto correlated random field as The apertures of a 

fracture had been found to typically follow under a given state of stress the gamma distribution 

or the log-normal distribution or a truncated Gaussian distribution (Guo et al., 2016). The ability 

to understand and predict the reservoir response became essential part of a good sustainable 

exploitation. Recently, with the increase and the advance in measuring computer power and 

equipment, the oil and gas as well as the geothermal industries are presented with some of 

today most complex data science problem (Roland et al., 2018). Thus, statistical methods are 

becoming crucial tools for a diagnosing analysis in the exploration, production and delivery 

phases. There have been improvement over the years in: representation of fluids in the 

reservoir, modelling of fluid flow between fractures and matrix blocks, modelling of fluid flow 

between matrix blocks in adjacent computational grid blocks, and discretization of the matrix 

block (Roland et al., 2018). Different approaches were proposed to characterize naturally 

fractured reservoirs. The discrete fracture network (DFN) model fracture for flow analysis 

because of its simplicity to implement and it allows for an improved integration of the geological 
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data into the flow models (Dreuzy et al., 2012). DFN simulate fractured media by modeling each 

fracture individually. Therefore, Flow properties from large geological and geophysical data 

present on fracture media can be extracted. The DFN uses the assumption that the rock matrix 

is extremely low and can be neglected. Due to computing limitation, this assumption was 

acceptable and matrix permeability could be ignored but with the recent advance in earth 

science in the past few years, accuracy and reliability in predicting overall permeability became 

more important and matrix permeability cannot be neglected. In our model we will refer to it as 

discrete fracture and matrix (DFM) in which matrix blocks are modeled with permeable 

boundaries and the fracture system is modeled with DFN. Other models to represent matrix 

fracture include the dual continuum method, double and multi-porosity and the effective 

continuum model   

  

1.2 Background on percolation theory  

The percolation theory, used to describe the connectivity and conductivity, is a powerful 

mathematical tool to analyses various phenomena in disorder media, especially in controlling fluid 

transport in complex systems (Berkowitz et al., 2002).  For example, Long and Billaux observed 

that, due to low fracture connectivity at afield site in France, more or less 0.1% of fractures 

contribute to the overall fluid flow. In other words, most of fractures can be removed without 

significantly affecting the effective permeability of the network. This parameter, however, is not 

easy to quantify. For this reason, one has to defined what is a good definition of a ``fractured´’ 

network. Berkowitz et al. (2002) reported that even domains that appear to be extremely 

fractured may not be in fact well connected. In a fractured rock mass, some fractures are isolated 

while others intersect. This depends on the fracture density (low, medium, high). As the fracture 

density becomes higher, many connect until a large cluster form. When this cluster intersects all 

boundaries of the simulated area, a continuous percolation forms and the point at which the 

cluster connects is defined as the threshold density. Thus, a connected network is above the 

percolation threshold. Dreuzy et al. (2012) stated that below the percolation threshold, the 

hydraulic properties are neither determined by the network structure nor the fracture internal 

characteristiques but rather by the matrix properties. They believes dense networks are those 

with a fracture density above the percolation threshold and sparse as the one below. Contrary, 

Berkowitz supposes that dense network fracture might not hydraulically connected, as the 
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network can be near the percolation theory. This difference in opinion is due to data uncertainty. 

Masihi et al. (2010) studied the percolation threshold of fracture density with different length 

distributions and system sizes. He found out that the percolation threshold for a fracture network 

with two perpendicular fractures sets is lower than a fracture model with fractures that are 

randomly oriented. Berkowiz found consistency with their case. The power law relationship 

derived in percolation theory normally takes the form of A proportional to (N-Nc)–x where A is the 

geometrical or physical quantity ( such as hydraulic conductivity), x is the exponent specific to 

quantity A, N  the total number of fracture and Nc the critical number of fractures at threshold. 

Power law of this forms have found to characterize geometrical characteristic and flow properties 

of fracture networks, such as the density of the fracture to ensure network connectivity (Jaafari 

et al., 2013) . The percolation Threshold is not our focus in this paper as we wanted to investigate 

on less studied problem related to the aperture heterogeneity of the fracture network.   

 

1.3 Matrix Permeability:  

Matrix permeability is becoming important in fractured reservoir modelling. The effect of 

fracture decrease with increasing matrix permeability (Vik et al., 2018). Bisdom et al. (2016) 

presented a model to investigate the contribution of fracture flow on equivalent permeability as 

a function of aperture definitions and matrix permeability by comparing the impact of 3 

different aperture models on the equivalent permeability. In their research,  using the power 

law aperture frequency scaling , fracture increase permeability up to 60 % and their impact 

decrease when the matrix increase up to 1 Darcy, while using the linear length scaling method 

the impact of fracture on does not change due to the high contrast between fracture and matrix 

( equivalent permeability 4 times the matrix one). Finally, using the Barton- Bandis distribution, 

the impact of fractures is low for a 1000 Darcy mD matrix permeability. These differences are 

due to the fraction of the critically stressed fracture which has strong effect on the intra-fracture 

connectivity. Matthai et al. (2004) similarly studied the influence of fracture on the matrix’s one 

and found that when fracture over matrix’s permeability KF/KM less than 102 the impact of 

fracture is negligible. When the ratio exceed 103-104, fractures strongly perturbate the flow and 

when once it reached 105-106 fractures carries all the flow.  

Namdari et al. (2016) compare DFN and DFM and found even for low aperture 17 % higher 

permeability was resulted when accounting for matrix permeability.  
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1.4. Aperture 

The first approximation of modelling aperture was the parallel plate, and early modeling showed 

deviation from the model of identical mean aperture, as deviation increase fracture closure and 

results in heterogeneity which induce flow channeling (Guo et al., 2016) .Dreuzy et al. (2012) 

refers that the spatially correlated fluctuation of aperture permit the existence of either 

correlated large aperture channels and low aperture barriers which impact the permeability. 

Numerical simulation shows that aperture can ease the flow through the fracture and make it 

more permeable than the parallel plate assumption or hinder the flow and establish bottleneck. 

They considered both heterogeneity in fracture scale and network scale with static loading and 

isotropic stresses. In their paper, they introduce the critical closure ratio closure σ/am and 

believe that it is the key parameter that controls the heterogeneity, with σ the standard 

deviation of the truncated distribution and am the mechanical aperture. At Fracture scale, 

heterogeneity aggravate the flow because of the higher possibility of generation obstacles and 

for the network scale it can either increase for long and dense networks or decrease for short 

and sparse ‘one. The role of the correlation length, which represent a measure in length over 

which the fracture aperture value at one location is correlated with its neighboring points has 

been little researched. Guao et al. (2016) found that when the correlation length is 1/5 lower 

than the well distance, a heterogeneous fracture behave as a homogeneous one. They studied 

the effect of spatial heterogeneity in a single fracture on flow during heat production from EGS 

using the standard deviation and correlation length. Their results showed also that the effect of 

varying the standard deviation is negligible for short correlation length as heterogeneity will not 

have any impact. Also, the initial aperture field with greater standard deviation enables more 

distinct preferential paths, and it is more likely to develop a dominant flow channel rather than 

multiple preferential paths.  

Gong et al. (2017) analyze how broad the aperture distribution should be that a well-connected 

fracture can exhibit a sparse critical sub network with the same permeability. He founds that the 

fracture network with aperture distribution that follows power law or log normal, if the network 

is well connected most of the fracture can be removed without affecting the equivalent 

permeability and when the standard deviation is decreases, fewer can be removed without 

reducing the equivalent permeability. Bisdom et al . (2016) analyze the impact of 3 different 

methods to predict kinematic aperture and 2 critical stress criteria and found that linear length 

aperture scaling predicts the largest kinematic aperture and the Barton Bandis predicts that 80 
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% of the fracture are critically stressed while coulomb 50 % as coulomb does not incorporate 

length and spacing into the critical stress analysis.  Another study related to aperture shrinkage 

was done by Canbolat et al. (2018) showed decrease in fracture aperture after the injection of 

polymer gel conformance to improve the recovery. Zuang et al. (2013) had studied the effect of 

aperture distribution for two phase flow occurring in rough walled rock fractured and found that 

for fractures with high spatial correlation continuous flow paths can be easily form with smaller 

aperture for wetting phase or with larger aperture for non-wetting phase.   

  

1.5. Coupled T-H-M  

Experimental and theoretical studies has showed the last few years progress related to the 

effect of coupling Temperature, Hydrologic flow, and mechanical deformation (THM) in 

fractured rock. THM processes are important in several areas including   geothermal energy 

extraction, gas production from coal beds, seismicity induced by fluid injection, and injection 

pressure needed for stimulation deep petroleum reservoir with water cold than in situ fluids 

(Cladouhous et al., 2010). Up to date the coupling of THM processes is a main challenge to the 

geoscience industry as those processes have different characteristic spatial and time scales. The 

mechanical response in a rock can propagate through the rock mass with the speed of elastic 

waves and the presence of fracture control the deformability. Thus, the mechanical effects have 

short time scale. Thermal effect on the other hand have long spatial and time scale. The 

volumetric flow rate for a fracture is proportional to the pressure gradient and the cube of the 

fracture aperture which is derived from the general navier stock equation for flow of a liquid in 2 

parallel plates (Sarkar et al., 2004). Hence variation in fracture aperture due to changes in the 

normal or shear stresses acting on the fracture surface as a result of THM processes have a big 

impact on the fluid flow and heat transport in a fracture. Saeed et al. (2018) presented a couple 

THM model for deformable fractured geothermal reservoir and their results showed The fluid 

exchange heat with the rock. .matrix which lead to cooling down of the matrix and leads to 

deformation. This result in reduction of contact stress around fracture surfaces and increase in 

fracture aperture. Fluid rock interaction result in permeability evolutions in the fracture network 

and create new engineered fracture. Local aperture variation may play a strong role in reservoir 

thermal performance. When large faults are the main flow for fluid conduits, the modelling of 

fracture opening and closing are very crucial for predicting long term evolution of geothermal 

reservoir (Berkowitz et al., 2002). Cooling and overpressure resulted in reduction of the effective 
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normal stress and increase in fracture aperture. Fracture aperture increased near the injection 

well due to the contraction of solid and the induced effective stress were solid. Thermal 

contraction of the rock cause reduction of vertical compressive stress on the fracture wall and 

opening of the fracture. Fox et al (2015) investigated the effect of spatial aperture variation on 

the thermal performance of a discrete fractured geothermal reservoir and found that the 

degradation of thermal performance due to aperture variation was largest when the bore 

spacing was a larger fraction of the fracture diameter. Their results also showed that standard 

deviation of the apertures had the largest influence on thermal performance while the spatial 

correlation played a secondary role. Pandey et al (2016) believe that increase in rock matrix 

permeability will cause leakage of injected water and increase in matrix contraction due to 

cooling and thus aperture growth. Guo et al. (2016) also suggested that larger correlation 

lengths led to flow channelling when aperture alteration was induced by the thermal 

contraction of the rock matrix during heat extraction. Finally, Heda et al. (2018) found that 

lowering the young modulus will lead to a reduction in the stresses that are developed during 

the contraction of the matrix and lower fracture aperture.  
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Chapter 2: Methodology  
  

A fully coupled hydro-mechanical model is utilized to investigate the effect of aperture 

heterogeneity in a fractured reservoir. A 1-D permeability test is carried on a model from which 

the output flow is simulated. Then using Darcy’s equation the equivalent permeability of the 

network is calculated. The model consists of the mechanical deformation due to the change in 

the external stress,  flow through fracture and flow in the matrix which are calculated using 

darcy;s law. The mechanical model is elastic, the flow through fracture is laminar, and. The 

exchange of the fluid between fracture and rock matrix (leakoff) is ignored.  

  

2.1 Computational Model  

The model is developed by Salimzadeh et al. (2017) (2018), and it was built in Complex Systems 

Modelling Platform (CSMP) (Matthai et al., 2001). It yield the output flow from which the 

permeability is calculated using Darcy’s equation. The linear algebraic equations are solved using 

SAMG which is an algebraic multigrid method for systems. The fractures are represented as 2-D 

surfaces in a 3-D domain. Quadratic triangles and tetrahydral are used to discretise the domain 

spatially using Galerkin finite element method.  The fluid within the fracture applies hydraulic 

loading on the fracture surfaces so the fracture aperture, af , is given by the differential 

displacement between the two faces of the fracture, af  = (u+ − u−).nc, where u+ and u− are the 

displacements of the two opposing faces of the fracture and nc is the outward unit normal to 

the fracture wall (on both sides of the fracture).  

 

  

  

2.3 Discrete Fracture Network:  

A ‘‘discrete fracture network” (DFN) refers to a computational model that represents the 

geometrical properties of each individual fracture explicitly such as orientation, size, position 

aperture and shape, and the topological relationships between each fractures and their sets. 

Unlike the conventional definition of DFNs that corresponds to stochastic fracture networks, the 
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term DFN here represents a much broader concept of any explicit fracture network model. 

Geological mapping is used to generate DFN and geomechanical simulation to represent different 

types of rock fractures including joints, faults, veins … In this study, the fracture are generated 

using an algorithm ( DFN generator) which calculate key parameters of a fracture population such 

as density, size distribution and connectivity. We study the effect of changing the following 

parameters on the equivalent permeability:   

1. Subcritical Fracture Propagation index b  

2. Size Distribution Of Initial Microfracture c  

3. Output Intermediate Stage DFNs  
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Chapter 3: Results  
 

 The computational domain used for the HM model is 3 km in x direction, 3 km in y direction and 

0.1 km in z direction. The fractures are modelled as a rectangular surface. General values for 

rock and fluid properties used are listed in Table 1.   

 

Parameters  Model  Unit  

Density (𝝆𝒇)  1000  kg/m3  

Viscosity (𝝁)  0.001  Pa.s  

Heat capacity (𝑪𝒇)  850  J/kg ℃  

Thermal conductivity (𝛌𝐟)  3.5 W/m ℃  

Thermal expansion (𝜷𝒇)  0.002  1/ ℃  

Compressibility (𝒄𝒇)  5.11 × 10−10  Pa−1  

Young’s modulus (E)  14.e9 Pa  

Poisson ratio (𝒗)  0.37 -  

Porosity (𝝓)  i) 0.001   -  

Permeability (𝒌𝒎)  1.e-15  m2  

Biot coefficient (𝜶)  1 -  

Initial contact aperture   - 1.e-3 m 

∆𝑃 1 Mpa 

Average aperture 1 mm 

Table 1: Rock and Fluid Properties 

 

The output flow refers to the fluid flow in the matrix and in the fracture: 

Qt = Qm + Qt      with 

Qm = 
𝐾𝑚𝐴∆𝑃

𝜇𝐿
   and  Qf=

𝐾𝑓𝐴∆𝑃

𝜇𝐿
  

Fracture permeability is function of the aperture and is calculated by Kf= a3/12 

 

3.1 Fracture Generation  

This section shows the results of varying some parameters in the fracture generator in order to able to 

create different fracture geometries that will be imported into the model. The first parameter we 

modify is the subcritical index b which is classify into 3 categories: 
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a) b < 5 : -Subcritical fracture propagation Population short fracture broad range of size 

distribution   

b) b > 15: -Critical  fracture propagation fracture population  comprising a relatively small 

number of much longer fractures   

c) 5 > b < 15 : Intermediate fracture propagation   

 

  

 
Figure 1: Fractures representation according to the propagation index chosen (a, b and c)  

  

For fracture abundance measure, we use the P32 parameter to characterize the fracture density 

which represents the area of the fractures over the volume of the rock mass. 

  

  

P32 = 
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑜𝑐𝑘 𝑚𝑎𝑠𝑠
 

  

 

 

  
b  P32 (m ) -

1 
K 

(mD)  

 5 0.051 1400 

10 0.029 815 

20 0.00028 12 

Table 2: Permeability and density values for each 3 different values of b  
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By varying this parameter, we were able to create different sets of fracture from low density to 

high density network. Also, as the number of fracture increases, the permeability increases 

consistently.  

 The second parameter that was modified is the size Distribution of Initial Microfracture c: By 

increasing this parameter, the number of small fracture increases,. We compare the results with 

a fracture network of same density (P32= 0.029) but with longer fractures (figure 2).  

   

 

  

 
Figure 2: Pressure propagation for 2 sets of fractures with same density and 2 different c values  

  

This shows that long fractures affects strongly the equivalent permeability even for same density 

network. It is more important to have a connected fracture network then to have high number 

of small fractures.  
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Figure 3: 8 different stages of a fracture network generation  

  

  

  

 

  

 
Figure 5: Permeability variation in with respect to the density of each stage  

 

Figure  4 :   Permeability value for each of the 8 stages   
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The fracture generator program was used in this study to create fractures with different orientation                          

and intermediate stage to be able to characterize the effect of heterogeneity over low,                                    

intermediate and high density network  

 

3.2 Aperture Heterogeneity:  
  

In DFN modeling, rock fractures are described by smooth parallel plates. However, in nature, 

rock fractures have heterogeneous aperture distributions due to the rough surfaces. The 

apertures of a fracture had been found to typically follow under a given state of stress the 

gamma distribution or the log-normal distribution or a truncated Gaussian distribution. In our 

study we used the lognormal distribution (Figure 8).   

                                                                                                                                                                                               

 
Figure 6: fracture considering uniform aperture (a) and non-uniform (b)  

  

  

In order to investigate the effect of heterogeneity on the fracture network, we introduced the 

ratio   

 
  

Which represents the equivalent permeability of the system assuming uniform aperture (K 

homogeneous) over the permeability of the system assuming non uniform aperture (K 

heterogeneous)  
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Figure 7: variation of heterogeneity ratio with respect to the equivalent permeability assuming uniform aperture  

 

However, Every time a simulation is ran, it creates a new distribution which is slightly different 

from the previous for same standard deviation (figure 7). For this reason, many realization 

should be done for each simulation. In this work, we used 3 realization for each case.  

  

 
Figure 8 3 different realizations for same fracture set and standard deviation  

  

Realization   Permeability 

(mD)  

1  271  

2  237  

3  216  

Table 3: Permeability value for the 3 different realization 

Using the algorism discussed in section 2, four different sets of fracture were created with 

different geometries and distribution (figure 9).  
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Figure 9: 4 sets of fracture with different orientation and fracture lengths  

  

For each set, 8 different intermediate stages are created. The values for standard deviation we 

studied are 1, 2 and 5 mm. This will lead to 4 (sets)* 8 (stages) *3 (realization) * 3 (SD) = 288 and 

(8*4) for the uniform aperture which brings the total number of simulations to 320. This covers 

fractured networks ranging from low to high equivalent permeability. The mean aperture is 

1mm, and we considered 3 different standard deviations 1, 2 and 5 mm. Apertures can varies 

from 0.1 mm till 10 mmm 

 

 
Table 4 apertures parameters and values 
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Table 5: Results for set 1 for a standard deviation 1 mm and 3 realizations 

 

 

 

 

Stages 
 

K 

Homogeneous 

(mD) 

 

K 

Heterogeneous 

(mD) 
1 

 

K 

Heterogeneous 

(mD) 
2 

 

K 

Heterogeneous 

(mD) 
3 

 

 

 Average 
(mD) 

K 

homogeneous/ 

K 

Heterogeneous  
(SD=2) 

1 
2.05658 2.03212 2.02566 2.0285 2.02876 1.013713 

2 
45.8455 18.2023 18.6225 15.8596 17.56147 2.610574 

3 
193.787 74.9728 78.5536 70.5307 74.6857 2.5947 

4 
388.059 202.014 131.048 143.413 158.825 2.443312 

5 
480.916 236.804 233.626 159.747 210.059 2.289433 

6 
643.696 450.45 367.165 331.571 383.062 1.680396 
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7 
818.824 630.459 586.585 760.363 659.1357 1.242269 

8 
1014.06 983.229 923.936 896.615 934.5933 1.085028 

  
Table 6: Results for set 1 for a standard deviation 2 mm and 3 realizations  

  

 
5  

480.916  168.788  288.308  277.425  244.8403  1.964203  

6  
643.696  358.481  308.687  384.647  350.605  1.835958  

7  
818.824  609.027  485.14  492.155  528.774  1.548533  

8  
1014.06  819.354  808.432  804.997  810.9277  1.250494  

Table 7: Results for set 1 for a standard deviation 5 mm and 3 realizations 

  

  

  

  

We plot the results of set 1 in a graph and we obtain the following graph:   
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Figure 10: Heterogeneity ratio with respect to the equivalent permeability for set 1  

  

  

We repeat the calculations for the 3 other sets:  

 

 

Figure 11: Heterogeneity ratio with respect to the equivalent permeability for set 2 
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Figure 12: Heterogeneity ratio with respect to the equivalent permeability for set 3 

 

 

 

Figure 13: Heterogeneity ratio with respect to the equivalent permeability for set 4  
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 Figure 14: Heterogeneity ratio with respect to the equivalent permeability for set 1  

 

  

 

3.2.1 Interpretation  
At low fracture density, the effect heterogeneity is negligible for the 3 standard deviation as the 

permeability of the system depends only on the matrix’s one. As the contribution of the fracture 

increased, the equivalent permeability of the system depends on the fracture’s and the effect of 

heterogeneity start to increase up to a threshold where it starts to decrease again to become 

almost negligible at high fracture network. The effect of heterogeneity depends strongly on the 

standard deviation as it increase respectively where for SD=5 it has the highest effect. Higher 

standard deviation means higher variation the aperture which will lead to a lower equivalent 

permeability.  
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3.2.2 Discussion  
Aperture heterogeneities below the network threshold tend to decrease the permeability 

medium and above this threshold, it tends to increase the permeability (ratio is decreasing, 

heterogeneous permeability increasing). The reason for this behavior is that it allows the fluid to 

select a path through the most transmissive fracture as more fractures intersect between 

themselves and offer additional larger transmissivity shortcuts and deviations, therefore 

enhancing the equivalent network permeability. Increasing the fracture density means 

increasing the number of alternative paths and progressively removing the limitations induced 

by smaller fracture apertures by allowing them to be bypassed. Below the threshold, the few 

number of fractures display a large number of bottle necks, which are expected to be highly 

sensitive to local apertures within fracture planes. A small reduction of the aperture around 

these bottle necks will strongly reduce the full network permeability, while an enhancement of 

the permeability (increase of the aperture) of the same zones will only slightly increase the 

network permeability.  

However, it should be noted that 3 realization are not enough in order to fully characterize the 

behavior of heterogeneity at specific permeability, In order to predict the exact effect of 

heterogeneity at a specific permeability, many sets should be created until the sum of the ratio 

over the number of sets becomes constant.  

  

  

 

Figure 15: Calculated and predicted heterogeneity ratio for set 1 for 380 mD  
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3.3 Effect Of Matrix Permeability   

In this section, we repeat the simulations of case 1 but with a matrix permeability to 100 mD.  

Results are shown in the table below:   

  

 

 

Table 8: Comparison of the equivalent permeability by increasing Km to 100 mD  

Stage Km=1 mD Km=100  
mD 

Change (%) 

1  2.056  154.57  98  

2  45.84  284.68  84  

3  193.79  433.77  55  

4  388.06  597.98  36  

5  480.92  733  34  

6  643.696  915.151  35  

7  818.824  1120.21  26  

8  1014.06  1390.03  27  
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Figure 16: Comparison between for heterogeneity results using km=1 mD and km= 100 mD  

  

  

The effect of heterogeneity decrease when matrix permeability increase and is independent on 

standard deviation and is almost negligible for the different fracture densities. The effect of 

increasing matrix permeability is critical at low fracture densities as the contribution of the 

fracture to the equivalent permeability is small.  

  

  

3.4 Effect Of Mechanics:  
   
Fluid rock interaction result in permeability evolutions in the fracture network and create new 

fracture. Changes in external stress could alter the fracture dimension, by changing the global or 
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local aperture height. For example, compression between the two rock surfaces tends to reduce 

the aperture height and could even close some apertures when two surfaces are in contact. As a 

result, changes in fracture dimension are not just altering the width of flow paths, but could also 

provide extra or eliminate pre-existing flow paths. Kang et al. [2016] showed the emergence of 

preferential flow paths and anomalous transport behavior across a stressed applied fracture. In 

this section we apply a 1.5 Mpa stress our model, so the aperture of the aperture will be 

function of the normal contact stress according to barton bandis.  

  

  

  
 

 where, 𝑎𝑓𝑜 = 0.0012m is the fracture aperture at zero or a minimal effective stress, 𝑎𝑓𝑐 is the aperture 

at the current effective stress 𝜎𝑛
′ while a = 1.6 × 10−10 and b = 1.333 × 10−7 are model parameters. As 

the effective stress is computed from the contact traction in the mechanical model, it couples the 

mechanical deformation of the fracture with the fluid flow through the fracture.   

 

 We repeat the simulations for set 1 by accounting for mechanical deformation and the results 

are shown in figure 18. 

  

  

 
Figure 17 Heterogeneity ratio with respect to the equivalent permeability (with mechanics)  
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Then, we plot the same graph the results for set 1 for the standard deviation of 5 mm for the 2 

cases: with mechanics and without mechanics (figure 18) 

  

 
Figure 18: Heterogeneity ratio with respect of equivalent permeability for set 1 for SD=5 mm  

  

  

The contact stress apply to the model results in to contraction of the matrix and lowering of the 

fracture aperture. The behavior of the curve is the same as the one without mechanics, however 

it will leads to a decrease in the equivalent permeability as the apertures of the fractures are 

reduced. At high fracture densities, the addition of mechanics did not affect the ratio of 

heterogeneity ratio because as previously stated, this ratio decrease at high fracture densities.  

As the compression magnitude increases, the effective permeability decreases. This result was 

expected because as the increased compression narrowed the apertures, providing smaller 

cross-section area for fluid to flow. In particular, it was observed that fractures that have high 

effective permeability at reference compression state are less affected by compression.  
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3.4.1 Matrix Pressure:   
  

 
Figure 19:  Pressure propagation in the model for a (without mechanics) and b (with mechanics)  

  

The decrease in the pressure propagation in case b  is due to aperture reduction which will most 

likely generates obstacles or aperture closures thus the flow will propagate over higher interval 

in a as fractures are more connected.  

  
  
  

  

  

 

 

 

 
 

 

 

 



28  

  

Chapter 4: Conclusion  
  

In this study, a coupled hydro-mechanical model was developed to investigate the effect of 

aperture heterogeneity on the equivalent permeability in a fractured network. The model 

account for mechanical deformation, fluid flow in the fracture and fluid flow in the matrix. 

Fractures ranging from low to high density medium were generated and imported to the model  

were a 1-D permeability test were carried out. The model is firstly tested with a uniform 

aperture in the fractures, i.e. assuming the fractures considered as parallel plates. In the second 

step the apertures were distributed according to the log normal distribution and the 

heterogeneity was measured as the ratio between the permeability between the two cases. The 

effect of increasing matrix permeability was also analyzed and finally the mechanical 

deformation was taken into consideration by applying a 1.5 Mpa contact stress on the model. 

Results showed that neglecting aperture heterogeneity tends to overestimate the equivalent 

permeability. Also, Fracture density strongly affects the change in heterogeneity ratio, as this 

ratio increase with network density up to a threshold where it starts to decrease until it 

becomes negligible. The standard deviation in the aperture plays also a fundamental role in the 

heterogeneity as the higher the standard deviation, the higher the effect of heterogeneity. The 

simulations for each case were repeated three times in order to further validate the results.  

The effect of heterogeneity decreases when matrix permeability increases as less fractures 

contribute to the total flow. Finally including mechanics resulted aperture closure in some parts 

due to the stress applied on the model which will lead to flow path reduction and thus making 

the fracture network less connected. Therefore, the equivalent permeability will be lower.   

The next step should be in determining the threshold at which the ratio of heterogeneity start to 

decrease, thus the requirement for more simulations for each case, and finally taking into 

account the heat transfer flow in the fracture and in the matrix to check the effect of the 

thermal stress on the heterogeneity in a fractured network.  

  

  

  

‘  
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