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Abstract

The goal of this thesis is to investigate and improve the computation of the

Lateralized Readiness Potential by using tools like Machine Learning and

Dimensionality Reduction side by side with the traditional tools usually em-

ployed in neurophysiology, such as �ltering and trials averaging.

Within this work Lateralized Readiness Potentials (LRP) are investigated

with the intention of understanding whether, in a near future, they could be

used as a diagnostic tool in motor and consciousness disorders.

A typical scenario in which could be employed is the diagnosis of a a Locked-

In Syndrome.

Locked-in syndrome (LIS ) is a condition in which a patient has a complete

paralysis of all voluntary muscles except for vertical eye movements and

blinking. Locked-in syndrome may be confused with a loss of consciousness

in patients, thus misleading to a diagnosis of Vegetative State and it may

even resemble death.

Being the LRP, or more in general RP, associated to the intentionality of

movement, it could unveil if there is still consciousness in what could be mis-

understood as a muscle spasm.

During this work of thesis the use of several methods and techniques were

investigated. All these methods will be shown in the following, with partic-

ular emphasis on the ones employed in the software developed and on the

reason why they were preferred to the others.



Chapter 1

Introduction

1.1 Event-related potentials

Event-related potentials (ERPs) are small changes in the scalp-recorded electroencephalogram

time-locked to the onset of an event such as a sensory stimulus or a motor act.

International Encyclopedia of the Social & Behavioral Sciences, 2001

The ERPs are electrical potentials generated by the brain as response to

a speci�c event.

This event can be a stimulus presentation followed by sensory-related opera-

tions (such as estimation of color, shape, or category of the visual stimulus),

a cognitive control operations (such as selection of appropriate response or

suppression of prepared action), or an a�ective operations (such as associ-

ated with positive or negative emotions) or even memory-related operations

(such as recalling an item or remembering a new item)[1].

The event can also be a motor response, and this is exactly the case of our

study.
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ERPs can be reliably measured using electroencephalography (EEG),

which unfortunately re�ects thousands of simultaneously ongoing brain pro-

cesses. This means that the brain response to a single stimulus or event of

interest is not usually visible in the EEG recording of a single trial.

In order to observe brain response to a stimulus, the experimenter must con-

duct several trials and average the results together, causing random brain

activity to be averaged out and the relevant waveform to remain.Thisis the

most common way to compute ERP (which is also known as averaged ERP

or aERP)[2].

Therefore, by using event-related potentials, the neural correlates of cog-

nitive processes is investigated with a non invasive procedure that has a high

temporal resolution.

It is precisely the high temporal resolution the reason why have imaging

techniques (e.g. fMRI) not made ERPs (or EEG in general) obsolete.
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Figure 1.1: A waveform showing several ERP components, including the
N100 (labeled N1) and P300 (labeled P3). [2].

Among all the event-related potentials that have been studied, this thesis

will address a particular ERP known as Bereitschaftspotential or Readiness

Potential, and more precisely its late component, the Lateralized Readiness

Potential.

1.1.1 Bereitschaftspotential

The Bereitschaftspotential or Readiness Potential, also known as pre-motor

potential is an event-related potential measured over the motor cortex and

over the supplementary motor area of the brain preceding the occurrence of

voluntary muscle movement and re�ecting the motor planning of volitional

movement.

Readiness potential was �rst recorded in 1964 by Hans Helmut Kornhuber

and Luder Deecke and reported in many of their publications within a study

of voluntary movement.

3



Since in the 1960's computer software did not exist to perform on-line back

averaging, Kornhuber and Deecke (1964) recorded electroencephalogram and

electromyogram (EMG) simultaneously, while the subjects were performing

the same movements at a self-paced rate, and then they stored all the data

on magnetic tape. Thus, by playing the tape backward, they performed an

on-line averaging of the EEG segment that precedes the onset of the EMG.

In this way, Kornhuber and Deecke detected two components, one preceding

the movement onset and one immediate following it: the Bereitschaftspo-

tential (BP) or Readiness Potential (RP), and Rea�erente Potential (which

won't be treated in this work of thesis).

In further investigation, Kornhuber and Deecke, were able to separate two

more signal components preceding the movement onset: the Pre-Motion Pos-

itivity (PMP) andMotor Potential (MP). All these potentials are collectively

known as Movement-related cortical potentials (MRCP), in other words, po-

tentials that occur in close temporal relation with movement or movement

related activity (such as motor imaginery, or motor preparation).

According to Kornhuber and Deecke report[6] the BP is a slow cortical neg-

ativity that begins about 1, 5 s (average 800 ms) prior to voluntary �nger

movement and it is bilateral even with unilateral movements.

Furthermore in the last 150 ms before the movement onset, other two poten-

tials with di�erent topography and polarity, PMP and MP, superimposed,

to the BP.

The pre-motion positivity PMP is also bilateral and widespread in the pari-

etal and precentral leads of both side and in the midline with a maximum at

the anterior parietal region. It occurs approximately 80− 90 ms prior to the
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movement onset.

The Motor Potential (MP), instead, is the only unilateral potential that pre-

cedes unilateral voluntary movement. Its localization is in fact limited to the

hand area of the motor cortex contralateral to the moving �nger. It occurs

approximately 50− 60 ms prior the movement onset.

Kornhuber and Deecke hypothesized that PMP might re�ect cortical activ-

ity related to the initiation of movement, while the MP re�ects the motor

cortical activity immediately preceding the movement

Figure 1.2: Typical potential course for ipsilateral precentral, mid- and lateral
parietal leads showing Bereitschaftspotential (BP) and pre-motion positiv-
ity (PMP) prior to movement onset in the EMG and proprioceptive evoked
potentials (EVP) after movement onset. Stippled, one of the possible vari-
ations of the contralateral precentral potential course showing superposition
of PMP and an additional negativity immediately prior to movement onset
(motor potential, MP). ( L.Deecke et al. (1976) ) [6].
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Resuming, the potential starts with a slow negative deviation (upward,

BP) which reverses to positivity (downward, PMP) about 90− 80 ms before

EMG onset.

At the contralateral precentral electrode there is additional negativity (MP)

around 60−50ms before the EMG onset when in the other leads the negative

de�ection either remains constant or diminishes. Notice that it is a common

convention to plot ERP waveforms (or more in general EEG recordings) with

negative voltages upward and positive voltages downward.

Bereitschaftspotential has a precise somatotopy, it is located over the pari-

etal and precentral areas of both hemispheres and the midline. Frontally, it

is usually positive, or absent but rarely negative; while it is bilaterally sym-

metrical in the parietal lead. It has been found out that the initial part of

precentral BP is bilaterally symmetric but, after 400 ms prior to movement

onset, it is typically slightly lateralized. This suggests that the contralateral

motor cortex typically generates slightly more negativity respect the ipsilat-

eral one. The lateralization of precentral BP becomes statistically signi�cant

around 150 ms prior to movement onset.

The amplitude of BP is directly related to BP onset time, in fact, the earlier

BP begins, the larger it becomes and viceversa. Moreover, the amplitude

and the time of BP can be in�uenced by several factors such as level of in-

tention, preparatory state, learning and skill acquisition, force exerted, speed

of movement and complexity of movement making the Bereitschaftspotential

very �ckle.

Shibasaki and Hallet in [7] cite the �rst part of BP as "early BP" , the second
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part "late BP", and just BP to consider both early and late BP (Figure 1.3

The asymmetric distribution of the late BP related to unilateral hand

movement was investigated, by Michael G. H. Coles [8], as the Lateralized

Readiness Potential (LRP).

G.Coles derived the LRP by performing the subtraction between the potential

recorded at C3 and at C4, for both the left-hand movement and the right-

hand movement separately.

1.1.2 The Lateralized Readiness Potential ( LRP )

As already mentioned above the Readiness Potential starts as bilateral over

both hemispheres and become to lateralize before the movement onset, with

higher amplitude over the contralateral hemisphere with respect to the move-

ment. This lateralization becomes even more relevant for recording sites over

the motor cortex.

The LRP is computed on the basis of ERPs recorded before and during the

execution of a response over the left and right motor cortices. However, the

exact positions of the recordings sites can vary slightly between experimen-

tal studies. Often it is chosen recording site pairs are C3' and C4' that are

located 1 cm anterior of the C3 and C4 sites speci�ed by the IS 10-20 system.

The most common method for deriving the LRP is the double subtraction

method, and it is illustrated in Figure 1.4. The double subtraction method

was introduced by De Jong et al., (1988)[9]. In literature other slightly

di�erent methods for deriving the LRP have also been investigated.

For instance, M.Coles (1989) [8] described an alternative way of comput-
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Figure 1.3: Waveforms and terminology of movement-related cortical poten-
tials (MRCPs) from a single normal subject. Self-initiated left wrist exten-
sion. Average of 98 trials. Reference (Ref): linked ear electrodes (A1,A2).
Early pre-movement negativity (early BP) starts 1.7 s before the onset of the
averaged, recti�ed EMG of the left wrist extensor muscle, and is maximal at
the midline central electrode (Cz) and widely and symmetrically distributed
on both hemispheres. Later negative slope (late BP) starts 300ms before the
EMG onset and is much larger over the right central region (contralateral to
the movement). A negative peak localized at the contralateral central area
(C2) is N − 10 or MP. Another negative peak occurring shortly after N − 10
is localized over the midline frontal region and corresponds to N + 50 or the
frontal peak of motor potential (fpMP). Figure and caption adopted from [7].
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ing LRP waveforms the averaging method.

1.1.3 The contingent negative variation

Contingent negative variation (CNV) is a low negative potential that devel-

ops in the interval between a "`Warning"' and a "`Go"' stimulus and shows

anticipation for a forthcoming signal and preparation for execution of a re-

sponse. In other words, CNV re�ects preparation for signaled movements

and is an index for expectation.

The earlier segment of the CNV has maximum amplitude over the frontal

cortex and is generated in response to a "`Warning"' cue. The later or ter-

minal CNV( tCNV) begins around 1.5 s before the "'Go"' cue, it re�ects

preparation for motor response and has maximum amplitude over the motor

cortex (M1).

CNV is a movement-preceding negativity (MPN), just as the Readiness Po-

tential (RP). The RP re�ects processes involved in the preparation of volun-

tary movements, and the CNV re�ects processes involved in the preparation

of signaled movements. In other words the RP and the CNV are both re�ec-

tions of anticipatory behavior, at least as far as the motor system is involved.

Deecke and Kornhuber pointed to the following di�erences between RP and

CNV:

1. CNV is larger over the frontal areas while the BP over the parietal

areas.

2. CNV is symmetrical while BP is lateralized over the precentral elec-

trode.
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Figure 1.4: Computation of the Lateralized Readiness Potential(LRP) with
the double subtraction method on the basis of event-related brain poten-
tial(ERP) waveforms elicited atelectrodes C3′ (left hemisphere) and C4′

(right hemisphere). Top: grand-averaged ERP waveforms elicited at C3′

(solid lines) and C4′ (dashed lines) in response to stimuli requiring a left-
hand response (left side) and to stimuli requiring a right-hand response (right
side). Bottom left: di�erence waveforms resulting from subtracting the ERPs
obtained at C4' from the ERPs obtained at C3′ separately for left-hand re-
sponses (solid line) and right-hand responses (dashed line). Bottom right
panel: LRP waveform resulting from subtracting the C3′ − C4′ di�erence
waveform for right-hand responses from the C3′ − C4′ di�erence waveform
for left-band responses.A downward-going (positive) de�ection indicates an
activation of the correct response; an upward-going (negative) de�ection in-
dicates an activation of the incorrect response. Figures and caption adopted
from M.Eimer, 1998, pag. 148 [10].
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3. RP is smaller and increases gradually while the CNV increases more

suddenly.

4. Speed instructions enhance the amplitude of the CNV. Comparing

CNV recordings prior to fast and slow responses from the same se-

ries of trials, the largest amplitudes are found prior to fast responses

while for the BP is exactly the opposite.

5. If muscular e�ort is required for a response to the RS, amplitudes of the

CNV late wave increase, compared to a condition in which this e�ort is

not needed. Kutas and Donchin (1977) have described a similar result

for the RP.

6. The RP is smaller than the CNV.

The reason why CNV is treated in this thesis, despite the fact that this

study is not directly concerned about this ERP, is that both in previous

research and in this study it has been often questioned the the hypothet-

ical interaction or correlation between Readiness Potential and Contingent

Negative Variation.

1.2 Outline of electroencephalography

Electroencephalography (EEG) is an electrophysiological monitoring method

to record electrical activity of the brain. It is typically noninvasive, with the

electrodes placed along the scalp, although invasive electrodes are sometimes

used such as in electrocorticography.

EEG measures voltage �uctuations resulting from ionic current within the
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neurons of the brain[3]. In the Figure below, the block diagram for an EEG

Acquisition system is shown:

Figure 1.5: EEG acquisition chain block diagram. Figure and caption
adopted from K.Blinowska et al., 2012, pag. 107. [4].

The �rst elements in the diagrams are the electrodes (placed on pa-

tients'scalp) and the di�erential ampli�er. A key �gure for the quality of the

measurement is the ratio between the electrodes impedance and the ampli�er

input impedance. In order to attain a good quality of the EEG acquisition,

the ampli�ers must have a very high input impedance, up to the order of

1012Ω , while the resistance of the electrodes must be kept under 5kΩ.

A High-pass �lter is employed after the ampli�er in order to eliminate

the the baseline (direct component) and the low frequency artifacts. Then,

before the EEG signal is digitally converted, a low-pass anti-aliasing �lter is

employed.

The sampling frequency mights range from 100 Hz for spontaneous EEG and

several hundred Hz for ERP, up to several kHz for recording intracranial

activity. [4]

It is crucial to know the space location of electrodes exactly, in order to allow

a right interpretation of a single recording and the comparison of results ob-

tained between di�erent subjects. The traditional IS 10-20 electrode system

makes use of 19 EEG electrodes placed over speci�c anatomic landmarks,
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in a way that 10-20 of the distance between them is the electrode spatial

interval. Two more electrodes are placed on earlobes (A1 and A2).

Figure 1.6: 10-20 system view.

Being the EEG is a measure of potential di�erence, in the referential (or

unipolar) setup it is measured relative to the same electrode for all deriva-

tions. There is no universal consent regarding the best position of the ref-

erence electrode. Since currents coming from the bio-electrical activity of

muscles, heart, or brain, propagate all over the human body, the reference

electrode has to be placed in proximity of the brain: on the earlobe, nose,

mastoid, chin, neck, or scalp center. In the bipolar setup (montage) each

channel registers the potential di�erence between two particular scalp elec-

trodes. The "common average reference" montage is obtained by subtracting

from each channel the average activity from all the remaining derivations.
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1.2.1 10-20 International System of Electrode Place-

ment

The 10-20 system or International 10-20 system is an internationally recog-

nized method to describe and apply the location of scalp electrodes.

This method was developed to maintain standardized testing methods en-

suring that a subject's study outcomes (clinical or research) could be com-

piled, reproduced, and e�ectively analyzed and compared using the scienti�c

method. The system is based on the relationship between the location of

an electrode and the underlying area of the brain, speci�cally the cerebral

cortex.[13]

Each site has a letter to identify the lobe and a number to identify the

hemisphere location.

Pre-frontal (Fp), Frontal (F), Temporal (T), Parietal (P), Occipital (O),

• The letter 'O' identi�es the occipital lobe.

• The letter 'F' identi�es the frontal lobe.

• The letters 'Fp' identify the pre-frontal lobe.

• The letter 'P' identi�es the Parietal lobe.

• The letter 'T' identi�es the Temporal lobe.

• No central lobe exists, the 'C' letter is used for identi�cation purposes

only.
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• The 'z' (zero) refers to an electrode placed on the mid line.

• Even numbers (2; 4; 6; 8) refer to electrode positions on the right

hemisphere.

• Odd numbers (1; 3; 5; 7) refer to electrode positions on the left hemi-

sphere

Four anatomical landmarks are used for the essential positioning of the

electrodes: �rst, the nasion which is the point between the forehead and the

nose; second, the inion which is the lowest point of the skull from the back of

the head and is normally indicated by a prominent bump; the pre-auricular

points anterior to the ear. Extra positions can be added by utilizing the

spaces in between the existing IS 10/20 system. The IS 10/10 system is

shown in �gures below.

Figure 1.7: 10/20 International System of Electrode Placement (IS 10/20 )
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Figure 1.8: 10/10 International System of Electrode Placement (IS 10/10 )

1.3 Noise in EEG recordings

EEG recording, like any other neurophysiological signal, is highly corrupted

by many forms and sources of noises that are signi�cantly stronger than the

signal itselfs.

There are some strategies to deal with noise in EEG recordings, some of

which have been employed within this work of thesis and are described here

in the following.

1.3.1 Sources of noise

Sources of noise in electroencephalographic signals are also known as ar-

tifacts. As well as the noise, artifacts are considered unwanted signals that

degrade the quality of the recording. The main sources that leads to artifacts

can be classi�ed into:
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1. External Artifacts (due to acquisition system or to external electro-

magnetic interference i.e. arising from extra-cerebral sites).

2. Internal Artifacts (or biological artifacts)

1.3.1.1 External artifacts

External artifacts are due both to acquisition system or to electric interfer-

ence cause by external electrical equipment.

In the following the major cause of external artifact will be resumed.

1.3.1.1.1 Power line artifacts These artifacts are due to the power line

and it is a rapid continuous ( in time ) activity whose spectrum is centered

at 50 Hz ( 60 Hz for Anglo-saxon and for some eastern countries).

Power line artifact are not due to the recording equipment, because they

usually employ a notch �lter to eliminate it, but electric cable inside the

walls produce a constant electric �eld.

1.3.1.1.2 Mobile phones artifacts These artifacts are due to the pres-

ence of a mobile phone in the recording room. They appear as spike waves

discharges at 30 Hz and may resemble an electroencephalographic seizure.

1.3.1.2 Internal Artifacts

1.3.1.2.1 Eye movement Eye movement artifacts are quite often the

largest artifact in EEG recording. They are generated by vertical and hori-

zontal eye movements.

The main source of the artifacts is the potential of the eyeball. The eyeball
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acts as an electric dipole with the positive pole oriented anteriorly.

Eye blink results in re�exive upward vertical eye movement that produces

positive de�ection at frontal areas with maximum at Fp1, Fp2 electrodes.

Eyes closing is associated with a similar artifact, while eyes opening results

in downward vertical eye movement and negative de�ection at Fp1, Fp2 elec-

trodes.

Horizontal eye movements (also called saccades) produce opposite changes

of potentials at F7, F8 electrodes. Figure 8.18 represents a sequence of hori-

zontal eye movement (saccade) and eye blink.

1.3.1.2.2 Muscle Artifact Muscle artifacts arise from electrical activ-

ity of muscles. In particular, frontalis and temporalis muscles are the most

common source of myogenic activity respectively in frontal electrodes (mostly

Fp1 and Fp2) and in temporal electrodes (mostly T3, T4).

Usually, it is not di�cult to separate muscle activity from beta cortical ac-

tivity. Indeed, at the spectra the range of muscle artifact is usually broader

than the range of beta activity. Because of that, at recordings muscle activ-

ity looks like a thicker line when compared with genuine EEG. Single muscle

discharges may look like epileptic spikes, but muscle "`spikes"' are shorter in

duration and are limited to only one electrode.

1.3.1.2.3 ECG Artifact In individuals with short necks and large hearts

electrical �elds may be detected by ears or other basal electrodes. It is di�-

cult to confuse ECG artifacts with epileptic spikes because these artifacts are

regular and usually seen with the same polarity in many electrodes. Simul-
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taneous ECG recording usually helps to di�erentiate these artifacts (labeled

as ECG artifacts), but an experienced electroencephalographer can easily do

it without such recording.

1.3.1.2.4 Cardio-Ballistic Artifact Another common type of non-brain-

related potential changes is called cardioballistic artifact. This type of ar-

tifact is caused by a periodic (with a period of heart beating) movement of

electrode located just above a blood vessel of the head. Pulsation of the ves-

sel moves the electrode which induces a periodic artifact. The cardio-ballistic

artifact is usually observed under one electrode. This is the reason why it

can be better seen when a local average montage is applied. This artifact

can be easily detected on the map of EEG spectra as a local peak in about

1 Hz frequency.

1.3.1.3 Elimination of noise sources

Some source of noise can be easily avoided. This is the case of external,

environmental sources of noise such as AC power line electronic equipment (

displays, mobile phones , routers). The �rst thing that can be done to avoid

this sources of noise is removing an unnecessary source of electromagnetic

noise from the recording room.

In principle it would be better to insulate the recording room by use of a

Faraday cage, but EM insulation requires either advance planning or costly

work. Another source of noise are movement artifacts due to muscle contrac-

tion. EMG noise can be avoided or at least mitigated by asking the patient to

�nd a comfortable position and relax before the recording session. EOG noise
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generated by eye movements or blinks is another impairment to the quality

of the EEG recordings. In order to avoid artifacts due to eye movement it

patient could be encouraged to hold gaze in the same location, e.g. in our

experiment the participants were asked to stare a timer. For what concerns

blinking, asking the participant not to blink could be very challenging for

him and moreover since both blinking and spontaneous eye movement are

unconscious behaviour and therefore withholding either of them requires vol-

untary attention that might interact with the task performance introducing

a further EEG signal component.

1.3.1.4 Rejection of noisy data

Whenever noise in the recorded data is easily recognizable, the easiest way

to get rid of it is to eliminate the portion of data where the noise is easily

detectable. Rejection of noisy data can be straightforwardly applied to the

study of ERP because, usually in order to compute the potential a task is

performed several times in what is called epoch. Therefore in this case it

is easier to isolate and discard epoch which are visibly a�ected by noise.

Rejection can be performed relying on visual inspection ( which is obviously

not feasible with large datasets) or by using di�erent techniques, some of

them will be resumed here in the following. Channels with signi�cant level

of noise are often characterized with high power at high frequency or they

present spikes at power line frequencies ( 50 or 60 Hz). Noisy channels also

show a higher variability in the signal across time with respect to other

channels. The easiest methods to automatically identify noisy recording is

the detection of extreme values either by setting a threshold or considering
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the statistics or again abnormal frequency spectrum.

1.3.1.4.1 Removal of noise There are many technique used to remove

noise from EEG data. In the following will be considered mainly the tech-

niques employed for this work of thesis.

Filtering One of the easiest way remove noise is by �ltering it out.

Obviously to let the �ltering possible, noise needs to fall outside the frequency

spectrum of the signal of interest, meaning that it has to fall below or above

the spectrum of the electroencephalographic signal. For instance, muscle

contraction typically leads to strong signal component above 100 Hz, which

is for sure outside the spectrum of interest and therefore can be eliminated

without risking to �lter part of the useful signal.

Filtering is also used to cope with the aliasing due to the sampling of the

data.

Signal averaging Another important method to increase the signal to

noise ratio and improving the quality of the noisy electroencephalographic

signal is averaging several measure of the same signal. The averaging pro-

cedure is based on the assumption that the noise is independent throughout

the measurements and, above all, the signal is constant over all the trial.

Therefore signal averaging can be used only in the case in which we are able

to collect pattern in the data that reoccur under certain condition. This

hypothesis is implicit in the study of event related potentials (ERPs). The

averaging of the ERP are based on the following assumptions:
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1. The brain solves the same task in a very similar way and therefore the

signal is ( almost) the same in all trials.

2. Ongoing brain activity (not task related) is independent in each trial

3. Noise is a zero-mean random process independent among trials

Under this assumption the average ERP is computed as follows:

< si(t) >=
1

N

N∑
i=1

si(t) i = 1, . . . , N. (1.1)

where si(t) is the measured signal in the i-th trial at time t.

Note that to simplify the notation it is chosen to use s(t) even for the discrete

data s(1) . . . s(n) where n is the number of samples. Considering an additive

noise having zero mean (< ε(t) >= 0∀ t), then it is possible to represent the

data according with the following model (M. Ihrke et al. (2000) [11] )

si(t) = u(t) + εi(t) (1.2)

where u(t) represents the recovered signal from si. This is the so-called

Signal-Plus-Noise (SPN) model. Therefore, ideally, averaging the signal over

a su�cient number if trials eliminates the noise leaving the constant signal

intact. Although this model is employed in most of the research on the event-

related potential it has often been questioned, mainly for the hypothesis of

stationarity. In fact repetition of a task may be accompanied by di�erent

neural activity, either because of setting-dependent ( e.g. slightly di�erent

displays in the same experimental condition) or subject-dependent variations
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(e.g. growing tiredness or learning).
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Chapter 2

Materials and method

2.1 Materials

2.1.1 Recordings

The EEG datasets used for this work of thesis have been acquired during a

previous study about Disorder Of Consciousness, focusing in particular on

the intentionality of the movement based on the Libet's paradigm.

The subjects sat in a chair looking at a LCD monitor placed approximately 1

m in front of them. Subjects were instructed to observe a timer and perform

a brisk fore�nger �exion ( of the dominant hand) every 10 s starting from 5s.

The 40 �nger �exions were perfomed for a session of 400 s.

EEG was recorded by 7 monopolar scalp Ag/Ag/AgCl electrodes accord-

ing to the standard 10-20 system referenced to the ground over A1 and A2.

The precise electrode placements used in our study is shown in Figure 2.1

and Figure 2.2.
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Since the LRP is recorded over the frontal, prefrontal and parietal cortex,

in correspondence of SMA and M1 areas, 7 channels have been used: Cz, C3,

C4, for the central lobe; Fcz, Fc3, Fc4 for the frontal lobe; Pz for the parietal

lobe; Oz for the occipital lobe.

Figure 2.1: EEG electrodes

Figure 2.2: EEG electrodes locations
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Figure 2.3: EMG electrodes

Figure 2.4: Experimental design.

The EEG was ampli�ed , bandpass �ltered between 0.015 Hz and 50 Hz

and then sampled at 512 Hz with a time constant of 0.1 s.

Only the 15 healthy subject EEG datasets was considered: 4 males, 11 fe-

males, right-handed, aged between 21 and 26.

During the datasets acquisition it was not possible to acquire the electroocu-
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logram (EOG), therefore any artifact removal algorithm based on the regres-

sion of the EOG channel has been adopted and consequently the recordings

may be impaired by ocular artifacts.

Surface EMG was recorded from the right hand palm by means of two

electrodes, one above the thenar eminence and the other one in correspon-

dence to the �rst joint of the index �nger. sEMG was ampli�ed , bandpass

�ltered between 5 Hz and 500 Hz and then sampled at 512 Hz with a time

constant of 0.3 s. Both EEG and sEMG were notch �ltered at 50 Hz to

remove the power line noise.

The impedance of each electrode was kept above 5KΩ.

2.1.2 Instrumentation

The EEGmeasurements were acquired using GalileoNT (EEG NT), B8300033000,

EBNeuro([14]).

Figure 2.5: GalileoNT
The parameters related to EMG was set as follows:

• Range: 65mV ,

• Sample frequency: 512Hz,

27



• Pass-band �lter cut-o� frequencies: [500.0...5.0]Hz,

• Notch �lter cut-o� frequency: 50Hz.

The parameters related to EEG was set as follows:

• Range: 4mV ,

• Sample frequency: 512Hz,

• Pass-band �lter cut-o frequencies: [50.000...0.015] Hz,

• Notch �lter cut-o� frequency: 50Hz

The electrodes impedance was kept below 5kΩ.

2.1.3 Software

2.1.3.0.1 EEGLAB EEGLAB is an interactive Matlab toolbox, for pro-

cessing continuous and event-related EEG, MEG and other electrophysiologi-

cal data incorporating independent component analysis (ICA), time/frequency

analysis, artifact rejection, event-related statistics, and several useful modes

of visualization of the averaged and single-trial data[15].
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Figure 2.6: EEGLAB Graphic User Interface

Furthermore, EEGLAB provides an interactive graphic user interface

(GUI), for visualizing event-related brain dynamics and also a structured

programming environment for storing and manipulating event-related EEG

data. EEGLAB is distributed under the free GNU GPL license.

2.1.3.0.2 LRPLAB During this work of thesis a plug-in for EEGLAB

has been developed. This plug-in allowed us to integrate all the algorithms

employed with EEGLAB.
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Figure 2.7: LRP drop down menu

In particular in the drop down menu the element "`Import from GALNT"'

is used to import a dataset in the format produced by Galileo NT and make

it compatible with EEGLAB. The the element "`Compute LRP"' is used to

actually compute the Lateralized Readiness Potential.

2.2 Methods

2.2.1 Pre-processing

In the following sections all the pre-processing phase will be treated in detail

for both the electroencephalographic and electromyographic signal.

2.2.1.1 EMG Onset Detection

Electromyographic signal is used in our experiment in order to align all the

EEG traces for each trial to a speci�c event.
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In this case the speci�c event could be of two kinds:

1. EMG Peaks

2. EMG Onset

Aligning the EEG traces on the peaks of the EMG would be the easiest and

immediate procedure to adopt, but since we are interested in a event-related

potential that take place before the movement execution it is much more

suited to compute the onset of the movement and therefore the onset of the

EMG.

Nevertheless, the peaks are still detected and they will be used in all the

cases in which the movement in most trials are not brisk, and this could be

the case of patients with movements disorders.

2.2.1.1.1 Acquisition As reported in the section Instrumentation, a pre-

liminary �ltering stage is performed during the acquisition phase. In our case

for both EMG and EEG a pass band �lter was employed. The cut-o� fre-

quencies for the EMG �lter are 5.0 and 500.0 Hz, while for the EEG signal

the frequencies are 0.015 and 50000 Hz. For both signal a notch �lter with

cut-o� frequency 50 Hz has been employed in order to remove the power line

interference component.

2.2.1.1.2 Resampling Resampling, more precisely downsampling or dec-

imation, is done in order to reduce the sampling frequency from 512 Hz to

128 Hz.

This operation is done as a �rst approach to cope with aliasing. Another

advantage is to a have a minimum reduction of the background noise [12]
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2.2.1.1.3 Detrending Linear detrending has been used to remove linear

trend in each epoch.

Detrending involves the computation of the straight lint that better inter-

polate the signal and the subtraction from the signal itself.[12] In this way

the continuous component of the EMG signal is removed without using any

other high pass �lter that could create artifact in the signal.

2.2.1.1.4 Hilbert Transform The Hilbert transform is a speci�c linear

operator that takes a function, u(t) of a real variable and produces another

function of a real variable H(u)(t). This linear operator is given by convolu-

tion with the function 1
π∗t [16]

2.2.1.1.5 Smoothing The EEG signal, divided in epoch of 10 seconds,

is then smoothed by using two moving average �lters, one moving from the

beginning of the epoch to the end, and the other one on the opposite direction.

The two signal obtained are then averaged together.

2.2.1.1.6 Linear Regression In order to compute the slope of the elec-

tromyographic signal Linear regression is employed.

Linear regression models the relation between a dependent, or response,

variable y and one or more independent, or predictor, variables x1, x2, ...xn

. Simple linear regression considers only one independent variable using the

relation

y = mx+ q + ε (2.1)

where q is the y-intercept, m is the slope (or regression coe�cient), and
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ε is the error term.

2.2.1.1.7 Movement Onset Detection Movement onset and end are

detected by means of a threshold detection algorithm. First of all, the signal

is normalized with respect to the the standard deviation:

y(t) =
x(t)− µ

σ
(2.2)

where x(t) is the signal, µ is the signal mean, and σ is the standard

deviation. The threshold is computed as the 96-percentile and the signal

onset is chosen as the �rst sample to exceed the this threshold. In the same

way, the movement end is computed as the sample that exceed a 80-percentile

threshold.

2.2.1.2 EEG Preprocessing

2.2.1.2.1 Resampling As for the electromyographic signal, the elec-

troencephalographic signal is downsampled to 128Hz.

2.2.1.2.2 Detrending Linear detrending has been used to remove linear

trend in each electroencephalographic epoch.

2.2.1.2.3 Filtering Two low-pass �lter are employed in cascade. The

�rst �lter has the following characteristics:

• Cut-o� frequency 12.5Hz

• Stop frequency 13.5Hz
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• Kaiser window with order 204

The second low pass �lter instead has:

• Cut-o� frequency 1.5Hz

• Stop frequency 2Hz

• Kaiser window with order 408

Both �lters' group delay are computed and compensated by means of a

circular shift in each epochs.

2.2.1.2.4 Averaging In order to increase the signal to noise ratio and

improving the quality of the noisy electroencephalographic signal is averaged

over all the epochs. As already stated in the introduction of this thesis, the

averaging procedure is performed according to the following assumptions:

1. The brain respond in the very similar way when performing the same

task, in this particular case it is expected that the motor response to

the �nger �exion is the same during all the epoch.

2. Ongoing brain activity (not related to the �nger movement) is inde-

pendent in each trial

3. Noise is a zero-mean random process independent among trials

Under this assumption the average ERP is computed as follows:

< si(t) >=
1

N

N∑
i=1

si(t) i = 1, . . . , N. (2.3)
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where si(t) is the measured signal in the i-th epoch at time t.

Therefore, ideally, averaging the signal over a su�cient number if trials

eliminates the noise leaving the constant signal intact. It has been observed

during the EEG recordings that, the �nger movement was not always per-

formed correctly, either for some background trembling or for a movement

executed in more than one step.

2.2.2 Epoch discarding

In order to further improve the Signal-to-Noise ratio, epochs in which the

�nger movement is not executed properly are discarded. This operation is

mainly done because, computing the onset of the EMG is very important

since the allignment of the EEG epochs is performed according to the onset

itself. It has been observed that when the movement is not executed properly:

1. It becomes very hard to determine the movement onset, either for the

threshold detection algorithm, for the way it has been implemented,

and even for a visual inspection.

2. The task is not compliant with the experiment, di�ering in the way it

has been performed and thus accompanied by di�erent brain activity.

Frequently, in other neurophysiology study these type of epochs are visually

inspected to be discarded, as well as epochs a�ected by artifact. In this work

of thesis, it has been decided to automate this procedure by implementing a

classi�cation algorithm able to, with a certain precision, identify the epoch

where movement is not executed properly
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2.2.3 Classi�cation

A classi�cation problem occurs when an object needs to be assigned into a

prede�ned group or class based on a number of observed attributes related to

that object. The individual observations are analyzed into a set of quanti�-

able properties known as explanatory variables, or features. These properties

may variously be categorical, ordinal, integer-valued or real-valued.

During classi�cation given objects are assigned to prescribed classes. A clas-

si�er is a mathematical function implemented by a classi�cation algorithm,

that maps input data to a category which performs classi�cation[17].

Said it otherwise, classi�cation is the problem of identifying to which of a

set of categories(sub-populations) a new observation belongs, on the basis of

a training set of data containing observations (or instances) whose category

membership is known.

In the terminology of machine learning, classi�cation is considered an in-

stance of supervised learning i.e. learning where a training set of correctly

identi�ed observations is available.

An algorithm that implements classi�cation, especially in a concrete im-

plementation, is known as a classi�er. The term "classi�er" sometimes also

refers to the mathematical function, implemented by a classi�cation algo-

rithm, that maps input data to a category [18]

In this thesis two algorithm were employed in order to classify EMG traces

and discriminate between properly executed movement from those performed

badly, e.g. the case in which the �nger �exion is not brisk or executed in two

steps or those in which there is a background trembling.
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These two algorithms are:

1. Linear Discriminant Analysis

2. Support Vector Machine

This step is important in order to discard all the trials in which the �nger

�exion is not properly executed, and in this way try to improve the signal to

noise ratio of the average ERP.

2.2.3.1 Support Vector Machine

A Support Vector Machine (SVM) is a Machine Learning algorithm which

learn from a training set and tries to generalize and make correct prediction

of novel data. For the training stage we have a set of m input vectors xi,

each with a number of components called features.

These input vectors are paired with m corresponding labels, denoted by yi.

The training data can be seen as labeled points in an input hyperplane and

the learning task for a two classes of well separated datapoint aims to �nd

a directional hyperplane that divides the hyperspace in such a way that all

the datapoints of each class lays on their half hyperspace.

The hyperplane found by SVM is the one that maximizes the distance from

the two classes of labeled points on each side.

The closest points to the hyperplan are the ones that most in�uences the

position of the hyperplane itself and therefore are known as support vectors.

In the best situation the training set is made up of well separated clusters

of point each of them representing a class of input data.

In real world application, the clusters might be highly intermeshed with
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overlapping points: in this case the dataset is not linearly separated. The

separating hyperplane is given as w∆x + b = 0 (where · denotes the scalar

product). b is the bias or o�set of the hyperplane from the origin in input

space, x are points located within the hyperplane and the normal to the hy-

perplane, the weights w, determine its orientation. If we consider a binary

classi�cation task with datapoints xi(i = 1, ....,m) having corresponding la-

bels yi = +− 1 the decision function is:

f(x) = sign(w ∗ x+ b) = y

The hyperplanes passing through w∆x + b = 1 and w∆x + b = −1

are known as canonical hyperplanes, and the region between these canonical

hyperplanes is called the margin band. Geometrically, the distance between

these two hyperplanes is 2
||w|| , and it is auspicable that such hyperplane are as

far away as possible. In order to maximize this distance we have to minimize

||w|| under the constraint yi(w∆xi + b) = 1∀i.

As a constrained optimization problem, the above formulation can be

solved through the method of Lagrange multipliers.

As a consequence of this geometric description, the max-margin hyper-

plane is completely determined by the support vectors.

After the training stage our SVM has to predict a class yi to any other

xi given as input.
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2.2.3.2 Linear Discriminant Analysis

Linear Discriminant Analysis is a generalization of Fisher's linear discrimi-

nant analysis and it is a method used to characterize or separate two or more

classes of objects[19].

LDA is employed in the case where the within-class frequencies are un-

equal and their performances has been examined on randomly generated

test data. This algorithm, in fact, allows to maximize the variance between

classes, and to minimize the variance within classes, in any particular data

set, guaranteeing maximal separability among classes[20]. LDA uses a hyper-

plane to separate di�erent classes, this hyperplane is attained by �nding the

projection that maximizes the distance between the class means and mini-

mizes the classes variance. Due to the low computational cost, LDA clas-

si�ers have been widely used in real-time Brain Computer Interface (BCI)

systems[28].

Summarizing the general steps for performing a linear discriminant anal-

ysis are [29]:

1. Compute the d-dimensional mean vectors for the di�erent classes from

the dataset.

2. Compute the scatter matrices (in-between-class and within-class scatter

matrix).

3. Compute the eigenvectors (e1, e2, ..., ed) and corresponding eigenvalues

(λ1, λ2, ..., λd ) for the scatter matrices.

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvec-
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tors with the largest eigenvalues to form a dxk dimensional matrix WW

(where every column represents an eigenvector).

5. Use this d∗k eigenvector matrix to transform the samples onto the new

subspace. This can be summarized by the matrix multiplication: Y Y =

XX×WW (where XX is a n∗d−dimensional matrix representing the

n samples, and yy are the transformed n × k − dimensional samples

in the new subspace).

2.2.3.3 LDA vs SVM

In all the tests that have been conducted within this study, the LDA classi�er

outperformed SVM in target detection accuracy and robustness. Moreover,

compared to the SVM, LDA classi�ers require far less computation in the

training process, making it more suitable for further developments of the

study involving real-time systems. Furthermore, it has been observed during

this study that SVM for the classi�cation of the correct performance of the

�nger movements has been too severe, leading too a high rate of discarded

epoch and a consequent decrease of the Signal-to-noise-ratio due to a lower

number of signal averaged. For all these reasons, LDA has been preferred

to SVM and therefore �nger movements are classi�ed by means of LDA. In

particular the LDA classi�er was instructed by means of a training set made

up of 200 epochs. In the �gure above there are six examples of electromyo-

graphic signal corresponding to 6 epochs, three of which are considered good

execution of the �nger �exion (left) and three bad execution (right).
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Figure 2.8: Electromyographic epochs

2.2.4 Dimensionality Reduction

Real world data, such as �nancial data, medical data (e.g DNA sequences ,

fMRI scans or EEG recordings) usually has a very high dimensionality. In

order to cope with such kind o� data, dimensionality reduction is needed.

Dimensionality reduction is the process of reducing the number of random

variables under consideration, by obtaining a set of principal variables [22].

For this work of thesis, the Principal Component Analysis is employed to

analyze the epoch time series and represent it in a more meaningful and

compact manner. In our classi�cation problem there are too many factors

(128 samples per second) to be used as features of the classi�er, and moreover

these factors are also correlated to each other and therefore redundant. This

is a typical case in which dimensionality reduction can come into play.
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2.2.4.1 Principal Component Analysis

Principal Component Analysis, PCA, (also known as Karhunen-Loève trans-

form) is a statistical technique that linearly transforms an original set of

variables into a substantially smaller set of uncorrelated variables that repre-

sents most of the information in the original set of variables. If the variables

are correlated, then they can be linearly transformed into a smaller set of

variables so that the resulting set represent almost the totality [23].

The basic idea behind Principal Component Analysis is to reduce the dimen-

sionality of a data set while retaining as much information as possible.

This is achieved by transforming the original dataset to a new set of variables,

namely the principal components (PCs), which are, as already stated, un-

correlated. Moreover these principal component are ordered so that the �rst

few retain most of the variation present in the original dataset, and therefore

most of the information is these few variable rather than being sparse in the

whole collection of variables.[25]

Principal component analysis therefore is used to enhance the understand-

ing of the structure of a dataset and it is employed in application such as

dimensionality reduction, feature extraction,data compression and data vi-

sualization.

Given a set of variables on p dimensions, PCA uses a linear transformation

to �nd direction of maximum variance, so that the information contained in

the original set of variables can be summarized through a smaller of number

of uncorrelated variables retaining most of the information.
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Said it otherwise, PCA searches for a few uncorrelated linear combination of

the original variables that captures most of the information in the original

values.

Suppose that x is a vector of p random variables,

x =



x1

x2
...

xp


(2.4)

and that the variances of the p random variables is of interest.

Figure 2.9: Plot of 50 observations on two variables x1,x2. Figure adopted
from [25].

The �rst step is to look for a linear function αT1 x of the elements of x
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having maximum variance, where α1 is a vector of p constants α11, α12, ..., α1p,

so that

αT1 x = α11x1, α12x2, ..., α1pxp =

p∑
j=1

α1jxj (2.5)

Then the algorithm look for a linear function αT2 x uncorrelated with αT1 x

having maximum variance, and so on, so that at the kth stage a linear function

αTk x is found that has maximum variance subject to being uncorrelated with

αT1 x ,αT2 x, .... α
T
k x.

The kth derived variable, αTk x is the kth PC. Up to p PCs could be found,

but it is hoped, in general, that most of the variation in x will be accounted

for by m PCs, where m << p.

Figure 2.10: Plot of the 50 observations with respect to their PCs z1, z2.
Figure adopted from [25].

Figure 2.9 gives a plot of 50 observations on two highly orrelated variables
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x1, x2. There is considerable variation in both variables, though rather more

in the direction of x2 than x1. If we transform to PCs z1, z2, we obtain the

second plot ( Figure 2.10).

It is clear that there is greater variation in the direction of z1 than in either

of the original variables, but very little variation in the direction of z2. More

generally, if a set of p(> 2) variables has substantial correlations among

them, then the �rst few PCs will account for most of the variation in the

original variables. On the other hand, the last few PCs identify directions in

which there is very little variation; that is, they identify near-constant linear

relationships among the original variables[25].

In this work of thesis Principal Component Analysis has been employed to

reduce the dimensionality of an epoch time series. This operation is done to

eliminate redundancy in the signal and let the classi�er use only few principal

components instead of trying to classify the epoch basing on the entire time

series, that in this case is made up of 1280 samples (128 samples/s x 10 s).

In order to compute the Principal Components the electromyographic signal

is �rst of all normalized. This normalization is done by subtraction the signal

average and by dividing by the signal standard deviation :

yi =
xi − µ
σ
∀i ∈ [1...1280] (2.6)

where i is the i − th sample of the time series. Then the the principal

components are computed, and the �rst �ve are used as features for the

classi�er.
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2.2.5 Feature Extraction

Apart from the EMG time series principal component, other features were

considered and employed to classify the �nger movements and will be resumed

in the following.

2.2.5.0.1 Peakness The so called peakness is computed as:

max(x(t))

tend − tonset
witht ∈ (0, 10) (2.7)

where x(t) is the electromyographic signal within one epoch, tonset in the

time instant in which the movement onset is identi�ed, and in the same way,

tend is the time instant in which the movement end is identi�ed.

This feature gives the classi�er the information on how the movement is

executed rapidly, and it is employed in the classi�cation procedure because

it has been observed that good EMG epochs where always �at with a high

and narrow peak.

2.2.5.0.2 Peak to average power ratio The so called Peak to average

power ratio is computed as the ration between the power of the maximum of

the electromyographic signal and the its mean power:

Pmax(t)

Pmean(toff
=
max(x(t))2

¯x(t)
2 (2.8)

This feature gives the classi�er the information of how the power is dis-

tributed in the epoch. In the movement executed properly the power of the
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peak is much more higher than the mean power (which is usually too high

in the epochs where the movement is not properly performed).

2.2.5.0.3 Second Maximum The second maximum is computed as the

maximum of the electromyographic signal outside the interval (tonset; tend)

max(x(t))t ∈ (tonset, tend) (2.9)

The second maximum has to be as small as possible in order to have a move-

ment properly executed. This feature has been discarded in the last analysis,

because it is redundant since the peak to average power ratio is employed

and it has been proven ( K-Fold Validation) that the last outperformed the

�rst.
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Chapter 3

Results and conclusions

In this chapter the results attained and the conclusions that have been drawn

will be presented.

3.1 EMG classi�cation

The electromyographic epochs have been classi�ed in order to discard those

epochs in which the movement are not properly executed. In order to classify

the EMG epochs two di�erent classi�cation algorithm were employed:

1. Support Vector Machine

2. Linear Discriminant Analysis

Both of them relied on the same features to perform the classi�cation:

• The �rst 5 principal component

• The Peakness
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• The Peak to average power ratio

These features were chosen among several other by evaluating the classi-

�er performance using di�erent combination of them. The classi�er perfor-

mance were evaluated by mean of the Cross-validation.

Cross-validation is a model assessment technique used to evaluate a machine

learning algorithms performance in performing classi�cation.

This is done by partitioning a dataset and using a subset to train the algo-

rithm and the remaining data for testing.

Each round of cross-validation involves randomly partitioning the original

dataset into a training set and a testing set[26].

The Cross-validation technique employed to validate the EMG epoch classi-

�cation is the Leave-one-out.

Leave-one-out cross-validation technique is a speci�c case of the k-fold val-

idation in which the original dataset is randomly partitioned into k equal

sized subsamples. Of the k subsamples, a single subsample is retained as the

validation data for testing the model, and the remaining k - 1 subsamples

are used as training data.

The cross-validation process is then repeated k times, with each of the k

subsamples used exactly once as the validation data. The k results can then

be averaged to produce a single estimation[27].

In leave-one-out technique k is equal to 1, therefore in this case 199 epochs

are used as training set a 1 as the test set. This procedure is done as many

times as the number of epochs.

Obviously the 200 samples of the training set was chosen to represent all the

possible cases in order to instruct as good as possible the classi�ers.
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The results attained with the two classi�er are resume below by their confu-

sion matrix:

91 9

8 92

 (3.1)

99 1

1 99

 (3.2)

where the �rst matrix is the confusion matrix of the Support Vector Ma-

chine classi�er, while the second matrix is the Linear Discriminant Analysis

classi�er one.

A confusion matrix, also called table of confusion, resumes the performance

of a supervised learning algorithm.

In particular

TP FP

FN TN

 (3.3)

TP is the number of true positive outcome, FP the false positive, FN the

false negative and �nally TN the true negative.

As it can be seen, the Linear Discriminant Analysis classi�er performed much

more better with respect to the Support Vector Machine, moreover as both
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the theory and the experiment con�rms, LDA is much more faster than SVM.

In this case of o�ine processing of the EEG signal, performance in terms of

processing time are not really of interest but in real time application, as this

study is intended to go toward, this is a key feature.

For this reasons LDA has been preferred over the SVM.

3.2 Conclusions

Within this work of thesis several improvements were brought to the com-

putation of the Lateralized Readiness Potential. All these improvements

however were focused on focused on the increasing of the Signal to noise

ratio in the conventional manner to compute a LRP, namely the averaging

procedure.

Being the intention of this study the investigation of whether LRP could be

used as a diagnostic tool in motor and consciousness disorders the averaging

technique is not suitable for further developments.

In fact, asking a patient in one of these conditions is certainly unfeasible

. Moreover, having adopted the above illustrated experimental protocol, it

could happen that also the CNV potential is elicited.

The running time, shown by the timer on monitor's screen, could be act as an

imperative and preparative stimulus for the subject, that could pre-planned

the �exion of the right fore�nger.

Therefore, further developments should be focused on an online computation

of the Lateralized Readiness Potential, and on its classi�cation to distinguish

if from non voluntary movements, for instance spasms.
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