
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Thesis

Validation and Test of SoC
Devices

Supervisors
Matteo Sonza Reorda
Edgar Ernesto Sanchez Sanchez

Candidate
Alessandro Ciraci

December 2018

Contents

List of Figures 3

List of Tables 4

1 Introduction 5

2 LEON3 System-on-Chip 9
2.1 LEON3 Architecture . 9
2.2 LEON3 Processor Core . 10
2.3 LEON3 Peripherals . 12

2.3.1 LEON3 UART Peripheral (APBUART) 13
2.4 LEON3 Software and OS support 14
2.5 Alternative systems . 15

2.5.1 OpenRISC SoCs . 15
2.5.2 PULPino . 16
2.5.3 Ogg-on-a-Chip Project . 17

3 Software development 19
3.1 Development tools and environments 19

3.1.1 Tools . 19
3.1.2 Software environment . 21

3.2 Hardware environment setup . 22
3.2.1 Makefile and scripting . 23
3.2.2 Simulation scripts and commands 25
3.2.3 UART Loopback module . 27
3.2.4 APBUART peripheral synthesis 28

3.3 Coverage analysis . 31
3.4 Software applications . 33

3.4.1 Starting point - “Hello World” 34
3.4.2 Transmitter subsystem test 35
3.4.3 Receiver subsystem test . 36
3.4.4 Additional improvements 37

1

4 Results 41
4.1 hello_world application results . 41
4.2 write_compact application results 42
4.3 write_exhaustive application results 43
4.4 read_write application results . 44
4.5 error_injection application results 45

5 Conclusion 47

Appendices 49
A LEON 3 Configuration . 49
B Difference between sequential elements 54

Acronyms 55

Bibliography 57

2

List of Figures

1.1 Propagation of a defect to a misbehavior 6
1.2 Example of stuck-at fault (stuck-at-1) and its propagation 6

2.1 Architecture diagram of the LEON 3 System-on-Chip 10
2.2 Block diagram of the LEON 3 Processor Core 11
2.3 Graphical configuration tool for the LEON3 processor 12
2.4 Block diagram of the LEON 3 APBUART peripheral 13
2.5 Architecture diagram of the PULPino SoC 17
2.6 Architecture diagram of the Ogg-on-a-Chip SoC 18

3.1 Directory structure of the GRLIB library 23

3

List of Tables

2.1 LEON 3 APBUART register map 14

4.1 Coverage metrics for APBUART2 - RTL simulation 41
4.2 Coverage metrics for APBUART2 - Netlist simulation 41
4.3 Coverage metrics for the hello_world test - RTL simulation 42
4.4 Coverage metrics for the hello_world test - Netlist simulation . . . 42
4.5 Simulation and execution time of the hello_world test 42
4.6 Coverage metrics for the write_compact test - RTL simulation . . 43
4.7 Coverage metrics for the write_compact test - Netlist simulation . 43
4.8 Simulation and execution time of the write_compact test 43
4.9 Coverage metrics for the write_exhaustive test - RTL simulation 44
4.10 Coverage metrics for the write_exhaustive test - Netlist simulation 44
4.11 Simulation and execution time of the write_exhaustive test . . . 44
4.12 Coverage metrics for the read_write test - RTL simulation 45
4.13 Coverage metrics for the read_write test - Netlist simulation . . . 45
4.14 Simulation and execution time of the read_write test 45
4.15 Coverage metrics for the error_injection test - RTL simulation . 46
4.16 Coverage metrics for the error_injection test - Netlist simulation 46
4.17 Simulation and execution time of the error_injection test 46

4

1 Introduction

Nowadays, integrated circuits (ICs) are becoming more and more complex, in-
tegrating many functions on a single silicon chip, reaching transistor counts up to
tens of billions. As this complexity grows, the verification and testing steps become
even more relevant in the IC development flow. These two phases have the impor-
tant role of detecting bugs and defects in the design and in this Master Thesis, we
will explore the feasibility of the use of a software application as a verification and
testing suite for a System-on-Chip, focusing in particular on the verification and
testing of an I/O peripheral of the SoC.

Verification is aimed at verifying that the implemented design respects its spec-
ifications and accomplishes the desired task; it is hence aimed at detecting design
flaws and bugs injected during development.
Many verification techniques have been developed during the years, such as Univer-
sal Verification Methodology (UVM), formal verification and, in its simplest form,
simulation. All these techniques rely on configuring the Device Under Test, then
sending stimuli to the DUT and comparing the response with a known good vector.
In this Master Thesis, we will focus on simulation as a verification technique, as
it is the easiest to set up and run. To measure the goodness of a simulation as
validation method, a metric is needed. This metric is called coverage and can be
divided into few subgroups:

• Statement coverage, that is the percentage of statements (lines of HDL
code) that have been covered by the stimuli.

• Branch coverage, that is the percentage of branches from if and case state-
ments that have been explored during the simulation.

• Expression coverage, derived from evaluations of 1-bit valued expressions
in the right-hand-side of assignments.

• Condition coverage, derived from decisions followed through if and ternary
(<condition> ? <true> : <false>) statements.

• FSM (Finite State Machine) coverage, divided in three subcategories:

– State coverage, that is the proportion of the number of FSM states reached
in simulation.

5

1 – Introduction

– Transition coverage, that is the proportion of the number of the FSM’s
allowed transitions followed in simulation.

• Toggle coverage, that is the percentage of toggles (transition from high to low
and viceversa) that have happened on toggle nodes (wires and input/output
ports of modules).

On the other hand, testing is performed during the manufacturing process and
ensures that the final product is not affected by hardware defects, detecting any
production flaw.
Testing relies on the generation of patterns that can excite and propagate defects
in such a way that those defects manifest themselves as faults or misbehaviors
on an output of the device. Nowadays, to increase test efficiency and reduce test
time, many techniques have been introduced and they can all be grouped under the
definition of Design-for-Testability; this techniques introduce dedicated hardware
with the sole task of testing.
This does not change, though, the fact that patterns are needed in order to test a
device, and to measure the goodness of these patterns, the fault coverage metric
is used. This is calculated as the percentage of faults detected by the test over the
total number of faults.

Defect Error Misbehavior
Activation Propagation

Figure 1.1: Propagation of a defect to a misbehavior

1

1

0

0

1

0/1

stuck-at-1

0/1

Expected value

Faulty respones

Figure 1.2: Example of stuck-at fault (stuck-at-1) and its propagation

As previously stated, the aim of this Master Thesis is to find if a software ap-
plication can be used for both verification and testing of a SoC. This application

6

1 – Introduction

should be a simple mock-up of a real application, performing some input/output
operations, elaborating some data and outputting the obtained results.

Document organization This document is divided into five chapters. The first
one (this chapter) is a brief description of the project itself, with a general introduc-
tion to the verification and test steps in IC development. In the second chapter, the
LEON3 SoC is described, including the core architecture and its peripherals, with
a closer focus on the UART. It also contains a short list of other SoC candidates
that were analyzed at the beginning of this project. The third chapter describes the
software development steps, starting from the initial environments and their setup,
then describing the steps followed during the development stage of this project. In
the fourth chapter, the results are presented, comparing them with one another
and explaining the reasons behind their differences. Finally, the last chapter is a
conclusion that summarizes the entire project and its results and leaves some notes
for future works.

7

8

2 LEON3 System-on-Chip

The first step for this Master Thesis work is the selection of a System-on-Chip
on which to perform the coverage analysis. A System-on-Chip (SoC) is a highly
integrated device, that includes one or more computing cores (such as CPUs and/or
GPUs) and peripherals like timers, communication interfaces (Ethernet, UART,
CAN, SPI, I2C), input/output ports (GPIO) and even analog devices, such as
Digital to Analog Converter (DAC) or Analog to Digital Converter (ADC).

The requisites needed for a suitable SoC are:

• The presence of at least an input/output peripheral (GPIO, Ethernet, etc.).
• The presence of an application that utilizes said peripheral.
• The existence of a ready-to-use environment, possibly with scripts to take care

of compilations and simulations.

The chosen SoC is the Cobham Gaisler LEON3. The LEON3 is a highly config-
urable SoC that includes a 32-bit processor, based on the SPARC V8 architecture,
originally developed by Sun Microsystems. The LEON3 package comes with a wide
range of peripherals, making it particularly suitable for SoC designs and hence this
Thesis work.

The processor and its peripherals are freely available on Cobham Gaisler website
(https://www.gaisler.com/index.php/downloads/leongrlib) under GNU
General Public Licence (GPL). The package includes both the LEON3 processor
and the GRLIB IP library (see section 2.3). The package also provides many config-
urations for development; most of these options target FPGA development (whether
on a development board or standalone), but it also provides an ASIC target, con-
taining scripts for setup, synthesis and implementation on few supported technology
libraries. This last configuration is the base for all development described in this
Master Thesis.

2.1 LEON3 Architecture
As previously mentioned, the LEON3 is a highly configurable SoC, that can in-

clude multiple cores and several peripherals, as it can be seen in figure 2.1. These

9

https://www.gaisler.com/index.php/downloads/leongrlib

2 – LEON3 System-on-Chip

peripherals are connected via AMBA 2.0 (Advanced Microcontroller Bus Archi-
tecture), an open-source bus architecture developed by ARM. More precisely, the
peripherals that need a high bandwidth are connected to the high-speed bus, the
AHB, while lower throughput peripherals are connected to the low-speed bust, the
APB.

Figure 2.1: Architecture diagram of the LEON 3 SoC 1

2.2 LEON3 Processor Core
The LEON3 processor is a 7-stage 32-bit CPU compliant with the SPARC V8

architecture and supports the V8e extension. The SPARC (Scalable Processor AR-
Chitecture) is a Reduced Instruction Set Computer (RISC) architecture originally
developed by Sun Microsystems for its Sparc server processors. It has an Harvard
architecture, with two separate instruction and data caches.

1Image taken from the LEON/GRLIB Guide: GRLIB IP Library User’s Manual [2]

10

2.2 – LEON3 Processor Core

Figure 2.2: Block diagram of the LEON 3 Processor Core 2

The SPARC architecture includes the following features [4]:

• 32bit linear address space.

• Few instructions with a simple format; 32bit wide, aligned with 32bit bound-
aries in memory.

• Only three instruction formats, with uniform placement of opcode and register
address fields.

• LOAD/STORE memory access and I/O.

• Few addressing modes (either “register + register” or “register + immediate”).

• Windowed register file, with 32 visible registers at a single time (8 global, 24
local); the window is changed whenever a procedure call or a return happens.

• Floating-point register file.

• Multiprocessor synchronization instructions.

• Coprocessor instruction set, for easy integration of new instructions.

2Image taken from the LEON/GRLIB Guide: GRLIB IP Core User’s Manual [3]

11

2 – LEON3 System-on-Chip

The LEON3 processor is fully customizable via the graphical configuration tool
provided (see figure 2.3) and allows the user to tailor the processor and the entire
SoC to his needs.

Figure 2.3: Graphical configuration tool for the LEON3 processor

2.3 LEON3 Peripherals

The Gaisler Cobham library package (GRLIB) includes several peripherals to
be integrated with their processor core, with an AMBA interface(either AHB or
APB). These peripherals include:

• Memories (both volatile and non-volatile)

• Serial communication interfaces (UART, SPI, I2C, CAN)

• SpaceWire link interface

• Ethernet interface

• Encryption cores

• Timers

• GPIOs

All these peripherals can be enabled or disabled, as well as configured, via the
graphical configuration tool provided by Cobham Gaisler, exactly like the processor
core.

12

2.3 – LEON3 Peripherals

2.3.1 LEON3 UART Peripheral (APBUART)
The APBUART peripheral provides a Universal Asynchronous Receiver-Transmitter

interface for serial communication; it communicates with the processor core via
AMBA 2.0 APB. The UART peripheral supports data frames up to 8 data bits,
one optional parity bit (even or odd) and one or two stop bits. To generate the
bit-rate, each UART has a programmable 12-bit clock divider. Two FIFOs (config-
urable via the graphical configuration tool) can be used for data transfer between
the APB bus and the UART peripheral [3].

The peripheral also supports the detection of three different kind of errors:

• Parity error, signaling that the received data is corrupted.

• Overrun error, signaling that data may have been lost due to an overwrite
on one of the two FIFOs.

• Frame error, signaling the presence of a data packet of the wrong size.

Figure 2.4: Block diagram of the LEON 3 APBUART peripheral 3

The processor can interact with the peripheral via five memory-mapped 32-bit
registers. For more details on the memory map, refer to the LEON/GRLIB Guide:
GRLIB IP Core User’s Manual [3].

3Image taken from the LEON/GRLIB Guide: GRLIB IP Core User’s Manual [3]

13

2 – LEON3 System-on-Chip

APB address offset Register
0x00 UART Data register
0x04 UART Status register
0x08 UART Control register
0x0C UART Scaler register
0x10 UART FIFO Debug register

Table 2.1: LEON 3 APBUART register map

UART Data register When written, it queues the written data in the trans-
mission FIFO; when read, it returns the first available data from the receiver FIFO.

UART Status register Contains status informations on the peripheral, for ex-
ample the receiver and transmission FIFO status (full, empty, …), error status
(parity, overrun, frame), data ready and transmitter empty.

UART Control register Contains the configuration fields of the peripherals,
such as interrupt enable, debug modes, parity enable and polarity, transmitter and
receiver enable.

UART Scaler register Contains the value for the scaler to generate the baud
rate for the UART transmission and reception.

UART FIFO Debug register Is a debug register that allows direct access to
the transmitter and receiver FIFOs.

2.4 LEON3 Software and OS support
Along with the GRLIB package, Cobham Gaisler provides two different software

environments for their LEON3 processor.

• The Bare-C Cross-Compiler System (BCC) for LEON2/3/4

• The RTEMS LEON/ERC32 Cross-Compiler System (RCC)

Bare-C Cross Compiler The Bare-C Cross-Compiler (BCC) is “a cross-compiler
for LEON2, LEON3 and LEON4 processors. It based on the GNU compiler tools,
the newlib C library and a support library for programming LEON systems. The

14

2.5 – Alternative systems

cross-compiler allows compilation of C and C++ applications” [5]. It also includes
some example applications.

RTEMS Cross Compiler The RTEMS LEON/ERC32 GNU cross-compiler
(RCC) is a multi-platform development system, based on the GNU compiler tools
[6]. The RCC package contains the following tools and packages:

• GCC C/C++ compiler.

• GNU binary utilities, with support for the LEON CASA/UMAC/SMAC in-
structions.

• RTEMS real-time kernel with LEON2, LEON3, LEON4 and ERC32 support
(see section 3.1.2).

• newlib standalone C library.

• GDB SPARC cross debugger.

It also includes useful application examples that have been used as starting point
for the software development described in chapter 3.

2.5 Alternative systems
Here’s a short list of other candidates that have been analyzed for this Master

Thesis and the reasons why they were discarded.

2.5.1 OpenRISC SoCs
Initially, the OpenRISC architecture was considered as a good candidate, due

to its widespread use in both academic and professional fields. Another advantage is
the licensing: the hardware design is licensed under the GNU Lesser General Public
Licence (LGPL), while models and firmware are licensed under GNU General Public
Licence (GPL).

Toolchain support is quite wide, since the community has ported the GNU
toolchain to allow support of software development in both C and C++. Through this
toolchain, the processor supports several widely adopted libraries, such as newlib,
uClibc, musl and glibc. The OpenRISC architecture is also supported by the Linux
kernel since version 3.1 and by several RTOS, including RTEMS, FreeRTOS and
eCos. [7]

15

2 – LEON3 System-on-Chip

After an in-depth research on OpenRISC based SoCs, two candidates were found.

FuseSoC - ORPSoC The most promising one was FuseSoC, derived from the
older project ORPSoC, a package manager that includes several peripherals (in the
form of IPs) and a set of build tools for HDL (Hardware Description Language)
code. The OpenRISC Reference Platform System-on-Chip (ORPSoC) project was
designed as a reference SoC implementation based on the OpenRISC 1200 core; this
SoC has been implemented on several FPGAs and there have been some commercial
products derived from it.
This project provided then the necessary tools to simulate the resulting system on
a various assortment of simulation suits, like GHDL, Isim, Verilator and ModelSim
[8].

MiSoC Another OpenRISC implementation that has been analyzed was MiSoC.
This package offers an OpenRISC CPU core, the mor1kx, as well as several periph-
erals, such as UART, GPIO and timers. It also supports built-in targets for a few
FPGA development boards, although no built-in asic target support is provided
[9].

Unfortunately, neither FuseSoc or MiSoC have readily available software appli-
cations that take advantage of the many peripherals they integrate; for this reason
both projects were discarded as candidates for this Master Thesis.

2.5.2 PULPino

The Parallel Ultra-Low Power platform (PULP) is an open source hardware
project based on the RISC-V core architecture. One of the developed products is
the PULPino microcontroller, that includes a single-core RISC-V processor and
several peripherals, connected to an AMBA AXI bus (see figure 2.5).

Unfortunately this project is quite recent, hence software availability is very
scarce. At the beginning of this Master Thesis, no software application suitable for
this project was available to run on the PULPino microcontroller, so this platform
was discarded.

16

2.5 – Alternative systems

1 Overview

PULPino is a single-core System-on-a-Chip built for the RISC-V RI5CY and zero-riscy core.
PULPino reuses most components from its bigger brother PULP. It uses separate single-port
data and instruction RAMs. It includes a boot ROM that contains a boot loader that can load
a program via SPI from an external flash device.

Figure 1.1 shows a block diagram of the SoC. The SoC uses a AXI as its main interconnect
with a bridge to APB for simple peripherals. Both the AXI and the APB buses feature 32 bit
wide data channels. For debugging purposes the SoC includes an advanced debug unit which
enables access to core registers, the two RAMs and memory-mapped IO via JTAG. Both RAMs
are connected to the AXI bus via bus adapters.

Core

Instr.
RAM

instr data Data
RAM

B
rid

g
e

B
rid

g
e

B
rid

g
e

Bridge

UARTGPIO
SPI

Master
I C

Boot
ROM

Adv.
Debug Unit

SPI
Slave

debug

Timer
Event
Unit

JTAGSPISPII CUARTGPIO

2

2

AXI4 Interconnect

APB

SoC
Control

FLL
Control

Figure 1.1: PULPino Overview.

PULPino is mainly targeted at RTL simulation and ASICs, although there is also an FPGA
version. The FPGA versions is not specifically optimal in terms of performance as we mainly
use it as a emulation platform rather than a standalone platform.

4

Figure 2.5: Architecture diagram of the PULPino SoC 4

2.5.3 Ogg-on-a-Chip Project
One of the most promising devices taken into consideration was the Ogg-on-a-

Chip project. Developed as a master thesis in 2005, it is a media player on a SoC,
integrating both the audio decoder and the physical audio interface. [11]

The project is based on the LEON 2 System-on-Chip, from Gaisler Research.
This SoC contains a SPARC v8 compliant processor core, instruction and data
caches, an optionalMemory Management Unit (MMU), a Direct Memory Access
(DMA), an Advanced Microcontroller Bus Architecture (AMBA) Advanced High-
performance Bus (AHB) from ARM, an AMBA Advanced Peripheral Bus (APB)
from ARM and several peripherals like Ethernet, GPIOs, timers, watchdogs and
communication interfaces (UART, SPI, I2C, CAN, …).

The project also includes an application to run onto the SoC, utilizing the
RTEMS Operating System (see paragraph 3.1.2). This application implements a
simple audio player that receives an Ogg encoded audio file (already loaded in
memory), decodes it and sends it to the physical interface.

4Image taken from the PULPino Datasheet [10]

17

2 – LEON3 System-on-Chip

FPU

AHB
Arbiter

Integer Unit

LEON SPARC

I-Cache D-Cache

A-Cache (AMBA Master)

Memory controller
(AMBA Slave)

UART I/O Port

Timers IrqCtrl

AHB/APB
Bridge

Audio Core

MDCT Core

LEON Platform

ROM SRAM I/O

AMBA AHB

AMBA APB

BPROM

1K

32-bit Data Bus

Figure 2.6: Architecture diagram of the Ogg-on-a-Chip SoC 5

Although very promising on paper, the project was discarded, as neither the
compiled software or the provided hardware would work correctly. This is most
likely due to the age of the project, as the tools have changed greatly in these past
10 years and the processor used for development has been discontinued by Cobham
Gaisler.

5Image taken from “Design of an Audio Player as System-on-a-Chip using an Open Source
Platform” [12]

18

3 Software development

In this chapter we will describe the steps performed to obtain the results of this
Thesis work. The project has been developed on two main platforms.

Local environment A laptop computer, manufacturer Hewlett-Packard (HP),
model ProBook 450 G1, processor Intel i7-4702MQ, 16 GiB of RAM, operating
system Windows 10 Pro 64-bit.
On the local environment, the available tools were:

• ModelSim SE-64 10.5, revision 2016.02

• Cygwin (kernel CYGWIN_NT-10.0; version 2.9.0(0.318/5/3))

• RTEMS Cross-Compiler (RCC) environment for Cygwin

Remote server A remote server of Politecnico di Torino was used to perform the
synthesis of the APBUART peripheral, since it provides the required tool (Design
Compiler).

3.1 Development tools and environments
This Master Thesis work relies on two hardware development tools and a specific

software environment. In this section, both the tools and the software environment
will be described.

3.1.1 Tools
In order to synthesize and simulate the netlist, two tools are required: Design

Compiler and ModelSim. These two softwares were chosen due to their widespread
use in commercial applications, support in the GRLIB environment and availability.

ModelSim The ModelSim suite by Mentor Graphics is a simulation, debug
and verification platform for validating FPGA and SoC designs. This application
is able to read any HDL source file and simulate the described logic, emulating its
behavior at a boolean logic level. Obviously this makes ModelSim, as any other
simulator on the market, one of the most important tools in the IC design flow.

19

3 – Software development

ModelSim also simplifies RTL and gate level debugging, as it offers the capability
of displaying the RTL code or the netlist as a schematic containing either behavioral
blocks or gates respectively and their interconnections, thus allowing the user to
track data flow through the design.

The ModelSim suite is divided into three main applications:

• vcom and vlog: a VHDL and Verilog compilators respectively that compile
HDL source code for later simulation.

• vopt: an optimization tool that elaborates the compiled modules and optimizes
the design for simulation.

• vsim: the simulator itself.

Mentor Graphics offers the ModelSim PE Student Edition, a free Windows ver-
sion of the software, downloadable from their website (https://www.mentor.com/
company/higher_ed/modelsim-student-edition).

Design Compiler The Design Compiler tool suite by Synopsys is an RTL
synthesis and optimization suite aimed at the generation of a netlist from any RTL
source. A netlist is a boolean gate level description of the design, that is a model
of the integrated circuit built using only logic gates available in a vendor library.

The synthesis flow comprises several steps:

• Analysis: the RTL source code (VHDL and/or Verilog files) gets loaded in
libraries by Design Compiler, while checking for syntax errors.

• Elaboration: the loaded modules get elaborated by Design Compiler, gener-
ating a top level design specified when calling the elaboration command.

• Mapping: the elaborated circuit gets mapped to one or more technology li-
braries, following user defined constraints for timings and power consumption.

After elaboration and mapping steps there are several optional optimization steps,
aimed at reducing area, power consumption and increasing the operating frequency.

20

https://www.mentor.com/company/higher_ed/modelsim-student-edition
https://www.mentor.com/company/higher_ed/modelsim-student-edition

3.1 – Development tools and environments

For this Thesis work, the mapping step has been skipped, as no tech library was
available. As a result, the generated netlist only uses generic Synopsys gates, that
do not belong to any tech library. Moreover, no optimization has been used on the
synthesis flow of the APBUART peripheral.

3.1.2 Software environment
The software environment for this Master Thesis is enclosed in the RTEMS Cross-

Compiler package, provided by Cobham Gaisler. This package is meant for software
development on the LEON3 platform and includes both the RTEMS operating
system and the GCC compiler; additionally it is possible to obtain the OS source
code as well, allowing kernel and library customization.

The RCC environment also provides some software application examples for the
LEON3, as well as a compilation makefile. The latter was extended to support the
new applications developed.

Listing 3.1: Makefile for the software applications
1 HELLO_PROGS = # List of all software applications for this Master Thesis
2

3 all: leon-hello
4

5 build_hello: $(addprefix $(OUTDIR),$(HELLO_PROGS))
6

7 # Application specific targets - repeated for each program
8 $(OUTDIR)rtems-hello: rtems-hello.c $(CONFIG_DEPS) | $(OUTDIR)
9 $(CC) $(CFLAGS) $< -o $@

The output of this compilation is an executable file, that can not be read by
the simulation testbench. For this reason, another script was developed. This script
reads an input ELF file and generates a SREC file; this format contains the binary
data of the input ELF formatted as ASCII test and can be read by the memory
model of the LEON3 during simulation.

Listing 3.2: ELF to SREC conversion script
1 #!/bin/bash
2 BIN_PATH="/opt/rtems-4.10-mingw/src/samples/bin/hello"
3 for file in $BIN_PATH/*; do

21

3 – Software development

4 if [$(file ${file} | cut -d' ' -f2) == "ELF"]; then
5 sparc-rtems-objcopy -O srec $file $file.srec
6 fi
7 done
8 rm -rf $BIN_PATH/srec
9 mkdir $BIN_PATH/srec

10 mv $BIN_PATH/*.srec $BIN_PATH/srec/.

RTEMS Operating System The Real-Time Executive for Multiproces-
sor Systems (RTEMS) Operating System, formerly Real-Time Executive for Mis-
sile Systems, and then Real-Time Executive for Military Systems, is a free open-
source Real-Time Operating System (RTOS) designed for embedded systems [13].
It supports the POSIX API and it is widely used in space, medical and networking
applications.

GNU Compiler Collection The GNU Compiler Collection (GCC) is one of
the most, if not the most, widely used C/C++ compilers. Originally named GNU
C Compiler, it was intended as the C compiler for the GNU operating system.
Nowadays it has been ported to numerous platforms and supports countless target
architectures.
The specific version included in the RCC package supports by default the different
processors developed by Cobham Gaisler: LEON2, LEON3, LEON4 and ERC32.
It also allows tuning of the code for higher performance, depending on the config-
uration of the processor.

3.2 Hardware environment setup

The hardware development environment is completely enclosed in the GRLIB
package by Cobham Gaisler. The organization of this environment can be seen in
the figure 3.1.

22

3.2 – Hardware environment setup

grlib
bin Contains scripts and makefiles for simulation and synthesis.
boards Contains environments for development board deployment.
design Contains environments for specific FPGA targets.

leon3-asic ... Contains the environment (scripts and configurations) for
ASIC development.

doc Contains the GRLIB and GRIP documentation.
lib Contains the RTL libraries and source code for the LEON3

CPU and IPs.
scriptgenwork ... Contains additional configuration files for the graphical con-

figuration program.
software Contains example C source code and precompiled applica-

tions for peripheral testing and verification.

Figure 3.1: Directory structure of the GRLIB library

The hardware environment required heavy configurations and modification. The
first step was to configure the LEON3 SoC, enabling or disabling peripherals and
features. The configuration used for this Master Thesis has two APBUART periph-
erals enabled, with both receiver and transmitter FIFO depth of 4 words. Of these
two peripherals, APBUART1 will be used for all software test, while APBUART2
will be left untouched. For more details on the configuration of the LEON3 SoC,
refer to appendix A.

3.2.1 Makefile and scripting
Two makefiles are provided for the leon3-asic configuration: a general one,

located in the grlib/bin directory, and a specific one, that can be found in the
grlib/design/leon3-asic directory.

The first makefile contains a set of generic targets for simulation, valid for all
configurations; this makefile also defines several environment variables and paths
required for simulation with all supported simulators. A few targets were added to
this makefile, in order to support more simulation modes and simplify interactions
with the simulator. Here’s a list of the added targets:

• vsim-run-disas: launches vsim and starts simulation with console disassem-
bly of the software running on the LEON3 core.

• vsim-launch-disas: launches vsim in graphical interface mode with console
disassembly of the software running on the LEON3 core.

23

3 – Software development

• vsim-launch-nogui: launches vsim in terminal mode without console disas-
sembly of the software running on the LEON3 core.

• vsim-launch-nogui-disas: launches vsim in terminal mode without console
disassembly of the software running on the LEON3 core.

To enable the disassembly on the ModelSim terminal, the parameter -Gdisas=1
must be used while launching vsim; likewise, to disable the disassembly is sufficient
to add the parameter -Gdisas=0.

The second makefile specifies configuration-dependent variables and targets for
both simulation and synthesis. Here is a list of changes performed to the local
makefile:

• Added coverage support for compilation (defining environment variables VCOMOPT+=
-cover sbceft and VLOGOPT+= -cover sbceft).

• Added coverage support for simulation: added option -coverage in the VSIMOPT
variable.

• Added targets for application selection.

• Added select-rtl-sim and select-synth-sim targets, selecting between the
RTL model and the netlist of the APBUART peripheral.

• Added simulate-all target, to launch a sequence of simulations of all relevant
applications.

Finally, the last script modified is make.vsim, an automatically generated file
that contains only a single make target, vsim. This target compiles all HDL source
files to allow simulation using ModelSim. Since this project requires the addition
of few hardware designs, both the UART loopback module (uart_loopback.vhd)
and the synthesized netlists of the two APBUART peripherals need to be added to
this file.

Listing 3.3: ModelSim compilation script additions
1 vsim:
2 ...
3 # APBUART peripheral netlists and wrapper
4 vcom -quiet -cover sbceft -93 -work work apbuart_component.vhd

24

3.2 – Hardware environment setup

5 vcom -quiet -cover sbceft -93 -work work apbuart_syn.vhd
6 vcom -quiet -cover sbceft -93 -work work apbuart.vhd
7 vcom -quiet -cover sbceft -93 -work work leon3core.vhd
8 ...
9 # UART loopback testbench module

10 vcom -quiet -cover sbceft -93 -work work uart_loopback.vhd
11 vcom -quiet -cover sbceft -93 -work work testbench.vhd

3.2.2 Simulation scripts and commands
Here follows a list of operations to perform in order to launch a simulation in the

GRLIB package. For more details, refer to the LEON/GRLIB Guide: GRLIB IP
Library User’s Manual [2].

Listing 3.4: Setup and simulation flow
1 cd grlib/design/leon3-asic
2

3 # Launching the LEON3 configuration tool (alternative: make xconfig)
4 make xgrlib
5

6 # Compiling simulation source files
7 make vsim
8

9 # Selecting application and launching simulation
10 make sim_hello # Target selects the application and sets the environment
11 make vsim-run # Alternative: make vsim-launch launches the GUI

The simulator receives its commands from a file, specified on the command line,
runsim.do. This file contains the sequence of operations that the simulator has to
perform and they depend on the type of simulation. For this master thesis, two
simulation scripts have been written.

Listing 3.5: RTL simulation script
1 # sourcing application-specific setup
2 do setup.do
3

4 # running simulation
5 run -all

25

3 – Software development

6

7 coverage report \
8 -code sbceft \
9 -all \

10 -detail \
11 -instance /testbench/d3/core0/leon3core0/ua1/apbuart1_inst \
12 -file report_rtl/${SOURCE_NAME}/app_toggle_cov_uart1.txt
13

14 coverage report \
15 -code sbceft \
16 -all \
17 -detail \
18 -instance /testbench/d3/core0/leon3core0/ua2/apbuart2_inst \
19 -file report_rtl/${SOURCE_NAME}/app_toggle_cov_uart2.txt

Listing 3.6: Netlist simulation script
1 # sourcing application-specific setup
2 do setup.do
3

4 # running simulation
5 run -all
6

7 coverage report \
8 -code t \
9 -all \

10 -detail \
11 -instance /testbench/d3/core0/leon3core0/ua1/apbuart1_inst \
12 -file report_synth/${SOURCE_NAME}/app_toggle_cov_uart1.txt
13

14 coverage report \
15 -code t \
16 -all \
17 -detail \
18 -instance /testbench/d3/core0/leon3core0/ua2/apbuart2_inst \
19 -file report_synth/${SOURCE_NAME}/app_toggle_cov_uart2.txt

26

3.2 – Hardware environment setup

3.2.3 UART Loopback module

In order to provide stimuli to the APBUART peripheral, an additional VHDL
block called uart_loopback was developed. More specifically, this module reads
the data sent by the SoC, saves it in an internal buffer and then sends it back to
the LEON3. It also supports error injection in the receiver stream and it can be
turned on and off via a configuration parameter.

The loopback module has several configuration options:

• baud: Baud rate period of the UART peripheral.

• hbaud: Half of the baud rate period.

• t_idle: Idle time to wait between data reception and data transmission.

• t_overrun: Time to wait before the overrun error test.

• t_parity: Time to wait before the parity error test.

• t_frame: Time to wait before the frame error test.

• bits: Size of the receive/transmit buffer; if equal to zero, the block is disabled.

• par_en: Enable/Disable parity.

• par_o_ne: Parity polarity (0: even; 1: odd).

• tx: Transmitter enable.

• overrun_error: Overrun error test enable.

• parity_error: Parity error test enable.

• frame_error: Frame error test enable.

This block is instantiated in the testbench, one for each APBUART peripheral,
and it is connected to the RX and TX ports of the LEON3 SoC. The block is
modeled as a simple sequence of operations that can be enabled or disabled via the
different configuration options listed above.

27

3 – Software development

3.2.4 APBUART peripheral synthesis

To allow correct measurements of coverage, the APBUART peripheral had to be
synthesized using Design Compiler. Here is shown the synthesis script, that follows
the standard flow. It starts by defining three main libraries (grlib, gaisler and
work). Then, it analyzes the source files, associating them to the corresponding
library. Finally, it elaborates the UART peripheral two times with different param-
eters and exports the elaborated netlists into a single file, apbuart_syn.vhd. These
two generated designs correspond to the two APBUART peripherals in the LEON3
SoC and their configuration parameters were taken from the source code of the SoC
itself.

Listing 3.7: Synthesis script for the APBUART peripheral
1 set source_path "./src"
2

3 # Read design
4 file mkdir synopsys
5 file mkdir synopsys/grlib
6 file mkdir synopsys/gaisler
7 file mkdir synopsys/work
8 define_design_lib grlib -path synopsys/grlib
9 define_design_lib gaisler -path synopsys/gaisler

10 define_design_lib work -path synopsys/work
11 analyze -f VHDL -library grlib ${source_path}/grlib/stdlib/version.vhd
12 analyze -f VHDL -library grlib

${source_path}/grlib/stdlib/config_types.vhd
13 analyze -f VHDL -library grlib ${source_path}/grlib/stdlib/config.vhd
14 analyze -f VHDL -library grlib ${source_path}/grlib/stdlib/stdlib.vhd
15 analyze -f VHDL -library grlib ${source_path}/grlib/amba/amba.vhd
16 analyze -f VHDL -library grlib ${source_path}/grlib/amba/devices.vhd
17 analyze -f VHDL -library gaisler ${source_path}/gaisler/uart/uart.vhd
18 analyze -f VHDL -library work ${source_path}/gaisler/uart/apbuart.vhd
19

20 # Elaborating UART instances
21 elaborate apbuart -parameter

"pindex=1,paddr=1,pirq=2,console=0,fifosize=4"
22 elaborate apbuart -parameter

"pindex=9,paddr=9,pirq=9,console=0,fifosize=4"
23

28

3.2 – Hardware environment setup

24 # Generating VHDL netlist
25 write_file -format vhdl -output synopsys/output/apbuart_syn.vhd

"apbuart_pindex1_paddr1_console0_pirq2_fifosize4
apbuart_pindex9_paddr9_console0_pirq9_fifosize4"

The synthesized netlists are exported in a VHDL format file, containing both
UART peripherals and the VHDL models of the gates used in the designs. To
simplify integration with the processor core, two wrappers have been written, with
the same interface of the RTL model of the APBUART peripheral, but instantiating
the synthesized netlists instead.

Listing 3.8: APBUART wrapper example
1 entity apbuart1 is
2 generic (
3 pindex : integer := 0;
4 paddr : integer := 0;
5 pmask : integer := 16#fff#;
6 console : integer := 0;
7 pirq : integer := 0;
8 parity : integer := 1;
9 flow : integer := 1;

10 fifosize : integer range 1 to 32 := 1;
11 abits : integer := 8;
12 sbits : integer range 12 to 32 := 12
13);
14 port (
15 rst : in std_ulogic;
16 clk : in std_ulogic;
17 apbi : in apb_slv_in_type;
18 apbo : out apb_slv_out_type;
19 uarti : in uart_in_type;
20 uarto : out uart_out_type
21);
22 end;
23

24 architecture wrapper of apbuart1 is
25

26 component apbuart_pindex1_paddr1_console0_pirq2_fifosize4 is
27 port(...);

29

3 – Software development

28 end component apbuart_pindex1_paddr1_console0_pirq2_fifosize4;
29

30 signal pindex_s : std_logic_vector(4 downto 0);
31

32 begin
33

34 apbo.pindex <= to_integer(unsigned(pindex_s));
35

36 apbuart_syn1 : apbuart_pindex1_paddr1_console0_pirq2_fifosize4
37 port map(rst, clk, apbi.psel, apbi.penable, apbi.paddr, apbi.pwrite,

apbi.pwdata, apbi.pirq, apbi.testen, apbi.testrst, apbi.scanen,
apbi.testoen, apbi.testin, apbo.prdata, apbo.pirq, apbo.pconfig(0),
apbo.pconfig(1), pindex_s, uarti.rxd, uarti.ctsn, uarti.extclk,
uarto.rtsn, uarto.txd, uarto.scaler, uarto.txen, uarto.flow,
uarto.rxen

38);
39

40 end architecture wrapper;

In order to support the synthesized netlist, two copies of leon3core.vhd were
generated:

• leon3core_rtl, that instantiates the two APBUART peripherals as RTL
models.

• leon3core_synth, that instantiates the two APBUART peripherals as syn-
thesized netlists.

As previously stated, no tech library was used during synthesis. Due to this
choice, Synopsys could not infer any library specific gate, leaving a netlist com-
posed of GTECH (Generic Synopsys Technological Library) gates. This generic
library does not contain any sequential element, though, so Design Compiler in-
stantiated the SYNOPSYS_GENERIC_SEQUENTIAL_ELEMENT. This sequential elements
are as generic as possible, including both synchronous and asynchronous clear and
set lines. This is a very unrealistic implementation, as real tech gates would only
include either the synchronous or the asynchronous ones, not both. For this reason,
a simplified sequential element (SIMPLIFIED_SEQUENTIAL_ELEMENT) was created,
with a reduced port count to more resemble standard Flip-Flops (see appendix B
for more details).

30

3.3 – Coverage analysis

During software development, two bug in the synthesized design were found.
The first bug blocked the incoming data from the RX pin of the peripheral to reach
the internal shift register, making the entire receiver logic unusable. This bug was
solved by fixing the input structure from the RX pin, comparing it to the expected
behavior of the RTL simulations.
The second bug discovered was on the internal clock/baud rate generator, which
would get corrupted due to a non initialized register. This bug was solved by man-
ually adding a reset signal to the affected register, controlled by the master reset
of the peripheral.

3.3 Coverage analysis
ModelSim allows the evaluation of several coverage metrics during simulation.

These metrics, already introduced at the beginning of this document, are described
in ModelSim’s User Manual as follows [14].

• Statement coverage, that counts the execution of each statement on a line
individually, even if there are multiple statements in a line.

• Branch coverage, that counts the execution of each conditional if/then/else
and case statement and indicates when a true or false condition has not exe-
cuted.

• Condition coverage. that analyzes the decision made in if and ternary
statements and can be considered as an extension to branch coverage.

• Expression coverage, that analyzes the expressions on the right hand side
of assignment statements, and is similar to condition coverage.

• Toggle coverage, that counts each time a logic node transitions from one
state to another.

• FSM coverage, that counts the states, transitions, and paths within a finite
state machine.

Additionally, ModelSim can calculate both condition and expression coverages
in several different ways.

• Focused Expression Coverage (FEC), that measures the coverage for each
input of an expression. In FEC, an input is considered covered only when other

31

3 – Software development

inputs are in a state that allow it to control the output of the expression.
Furthermore, the output must be seen in both 0 and 1 states while the target
input is controlling it. If these conditions occur, the input is said to be fully
covered. The final FEC coverage number is the number of fully covered inputs
divided by the total number of inputs.

• User Define Primitive (UDP), that measures the coverage as number of
hit rows of an UDP table. A UDP table (similarly to Verilog’s own UDP
tables) describes the full range of behavior for a given expression, where each
row corresponds to a coverage bin. If the conditions described by a row are
observed during simulation, that row is said to be hit; all rows in the UDP
table must be hit for UDP coverage to reach 100

• Sum-of-Products, that checks that each set of inputs that satisfies the ex-
pression (results in a 1) must be exercised at least once, but not necessarily
independently.

• Basic Sub-Condition, that checks that each subexpression has been both
true and false.

The method chosen for this Master Thesis is the first one, the FEC, since it
provides the widest coverage of the design, as well as being the default method
used by ModelSim.

To evaluate these metrics and save them into a file, the following command has
been used after the end of the simulation, to obtain the final results of the test.

Listing 3.9: Coverage report command
1 coverage report
2 -code <s|b|c|e|f|t>
3 [-recursive]
4 [-detail]
5 [-all]
6 -instance <instance_name>
7 -file <output_filename>

In order to get a measure of the goodness of the software application as verifi-
cation test, all coverage metrics were evaluated during RTL simulation. This is a

32

3.4 – Software applications

common use case for these metrics, as they are widely used for simulation-based ver-
ification, with the difference that in typical verification flows a dedicated testbench
is developed in order to maximize these metrics.

For the netlist simulations, ideally the best metric to evaluate the test goodness
would have been the fault coverage. Unfortunately this metric can only be evalu-
ated with the use of fault simulators provided with ATPG tools, such as Tessent
or TetraMAX. Since these tools would require a significant amount of work to cre-
ate a suitable setup, the fault coverage has been “approximated” using the toggle
coverage statistic calculated on the synthesized peripheral. This approximation is
possible because of the similarity between toggle coverage and the stuck-at fault
model.

This fault model describes defects as wires of a netlist that are stuck at a fixed
value, independently of their driver. This means that, to detect a stuck-at fault, the
faulty wire needs to be driven to the opposite value of the fault (this corresponds
to exciting the fault); the “result” then needs to be propagated to an output that
can be observed, in such a way that the misbehavior can be observed and the fault
is detected. This means that, in order to detect a fault, the test must be able to
toggle every wire both high and low; hence the toggle coverage can be used as an
approximation of the fault coverage, showing which nets are toggled by the test. On
the other hand, toggle coverage does not take into account the error propagation
through the netlist, as these can be easily blocked and obscured by other signals;
this means that toggle coverage is the upper limit of the stuck-at fault coverage.

3.4 Software applications
A key phase of this Master Thesis is the generation, simulation and analysis

of a set of software applications to run on the LEON3 SoC. As a first step, the
hello_world program provided by the RCC package is simulated, collecting cover-
age figures from both UART peripherals. From this data, a baseline for future tests
can be drawn, showing coverage for a basic peripheral utilization (APBUART1)
and the coverage figure for no active use at all (APBUART2).

Iterating on these results, many software applications were developed in order
to increase all coverage figures. In the following subsections are described the in-
cremental steps that have been followed to reach the final results, as well as the

33

3 – Software development

reasons behind every choice.

Here is a list of the five applications that have been used in this Master Thesis.

• hello_world, a simple application that prints the string “Hello World” to
console (see section 3.4.1).

• write_compact, an optimized write test that is aimed at reducing the test
time, without reducing coverage with respect to the baseline (see section 3.4.2).

• write_exhaustive, an exhaustive test that is aimed at increasing coverage at
the cost of a much greater test time (see section 3.4.2).

• read_write, a test that excites both receiver and transmitter logic (see section
3.4.3).

• error_injection, a test that is aimed at covering the blocks left untouched
by the previous test by causing error conditions (see section 3.4.4).

3.4.1 Starting point - “Hello World”
Since the APBUART peripheral had been selected for this analysis, the first

software to be simulated was the hello_world program. This classic program boots
the SoC, launching the OS and configuring the peripherals, then sends the string
“Hello World” to the console via the APBUART1 peripheral.

Due to its simplicity, this program is meant just as a baseline and starting point
for following tests, that can be built up from this common origin; as such the first
optimization is to remove the 100 ms wait and the second print to the debug console.

Listing 3.10: Baseline test: hello_world
1 // Main task - entry point after OS boot
2 rtems_task Init(
3 rtems_task_argument ignored
4)
5 {
6 printf("Hello World\n");
7 //rtems_task_wake_after(100);
8 //printk("Hello World over printk() on Debug console\n\n");
9 exit(0);

10 }

34

3.4 – Software applications

3.4.2 Transmitter subsystem test

After running the baseline test, two optimizations were developed to improve the
test on the transmission logic: write_compact and write_exhaustive.

The first optimization (hello_compact) is intended to reduce the test time by
replacing the “Hello World” string with a more test-focused one. By using the four
value string {0xF0, 0x0F, 0xAA, 0x55}, full utilization of the FIFO can still be
achieved, while exciting any possible combination of transitions on the transmitter
logic.

Listing 3.11: Transmitter test: write_compact
1 // Main task - entry point after OS boot
2 rtems_task Init(
3 rtems_task_argument ignored
4)
5 {
6 char string[5] = {0xf0, 0x0f, 0xaa, 0x55, 0x00};
7

8 // Transmitting the 4 characters string
9 // (last character is the string terminator)

10 printf("%s", string);
11 exit(0);
12 }

On the other hand, the second optimization (write_exhaustive) is aimed at
testing the transmission of every possible value for the data, which corresponds to
a total of 256 (28) possible values.

Listing 3.12: Transmitter test: write_exhaustive
1 // Main task - entry point after OS boot
2 rtems_task Init(
3 rtems_task_argument ignored
4)
5 {
6 char string[256];
7 uint8_t i;
8

35

3 – Software development

9 for(i = 0x00; i < 0xFF; i++){
10 string[(int) i]=(char) (((uint8_t) 0xFF) - i);
11 }
12

13 // Transmitting the 256 characters string
14 // (last character is the string terminator)
15 printf("%s", string);
16 exit(0);
17 }

3.4.3 Receiver subsystem test

The next step is to test the receiver logic and, for this purpose, the read_write
application was developed. This software needs to read back the string it sent, so
the UART loopback module provides this functionality.

Initially, the software read was implemented using the standard input/output
function scanf, but the application would not perform any read in simulation,
getting stuck in an infinite wait for data. A second attempt using the POSIX read
function gave the same result.

To work around this issue, the final application developed to test the receiver
logic relied on low-level register accesses to check for data availability and reading
the data itself.

Listing 3.13: Receiver/Transmitter test: read_write
1 // Main task - entry point after OS boot
2 rtems_task Init(
3 rtems_task_argument ignored
4)
5 {
6 int i;
7 char buf1[5] = {0xf0, 0x0f, 0xaa, 0x55, 0x00};
8 char buf2[5] = {0x00, 0x00, 0x00, 0x00, 0x00};
9

10 // Register addresses declaration ...
11

12 printf("%s", buf1);

36

3.4 – Software applications

13 fflush(NULL);
14

15 // Waiting for read
16 for(i = 0; i < 5000; i++); // busy-waiting loop: ~1ms
17

18 // Printing status register contents
19 printf("%d", (unsigned int) *uart_stat_reg);
20 fflush(NULL);
21 for(i = 0; i < 500; i++); // busy-waiting loop: ~100us
22

23 // Reading data from RX FIFO
24 for(i = 0; i < 4; i++) {
25 buf2[3 - i] = (char) (*uart_data_reg & 0x000000ff);
26 }
27

28 // Printing received data
29 printf("%s", buf2);
30 fflush(NULL);
31

32 exit(0);
33 }

3.4.4 Additional improvements
The analysis on the read test results exposed some logic blocks with low coverage.

These blocks were mainly the interrupt generation logic and the error detection
systems. To test the latter, the software and the loopback module in the testbench
both needed to generate error conditions:

• Parity error: to trigger a parity error, the loopback module sends one of the
data packets with its parity bit inverted, thus triggering a parity error.

• Overrun error: to trigger an overrun error, the software first disables the
transmitter via register write, then writes eight values to the transmission
FIFO; this generates an overrun error condition, as words get overwritten in
the FIFO.

• Frame error: to trigger a frame error, the loopback module keeps the RX line
of the SoC low for the equivalent time of 16 clock cycles, violating the frame
size of a UART packet.

37

3 – Software development

As can be seen in the code below, this application starts by disabling the trans-
mitter. In this way, an overrun error can be triggered by writing eight values to the
4-word transmitter FIFO. After the error is triggered and the second set of data is
written, the transmitter is enabled, so that the write operation takes place. Then
the software waits for available data to be read back from the UART peripheral. At
this point, the UART loopback module also triggers both the parity and frame er-
rors as described above. Finally, the status register is read and subsequently cleared
by the application and the received data is printed one last time.

Listing 3.14: Read/write test with error triggering: error_injection
1 // Main task - entry point after OS boot
2 rtems_task Init(
3 rtems_task_argument ignored
4)
5 {
6 int i;
7 char buf1[5] = {0xf0, 0x0f, 0xaa, 0x55, 0x00};
8 char buf2[5] = {0x00, 0x00, 0x00, 0x00, 0x00};
9

10 // Register addresses declaration ...
11

12 // Disabling Receiver and Transmitter
13 (*uart_ctrl_reg) &= ~(uart_rx_en_mask | uart_tx_en_mask);
14

15 // Filling transmit buffer
16 for (i = 0; i < 4; i++) {
17 (*uart_data_reg) = buf1[i];
18 }
19

20 // Writing again on transmit buffer, triggering an overrun error
21 for (i = 0; i < 4; i++) {
22 (*uart_data_reg) = buf1[i];
23 }
24

25 // Enabling transmission and reception
26 (*uart_ctrl_reg) |= (uart_rx_en_mask | uart_tx_en_mask);
27

28 // Waiting for read
29 for(i = 0; i < 10000; i++); // busy-waiting loop: ~2ms

38

3.4 – Software applications

30

31 // Printing status register contents
32 printf("%d", (unsigned int) *uart_stat_reg);
33 fflush(NULL);
34 (*uart_stat_reg) = 0; // Clearing error bits
35 for(i = 0; i < 500; i++); // busy-waiting loop: ~100us
36

37 // Reading back data from external module
38 for(i = 0; i < 4; i++) {
39 buf2[3 - i] = (char) (*uart_data_reg & 0x000000ff);
40 }
41

42 // Transmitting received data
43 printf("%s", buf2);
44 fflush(NULL);
45

46 exit(0);
47 }

39

40

4 Results

In this chapter, the results obtained during this Master Thesis will be presented
and analyzed. To define a baseline for the following tests, the coverage measured
on the second UART peripheral APBUART2 is analyzed. This peripheral is left
untouched by all tests and can be considered as a minimum coverage baseline,
obtained by just booting the SoC.

Coverage metric Active nodes Hits Misses Coverage [%]
Statement 219 104 115 47.4%
Branches 157 46 111 29.2%

Conditions 12 1 11 8.3%
Expressions 52 0 52 0.0%

FSMs - States 0 0 0 100.0%
FSMs - Transitions 0 0 0 100.0%

Toggle 328 117 211 35.6%

Table 4.1: Coverage metrics for APBUART2 - RTL simulation

Coverage metric Active nodes Hits Misses Coverage [%]
Toggle 6226 1,599 4,627 25.6%

Table 4.2: Coverage metrics for APBUART2 - Netlist simulation

As it can be seen in tables 4.1 and 4.2, these results are low, as expected from an
inactive peripheral. Another interesting point that can be extrapolated from this
data is the absence of any Finite State Machine in the design, as suggested by the
zero active nodes. This means that FSM coverage is of no meaning for this specific
peripheral and can be dropped from subsequent analysis.

4.1 hello_world application results

Next, we establish a baseline on an active peripheral by analyzing the results of
the hello_world application.

41

4 – Results

Coverage metric Active nodes Hits Misses Coverage [%] Increase1

Statement 219 139 80 63.4% 16.0%
Branches 157 75 82 47.7% 18.5%

Conditions 12 3 9 25.0% 16.7%
Expressions 52 9 43 17.3% 17.3%

Toggle 328 146 182 44.5% 8.9%

Table 4.3: Coverage metrics for the hello_world test - RTL simulation

Coverage metric Active nodes Hits Misses Coverage [%] Increase1

Toggle 6,226 3,180 3,046 51.0% 25.4%

Table 4.4: Coverage metrics for the hello_world test - Netlist simulation

Another useful metric that has been measured is the elapsed time to complete
these tests. More specifically, two times were measured.

• Simulation time, which is the internal time of the simulator, defining the
data delays and clock periods of the simulated design; this time is usually
expressed in fractions of seconds (in this Master Thesis, milliseconds).

• Execution time, which is the real time that the simulator took to complete
its simulation; it is usually expressed in minutes or even hours, depending on
the complexity of the simulation.

Simulation type
Time RTL simulation Netlist simulation

Simulation Time 10.860 ms 10.869 ms
Execution Time 19 min 42 s 21 min 45 s

Table 4.5: Simulation and execution time of the hello_world test

4.2 write_compact application results
In order to reduce both simulation and execution time, a second, optimized ap-

plication was developed. Here the results of this test case are presented. As it can

1This coverage increase is measured with respect to the inactive peripheral baseline

42

4.3 – write_exhaustive application results

be seen in the tables below, the coverage results are almost identical to the original
hello_world application, with the desired reduction in simulation and execution
time.

Coverage metric Active nodes Hits Misses Coverage [%] Increase2

Statement 219 139 80 63.4% 0.0%
Branches 157 75 82 47.7% 0.0%

Conditions 12 3 9 25.0% 0.0%
Expressions 52 9 43 17.3% 0.0%

Toggle 328 146 182 44.5% 0.0%

Table 4.6: Coverage metrics for the write_compact test - RTL simulation

Coverage metric Active nodes Hits Misses Coverage [%] Increase2

Toggle 6,226 3,117 3,109 50.0% −1.0%

Table 4.7: Coverage metrics for the write_compact test - Netlist simulation

Simulation type
Time RTL simulation Netlist simulation

Simulation Time 9.808 ms 9.814 ms
Execution Time 18 min 12 s 20 min 12 s

Table 4.8: Simulation and execution time of the write_compact test

The difference in toggle coverage between the two netlist simulations is due to
a slightly lower coverage of the transmission FIFO, caused by the lower volume of
data transmitted from the peripheral. As will be shown in the next sections, this
drop in coverage is recovered with the subsequent tests.

4.3 write_exhaustive application results
As an attempt to increase transmitter coverage, this third application, called

write_exhaustive, was developed. Here the results obtained with this application
are listed.

2These coverage increase are measured with respect to the hello_world test results

43

4 – Results

Coverage metric Active nodes Hits Misses Coverage [%] Increase3

Statement 219 139 80 63.4% 0.0%
Branches 157 75 82 47.7% 0.0%

Conditions 12 3 9 25.0% 0.0%
Expressions 52 9 43 17.3% 0.0%

Toggle 328 146 182 44.5% 0.0%

Table 4.9: Coverage metrics for the write_exhaustive test - RTL simulation

Coverage metric Active nodes Hits Misses Coverage [%] Increase3

Toggle 6,226 3,245 2,981 52.1% 1.1%

Table 4.10: Coverage metrics for the write_exhaustive test - Netlist simulation

Simulation type
Time RTL simulation Netlist simulation

Simulation Time 40.412 ms 40.425 ms
Execution Time 61 min 35 s 60 min 56 s

Table 4.11: Simulation and execution time of the write_exhaustive test

The data shows that this test achieves little to no coverage gains with respect
to the write_compact test, with a severe penalty in both execution time (now
increased by three times) and simulation time (now increased by four times). For
this reason, the write_compact application is chosen as base for developing the
subsequent tests.

4.4 read_write application results
Next, we will analyze the results obtained from the read_write application, that

targets the receiver logic by performing read operations. The expected result is a
noticeable increase in all coverage metrics, as this test excites parts of the design
previously left untested.

3These coverage increase are measured with respect to the hello_world test results

44

4.5 – error_injection application results

Coverage metric Active nodes Hits Misses Coverage [%] Increase4

Statement 219 164 55 74.8% 11.4%
Branches 157 105 52 66.8% 19.1%

Conditions 12 3 9 25.0% 0.0%
Expressions 52 14 38 26.9% 9.6%

Toggle 328 148 180 45.1% 0.6%

Table 4.12: Coverage metrics for the read_write test - RTL simulation

Coverage metric Active nodes Hits Misses Coverage [%] Increase4

Toggle 6,226 4,426 1,800 71.0% 20.0%

Table 4.13: Coverage metrics for the read_write test - Netlist simulation

Simulation type
Time RTL simulation Netlist simulation

Simulation Time 11.296 ms 11.310 ms
Execution Time 21 min 53 s 23 min 27 s

Table 4.14: Simulation and execution time of the read_write test

While on the netlist simulation we get a 20% toggle coverage increase as expected,
the coverage gains in the RTL simulations are not quite as good. This is most likely
due to the coding style adopted to design the peripheral itself and its high level of
configurability, that forces the test to cover every possible configuration.

4.5 error_injection application results
The error_injection application was developed to cover the test misses of the

previous application, exploring the least tested corners of the design. For this reason,
a significant increase in branch coverage is expected, with moderate increases in all
other metrics.

4These coverage increase are measured with respect to the hello_world test results

45

4 – Results

Coverage metric Active nodes Hits Misses Coverage [%] Increase5

Statement 219 174 45 79.4% 16.0%
Branches 157 116 41 73.8% 26.1%

Conditions 12 4 8 33.3% 8.3%
Expressions 52 19 33 36.5% 19.2%

Toggle 328 149 179 45.4% 0.9%

Table 4.15: Coverage metrics for the error_injection test - RTL simulation

Coverage metric Active nodes Hits Misses Coverage [%] Increase5

Toggle 6,226 4,697 1,529 75.4% 24.4%

Table 4.16: Coverage metrics for the error_injection test - Netlist simulation

Simulation type
Time RTL simulation Netlist simulation

Simulation Time 11.994 ms 12.009 ms
Execution Time 22 min 47 s 25 min 4 s

Table 4.17: Simulation and execution time of the error_injection test

As can be seen in the tables above, the expectations are fully met, with an
increase of branch coverage of 26.1% over the Hello World baseline and a 7.0%
over the receiver test. This test also yields significant increases in both condition
and expression coverage metrics, with an increase of respectively 8.3% and 9.6%
with respect to the receiver test.

This last test still leaves some areas of the design untested. One of this areas is
the reset logic, that is only activated at power on and can not be controlled via
software. The other untested area is the interrupt generation logic. The APBUART
peripheral is able to generate an interrupt for many different events, such as errors
or empty/full FIFOs. In order to test this logic, the interrupts must be enabled in
the peripheral and the software must implement the corresponding interrupt service
routine (ISR). Then, all interrupt conditions must be independently triggered and
the event must be observed in software, when the ISR is called.

5These coverage increase are measured with respect to the hello_world test results

46

5 Conclusion

In conclusion, in this Master Thesis, a System-on-Chip (SoC) was chosen to
perform a feasibility analysis for the use of a software application in verification
and testing steps. The chosen SoC was the LEON3 and the analysis was conducted
on one of its peripherals, the APBUART. At this point, software applications were
developed and tested in order to improve results.

From the obtained data, it is possible to conclude that the use of applications as
verification and test patterns is possible, depending on the specific situation. For
example, software applications can be used as early verification patterns during the
development of a new peripheral for an existing SoC. In this use-case, simulation
platform for the SoC would be already available, as well as software compilation
suites.

On the other hand, testing results were too low to justify the use of software ap-
plications as production test patterns (where is required a minimum fault coverage
of 90%+), especially considering that the toggle coverage figures are an overestima-
tion of the achievable fault coverage. Said that, these software applications might
be used as a useful starting point for functional test stimuli in those cases where
the IC requirements prevent the use of DfT techniques or when DfT must be com-
plemented by other test steps to increase the real defect coverage (e.g., in System
Level Test).

Future developments can be aimed at increasing coverage on the currently ana-
lyzed peripheral and/or expand the experiment on other peripherals. A clear exam-
ple might be the extension of the currently developed software to support interrupts
from the UART peripheral. This would rely on the integrated IRQ controller and
it would make use of the RTEMS operating system Interrupt Service Routines, of
which an example application is already provided with the RCC package.

47

48

Appendices

A LEON 3 Configuration
LEON 3 Configuration:

• Synthesis

– Target technology: SAED32

– Memory Library: SAED32

– Infer RAM: NO

– Infer pads: NO

– Disable asynchronous reset: YES

– Enable scan support: NO

– Enable JTAG boundary scan: NO

• Clock generation:

– Clock generator: SAED32-PLL

– Use PCI clock as system clock: NO

• Processor:

– Enable LEON3 SPARC V8 Processor: YES

– Number of processors: 1

– Integer unit:

∗ SPARC register window: 8
∗ SPARC V8 MUL/DIV instructions: YES
∗ Hardware multiplier latency: 5-cycles
∗ SPARC V8e SMAC/UMAC instructions: YES
∗ Multiplier structure: Inferred
∗ Branch prediction: YES
∗ Single-vector trapping: YES
∗ Load delay: 1
∗ Hardware watchpoints: 2

49

5 – Conclusion

∗ Enable power-down mode: YES
∗ Reset start address (addr[31:12]): 00000
∗ SPARC V8E non-privileged ASI access: YES
∗ SPARC V8E partial Write %psr (WRPSR): NO
∗ SPARC V8E AWP and register file partitioning: NO
∗ Enable LEON-REX extension: NO

– Floating-point unit:

∗ Enable FPU: NO

– Cache system:

∗ Enable instruction cache: YES
∗ Associativity (sets): 2
∗ Way size (kbytes/way): 4
∗ Line size (bytes/line): 16
∗ Replacement algorithm: Random
∗ Cache locking: NO
∗ Enable data cache: YES
∗ Associativity (sets): 2
∗ Way size (kbytes/way): 4
∗ Line size (bytes/line): 16
∗ Replacement algorithm: Random
∗ Cache locking: NO
∗ AHB snooping: YES
∗ Separate physical/snoop tag: YES
∗ Use SP RAM for separate tags: NO
∗ Fixed cacheability map: 0

– MMU

∗ Enable MMU: YES
∗ MMU type: Split
∗ TLB replacement scheme: LRU
∗ Instruction (or combined) TLB entries: 8
∗ Data TLB entries: 8
∗ Fast writebuffer: YES

50

A – LEON 3 Configuration

∗ MMU page size: 4K

– Debug Support Unit

∗ Enable LEON3 Debug support unit: YES
∗ Instruction trace buffer: YES
∗ Instruction trace buffer size (kbytes): 4
∗ Enable two-port instruction trace buffer: NO
∗ AHB trace buffer: NO
∗ Enable LEON3 Statistics Module: NO

– Fault-tolerance: this feature isn’t supported on the free version of the
LEON3

– VHDL debug settings:

∗ Processor disassembly to console: YES
∗ Processor disassembly in netlist: NO
∗ 32-bit program counters: YES

• AMBA configuration:

– Default AHB master: 0

– Round-robin arbiter: YES

– AHB split-transaction support: NO

– Enable full plug&play decoding: NO

– I/O area start address (haddr[31:20]): FFF

– AHB/APB bridge address (haddr[31:20]): 800

– Enable AMBA AHB monitor: NO

– Write trace to simulation console: NO

• Debug Link:

– Serial Debug Link (RS232): NO

– JTAG Debug Link: YES

– Ethernet Debug Communication Link (EDCL): NO

• Memory controllers:

– LEON2 memory controller:

51

5 – Conclusion

∗ Enable LEON2 memory controller: YES
∗ 8-bit PROM/SRAM bus support: YES
∗ 16-bit PROM/SRAM bus support: NO
∗ 5th SRAM chip-select: NO
∗ SDRAM controller: YES
∗ Separate address and data buses: NO
∗ Enable page burst operation: NO

– Enable AHB Status Register: YES

– Number of correctable-error slaves: 1

• Peripherals:

– Spacewire:

∗ Enable Spacewire links: NO

– Ethernet:

∗ Gaisler Research 10/100/1000 Mbit Ethernet MAC: YES
∗ Enable 1000 Mbit support: NO
∗ AHB FIFO size (words): 8

– SPI:

∗ SPI memory controller:
· Enable SPI memory controller: NO

∗ SPI controller(s):
· Enable SPI controller(s): YES
· Number of SPI controllers: 1
· Slave select lines: 6
· FIFO depth (2N̂): 4
· Enable slave select registers: YES
· Enable automatic slave select: NO
· Support automated transfers: NO
· Support open drain mode: NO
· Support three-wire protocol: NO
· Maximum supported word length: 0 (up to 32-bit)
· Use SYNCRAM for rx and tx queues: NO

52

A – LEON 3 Configuration

· SPI protocols: Standard

– CAN:

∗ Enable multi-core CAN interface: YES
∗ Number of CAN cores: 1
∗ CAN I/O area start address (haddr[19:8]): C00
∗ Interrupt number: 13
∗ Enable separate interrupts: NO
∗ Enable synchronous reset: NO
∗ Enable FT FIFO memory: NO

– UARTs, timers and irq control:

∗ Enable console UART: YES
∗ UART1 FIFO depth: 4
∗ Enable secondary UART: YES
∗ UART2 FIFO depth: 4
∗ Enable LEON3 interrupt controller: YES
∗ Enable secondary interrupts: NO
∗ Enable Timer Unit: YES
∗ Number of timers (1 - 7): 4
∗ Scaler width (2 -16): 12
∗ Timer width (2 - 32): 32
∗ Timer unit interrupt: 8
∗ Separate interrupts: NO
∗ Watchdog enable: YES
∗ Initial watchdog time-out value: FFFFF
∗ Enable generic GPIO port: YES
∗ GPIO width: 16
∗ GPIO interrupt mask: FE
∗ Enable I2C master: YES

• VHDL Debugging:

– Accelerated UART tracing: NO

53

5 – Conclusion

B Difference between sequential elements
In this appendix, it is shown the difference in complexity between the two

interfaces the original SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT and the modified
SIMPLIFIED_SEQUENTIAL_ELEMENT.

entity SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT is
generic (

ac_as_q : integer;
ac_as_qn : integer;
sc_ss_q : integer

);
port(

clear : in std_logic;
preset : in std_logic;
enable : in std_logic;
data_in : in std_logic;
synch_clear : in std_logic;
synch_preset : in std_logic;
synch_toggle : in std_logic;
synch_enable : in std_logic;
next_state : in std_logic;
clocked_on : in std_logic;
Q : buffer std_logic;
QN : buffer std_logic

);
end SYNOPSYS_BASIC_SEQUENTIAL_ELEMENT;

entity SIMPLIFIED_SEQUENTIAL_ELEMENT is
generic (

ac_as_q : integer;
ac_as_qn : integer;
sc_ss_q : integer

);
port(

synch_enable : in std_logic;
next_state : in std_logic;
clocked_on : in std_logic;
Q : buffer std_logic;
QN : buffer std_logic

);
end SIMPLIFIED_SEQUENTIAL_ELEMENT;

54

Acronyms

ADC Analog to Digital Converter. 11

AHB Advanced High-performance Bus. 13

AMBA Advanced Microcontroller Bus Architecture. 13

APB Advanced Peripheral Bus. 13

CAN Controller Area Network. 11, 13

DAC Digital to Analog Converter. 11

DMA Direct Memory Access. 13

FPGA Field Programmable Gate Array. 12

GCC GNU Compiler Collection. 15

GNU GNU’s Not Unix. 11

GPIO General Purpose Input/Output. 11, 13

GPL GNU General Public Licence. 11

HDL Hardware Description Language. 11

I2C Inter-Integrated Circuit. 11, 13

IC Integrated Circuit. 5

IP Intellectual Property. 11

ISA Instruction Set Architecture. 11

LGPL GNU Lesser General Public Licence. 11

MMU Memory Management Unit. 13

ORPSoC OpenRISC Reference Platform System-on-Chip. 11

55

Acronyms

RCC RTEMS Cross-Compiler. 17

RTEMS Real-Time Executive for Multiprocessor Systems. 11, 14, 15

RTOS Real-Time Operating System. 11, 15

SoC System-on-Chip. 11–14

SPI Serial Peripheral Interface. 11, 13

56

Bibliography

[1] Cobham Gaisler. (2018). LEON/GRLIB download page, [Online]. Available:
https://www.gaisler.com/index.php/downloads/leongrlib (visited on
11/18/2018).

[2] Cobham Gaisler, LEON/GRLIB Guide: GRLIB IP Library User’s Manual,
Nov. 2017. [Online]. Available: http://www.gaisler.com/products/grlib/
grlib.pdf (visited on 12/29/2017).

[3] Cobham Gaisler, LEON/GRLIB Guide: GRLIB IP Core User’s Manual, Dec.
2017. [Online]. Available: http://www.gaisler.com/products/grlib/grip.
pdf (visited on 12/29/2017).

[4] SPARC International Inc., The SPARC Architecture Manual: Version 8, 1992.
[Online]. Available: https://www.gaisler.com/doc/sparcv8.pdf (visited
on 12/02/2018).

[5] Cobham Gaisler, Bare-C Cross-Compiler: User manual, 2018. [Online]. Avail-
able: https://www.gaisler.com/doc/bcc2.pdf (visited on 12/02/2018).

[6] Cobham Gaisler, RTEMS Cross Compiler: User manual, 2018. [Online]. Avail-
able: https://www.gaisler.com/anonftp/rcc/doc/rcc-1.2.pdf (visited
on 12/02/2018).

[7] Wikipedia. (Jan. 9, 2018). OpenRISC, [Online]. Available: https : / / en .
wikipedia.org/wiki/OpenRISC (visited on 01/28/2018).

[8] O. Kindgren. (Dec. 28, 2017). FuseSoC GitHub page, [Online]. Available:
https://github.com/olofk/fusesoc (visited on 01/04/2018).

[9] M-Labs. (Nov. 11, 2018). MiSoC GitHub page, [Online]. Available: https:
//github.com/m-labs/misoc (visited on 12/01/2018).

[10] A. Traber and M. Gautschi, PULPino Datasheet, Jun. 9, 2017. [Online]. Avail-
able: http://www.pulp-platform.org/wp-content/uploads/2017/08/
datasheet.pdf (visited on 02/04/2018).

[11] L. Azuara and P. Kiatisevi, “Design of an Audio Player as System-on-a-Chip,”
Master’s thesis, University of Stuttgart, Jul. 2002. [Online]. Available: http:
//oggonachip.sourceforge.net (visited on 12/29/2017).

57

https://www.gaisler.com/index.php/downloads/leongrlib
http://www.gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/products/grlib/grlib.pdf
http://www.gaisler.com/products/grlib/grip.pdf
http://www.gaisler.com/products/grlib/grip.pdf
https://www.gaisler.com/doc/sparcv8.pdf
https://www.gaisler.com/doc/bcc2.pdf
https://www.gaisler.com/anonftp/rcc/doc/rcc-1.2.pdf
https://en.wikipedia.org/wiki/OpenRISC
https://en.wikipedia.org/wiki/OpenRISC
https://github.com/olofk/fusesoc
https://github.com/m-labs/misoc
https://github.com/m-labs/misoc
http://www.pulp-platform.org/wp-content/uploads/2017/08/datasheet.pdf
http://www.pulp-platform.org/wp-content/uploads/2017/08/datasheet.pdf
http://oggonachip.sourceforge.net
http://oggonachip.sourceforge.net

BIBLIOGRAPHY

[12] L. Azuara, R. Dorsch, P. Kiatisevi, and H. J. Wunderlich, “Design of an
Audio Player as System-on-a-Chip using an Open Source Platform,” in IEEE
International Symposium on Circuits and Systems, (May 23–26, 2005), Kobe,
Japan: IEEE, Jul. 25, 2005, isbn: 0-7803-8834-8. doi: 10.1109/ISCAS.2005.
1465242.

[13] Wikipedia. (Sep. 26, 2017). RTEMS Wikipedia page, [Online]. Available: https:
//en.wikipedia.org/wiki/RTEMS (visited on 01/05/2018).

[14] Mentor Graphics, ModelSim PE User’s Manual: Software version 10.2g, 2015.
[Online]. Available: https://documentation.mentor.com/en/docs/201508002/
modelsim_pe_user/pdf (visited on 11/17/2018).

58

https://doi.org/10.1109/ISCAS.2005.1465242
https://doi.org/10.1109/ISCAS.2005.1465242
https://en.wikipedia.org/wiki/RTEMS
https://en.wikipedia.org/wiki/RTEMS
https://documentation.mentor.com/en/docs/201508002/modelsim_pe_user/pdf
https://documentation.mentor.com/en/docs/201508002/modelsim_pe_user/pdf

	List of Figures
	List of Tables
	Introduction
	LEON3 System-on-Chip
	LEON3 Architecture
	LEON3 Processor Core
	LEON3 Peripherals
	LEON3 UART Peripheral (APBUART)

	LEON3 Software and OS support
	Alternative systems
	OpenRISC SoCs
	PULPino
	Ogg-on-a-Chip Project

	Software development
	Development tools and environments
	Tools
	Software environment

	Hardware environment setup
	Makefile and scripting
	Simulation scripts and commands
	UART Loopback module
	APBUART peripheral synthesis

	Coverage analysis
	Software applications
	Starting point - ``Hello World''
	Transmitter subsystem test
	Receiver subsystem test
	Additional improvements

	Results
	hello_world application results
	write_compact application results
	write_exhaustive application results
	read_write application results
	error_injection application results

	Conclusion
	Appendices
	LEON 3 Configuration
	Difference between sequential elements

	Acronyms
	Bibliography

