

POLITECNICO DI TORINO

Master of Science Degree in MECHATRONIC ENGINEERING

Master Thesis

Obstacle Avoidance Algorithms for

Autonomous Navigation system in

Unstructured Indoor areas

Supervisor: Student:

Prof. Marcello Chiaberge Lorenzo Galtarossa

October 2018

 II

Abstract

This work aims to implement different autonomous navigation algorithms for Obstacle

Avoidance that allow a robot to move and perform in an unknown and unstructured

indoor environment.

The first step is the investigation and study of the platform, divided into software and

hardware, available at the Mechatronics Laboratory (Laboratorio Interdisciplinare di

Meccatronica, LIM) at the Politecnico di Torino, on which it is implemented the

navigation algorithm.

For what is concerned with the software platform, ROS has been used. The Robot

Operating System is an open source framework to manage robots’ operations, tasks,

motions. As hardware platform the TurtleBot3 (Waffle and Burger) has been used that

is ROS-compatible.

The second step is the inspection of the different algorithms that are suitable and

relevant for our purpose, goal and environment. Many techniques could be used to

implement the navigation that is generally divided into global motion planning and

local motion control. Often autonomous mobile robots work in an environment for

which prior maps are incomplete or inaccurate. They need the safe trajectory that

avoids the collision.

The algorithms presented in this document are related to the local motion planning;

therefore, the robot, using the sensor mounted on it, is capable to avoid the obstacles

by moving toward the free area.

Three different algorithms of Obstacle Avoidance are presented in this work, that

address a complete autonomous navigation in an unstructured indoor environment.

The algorithms grow in complexity taking into consideration the evolution and the

possible different situations in which the robot will have to move, and all are tested on

the TurtleBot3 robot, where only LiDAR was used as sensor to identify obstacles.

The third algorithm, “Autonomous Navigation”, can be considered the final work, the

main advantage is the possibility to perform curved trajectory with an accurate choice

of the selected path, combining the angular and the linear velocity (980 different

motions), the LiDAR scans 180° in front of the robot to understand the correct

direction. The last step is the automatic creation of the map.

This map will be analysed and compared with the one defined using the RViz software

that is the official software used in ROS environment. The tool is suitable to visualize

http://www.polito.it/index.en.php

 III

the state of the robot and the performance of the algorithms, to debug faulty

behaviours, and to record sensor data.

The improvement of this reactive Obstacle Avoidance method is to successfully drive

robots in Indoor troublesome areas. As conclusion we will show experimental results

on TurtleBot3 in order to validate this research and provide an argumentation about

the advantages and limitations.

 IV

Contents

1 Introduction .. 1

1.1 Objective of the Thesis ... 1

1.2 Organisation of the Thesis .. 2

2 ROS Robot Operating System 4

2.1 Introduction .. 4

2.2 History of ROS .. 5

2.3 Meta-Operating System .. 6

2.3.1 Characteristics of ROS ... 7

2.3.2 Philosophy of ROS ... 8

2.4 ROS Tools and Simulators .. 10

2.4.1 3D Visualization Tool (RViz) .. 10

2.4.2 ROS GUI Development Tool (Rqt) 11

2.4.3 Gazebo Simulator ... 12

3 Robot .. 16

3.1 Sensor .. 17

3.1.1 Camera ... 17

3.1.2 Depth Camera ... 18

3.1.3 Laser Distance Sensor ... 19

3.1.4 Motor Packages .. 20

3.2 Embedded System ... 21

3.2.1 OpenCR ... 22

3.3 TurtleBot .. 24

 V

3.3.1 TurtleBot3 Hardware .. 25

3.3.2 TurtleBot3 Software ... 27

4 State of the Art .. 29

4.1 Introduction .. 29

4.2 Global Path Searching Method 31

4.2.1 The A* Algorithm ... 31

4.2.2 The D* Algorithm... 34

4.3 Local Motion Control ... 38

4.3.1 Definition of Obstacle Avoidance 38

4.3.2 Potential Field Method .. 40

4.3.3 Vector Field Histogram ... 41

4.3.4 Dynamic Window Approach .. 43

4.3.5 VFF Approach for Obstacle Avoidance 44

4.4 General Navigation System 46

5 Navigation ... 47

5.1 Introduction to the Navigation Algorithm 47

5.2 Algorithms ... 49

5.2.1 Follow Wall ... 51

5.2.2 Obstacle Avoidance .. 54

5.2.3 Autonomous Navigation with Map 57

6 Conclusion ... 65

6.1 Experimental Results ... 65

6.2 Future Work .. 70

 VI

7 Appendix A .. 71

Autonomous_Navigation.py ... 71

Bibliography.. 80

Acknowledgment ... 82

 VII

List of Figure

Figure 2.1 Morgan Quigley programmed the first iteration of what grew into

ROS .. 5

Figure 2.2 Structure of Ros .. 7

Figure 2.3 Illustration of the Waffle robot, while it is moved by ‘teleop’

command, within the Rviz tool ... 11

Figure 2.4 Window where the turtle is moved using the keyboard 12

Figure 2.5 Rqt Graph representation of this example .. 12

Figure 2.6 3D view of TurtleBot3 Waffle on Gazebo .. 13

Figure 2.7 The house model of Gazebo ... 14

Figure 3.1 PR2 (Left), TurtleBot2 (2nd from the left), TurtleBot3 (3 models on

the right) .. 16

Figure 3.2 Distance measurement using LDS ... 19

Figure 3.3 The different version of Dynamixels .. 20

Figure 3.4 Embedded system configuration of a Humanoid robot 21

Figure 3.5 TurtleBot3 embedded system ... 22

Figure 3.6 Gyroscope and Accelerometer directions ... 23

Figure 3.7 OpenCR interface configuration .. 23

Figure 3.8 Hardware configuration of TurtleBot3 .. 25

Figure 3.9 Intel Real Sense R200 .. 26

Figure 3.10 Hardware specification of TurtleBot3 .. 27

Figure 3.11 Setting Remote Control ... 28

Figure 4.1 Representation of A* search for finding a path from a start node

(red) to a goal node(green) in a robot motion planning problem (Figure on

the left). .. 33

Figure 4.2 Weighted arcs that connect the neighbours’ node............................ 35

Figure 4.3 how to compute the global path information 35

 VIII

Figure 4.4 Path from a start position to the goal .. 36

Figure 4.5 Behaviour of D* Algorithm ... 37

Figure 4.6 With the obstacle avoidance algorithm we can avoid collisions with

the obstacles using the information gathered by the sensors while driving the

robot towards the target location .. 39

Figure 4.7 Potential field method, thanks to we compute the motion direction.

The target attracts the particle Fatt instead the obstacle exerts a repulsive

force Frep .. 39

Figure 4.8 SubFigure (a): Robot motion direction θsol and obstacle occupancy

distribution. SubFigure (b): The candidate valley is the set of adjacent

components with values lower than the threshold. The navigation case is the

third previously considered, since the sector of the target 42

Figure 4.9 Subset of control UR, where U contains the controls within the

maximum velocities, UA the admissible controls, and UD the controls

reachable in a short period of time ... 42

Figure 4.10 Frontal repulsive force FF ... 44

Figure 4.11 The lateral computed forces decomposition 44

Figure 4.12 Steering Direction and Repulsive Force ... 45

Figure 5.1 Waffle loads on the World environment of Gazebo 49

Figure 5.2 RViz views of the data coming from the sensors 49

Figure 5.3 Map of the environment .. 49

Figure 5.4 Area divided by the Follow Wall algorithm 51

Figure 5.5 Waffle in front of a wall in the simulated environment Gazebo 51

Figure 5.6 Map of the floor given by Rviz .. 53

Figure 5.7 Representation of the three different area, from the farthest one

(blue) to the nearest one (yellow), where are represented all the subarea in

different colour, in which the darkest one are the first considered by the robot.

 .. 55

Figure 5.8 Safety area to avoid a collision... 57

 IX

Figure 5.9 Flow Chart of the 'Autonomous Navigation' algorithm 60

Figure 5.10 The linear vt (Sub-figure b) and the angular wt (Sub-figure a)

velocity applied to the robot on the y axis .. 62

Figure 6.1 Circle ... 65

Figure 6.2 Floor of the LIM department .. 66

Figure 6.3 Simulation of the Vineyard ... 67

Figure 6.4 Maze exploration .. 69

Figure 6.5 Simultaneous Localization and Mapping inside the Maze, showing

the evolution of the map step by step .. 69

 X

1 Introduction 1.1 Objective of the Thesis

 1

1 Introduction

1.1 Objective of the Thesis

In the past, investigation into the development of unmanned air, underwater and land

vehicles has been fundamentally the domain of military related organizations.

Nowadays, the technological context, availability of precise sensors, the spread of open

source software and the increasing of computation power, has led the largest

companies to take an interest on the concept of automation and robotization and as a

result autonomous navigation has become also one of hottest topics in the research’s

field.

In this thesis, we study the problem of autonomous navigation through an

environment that is initially unknown, with the objective of reaching the farthest point

in which the robot can move avoiding the obstacles. Without prior knowledge of the

map, a moving robot must recognise its surroundings through onboard sensors and

make instantaneous decisions to react to obstacles as they come into view. This

problem lies at the intersection of several areas of robotics, including motion planning,

perception, and exploration.

Different techniques could be used to implement the navigation that is generally

separated into global motion planning and local motion control. The algorithms

introduced in this work are linked to the local motion planning; therefore, using the

sensor mounted on it, the robot is capable of avoiding the obstacles by moving toward

the free area.

This document explains three possible algorithm solution, based on Obstacle

Avoidance, that address a complete autonomous navigation in an unstructured indoor

environment.

The algorithms raise in complexity taking into consideration the evolution and the

possible changed in which the robot will have to move, and all are tested on the

TurtleBot3 robot (Waffle and Burger), where only LiDAR was used as sensor.

The implemented techniques necessitate the robot to select actions based on the

construction of the environment that it has perceived. As we will observe in this thesis,

standard motion planning techniques often limit performance to be conservative when

deployed in unknown environments, where every unexplored region of the map may,

in the worst case, pose a hazard.

1 Introduction 1.2 Organisation of the Thesis

 2

To guarantee that the robot will not collide with potential obstacles, motion planners

limit the robot's speed such that it could come to a stop, if need be, before the collisions.

The trajectory and the speed of the robot depend on many factors such as the type of

floor, the limitations of the hardware, the size and the material of the wheels and the

type of algorithm that manages the movement of the robot.

The map is built with two-dimensional Cartesian histogram grid based on the RViz

software that is the official software used in ROS environment, which is updated

continuously with range data sampled by onboard sensors.

In order to make this work more complete a different solution to the automatic creation

of the map, has been proposed; this map will be analysed and compared with the one

created by the ROS tool.

1.2 Organisation of the Thesis

The thesis is composed of six chapters, below we list the content of each of them to give

the reader an overview of the work done.

Chapter 1 is introductory and outlines the motivations that stimulate researcher and

get them interested in the navigation system. Afterwards, the principle objective of the

thesis and a description of the its structure is given.

Chapter 2 provides an overview of the software platform ROS, Robot Operating

System, explaining its characteristic and philosophy that highlight why it is used as

common platform to manage robots’ operations, tasks, motions.

Chapter 3 offers an outline of Robots, describing the operation of the related sensors

that could be mounted. Particular emphasis is placed on the robot available at the LIM

department, Turtlebot3 (Waffle and Burger), of which it is described the software and

hardware platform.

Chapter 4 aims to introduce the literature survey of the various techniques used for

mobile robot navigation. Navigation and obstacle avoidance are one of the

fundamental problems in mobile robotics, here are described two type of control global

path planning and local motion control.

Chapter 5 represents the main work of these thesis. It consists of three parts, in which

in each sub-chapter is described an implemented algorithm that is gradually more

1 Introduction 1.2 Organisation of the Thesis

 3

complex, to perform the obstacle avoidance, allowing the robot to move and perform a

trajectory in an unknown and unstructured indoor environment.

The result and some real application of the algorithms are drawn in Chapter 6.

Moreover, this chapter outline also the advantages/disadvantages and limitation of the

algorithms. Finally, it proposes future approach and application as agricultural outdoor

environment.

2 ROS Robot Operating System 2.1 Introduction

 4

2 ROS Robot Operating System

2.1 Introduction

In the field of robotics, platforms are of increasing importance. A platform is divided

into a software platform and hardware platform. A robot software platform contains

tools that are used to build robot application programs such as low-level device control,

SLAM (Simultaneous Localization and Mapping), navigation, manipulation,

recognition of objects or humans, sensing and package management, debugging and

development tools especially in the industry, within which they are nowadays mostly

used. Robot hardware platforms not only study platforms such as mobile robots,

drones, and humanoids, but also commercial products.

Hence, robot researchers from around the world are collaborating to discover a

platform that is intuitive and open source. The most popular robot software platform

is ROS, that means Robot Operating System.

ROS, the Robot Operating System, is an open source framework to manage robots’

operations, tasks, motions, and other things. ROS is intended to serve as a software

platform for those who build and use robots daily, but at the same time for people who

are starting to use robots no long ago. This common platform allows newcomers to be

increasingly inclined to read more and more and it is very easy to use.

This structure of the platform allows the use of the code and information shared by the

other programmers, that implies that you do not have to write all the code in order to

move the robots, for this reason, ROS has been remarkably successful.

The latter was one of the main reasons why ROS was used, furthermore, it represents

the Operating System of the two TurtleBot3 (Burger, Waffle described in Chapter 2)

that are the robots available at the LIM (Interdisciplinary Laboratory of Mechatronics),

on which the autonomous navigation algorithms were written.

2 ROS Robot Operating System 2.2 History of ROS

 5

2.2 History of ROS

“In May 2007, ROS was started by borrowing the early opensource robotic software

frameworks including switchyard, which is developed by Dr. Morgan Quigley by the

Stanford Artificial Intelligence Laboratory in support of the Stanford AI Robot STAIR

(Stanford AI Robot) project.

Dr. Morgan Quigley is one of the founders and software development manager of Open

Robotics (formerly the Open Source Robotics Foundation, OSRF), which is

responsible for the development and management of ROS.

Switchyard is a program created for the development of artificial intelligence robots

used in the AI lab’s projects at the time and it is the predecessor of ROS.

In addition, Dr. Brian Gerkey, the developer of the Player/Stage Project and 2D Stage

simulator, later influence the growth of 3D simulator Gazebo, which was developed

since 2000 and has had a major impact on ROS’s networking program. He is the co-

founder of Open Robotics.

In November 2007, U.S. robot company Willow Garage succeeded the development of

ROS. Willow Garage is a well-known company in the field of personal robots and

service robots.” [2]

ROS is based on two licences (the BSD 3-Clause License and Apache License 2.0),

which lets anyone modify, reuse and redistribute all the material available inside the

platform.

This allows the development of robotic platforms able to apply ROS, some examples

are the PR2 that stands for Personal Robot and TurtleBot, making ROS as the main

software platform for robots.

Figure 2.1 Morgan Quigley programmed
the first iteration of what grew into ROS

2 ROS Robot Operating System 2.3 Meta-Operating System

 6

2.3 Meta-Operating System

ROS is an open-source, meta-operating system for the robot. It delivers the services

you would imagine from an operating system, including hardware abstraction, low-

level device control, implementation of commonly-used functionality, message-

passing between processes, and package management. It also provides tools and

libraries for obtaining, building, writing, and running code across multiple computers,

that has the target of simplifying the task of creating complex and robust robot

behaviour across a wide variety of robotic platforms.

Contrasting conventional operating systems, it can be used for several combinations of

hardware implementation. Furthermore, it is considered as a robot software platform

that offers various development environments specialized for developing robot

application programs.

For example, consider a simple "retrieve an object" activity, in which a robot is required

to retrieve a specific object. First of all, the robot must understand the request, that

means how to reach the goal. The robot must plan a sequence of actions to coordinate

the object's search, which will require navigation through various rooms in a building,

where the robot must be able to avoid all obstacles, optimizing the chosen path.

Once in a room, the robot must look for objects of similar size and find the required

one. The robot must then return to its own steps and deliver the object to the desired

position. Each of these subproblems can have an arbitrary number of issues; in the real

world there are a lot of circumstance in each field that is difficult to predict and model,

so no single individual can think to build a complete system from scratch.

So, ROS was built from the ground up to encourage collaborative robotics software

development. In this example, a group might have specialists in indoor mapping and

could contribute to a complex system for producing indoor maps; the same work could

be done for an outdoor space (field or rows).

Another group may have experience in using maps to robustly navigate indoors,

specialized in motion planning and Obstacle Avoidance. Another one may have

discovered an approach to the vision that works with sensors able to offer capabilities

such as gesture recognition, object recognition and scene recognition based on 3D

depth information. ROS includes many features specifically designed to simplify this

type of large-scale collaboration.

2 ROS Robot Operating System 2.3 Meta-Operating System

 7

2.3.1 Characteristics of ROS

The main features of ROS can be grouped in five characteristics:

First is the reusability of the program. A user can focus on the goal related to its

application that it would like to develop while downloading the corresponding package

for the remaining functions. At the same time, he can share the program that he

developed so that others can reuse it.

The second characteristic is that ROS is a communication-based program. Often, to

provide a service, programs such as hardware drivers for sensors and actuators and

features such as sensing, recognition and operating are developed in a single frame.

However, to achieve the reusability of robot software, each program and feature is

divided into smaller pieces based on its function. This is called componentization or

modularization according to the platform.

The third is the support of development tools. ROS provides debugging tools, 2D

visualization tool (such as Rqt) and 3D visualization tool (RViz) that can be used

without developing the necessary tools for robot development. Tools that make it easy

to visualize the state of the robot and the performance of the algorithms, to debug faulty

Figure 2.2 Structure of Ros

2 ROS Robot Operating System 2.3 Meta-Operating System

 8

behaviours, and to record sensor data. A large and increasing gathering of robotics

algorithms that allow you to map the environment, navigate around it, represent and

interpret sensor data, plan motions, manipulate objects, and other operations is

available.

For example, there are many occasions where a robot model needs to be visualized

while developing a robot. The growing number of tools and their capabilities allows

users not only to check the robot’s model directly but also to perform a simulation using

the provided 3D simulator (Gazebo).

The tool can also receive 3D distance information from cameras, as Intel RealSense or

Microsoft Kinect, and easily convert them into the form of point cloud, finally display

them on the visualization tool.

The fourth is the active community. Ros is a community for an open source software

platform. There are over 5,000 packages that have been voluntarily developed and

shared as of 2017, the Wiki pages that document many of the aspects of the framework,

and a question-and-answer site where you can ask for help and share what you’ve

learned.

The fifth is the construction of an ecosystem. Various software platforms have been

developed and the most respected and used platform among them, ROS (for all the

features that we already saw), is now shaping its ecosystem. It is creating an ecosystem

for everyone: hardware developers from the robotic field such as a robot and sensor

companies, ROS development operational team, application software developers, and

users as the students, can be happy with it.

2.3.2 Philosophy of ROS

The following paragraphs describe some philosophical aspects of ROS:

Peer to peer: ROS systems consist of a small number of computer programs that are

linked to one another and continuously exchange messages. These messages travel

directly from one program to another. Although this makes the system more complex,

the result is a system that balances better as the number of data increases.

Multilingual: ROS chose a multilingual approach. ROS software modules can be

written in any language for which a client library has been written. At the time of

2 ROS Robot Operating System 2.3 Meta-Operating System

 9

writing, client libraries exist for C++, Python, LISP, Java, JavaScript, MATLAB and

others.

Thin: the ROS conventions encourage contributors to create standalone libraries and

then wrap those libraries, so that they can send and receive messages to and from other

ROS modules. This extra layer is proposed to allow the reuse of software outside of

ROS for other applications, and it greatly simplifies the creation of automated tests

using standard continuous integration tools.

Free and open source: the core of ROS is released under the permissive BSD license,

which allows both commercial and non-commercial use. ROS foresees data exchange

between modules using inter-process communication (IPC), which means that

systems built using ROS can have fine-grained licensing of their various components.

As a user of ROS, I felt that the goal of ROS is to build an environment that allows

robotic software development using a collaborative platform on a global level, where

all the people share the code of their algorithm to help each other.

2 ROS Robot Operating System 2.4 ROS Tools and Simulators

 10

2.4 ROS Tools and Simulators

ROS has various tools that can be useful when the robot moves, or an algorithm is

running, and we want to understand if it works properly or not. There are several ROS

tools, including the ones that ROS users have personally released as well.

The tools we will describe, which represent the ones that have been most used during

laboratory experiments/test are the following: RViz (3D visualization tool), Rqt (that

is a software framework of ROS that implements the various GUI tools in the form of

plugins), Rqt image-view (Image display tool), Rqt graph (tool that visualizes the

correlation between nodes and messages as a graph), Rqt plot and Gazebo, a 3D

simulator.

2.4.1 3D Visualization Tool (RViz)

RViz is the 3D visualization tool of ROS. The main purpose is to display ROS messages

and topics in 3D, letting us to visually control data and the behaviours of our system.

 There is the possibility to display also live representations of sensor values coming

over ROS topics including camera data, infrared distance measurements, sonar data,

and so on.

The mobile robot model can be shown and the received distance data from the Laser

Distance Sensor (LDS) can be used for navigation to avoid obstacles. RViz can also

display images from the camera mounted on the robot. In addition to this, it can take

data from various sensors such as Kinect, LDS, RealSense and visualize them in 3D.

RViz has various functions such as interact, camera movement, selection, camera focus

change, distance measurement, 2D position estimation, 2D navigation target-point,

publish point.

The 3D View is in the middle of the screen (Figure 2.3), represented by a black area. It

is the main screen which allows us to see various data in 3D, that can be configured in

the Global Options and Grid settings on the left column of the screen.

The Displays panel on the left column is for selecting the data that we want to display

from the various topics.

The ‘Fixed-Frame’ provides a static, base reference for your visualization. Any sensor

data that comes into RViz will be transformed into that reference frame, so it can be

properly displayed in the virtual world.

2 ROS Robot Operating System 2.4 ROS Tools and Simulators

 11

2.4.2 ROS GUI Development Tool (Rqt)

There are other tools apart from the 3D visualization tool RViz; ROS in fact supplies

various GUI tools for robot development. There is a graphical tool that shows the

hierarchy of each node as a diagram thereby showing the status of the current node

and topic, and a plot tool that schematizes a message as a 2D graph, this kind of

solution is useful to understand where the problem is when you are not able to visualize

something or there is a device that does not work.

“Rqt image” view is a plugin to display the image data of a camera. Although it is not

an image processing tool, it is still quite useful for simply checking an image. It is used

to show what the robot sees while it is moving.

“Rqt_graph” is a tool that shows the correlation among active nodes and messages

being transmitted on the ROS network as a diagram. This is very useful for

understanding the current structure of the ROS network when the number of sensors,

actuators, and programs is high.

Rqt plot is a tool for plotting 2D data. The plot tool receives ROS messages and displays

them on 2D coordinates. As an example, let us plot the x and y coordinates of the

‘turtlesim’ node pose message. It is possible to see that the x, y position, direction in

theta, translational speed, and the rotational speed of the turtle are plotted. As we can

see, this is a useful tool for displaying the coordinates coming from 2D data.

In this example, we run the “turtlesim_node” and the “turtle_teleop_key” commands.

The first command opens a blue window in which in the middle there is a turtle (that

changes in shape every time), instead, by running the second command in a new

Figure 2.3 Illustration of the Waffle robot, while it is moved by
‘teleop’ command, within the Rviz tool

2 ROS Robot Operating System 2.4 ROS Tools and Simulators

 12

window, we will see messages and instructions that give the possibility of moving the

turtle using the arrow keys on the keyboard (←, →, ↑, ↓) or, in another version,

pressing letters (a, s, w, z). The turtle will move according to the arrow key as shown

on the picture below.

The other Figure 2.5 shows the behavior of Rqt_graph, where the circles represent

nodes (/teleop_turtle, /turtlesim) and squares (/turtle1/cmd_ vel) represent topic

messages and the arrow indicates the transmission of the message.

When we executed ‘turtle_teleop_key’ and ‘turtlesim_node’, both the nodes were

running respectively, and these two nodes are transmitting data with the arrow key

values of the keyboard in the form of translational speed and rotational speed message.

2.4.3 Gazebo Simulator

Real robots need logistics including laboratory space, refreshing of batteries and

operational quirks that often-become part of the institutional knowledge of the

organization operating the robot. In a real case of work, even the best robots break

periodically due to various combinations of operator errors, environmental conditions,

manufacturing or design defects. These problems can be avoided by using simulated

robots that move in a simulated environment.

Figure 2.4 Window where the turtle is moved using the keyboard

Figure 2.5 Rqt Graph representation of this example

2 ROS Robot Operating System 2.4 ROS Tools and Simulators

 13

Software robots are extraordinarily useful, in simulation we can model as much or as

little reality as we desire. Sensors and actuators can be modelled as ideal devices, or

they can incorporate various levels of distortion, errors and unpredicted faults. The

simulated robots and environment represent the ultimate low-cost platforms.

The two-dimensional simultaneous localization and mapping (SLAM) problem was

one of the greatest researched topics in the robotics community. Several 2D simulators

were developed in response to the necessity for repeatable experiments as ‘Stage’.

Canonical laser range-finders and differential-drive robots were modelled, often using

simple kinematic models. These 2D simulators are very fast computationally and they

are generally quite simple to interact with.

Gazebo is a 3D simulator that provides robots, sensors, environment models for 3D

simulation required for robot development, and offers realistic simulation with its

physics engine. Gazebo is one of the most popular simulators for open source robotics

in recent years and has been widely used in the field of robotics because of its high

performance and reliability.

Gazebo uses OGRE (Open-source Graphics Rendering Engines) for the 3D Graphics,

which is often used in games, not only for the robot model but also for the light, that

can be realistically drawn on the screen.

A lot of sensors are already supported Laser range finder (LRF), 2D/3D camera, depth

camera, a contact sensor, force-torque sensor; noise can be considered as added to the

sensor data like in real environment.

Some robot models are already available in gazebo: PR2, Pioneer2 DX, iRobot Create,

and TurtleBot are already supported in the form of SDF, a Gazebo model file, and users

can add their own robots with an SDF file.

Figure 2.6 3D view of TurtleBot3 Waffle on Gazebo

2 ROS Robot Operating System 2.4 ROS Tools and Simulators

 14

Both GUI and CUI tools are supported to verify and control the simulation status. The

latest version of Gazebo is 8.0, and just five years ago, it was 1.9.

Although Stage and other 2D simulators are computationally efficient and excel at

simulating planar navigation in office-like environments, it is important to note that

planar navigation is only one aspect of robotics. Nonplanar motion, ranging from

outdoor ground vehicles to underwater and space robotics is another aspect too. Three-

dimensional simulation is necessary for software development in these environments.

Robot motions can be separated into mobility and manipulation. The mobility aspects

can be handled by two-or-three dimensional simulators in which the environment

around the robot is static. Simulating manipulation, however, requires a significant rise

in the complexity of the simulator to handle the dynamics of not just the robot, but also

the dynamic models in the scene (simulators often use rigid-body dynamics, where

objects are assumed to be incompressible).

ROS integrates closely with Gazebo through the Gazebo_ros package. This package

provides a Gazebo plugin module that allows bidirectional communication between

Gazebo and ROS. Simulated sensors and physical data can stream from Gazebo to

ROS, and actuator commands can stream from ROS back to Gazebo; in this way, it is

possible for Gazebo to exactly match the ROS API of a robot. When this is achieved,

Figure 2.7 The house model of Gazebo

2 ROS Robot Operating System 2.4 ROS Tools and Simulators

 15

the robot software above the device-driver level can be represented identically both on

the real robot and on the simulator.

In the above example, only the robot is loaded in the Gazebo. To perform the actual

simulation, the user can specify the environment or load the environment model

provided by Gazebo (as Empty-room, World, House models).

3 Robot

 16

3 Robot

A robot is basically classified into hardware and software. All that is concern with a

mechanism, motors, gears, circuits, sensors are considered as hardware. Micro-

controller firmware that drives or controls the robot’s hardware, and application

software that builds the map, navigates, creates motion and perceives environment

based on sensor data are classified as software. ROS can be classified as application

software and depending on the specialized requests it is classified as a robot package,

sensor package and motor package.

The main of robot packages are PR2 and TurtleBot; PR2 is a mobile-based humanoid

robot, that has high performance and is general purpose, however, its price was not

cheap enough to highlight ROS in the market, so TurtleBot was industrialized to

increase the market of ROS.

The first version is TurtleBot, follow by TurtleBot2 where KOBUKI was adopted as a

mobile platform. The last one is TurtleBot3, a Dynamixel based mobile robot,

developed in partnership with ROBOTIS and Open Robotics.

The following are the different types of robots that are used in almost every field:

Manipulator, Mobile robot, Autonomous car, Humanoid, UAV (Unmanned Aerial

Vehicle) and UUV (Unmanned Underwater Vehicle).

Figure 3.1 PR2 (Left), TurtleBot2 (2nd from the left), TurtleBot3 (3 models on the right)

3 Robot 3.1 Sensor

 17

3.1 Sensor

Sensors play crucial roles in a robot. There are many way and sensor that can be

operated to extract meaningful information from various environments and to

recognize the surrounding objects using this information and transmit it to the robot.

Every information that the robot can capture is used as data to perform an action, to

make a plan or as input to perform some operation.

There are various types of sensors for getting such information, the most used for its

effectiveness and simplicity is the distance sensor. Laser-based distance sensors such

as LDS (Laser Distance Sensor), LiDAR (Light Detection and Ranging) or LRF (Laser

Range Finders) and infrared based sensors such as RealSense, Kinect and Xtion are

widely used as distance sensors. In addition, there are various sensors depending on

information to acquire such as colour cameras used for object recognition, inertial

sensors used for position estimation, microphones used for voice recognition and

torque sensors used for torque control.

Depending on the kind of sensor used and, on its goal, it sends a different amount of

data with a specified frequency, but each microprocessor has a limit of information that

it can receive every time. 1D and 2D sensor, as Laser-based distance sensors, do not

transmit heavy data, the problem is more related with the cameras which transmit a

lot of data and require high processing power, so it is not easy for a microprocessor.

There are several sensor packages offered by the sensor available on ROS. Sensors are

classified into 1D rangefinders (Infrared distance sensors for low-cost robots), 2D

range finders (LDS is frequently used in navigation as in the algorithm presented in

chapter 4), 3D Sensors (such as Intel’s RealSense, Microsoft’s Kinect are needed for 3D

measurements), Pose Estimation (GPS + IMU), Cameras (that are commonly utilized

for object and gesture recognition, face recognition and 3D SLAM), Audio/Speech

Recognition and many other sensors.

3.1.1 Camera

The camera can be represented as the eyes of the robot and the images taken from the

camera are useful for recognizing the environment around the robot. For example,

object recognition using a camera image, facial recognition, a distance value obtained

from the difference between two different images using two cameras (stereo camera),

mono camera visual SLAM, colour recognition using information obtained from an

image and object tracking are very useful.

3 Robot 3.1 Sensor

 18

3.1.2 Depth Camera

The Time of Flight (ToF) is one method with which works the depth camera, radiating

Infrared Eays (IR) and measuring the distance by the time it takes to go back to the

sensor. The IR transmission unit and the setting unit are a pair, and the distance

measured by each pixel is read. This method represents the most expensive one due to

the sophisticated hardware needed.

Microsoft’s Kinect and ASUS’s Xtion are based on the Structured Light technique,

which applies a coherent radiation pattern. It is applied for the Depth Camera, these

cameras consisting of one infrared projector and one infrared camera, which uses a

coherent radiation pattern that was not present in previous ToF method. This

technology is cheaper than the ToF one, therefore, they are more used on the low-cost

robot.

A stereo camera, which is considered a Depth Camera, is the last method. Their idea is

based on the operation mode on which work the left and right eyes of the people. The

stereo camera is equipped with two image sensors for capture the image, where their

distance has a specific role, it calculates the grid value using the difference between the

two images, its distance is designed using binocular parallax. The stereo camera to

calculate the distance applies the triangulation method, where an infrared projector

emanates IR with a coherent pattern (called active stereo camera), instead, two

infrared image sensors (called passive stereo camera) have the goal to interpret and

create an image by the receiving infrared rays.

Intel® RealSense™ Camera R200 is one of the representative active stereo cameras. It

is a long-range peripheral 3D camera, small and chapter, ideal for sensing the

environment. It is widely used in robotics, drones, and other smart devices.

This represents the camera mounted on the TurtleBot3 Waffle, with Full HD colour

and IR depth sensing features, the camera supports a wide variety of exciting new

usage applications as the manipulation of colour and depth from multiple angles and

perspectives, object recognition and 3D scanning. It is the cheapest among the Depth

cameras so far (around $100).

3 Robot 3.1 Sensor

 19

3.1.3 Laser Distance Sensor

Laser Distance Sensors (LDS) includes a different kind of sensors such as Light

Detection and Ranging (LiDAR), Laser Range Finder (LRF) and Laser Scanner. LDS

is a sensor used to find the distance to an object using a laser as its source. The LDS

guarantee high performance, high speed, real-time data acquisition, so it regularly

adopted in a varied range of robotics field and in all the system where the measurement

of a distance is required. In robotic it is one of the main sensors utilized for recognition

of the distance of objects and people.

The LDS computes the difference of the wavelength when the laser source is reflected

by the obstacle if it is found. The great problems, that are possible to encounter with

this kind of sensor, are control issues that cannot be corrected by another sensor since,

for its cheap price, only one LDS is commonly mounted on one device. A typical LDS

consists of a single laser source, a motor, and a reflective mirror. The motor rotates the

inner mirror while it is scanning using the laser. The range of the LDS goes from 180°

to 360°.

The first image from the left of the Figure 3.2 shows how the mirror, that is tilted at a

specific angle, reflects the laser on the surrounding environment. In the second and

third image, while the motor rotates the mirror scanning all the environment, the

sensor captures the laser that is returned and saved the return time (calculates the

difference in wavelength). The LDS sensor scans objects in a horizontal plane, where

closer objects are better identified, so the accuracy decreases as the distance becomes

longer.

However, there are some disadvantages with LDS. First, since it measures the

difference in wavelength between the two waveforms (roundtrip), the objects must

Figure 3.2 Distance measurement using LDS

3 Robot 3.1 Sensor

 20

properly reflect the laser source. A lot of obstacles, as plastic bottle or objects,

transparent glass and mirror are inclined to reflect or scatter the laser in a different

direction, changing the origin wavelength and producing an inaccurate and wrong

measurement.

The second problem can be view more as a limit of this sensor, considering that it

acquires 2D data, it scans only objects on the horizontal plane. The last one is related

to the risk of possible damage on the eyes since the LDS uses a laser as the source, that

are classified from class 1 to 4 (higher the number, higher the damage).

SLAM (Simultaneous Localization and Mapping) is one of the greatest applications of

LDS. SLAM creates a map by recognizing obstacles around the robot and estimating

the current position of the robot, as we will see successfully.

3.1.4 Motor Packages

The Motors page was included into ROS Wiki; it is a collection of packages of motors

and servo controllers supported by the ROS. Dynamixel (DXL) is a series of high-

performance networked actuators designed for robots, that has developed by

ROBOTICS (a Korean manufacturer).

The Dynamixel is constituted of a reduction gear, a controller, a motor and a

communication circuit. There are different versions of Dynamixel, whose feedbacks for

position, speed, temperature, load, voltage and current data are enabled, thanks to a

simple wire connection between devices. Dynamixel is usually applied in robotics since

their offer several suitable purposes such as position, speed and torque control.

Figure 3.3 The different version of Dynamixels

3 Robot 3.2 Embedded System

 21

3.2 Embedded System

An embedded system can be defined as a special-purpose computer embedded in a

device that necessitates being controlled.

“An embedded system is an electronic system that exists within a device as a computer

system that performs specific functions for control of a machine or other system that

requires control. In other words, an embedded system can be defined as a specific

purpose computer system that is a part of the whole device and serves as a brain for

systems that need to be controlled.” [22]

Many embedded devices are needed to implement the functions of robots. A

microcontroller capable of real-time control is required to use an actuator or sensor of

a robot, and the high-performance processor-based computer is mandatory for image

processing using a camera or navigation, manipulation.

In robotics a microcontroller capable of real-time control for the sensor and the

actuators is necessary, in the TurtleBot3 (Waffle, Waffle Pi and Burger) an ARM

Cortex-M7 series microcontroller is used to manage the actuator and sensor, instead,

to run the algorithm and to perform calculations the Raspberry Pi 3 board for Burger

Figure 3.4 Embedded system configuration of a
Humanoid robot

3 Robot 3.2 Embedded System

 22

and Waffle Pi, and the Intel JouleTM for Waffle are mounted on the TurtleBot3 and they

are connected via USB to the other microcontroller.

3.2.1 OpenCR

The embedded board, that manages the operation of the TurtleBot3, is OpenCR (Open-

source Control Module) which is ROS compatible. OpenCR supports STM32F7466 as

MCU, it is a Hardware used to elaborate high quantity of data and to manage floating-

point calculation. This microcontroller is necessary to guarantee high performance

(run up to 216 MHz).

It has available different peripherals in order to supervise various kind of devices; for

example, it yields the interface with Arduino, and it provides the communications for

Dynamixel of the Robot (TTL and RS485) or sensors such as Camera (Raspberry Pi)

and LiDAR.

OpenCR includes MPU925010 chip, which is fixed at the middle of the OpenCR board.

It integrates triple-axis gyroscope, triple-axis accelerometer, and triple-axis

magnetometer sensor in one chip, therefore, can be utilized for the different purpose.

This kind of device is necessary to build a map of the environment or to understand

what path is done by the robot.

The communication offered by the IMU (around 50Hz) is faster respect, for example,

to the one of the LiDAR (5 Hz), this is due to the I2C or SPI communication. The

OpenCR manages the input power source from 7V to 24V and is able to provide various

levels of output 12V (1A), 5V (4A) and 3.3V (800mA).

Figure 3.5 TurtleBot3 embedded system

3 Robot 3.2 Embedded System

 23

Figure 3.6 Gyroscope and Accelerometer directions

Figure 3.7 OpenCR interface configuration

3 Robot 3.3 TurtleBot

 24

3.3 TurtleBot

The ROS is one of the most utilized operating systems for the robot, more than 200

robots are built over ROS. The most famous ones are the PR2 and the TurtleBot created

by Willow Garage in collaborations with Open Robotics.

The TurtleBot logo, as the name inspires, is a turtle. TurtleBot is a standard platform

of ROS and represent the one most popular robot based on it, used both by researcher

and students because it is easy to learn, understand and manage even if you are not

familiar with ROS.

The last version is the TurtleBot3, that includes all the functionalities of the previous

versions and try to improve some characteristics like the presence of the Dynamixel as

actuators.

There are three kinds of robots available with this new version (TurtleBot3): Waffle,

Burger and Waffle Pi. All of them are ROS-based, designed for used in research,

instruction and test. They are quite small, easy to programs and their price is relatively

cheap (around $600 Burger, $1400 Waffle).

The TurtleBot3 can be modelled and modified in order to produce different

configurations, there is the possibility of adding/removing sensors depending on what

is the goal, which are the sensors available; or to reconstruct the mechanical parts and

use optional parts such as the computer for increasing the calculations.

TurtleBot3 Burger and Waffle are the two robots that have been available at the LIM

(Interdisciplinary Laboratory of Mechatronics), on which the in-door navigation

algorithms, Obstacle Avoidance and mapping algorithms, have been run, as described

in chapter 4.

3 Robot 3.3 TurtleBot

 25

3.3.1 TurtleBot3 Hardware

As we already say there are three official TurtleBot3 models Burger, Waffle and Waffle

Pi. The basic components of TurtleBot3 are actuators, an SBC for operating ROS, a

sensor or more than one for SLAM and navigation, restructure mechanism, an

OpenCR embedded board used as the main controller, sprocket wheels that can be

used with tire and caterpillar, and three cell lithium-poly battery.

TurtleBot3 Waffle is different from Burger in terms of a platform shape, which being

bigger can conveniently mount many components and sensors, use of higher torque

actuators that guarantee a maximum linear speed of 0.26 m/s and an angular velocity

Figure 3.8 Hardware configuration of TurtleBot3

3 Robot 3.3 TurtleBot

 26

of 1.8 rad/s, high-performance SBC with Intel processor in terms of calculations,

RealSense Depth Camera for object recognition and 3D SLAM.

Due to its characteristics, Waffle was the most used Robot during laboratory tests, also

because from manual, it should have offered the possibility to use the Intel® Real

SenseTM R200 camera. The Intel® Real SenseTM R200 camera should have provided

depth and infrared video streams and the possibility to apply it for various applications

such as gesture recognition, object recognition and scene recognition based on 3D

depth information.

However, we discover that the Hub mounted on the Waffle is not able to support the

Intel® RealSense™ R200 camera (probably the problem was due to the Hub that did

not guarantee the 5 A of current required by the camera).

To better highlight, the malfunction of the camera, just think that the signal related to

the image of the camera was transmitted at 0.2-0.5 Hz of frequency when it was

connected to the TurtleBot and on it ran a navigation algorithm that involved the

engines and the LIDAR. While the frequency guaranteed by specifications was 30 Hz.

Furthermore, the Intel® RealSense™ R200 camera cannot be mounted on the

Burger since the camera was a USB 3.0 device and this robot could not offer this

kind of port.

So, to capture the video, another camera has been mounted. The Raspberry Pi

Camera Module V2 on the Burger has been used as an onboard camera during the

SLAM of a real environment.

However, the Raspberry Pi Camera Module V2 couldn’t provide depth and infrared

video streams and was not possible to apply it for various applications: such as gesture

recognition, object recognition and scene recognition based on 3D depth information

(feasible using RealSense™).

TurtleBot3 Waffle Pi has the same shape as the Waffle model, but this model supports

the Raspberry Pi as the Burger model, and the Raspberry Pi Camera to make it more

affordable, however, is not present on the LIM.

Figure 3.9 Intel Real Sense R200

3 Robot 3.3 TurtleBot

 27

3.3.2 TurtleBot3 Software

The TurtleBot3 software is managed by a firmware (FW) of OpenCR board used like a

sub-controller. The firmware of TurtleBot3 is considered the head of the robot,

applying OpenCR like a sub-controller, because it is used for example to estimate the

location of the robot while it is moving, calculating the encoder value produce by the

Dynamixel (the driving motor of the robot), that are then accurate with the inertia

Figure 3.10 Hardware specification of TurtleBot3

3 Robot 3.3 TurtleBot

 28

values to reduce the errors due to slip effect; or to control the velocity according to the

command published by the software.

The acceleration and angular velocity are obtained from 3-axis acceleration and 3-axis

gyroscope sensor mounted on OpenCR to control the direction of the robot, and it is

also possible to evaluate and display using the right topic the battery state of the robot.

"TurtleBot3’s ROS package includes 4 packages which are ‘TurtleBot3’,

‘TurtleBot3_msgs’, ‘TurtleBot3_simulations’, and ‘TurtleBot3_applications’. The

‘TurtleBot3’ package contains TurtleBot3’s robot model, SLAM and navigation

package, remote control package, and bring up package. The ‘TurtleBot3_msgs’

package contains message files used in TurtleBot3, ‘TurtleBot3_ simulations’ contains

packages related to simulation, and ‘TurtleBot3_applications’ package contains

applications." [1]

The scene on which the robot moves can be an indoor or outdoor space that could be

loaded in a simulative tool or in a real-environment.

The development environment of TurtleBot3 can be divided into Remote PC that

performs remote control, SLAM, Navigation package, and TurtleBot PC that controls

the robot components and motion, and collects sensor information coming from

LiDAR, camera, and so on; which has a Wireless communication.

Figure 3.11 Setting Remote Control

4 State of the Art 4.1 Introduction

 29

4 State of the Art

4.1 Introduction

Before starting to interact directly with the TurtleBot3 in the laboratory; first, there was

an analysis of the algorithms in the literature that dealt with autonomous navigation

and Obstacle Avoidance in an unknown o partially unknown environment.

This chapter introduces the literature survey of the various techniques used for mobile

robot navigation. Navigation and Obstacle Avoidance are one of the fundamental

problems in mobile robotics, which are being already studied and analysed by the

researchers in the past 40 years. The goal of navigation is to find an optimal or

suboptimal path from a start point to the goal point with Obstacle Avoidance

competence (wherein an indoor space could be a wall, door, chairs and so on; instead

in an out-door space tree, bushes).

In order to guarantee an autonomous navigation, the robot must be able to safeguard

a certain reliability in terms of position (using IMU or GPS sensor) and ensure a map

sufficiently precise to generate a path without collisions and faithful to the real one.

The navigation algorithms are divided into two kinds of control: global path planning

and local motion control. Global path planning considers owning a priori model or a

map of the environment, on which the robot wants to move, using this information

calculates the shortest path that allows the motion from a start position to the goal.

Whereas local motion is more related to the real-time motion of the robot inside in

unknown terrain, where monitoring the environment with the sensors, it can

distinguish which and where are the obstacles and generate a motion that will avoid

the collision.

A lot of global path planning methods, such as road map, cell decomposition and

potential field methods have been explored. They find a complete trajectory from a

starting point A to one or more goal points G, where the calculation can be computed

off-line, but they produce a reliable path only if a map of the environment is already

available. So, in the global navigation, the prior knowledge of the space where the robot

should move, must be available.

One of the first method developed for global navigation is the Dijkstra algorithm. [28]

Now a day, the A* algorithm is one of the most used of the global path planning. It is a

global search algorithm which gives a complete and optimal global path in static

environments. It was upgraded in D* (Stenz, A., 1994) [27] for efficient online

4 State of the Art 4.1 Introduction

 30

searching of a dynamic environment, which gives sequences of path points in the

known or partially known environment.

Instead, the local navigation systems advantages are the capacity of producing a new

path every time the environment changes (new obstacles found or moving obstacles

identify), using the information captured by the sensors, can produce a new path in

response to the environmental changes. These algorithms can be separated into

directional and velocity space-based approaches.

There is a variety of directional approaches such as Potential field method (Khatib, O.,

1986), Virtual Force Field (Borenstein, J. & Koren, Y., 1990) which expands to Vector

Field Histogram (Borenstein, J. & Koren, Y., 1991) and Nearness Diagram algorithm

(Minguez, J. & Montano, L, 2000), generate a direction for the robot. Velocity space

approaches such as Curvature Velocity method (Simmons, R., 1996), and Dynamic

Window method (Fox, D.; Burgard, W. & Thrun, S., 1997), achieve an exploration of

the commands to manage the robot like translational and rotational velocities.

Analysing the previous considerations, it is easy to understand that a complete robot

navigation system should integrate the local and global navigation systems: the global

system pre-plan a global path and incrementally search the best new paths when

discrepancy with the map occurs; instead, the local system uses onboard sensors to

define a path when the information of the map is not yet available, and detect and avoid

unpredictable obstacles.

The mobile robot can perform an optimal path from a starting area to an arrival one,

utilizing the information related to its geometric points that are matched with the map.

If during the designed path an obstacle obstructs its route, the local navigation

algorithm is responsible to avoid the collision with the obstacle, for example allowing

it to move around the perimeter until the obstacle is overcome, or pre-plan another

optimal global path to reach the goal. In this way the global path planner determines a

suitable path based on a map of the environment, on the other hand, the Obstacle

Avoidance algorithm determines a suitable direction of motion based on the incoming

sensor data (real-time events).

For instance, matching the algorithms, that will be discussed later, like the Vector Field

Histogram algorithm (VFH) as local Obstacle Avoidance algorithm with the A* search

algorithm as a global path planner. With the same reasoning, several well-known local

Obstacle Avoidance algorithms such as Dynamic Window (DW) and Nearness

Diagram (ND) can be linked with a global path planner (as A* or D*) to perform

autonomous navigation in an indoor or outdoor unknown terrain.

4 State of the Art 4.2 Global Path Searching Method

 31

4.2 Global Path Searching Method

A real-time Obstacle Avoidance designed considering only on local motion control

(Potential Field Method or Dynamic Window Approach for example) have some

shortcomings that are related to shape and the motion of the mobile robot and to the

knowledge of the environment, that remains snared in local minima when it

encounters a dead end. These local minima can be avoided having a global knowledge

of the position of the robot respect to the goal, in this way it would be easy going out

from them. This global knowledge can be recovered by applying a global path planner.

The A* and D* search algorithms represent the most widely apply either in an indoor

or outdoor environment that is partially known or changing. Minimizing its cost

function, these algorithms have the skilfulness of rapid re-planning when the

conditions of the environment changes, to guarantee an optimal solution of the path

from the start position to the goal. The optimal path from any position in the

environment can be determined by the following global path information to reach the

goal.

D* has been shown to be one to two orders of magnitude more efficient than the A*.

This algorithm guarantees an optimal path over grid-based representations of a robot’s

environment and as already see can be easily combined with the real-time Obstacle

Avoidance algorithm.

4.2.1 The A* Algorithm

A* is a search algorithm that is commonly considered in pathfinding and graph

traversal, the method calculates an efficiently traversable path between points, that is

the graph traversal are called nodes. The algorithm was described by Peter Hart, Nils

Nilsson and Bertram Raphael in 1968 [16], and can be considered an extension of

Dijkstra's 1959 algorithm. A* achieves better performance and accuracy using

heuristics and it is widespread in the world of the robotics for the navigation.

“In 1964 Nils Nilsson invented a heuristic based approach to increase the speed of

Dijkstra's algorithm. This algorithm was called A1. In 1967 Bertram Raphael made

dramatic improvements upon this algorithm and he called this algorithm A2. Then in

1968, Peter E. Hart introduced an argument that proved A2 was optimal when using

a consistent heuristic with only minor changes. His proof of the algorithm also included

4 State of the Art 4.2 Global Path Searching Method

 32

a section that showed that the new A2 algorithm was the best algorithm possible given

the conditions and finally he called the algorithm A*.” [3]

The A* algorithm is designed to follow the path that generates the lowest cost, to do

that it preserves a sorted priority queue of different paths that are useful when the robot

must change directions. When an obstacle or something that blocks the first direction

taken is encountered, the algorithm tries to find a new direction. It calculates which is

the new path that minimizes the cost, so if a path with lower cost is found, at any

moment, it litters higher-cost path and proceeds towards the lower-cost path.

This process lasts until the aim is reached. A* is based on the best-first search and

discoveries a least-cost path from a given initial node to one final node. At the base of

the reasoning of the algorithm, there is a function 𝑓(𝑥) that is the sum of the function

𝑔(𝑥) 𝑎𝑛𝑑 ℎ(𝑥).

𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥)

The 𝑓(𝑥) is also called ‘distance-plus-cost-heuristic’ function because ℎ(𝑥) represent

the path-cost, so the weight is given by the distance of two points/nodes; instead, ℎ(𝑥)

is a heuristic estimate of the distance to the goal. Being heuristic ℎ(𝑥) can be calculated

in different ways, but the commonly used for its simplicity coincides with the straight-

line distance to the goal. This heuristic function represents the shortest possible

distance between two points.

The heuristic function is called monotone or consistent if it guarantees the condition

ℎ(𝑥) ≤ 𝑑(𝑥, 𝑦) + ℎ(𝑦) ,

where d is the length of that edge. In this case, A* becomes faster and more powerful,

no node needs to be processed more than once and A* is equivalent to the Dijkstra's

algorithm with the reduced cost:

𝑑′(𝑥, 𝑦) ≔ 𝑑(𝑥, 𝑦) − ℎ(𝑥) + ℎ(𝑦)

The time complexity of A* depends on the chosen heuristic function. In the worst case,

it could be an exponential expansion of the nodes in the length of the solution, in the

luckiest one it has a polynomial trend when the search space is a tree, is consider a

single goal, and the heuristic function ℎ(𝑥) meets the following condition:

|ℎ(𝑥) − ℎ∗(𝑥)| = 𝑂(log ℎ∗(𝑥))

where h* is considered the optimal heuristic, the exact cost to get from x to the goal.

4 State of the Art 4.2 Global Path Searching Method

 33

A* is rest on an optimistic estimate of the cost of the path, in fact, the true cost of a path

from the node to the goal will be at least as great as the estimate, and on the

admissibility criteria which certified an optimal path thanks to an equal examination

of all the nodes.

However, there is also the possibility to modify the algorithm to find an approximated

shortest path, in this way, it is possible to speed up the search at the expense of

optimality by relaxing the admissibility criterion. Oftentimes we want to bound the

relaxation criteria so that we can promise that the solution path is no worse than

(1 + 𝜀) times the optimal solution path.

There are several 𝜀 admissible algorithms such as static Weighting, Dynamic

Weighting and others. The path found by the search algorithms has a cost that depends

on the heuristic function chosen and on the value of 𝜀.

Figure 4.1 Representation of A* search for finding a
path from a start node (red) to a goal node(green) in a
robot motion planning problem (Figure on the left).

 In the first three images below, we use the approximate
shortest paths to find a solution (relaxing the
admissibility criterion), instead in the other three we use
the admissibility criterion that guarantees an optimal
solution path.

4 State of the Art 4.2 Global Path Searching Method

 34

The purpose of the example above is to show the difference between A * with the use

of the admissibility criterion (second sequence of images) and the A* in which we speed

up the search by relaxing the admissibility criterion (first sequence of images). On both

the case the starting point and the goal is considered the same.

The empty circles represent the nodes in the open set, i.e., those that remain to be

explored, and the filled ones are in the closed set. As it possible see when we use the

admissibility criterion the final path is the optimal one (green path in the lower image

on the right), but we pay in terms of number nodes that we must analyse, so in time.

Instead using a relaxation of the criteria, we obtain a solution that is no worse than 1

+ ε (in this case ε = 0.5) times the optimal solution path, gaining time because the

number of nodes visited has greatly reduced, as is possible see comparing the areas of

the two examples, that represent the number of nodes analysed.

4.2.2 The D* Algorithm

D * is a search algorithm for finding the minimum path on a graph, it always based like

the A* on the original Dijkstra. One of the differences, from the previously presented

A* algorithm, is that the procedure of the D* to look for a path starts from the goal and

going backwards to the original point, choosing from time to time the less expensive

arc until reaching the starting node.

The main improvement respect to the A* is that this algorithm gives the possibility to

update the path every time there is a change on the environment, that means as soon

as the cost of the arcs is changed. Doing so, an alternative road or an improved one,

with a lower cost, could be chosen.

However, the D* requires a procedure that is computationally onerous, respect also to

the A*, because it tries to find a path not only from the goal, but also for all the nodes

that are about as far from the target. For this reason, is some case the A* has a higher

efficiency, introducing the heuristic estimate of the distance between the start and the

arrival, is able to limit the node that is analysed during the calculations.

The D* algorithm starts from the assumption that the map of the area is partially or

totally know and having it, the goal is to find the safest and efficient motion for the

mobile robot, given a start point, a goal point. The robot should go from the start

position to the goal, being able to avoid the collision with the obstacles along the path.

The paths generated at the beginning, when the map is incomplete may turn out to be

4 State of the Art 4.2 Global Path Searching Method

 35

invalid or suboptimal, as soon as it receives new information from the sensor that

update the original map. So, it is necessary that the robot is able to updates its map and

re-plan optimal paths each time a new information coming.

For its qualities, the D* search algorithm, letting re-planning to occur incrementally

and optimally in real time, is suitable for in a partially known environment with hurdle

terrains.

The Figures 4.2 and 4.3 represent two-dimensional Cartesian histogram grid. The first

Figure with a back-pointer, for each of the neighbours, indicates the direction to the

goal (north, south, east, west, north-west, south-west, north-east and south-east).

This information is crucial for the motion of the robot because with these criteria it

knows from any position the steering direction toward the goal, so finding a global path

information agreement to the back-pointer. A graph consists of a set of N nodes

connected to each other by weighted arcs. The map is commonly given as a grid

occupation, where each node is connected to eight neighbours.

The other one shows the values of crossing a free arc, that are commonly used when

the D* algorithm (or the A* algorithm) is applied. The cost is equal to 10 in the case of

lateral displacements, to 14 for a diagonal movement (that correspond to the √2) and

infinite when the node is occupied by an obstacle.

Figure 4.4 displays the global path information result of a simulated obstacles course

with a given start and goal positions. Following this direction, the mobile robot can

reach the goal, this procedure permits the robot saving time wasted in the path tracking

operation.

Figure 4.3 how to compute the global
path information

Figure 4.2 Weighted arcs that connect
the neighbours’ node

4 State of the Art 4.2 Global Path Searching Method

 36

The cost of traversing from cell Y to X, already represented in Figure 4.3, can be

indicated by the arc cost function 𝑐(𝑋, 𝑌), by the following equation:

𝑐(𝑋, 𝑌) = {

10 𝑖𝑓 𝑌 𝑖𝑠 𝑠𝑖𝑡𝑢𝑎𝑡𝑒𝑑 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑙𝑦 𝑜𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑡𝑜 𝑋
14 𝑖𝑓 𝑌 𝑖𝑠 𝑠𝑖𝑡𝑢𝑎𝑡𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑡𝑜 𝑋
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑓 𝑌𝑜𝑟 𝑋 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑠 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

So, 𝑐(𝑋, 𝑌) indicates the cost of crossing the arc that joins X and Y. The D* algorithm

is based on an open list ℒ that contains all the nodes to be analysed and indicates the

node in three ways NEW, OPEN and CLOSED; respectively if the node has never been

in ℒ, the node ∈ ℒ, the node is come out from ℒ.

The D* algorithm uses a cost functions ℎ(𝑋) that represent the weight of each node.

This function keeps track of the sum of the path costs of each node to the goal, while

the function 𝑘(𝑋), assumes the minimum between the ℎ(𝑋) current and all the values

previously taken from it since the node 𝑋 was introduced into ℒ. Considering the i-th

iteration,

𝑘(𝑋) = 𝑚𝑖𝑛𝑖 ℎ𝑖 (𝑋) .

With this consideration, it makes sure that the path found by the pointers corresponds

to an optimal 𝑘(𝑥), examining step by step if the neighbouring nodes propose a better

solution looking from the goal and advancing backwards towards the starting node.

The main advantage is the capability to quickly update the new information of the path

cost in case something changes in the environment, this changing on the arc cost are

managed by continuous deletions and upload of node inside the list ℒ. The aim is to

maintain with low cost (that are the points most favourable) the nodes closer to the

goal, and trying to keep the path optimal, enlarge the nodes considering until the

starting point is reached. The nodes that are inside the open list ℒ are analysed from

the one with a lower value of 𝑘(𝑥),

Figure 4.4 Path from a start position to the
goal

4 State of the Art 4.2 Global Path Searching Method

 37

𝑘𝑚𝑖𝑛 = 𝑚𝑖𝑛×∈ℒ 𝑘(𝑥)

Is the minimum possible cost present between the nodes that are in the open list ℒ

(that can be considered the best path). The nodes inside the function 𝑘(𝑋) are divided

into two categories Raise node if 𝑘(𝑋) < ℎ(𝑋), and Lower node if 𝑘(𝑋) = ℎ(𝑋).

Analysing these two categories is easy to understand that the Lower node can be

considered as the optimal solution because their function coincides with the minimum

cost value. Instead, some considerations cannot be done for the Raise nodes, since the

actual cost function ℎ(𝑋), when they are investigated, do not correspond to 𝑘𝑚𝑖𝑛. This

means that following the pointers starting from a LOWER node up to the goal, the

resulting path is minimal.

Following the example of Figure 4.5, let imagine starting from a free-plan situation as

in the sub-Figure (b), knowing the map, the starting point and the goal, and that at

some point an obstacle is identified (which, in this example, occupies nodes 2, 6 and

10). These nodes, whose path was excellent, so they are LOWER, are inserted in the

open list and their processing will cause the addition of all the nodes that pointed to

them (nodes 1, 5, 9, 13), these are now RAISE nodes.

First of all, you search among all the neighbours, the one who has the lower cost. Then,

for each neighbour the cost change is propagated if the neighbour is a successor, if the

neighbour can be further improved the node itself must be inserted in ℒ. Finally, it is

checked whether the neighbour can improve the road.

The result of these operations, implemented on the nodes in question, leads to the

situation of the sub-Figure (b), in which the new path has been identified. If one of the

obstacles returns free again (becomes LOWER), for example, the node number 2, the

algorithm re-plans a new solution leads to sub-Figure (c).

Figure 4.5 Behaviour of D* Algorithm

4 State of the Art 4.3 Local Motion Control

 38

4.3 Local Motion Control

The techniques analysed up to now, global motion planning, are useful to calculate a

collision-free trajectory for the robot, from the starting point the goal, when the around

the environment in partially or totally know. However, when the robot is in a complete

unknown area and does not have information about the surrounding area, these

algorithms fail and do not produce any solution. For this kind of situations, the local

motion planning is more suitable.

The objective, using the Obstacle Avoidance algorithm, is to move a robot towards an

area that is free of collisions thanks to the information handled by the sensors during

motion execution. The improvement of the Obstacle Avoidance is to find a direction for

the robot by introducing the sensor information, which is steadily updated, used to

control the motion real-time.

The main issue of considering the reality of the world during execution is locality, that

means the localization of the robot during the execution of the algorithm in the

environment (that, as we will see, is one of the problems encountered when the robot

travels long path). An error in the location of the robot generates a series of problems,

that depends on the first one, as a wrong map, and a trajectory that does not coincide

with the real one.

Notwithstanding that limitation, Obstacle Avoidance techniques are mandatory to deal

with robotics problems in the unknown and changing environment.

4.3.1 Definition of Obstacle Avoidance

“Let A be the robot moving in the workspace W, whose configuration space is CS. Let

q be a configuration, 𝑞𝑡 this configuration in time t, 𝐴(𝑞𝑡) ∈ 𝑊 the space occupied by

the robot in this configuration.

If in the vehicle there is a sensor, which in qt measures a portion of the space 𝑆(𝑞𝑡) ⊂

𝑊 identifying a set of obstacles 𝑂(𝑞𝑡) ⊂ W. Let u be a constant control vector and 𝑢(𝑞𝑡)

this control vector applied qt during time 𝛿t. Given 𝑢(𝑞𝑡), the vehicle describes a

trajectory

𝑞𝑡 + 𝛿𝑡 = 𝑓(𝑢, 𝑞𝑡 , 𝛿𝑡), with 𝛿t  0.

4 State of the Art 4.3 Local Motion Control

 39

Let 𝑄𝑡,𝑇 be the set of the configuration of the trajectory followed from 𝑞𝑡 with 𝛿t ∈ (0,

T), a given time interval. T > 0 is called the sampling period. Indicating with 𝑞𝑡𝑎𝑟𝑔𝑒𝑡 a

target configuration. Then, in time 𝑡𝑖 the robot A is in 𝑞𝑡𝑖, where a sensor measurement

is obtained 𝑆(𝑞𝑡𝑖), and thus an obstacle description 𝑂(𝑞𝑡𝑖).” [6]

The goal is to find a trajectory for the robot, that is able to avoid the collision with the

around the obstacle such that, 𝐴(𝑞𝑡𝑖,𝑇) ∩ 𝑂(𝑞𝑡𝑖) = ∅, producing a motion that brings

the robot closer to the target 𝐹(𝑞𝑡𝑖, 𝑞𝑡𝑎𝑟𝑔𝑒𝑡,) < 𝐹(𝑞𝑡𝑖 + 𝑇, 𝑞𝑡𝑎𝑟𝑔𝑒𝑡).

Scanning in real-time the environment, the robot can calculate the sequence of motions

that allow the avoidance of the obstacles gathered by the sensors, while making the

vehicle progress towards the target location (Figure 4.6). So, the local motion planning

method tries to contrast the issue related to the locality with the advantages related to

the real-time information of the mechanical devices.

We will now present some Obstacle Avoidance algorithms, which have disadvantages

and advantages depending on the different factors: the type of area covered (indoor or

outdoor), the performance of the robot (linear and angular velocity), and the shape of

the obstacles. They can be divided into two groups, methods that find the motion in

one step and the one that requires more than one.

These algorithms have been of fundamental importance for the study and writing of

autonomous navigation algorithms presented in chapter 4.

Figure 4.7 Potential field method, thanks
to we compute the motion direction. The
target attracts the particle Fatt instead the
obstacle exerts a repulsive force Frep

Figure 4.6 With the obstacle avoidance
algorithm we can avoid collisions with the
obstacles using the information gathered
by the sensors while driving the robot
towards the target location

4 State of the Art 4.3 Local Motion Control

 40

4.3.2 Potential Field Method

The first method of investigating is the potential field method (PFM). It represents the

robot as a particle that moves in the workspace W, whose configuration space is CS

and is subject to forces that are produced by the surrounding environment. The forces

can be of two types attractive or repulsive. Indeed, the target propagates an attractive

force 𝐹𝑎𝑡𝑡 for the robot, while all the obstacle captures by the sensor return a repulsive

one 𝐹𝑟𝑒𝑝.

𝐹𝑎𝑡𝑡(𝑞𝑖) = 𝐾𝑎𝑡𝑡𝑛𝑞𝑡𝑎𝑟𝑔𝑒𝑡

The repulsive force can be calculated relating it only with the distance from the

obstacles or considering also the instantaneous robot velocity and accelerations of the

robot.

𝐹𝑟𝑒𝑝(𝑞𝑡𝑖) = {
𝐾𝑟𝑒𝑝 ∑(

1

𝑑(𝑞𝑡𝑖, 𝑝𝑗)
−

1

𝑑0
)𝑛𝑝𝑗 𝑖𝑓 𝑑(𝑞𝑡𝑖, 𝑝𝑗) < 𝑑𝑜

𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where Katt and Krep are the constants of the attractive and repulsive forces, d0 is the

influence distance of the obstacles 𝑝𝑗, 𝑞𝑡𝑖 is the current vehicle configuration and

𝑛𝑞𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑛𝑝𝑗 are the unitary vectors that point from 𝑞𝑡𝑖 to the target and each

obstacle 𝑝𝑗.

𝐹𝑟𝑒𝑝(𝑞𝑡𝑖) = {
𝐾𝑟𝑒𝑝 ∑(

𝑎�̇�𝑡𝑖

[2𝑎𝑑(𝑞𝑡𝑖, 𝑝𝑗) − �̇�2
𝑡𝑖]

) 𝑛𝑝𝑗. 𝑛�̇�𝑡𝑖
 𝑖𝑓 �̇�𝑡𝑖 > 0

𝑗

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where �̇�ti(dot) is the current robot velocity, 𝑛�̇�𝑡𝑖
 the unitary vector pointing in the

direction of the robot velocity, and 𝑎 is the maximum vehicle acceleration.

Combining these two forces, the trajectory of the robot can be computed at every time

𝑡𝑖:

𝐹𝑡𝑜𝑡(𝑞𝑡𝑖) = 𝐹𝑎𝑡𝑡(𝑞𝑡𝑖) + 𝐹𝑟𝑒𝑝(𝑞𝑡𝑖)

Applying a control 𝑢𝑖, the total force 𝐹𝑡𝑜𝑡(𝑞𝑡𝑖) can be used to control the trajectory of

the robot (Figure 4.7). This algorithm is generally used because it is simple to develop

and requires short computational time.

4 State of the Art 4.3 Local Motion Control

 41

4.3.3 Vector Field Histogram

The second Obstacle Avoidance algorithm presented, is the vector field histogram

(VFH), it produces a solution dividing the problem into two steps, in the first create a

set of aspirant motion directions for the robot trajectory; then in the second step, using

defined rules, selects the proper one.

At the beginning, space is divided into sectors from the available sensor of the robot.

For Figure 3. the histogram H represent the obstacles located around the robot. The

function ℎ𝑘(𝑞𝑡𝑖) describes the density of the obstacle that is proportional to the

probability function P(p) (probability that a point is busy) and to the distance from the

obstacle, the more the distance from the obstacle increase, the more the density value

is lower.

The function ℎ𝑘(𝑞𝑡𝑖) is:

ℎ𝑘(𝑞𝑡𝑖) = ∫ 𝑃(𝑝)𝑛

𝛺𝑘

∙ (1 −
𝑑(𝑞𝑡𝑖, 𝑝)

𝑑𝑚𝑎𝑥
)

𝑚

∙ 𝑑𝑝

The resulting histogram, produced by the Vector Field approach, has sectors with low

density that represents the area free or with far obstacles, and sectors with high density

(hill) that describes the area occupied by the obstacles. The set of candidate directions

in which the motion is allowed to move is given by the set of the adjacent sector with a

density lower than a given threshold, as much as possible closest to the direction of the

target direction, this area is named the selected valley.

The procedure to choose the right direction for the robot respect to the target 𝑘𝑡𝑎𝑟𝑔𝑒𝑡,

depend on where the target respect to the selected area is, and on the size of the valley

(Figure 4.8). Three cases are identified, which are analyzed in sequence. First, if the

goal sector is inside the selected valley, then the 𝑘𝑠𝑜𝑙 = 𝑘𝑡𝑎𝑟𝑔𝑒𝑡. The second, if the goal

sector is not in the selected valley and the number of sectors of the valley greater than

m, in this case, 𝑘𝑠𝑜𝑙 = 𝑘𝑖 +
𝑚

2
, where m is a fixed number and 𝑘𝑖 is the direction of the

sector that is closer to the target and has a probability lower than the defined threshold.

The last one, if the goal sector is not in the selected valley and the number of

sectors of the valley lower or equal to m; in this case, the solution is 𝑘𝑠𝑜𝑙 = (𝑘𝑖 +

𝑘𝑗)/2, where 𝑘𝑖,𝑗 are the extremes of the area selected. The result is a component

or sector 𝑘𝑠𝑜𝑙, whose bisector is the direction solution 𝜃sol.

4 State of the Art 4.3 Local Motion Control

 42

The velocity 𝜐sol is inversely proportional to the distance to the closest obstacle.

The control is 𝑢𝑖 = (𝜃sol, 𝜐sol).

Given the selected sector inside the histogram 𝑘𝑠𝑜𝑙, calculating the direction of the

motion (angle 𝜃𝑠𝑜𝑙) and the velocity of the robot 𝑣𝑠𝑜𝑙, the robot can move

independently avoiding the area with a high probability obstacle distribution, scanned

by the sensor.

Figure 4.8 SubFigure (a): Robot motion
direction θsol and obstacle occupancy
distribution. SubFigure (b): The candidate
valley is the set of adjacent components with
values lower than the threshold. The
navigation case is the third previously
considered, since the sector of the target

Figure 4.9 Subset of control UR, where U
contains the controls within the maximum
velocities, UA the admissible controls, and
UD the controls reachable in a short period
of time

4 State of the Art 4.3 Local Motion Control

 43

4.3.4 Dynamic Window Approach

Another Obstacle Avoidance algorithm that solves the problem in more than one step

is the Dynamic Window Approach (DWA). Firstly, it defines the candidate set of

control space 𝒰𝑅, which is constrained by the specification of the robot, the maximum

linear and angular velocities, characterized by 𝒰,

𝒰 = { (𝑣, 𝑤) ∈ 𝑅2 \ 𝑣 ∈ [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥] ˄ 𝑤 ∈ [−𝑤𝑚𝑎𝑥, 𝑤𝑚𝑎𝑥]}

The candidate set of controls 𝒰R contains the controls: within the maximum velocities

of the vehicle 𝒰, that generate safe trajectories 𝒰A, and that can be reached within a

short period of time given the vehicle accelerations 𝒰D.

Instead, the array 𝒰A holds the controls to achieve an efficient and safe trajectory,

𝒰𝐴 = { (𝑣, 𝑤) ∈ 𝒰 \ 𝑣 ≤ √2𝑑𝑜𝑏𝑠𝑎𝑣 ˄ 𝑤 ≤ √2𝜃𝑜𝑏𝑠𝑎𝑤 }

where 𝑑𝑜𝑏𝑠 and 𝜃𝑜𝑏𝑠 are the distance to the obstacle and the orientation. Finally, the

set 𝒰𝐷 contains the set of the area that can be reached in a short period of time

𝒰𝐷 = { (𝑣, 𝑤) ∈ 𝒰 \ 𝑣 ∈ [𝑣0 − 𝑎𝑣𝑇, 𝑣0 + 𝑎𝑣𝑇] ˄ 𝑤 ∈ [𝑤0 − 𝑎𝑤𝑇,𝑤0 + 𝑎𝑤𝑇] }

The resulting subset of controls (Figure 4.9) is:

𝑈𝑅 = 𝑈 ⋂ 𝑈𝐴 ⋂ 𝑈𝐷

The last point is the selection of the proper control 𝓊i ∈ 𝒰R, to do that, maximizing an

objective function that depends on how much we get close to the goal, on the clearance

of the path chosen and, on the velocity, reachable on that point by the robot.

𝐺(𝑢) = 𝛼1 · 𝐺𝑜𝑎𝑙(𝑢) + 𝛼2 · 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑢) + 𝛼3 · 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑢)

DWA solves the problem in the control space using information of the vehicle

dynamics, thus The DWA method works well on the robot with slow dynamic

capabilities.

The theory of the Obstacle Avoidance algorithm, which has been analysed until now,

can be found in the chapter ‘Moving in the environment’ of the Springer Handbook of

robotics. [6]

4 State of the Art 4.3 Local Motion Control

 44

4.3.5 VFF Approach for Obstacle Avoidance

The last method treated is the VFF method. From Figure 4.10 is possible to see as these

forces are applied at point 𝐶𝑃1, it determines the local steering direction 𝜃𝑟𝑒𝑝 calculating

the frontal and the lateral forces to avoid the collision with the obstruction, analysing

the information coming from the sensors.

The final repulsive force 𝐹𝐹
⃗⃗⃗⃗ is the vector sum of the individual forces generated by the

obstacle, given by:

𝐹 𝐹 = ∑
𝐹𝑐𝑟 𝐶𝑖

𝑑𝑖
2

𝑖

 [
𝑥𝑖 − 𝑥𝑐

𝑑𝑖
 𝑖 +

𝑦𝑖 − 𝑦𝑐

𝑑𝑖
 𝑗]

Where 𝐹𝑐𝑟 is the force constant, 𝑑𝑖 the distance between the obstacle (𝑥𝑖 , 𝑦𝑖) and the

point 𝐶𝑃1 (𝑥𝑐 , 𝑦𝑐), 𝐶𝑖 is the probability that the cell i-th is occupied. The VFF method

guarantees also a safe distance from any lateral collision, computing the lateral force

𝐹 𝑠,

𝐹 𝑆 =
𝐹𝑐𝑟 𝐶𝑖

𝑑𝑖
2 [

𝑥𝑖 − 𝑥𝑠

𝑑𝑖
 𝑖 +

𝑦𝑖 − 𝑦𝑠

𝑑𝑖
 𝑗]

Where (𝑥𝑠, 𝑦𝑠) the lateral sensor coordinates. Applying the principle of free-body

diagrams, all these forces can be assembled by a single lateral force 𝐹𝐿 and a moment

𝑀, acting on the robot on the centre point CP, and successfully divided depending on

the shape of it.

Figure 4.10 Frontal repulsive force FF Figure 4.11 The lateral computed
forces decomposition

4 State of the Art 4.3 Local Motion Control

 45

On the case of the robot represented in Figure 4.11, where there are front and rear

steering wheels, the forces are divided into a couple of force 𝐹1,2 and a couple of

moment 𝑀1,2. In fact, the two force 𝐹1𝑚 and 𝐹2𝑚 are computed from the moment 𝑀,

knowing the distance d between 𝐶𝑃 and 𝐶𝑃1,2 as,

 𝐹1𝑚 = 𝐹2𝑚 =
𝑀

𝑑
 𝐹1𝑓 = 𝐹2𝑓 =

𝐹𝐿

2

If we compare this consideration with the TurtleBot3 (Waffle or Burger) available in

our laboratory, they do not have 4 wheels and those degrees of freedom, so the forces

𝐹2𝑓 and 𝐹2𝑚 are not taken into consideration because they have only two degrees-of-

freedom.

Considering the TurtleBot3 configuration, to generate the final trajectory for the robot,

the VFF approach produces a final repulsive force 𝐹𝑅𝑒𝑝 (where the choice of the

parameters α, β and γ determines the trajectory of the robot), that gives the value of

the linear velocity pushing the robot away from the obstacle, and an angle 𝜃𝑅𝑒𝑝 that

correspond to the direction (Figure 4.12).

𝐹 𝑟𝑒𝑝 = 𝛼 𝐹 1𝑓 + 𝛽 𝐹 1𝑚 + 𝛾 𝐹 𝐹

Figure 4.12 Steering Direction and
Repulsive Force

4 State of the Art 4.4 General Navigation System

 46

4.4 General Navigation System

In this chapter has shown the global navigation planning and the Obstacle Avoidance

methods integrated into real systems. On the one hand, the Obstacle Avoidance

methods are local techniques to avoid the collision with the obstruction.

However, they can have the problem to fall in local minima that mean in trap situations

or cyclic motions for the robot. This exposes the necessity of a different navigation

system, the motion planning techniques. It computes a geometric path free of

collisions, from a starting point to a defined goal with a map of the environment

known; nevertheless, when the scenarios are unknown and evolve, these techniques

fail, since the precomputed paths will almost surely collide with obstacles.

The solution, that is one key aspect to create a motion system is to mix together the

best of the global knowledge given by motion planning and the reactivity of the

Obstacle Avoidance methods.

The idea, to generate the trajectory, is to precompute a path to the target using the

global motion, that is modified real-time as a function of the changes in the scenario

obtained from the sensor information and to use a planner at a high frequency with a

tactical role, leaving the degree of execution to the reactor.

The algorithmic tools offered in this chapter display that motion planning and Obstacle

Avoidance research techniques have reached a level of maturity and complexity that

allow their transfer onto real platforms.

5 Navigation 5.1 Introduction to the Navigation Algorithm

 47

5 Navigation

5.1 Introduction to the Navigation Algorithm

This chapter describes the main work that has been done in this thesis at the LIM, that

is related to the creation of an algorithm to make TurtleBot3 perform an autonomous

navigation inside a unknow indoor environment.

What does autonomous navigation mean? By definition, autonomous navigation is the

ability of a vehicle to plan its route and execute its plan without human intervention.

This implies two different problems: knowing how to move towards a target and

having the ability to avoid any obstacles along the way.

However, both these goals are not easy to achieve, to be able to perform the right

motion of the robot given by the algorithms we need other information: indeed, it is

important to know where the robot is, to create a map of the given environment, to

interact every time with the map and to optimize the route to get a smooth path.

The four needed features are the map, the pose of robot, sensors and a navigation

algorithm.

Although the main objective of this thesis concerns the development of navigation

algorithms, the other aspects mentioned above will be discuss and briefly described to

provide the reader with a more complete view of the subject matter.

The first essential feature for navigation is the map. Using RViz, the navigation system

is equipped with a very accurate map from the time of purchase, and the modified map

can be downloaded periodically so that the robot can be driven to the destination based

on the map.

Like a navigation system, a robot needs a map, so we need to create a map and provide

it to the robot, otherwise the robot should be able to create a map by itself. SLAM

(Simultaneous Localization and Mapping) is developed to let the robot create a map

with or without the help of a human being. This is a method of creating a map while

the robot explores the unknown space and detects its surroundings, estimating its

current location as well as creating a map.

For what concerns this first point the tool RViz that, has been used as we will see, it is

able to create a map of the environment while the robot is moving, capturing the

information of the obstacles given by the sensors (in our case LiDAR) and reading the

IMU data that gives back the position of the robot.

5 Navigation 5.1 Introduction to the Navigation Algorithm

 48

Second feature, the robot must be able to measure and estimate its pose (position +

orientation), in case of a real vehicle, the GPS is used to estimate its pose. Nevertheless,

the GPS cannot be used alone in an indoor area because it introduces large errors that

cannot be acceptable for performing the autonomous navigations.

In order to overcome this problem, various methods such as marker recognition and

indoor location estimation have been introduced, but they are still insufficient for the

general use in terms of cost and accuracy. Furthermore, the application of markers

assumes that the environment is structured and well known.

Currently, the most widely used indoor pose estimation method for service robots is

dead reckoning, which is a relative pose estimation, it has been used for a long time

and it is composed by low-cost sensors and it can obtain a certain level of accuracy in

pose estimation.

The amount of movement of the robot is measured by the odometry of the wheel.

However, there is an error between the calculated distance with wheel rotation and the

actual travel distance. Therefore, the inertial information from the IMU sensor can be

used to reduce the error by compensating position and orientation error between the

computed value and the actual value.

Third, figuring out whether there are obstacles such as walls and objects requires

sensors. Various types of sensors such as distance sensors and vision sensors are used.

The distance sensors include laser-based distance sensors (LDS, LRF, LiDAR),

ultrasonic sensors and infrared distance sensors. The vision sensors include stereo

cameras, mono-cameras, omnidirectional cameras, and recently, RealSense, Kinect,

Xtion, which are widely used as Depth camera, to identify obstacles.

The last essential feature for navigation is to calculate and travel through the optimal

path, the navigation algorithms that are described are based on both the algorithms

presented on chapter 3, the global navigation algorithms and principally on the

Obstacle Avoidance algorithms.

The global path searching algorithms, as the A* and D* algorithms, always consider a

starting point, a goal and a complete map that is periodically loaded; instead we analyse

a different starting point and condition of the space.

We consider that the robot moves in a completely unknown indoor environment; the

available robot's and sensor's hardware for the test are the TurtleBot3 and its LiDAR

sensor and our goal is to completely map the space in which the robot is navigating.

5 Navigation 5.2 Algorithms

 49

5.2 Algorithms

The first goal, following some basic exercises of the ‘ROS Robot Programming’ book

[1], was to be able to perform some movement in a simulated environment to

understand the behaviour of the tools, such as ROS, that were working together at the

same time. In this example (Figure 5.1), the ‘World' environment in Gazebo has been

loaded (as a simulation framework) with the Waffle TurtleBot3 but there are other

predefined environment models that could be loaded such as: ‘House’ and ‘Empty’,

which themselves could be also modified.

It is useful to understand how using RViz we have the possibility to build the map of

our environment. Thanks to RViz, we could visualize the position of the Waffle

operating in Gazebo given by the Odometry topic, the virtual LiDAR data (as its show

on Figure 5.2) but also other information such as the camera image (not used in this

example) and to virtually detect the collision.

Figure 5.1 Waffle loads on the World environment of Gazebo

Figure 5.3 Map of the
environment

Figure 5.2 RViz views of the data coming from the
sensors

5 Navigation 5.2 Algorithms

 50

The final goal of this example is to move the robot and to create a map of the

environment. This is done using two command: ’TurtleBot3_teleop_key’ and

‘TurtleBot3_slam.launch’.

The first gives the possibility to drive the robot around, via teleoperation, using the

following commands (human guidance):

key_mapping = {‘w': [0, 1], increase the linear velocity of 0.01

 'x': [0, -1], decrease the linear velocity of -0.01

 'a': [-1, 0], increase the angular velocity of 0.1

 'd': [1, 0], decrease the angular velocity of -0.1

 's': [0, 0], to stop the robot}.

The second command runs SLAM (Simultaneous Localization and Mapping), that

explores and creates a map of the unknown environment while continuously updating

new information of the obstacles that the robot captures while it is moving and

estimating the pose of the robot that is obtained from the data of the sensor.

To perform SLAM, the program needs the distance values measured from the around

objects and coming from the robot sensors, together with the pose and orientation that

are taken by the odometry of the robot. Encoders and inertial measurement units

(IMU) are adopted for pose estimation.

Simulation is a very useful tool for testing the developed algorithms and trying to

predict the behaviour of the robot without actually using it, Figure 5.3 shows the

complete map of the ‘World' environment that has been saved after the robot has

mapped all the simulation environment of Gazebo.

However, some limitations are present due to the characteristics of the algorithm that

generates the SLAM, that is the Gmapping algorithm [30].

Without going into the detail of the algorithm, since SLAM would require a long

speech, there are certain constraints: “square shaped room with no obstacles, a long

corridor without any distinctive objects, glasses that doesn’t reflect laser or infrared

light, mirrors that scatters light, wide and open environments where obstacle

information cannot be acquired, such as a lake or sea”. [1]

5 Navigation 5.2 Algorithms

 51

5.2.1 Follow Wall

After this brief introduction on how to use some tools, which will be investigated

successively, now it is possible to focus the attention on the navigation algorithms.

The first algorithm that has been written for autonomous navigation, “Follow Wall”

takes its name from its simplicity. Its purpose is to identify obstacles that can be near

or far from the robot, being able to distinguish two cases of collision if there are walls

or other types of obstacles that partially block its motion, and finally, choosing the best

trajectory.

The sensor with which the obstacles were identified is the LIDAR available in both

TurtleBot3 robots. The Waffle camera is not been used as already mentioned on

previous chapter. From Figure 5.4, is possible to identify the areas in which the robot

divides the space in front of it. This algorithm can evaluate five different

representations of data coming from the LiDAR, to identify the obstacles around the

robot itself: ‘No obstacle’, ‘Far obstacle’, ‘Near obstacle on both the direction’, ‘Left

Near obstacle’ and ‘Right Near obstacle’.

Figure 5.5 Waffle in front of a wall in the
simulated environment Gazebo

Figure 5.4 Area divided by the Follow
Wall algorithm

5 Navigation 5.2 Algorithms

 52

‘No obstacle' means that the robot does not find any impediment either in front of it or

around it, so the red and green are free one area. The green area represents the one

close to the robot, instead, the red one is used to determine far obstacle in front of it. In

this case, the linear velocity of the robot is set to 0.26 m/s (that represent the maximum

value reachable by the TurtleBot3) and the angular velocity is equal to 0 rad/s.

When the green area only is free, we move to the second case, that is ‘Far obstacle'. In

this condition, the robot understands that there could be an obstacle in front of it, but

it is still far from deciding to stop itself (that means that the LiDAR data from 1.5 to

0.8 meters identify an obstacle), so it decreases its velocity and the new value of linear

velocity becomes 0.15 m/s.

All the other three cases ‘Near obstacle on both the direction', ‘Left Near obstacle' and

‘Right Near obstacle' are related because, in all of them the green area is no longer free,

this means that the robot recognized an obstacle around it, the only difference is related

to the position in which the obstacle is identified.

Whenever the green area is no longer free, this means that the robot recognized an

obstacle around it and tries to understand if it is a wall. (Figure 5.5). This is done

looking of 40° degrees in front of it at 0.8 meters of distance if for the 90% of the

scanned angles it finds an obstacle (equal or higher than 36 degrees) it identifies the

object as a wall.

If a wall has been detected, the robot looks if it has a free space on the right or on the

left side. This reasoning is done by trying to identify an “infinite” distance, which for

the capacities of the LiDAR is equivalent to almost 5 meters, looking of 5° degrees into

the left and right of the robot; this check is represented by the yellow area.

If using the LiDAR, the robot recognizes an “infinite” free space, it rotates towards that

direction, with a high angular velocity equal to +0.63 rad/s to the left, -0.63 rad/s to

the right (if both the directions are possible, the right is chosen), while the linear one is

equal to 0 m/s.

Otherwise the robot tries to avoid the obstacle by turning on the opposite direction

respect to the obstacle until it finds free space in front of it. In the case where the robot

identifies the obstacle on both sides, ‘Near obstacle on both the direction’, the direction

that moves towards the areas with lower density of hurdles will be chosen.

In this last case, the angular velocity is set to ± 0.2 rad/s depending on the kind of

rotation chosen (+ anticlockwise, - clockwise).

5 Navigation 5.2 Algorithms

 53

This algorithm represents the first version of Obstacle Avoidance and it has been tested

on a simulative environment, Gazebo, to control the correctness of the motion, where

a shape of a wall has been loaded into an empty space. Subsequently, it is been tested

on both the available TurtleBot3 (Burger and Waffle). It is a very simple algorithm,

which requires brief calculation time, but which works very efficiently.

For example, when it was tested inside a square room in Gazebo, the algorithm was

able to make the robot run across the entire perimeter, managing to keep the same

distance from the wall. In a real environment, it was tested on the Burger, where was

assembled the Raspberry Pi Camera V2 to add an onboard video feature, being able to

provide real-time simultaneous localization and mapping (SLAM) of the floor using

RViz. For what concerns of SLAM, the robot should have mounted a sensor capable of

measuring the distance on the XY plane, such as LDS (Laser Distance Sensor), LRF

(Laser Range Finder) or LiDAR.

The result is shown in Figure 5.6, that represents the map of the first floor of LIM

department that the robot was able to create, using the RViz algorithm.

Figure 5.6 Map of the floor given by Rviz

5 Navigation 5.2 Algorithms

 54

5.2.2 Obstacle Avoidance

The second navigation algorithm, called “Obstacle Avoidance”, tries to improve the

previous one. It analyses a greater amount of data coming from the LiDAR and

performs more complicated robot motions.

Running the previous algorithm, the robot was only able to move straight on or to

rotate around itself when it found an obstacle in front of it until it found again a free

space. To improve this algorithm the idea is to use the angular and the linear velocity

together, to make the robot able to perform a curved trajectory avoiding the collisions

with the obstacles.

The structure of the motion given by the algorithm is based on three different spaces

in which the robot could move; the robot still use the LiDAR to detect obstacles but

now it scans all the 180° in front of it (instead in the previous algorithm it scanned only

80° to find on obstacle).

Then, the scanned space is divided into three different sets: from infinite to 2.5 meters

(blue), from 2.5 meters to 1 meter (green) and from 1 to 0.5 meter (yellow), all

represent into Figure 5.7. Each set is divided into seventeen subsets, that means

seventeen possible directions, represented by the cones in which the three main areas

are separated. As it is possible see for each set, the dimensions of the subsets are

different (in degrees), but the total scanned space for the whole are is 180°.

When the robot moves, it looks if it has free space in front of it, starting from the

farthest distance (the blue area from infinite to 2.5 meters), if there is, it proceeds in

that direction. Otherwise, the robot alternatively looks at the nearer subset into the

right and left sides of the same area (from the darkest to the softest colour), trying to

find a free space.

In order to have a positive check inside a subsystem, the algorithm must verify that,

for all the angles of that subsystem, the values received by the LiDAR are equal or

greater than the minimum limit of that area (blue 2.5 m, green 1 m and yellow 0.5 m).

This analysis is repeated starting from the farthest distance (blue area), to the nearest

one (yellow area), the goal is to find the farthest distance that is as close as possible to

the middle of the robot direction. The algorithm each time receive new information

from the LiDAR (with a frequency of 5 Hz), selects a new cone of a certain zone. The

linear velocity is fixed for each zone, for the blue area is 0.26 m/s, for the green are is

0.13 m/s and for the yellow one is 0.07 m/s.

5 Navigation 5.2 Algorithms

 55

Figure 5.7 Representation of the three different area, from the farthest one (blue)
to the nearest one (yellow), where are represented all the subarea in different

colour, in which the darkest one are the first considered by the robot.

5 Navigation 5.2 Algorithms

 56

Instead, the angular one depends both on the main area selected and on the subset that

is chosen, the more an angle with a light colour is chosen the more the angular speed

will be high.

Finally, the algorithm also guarantees a safe area for the robot. This area was created

because the robot could start or fall inside closed zones, where none of the previous

movements is possible because the LiDAR sends information only about obstacles

around 180° in front of the robot for all the areas.

Inside this safety area (Figure 5.8), two motions are possible (very similar to the

previous algorithm “Follow Wall”), the robot can only proceed, very slowly straight on

or turn right or left. While the orange area in front is obstacle-free the first motion is

allowed, with a linear velocity equal to 0.07 m/s and an angular equal to 0 rad/s. The

robot proceeds in this way until it sees objects closer to itself.

Instead, when this condition is no longer verified, it can only turn on right or left

(angular velocity of ± 0.2 rad/s, linear velocity of 0 m/s) depending on where the

obstacle is. This last information is given by the red area around the robot and this

motion continues until the orange area is no longer free from collisions.

This algorithm greatly improves the first one, both in terms of analysis of the

environment around the robot and in terms of possible movements.

The ‘Obstacle Avoidance Algorithm' generates 54 different compositions of angular

and linear velocity. This means that a robot is able to move faster and to avoid obstacles

more easily, performing curved trajectories. With this algorithm, the robot scans all the

180° space in front of it, instead of using the previous algorithm, considering only 80°

degrees.

Being able to perform curved trajectories, the time required to map a generic area has

been noticeably reduced. The time required to find a movement is low too, so we never

have timing problems thanks to the simplicity of the algorithm.

However, the trajectories are not smoothed and furthermore, there are some

constraints, such as the three zones or the different choices of the cones, which limit

the algorithm capacities and do not make it a generalized algorithm.

These are the main reasons why a new algorithm has been written, which is inspired

by the previous ideas, where some constraints are relaxed, and which leaves the robot

the possibility to decide which is the best movement.

5 Navigation 5.2 Algorithms

 57

5.2.3 Autonomous Navigation with Map

This algorithm can be considered the main work of the thesis. It allows the robot to

choose the best possible movement to avoid collisions, but as we will see, it is also able

to create a map of the environment, without using any support tool, like RViz, which

was previously used for a 2D representation of the environment.

The considerations to be made before going into the description of the algorithm are

concerned the objective and starting conditions. Unlike other publications in literature

whose objective is to start from a point A and arrive at a point B starting from initial

conditions in which the map is partially or totally known (global navigation algorithm),

the objective of the 'Autonomous Navigation' algorithm is to start from a completely

unknown area (indoor) and in the shortest possible time map the whole unknown area,

being able to avoid obstacle.

This algorithm is also written to be run on TurtleBot3 (Waffle or Burger), so the sensor

used to detect obstacles is always the LiDAR.

The first task of the algorithm is to receive the LiDAR information, which is always

sent with a frequency of 5 Hz, which contain for each of the 360° the distance of the

respective identified obstacle.

To better understand the code and the various steps it is possible to follow the Flow

Chart reported in Figure 5.9 or read the algorithm code in Appendix A.

Figure 5.8 Safety area to avoid a collision

5 Navigation 5.2 Algorithms

 58

The first point is the analysis of the data received from the LiDAR, this task is

performed inside the 'start' function. The function has the goal of creating a matrix,

called ‘maps’, to which each corner is associated with the respective distance value in

meters to which an obstacle corresponds and a vector, called ‘distance_differ’, in which

all the distances of the LiDAR are sorted (eliminating the double measurements) in a

decreasing order, from the farthest obstacle to the nearest one.

Of course, the LiDAR has some specifications, its range of action is limited, in case of

the LiDAR mounted on the TurtleBot3, it is about 4.2 meters. When this threshold is

exceeded, it means that the information returned to the sensor has too low power

having travelled a long path, in this case the sensor returns a value equal to 0 meters;

the function 'start' has also the task of converting the measures of 0 meters, that

corresponds to infinity, to a finite value, in this algorithm 5 meters are chosen.

The matrix and the vector created by the 'start' function are passed to the 'direction'

function. 'Direction' represents the most important function of the algorithm because

it returns the angle and the distance at which the goal is located, which represents the

direction in which the robot must move.

To reach the goal, starting from the first value inside the ‘distance_differ’ vector, that

means from the farthest distance capture by the LiDAR, the function tries to

understand if the robot has free space in front of it at that direction.

Depending on the distance ‘d’ at which the robot wants to move and, on the volume

occupied by itself, the algorithm needs a certain number of consecutive angles whose

value of distance from the obstacle must be greater than the distance at which the robot

intends to move.

The number of angles necessary for a given distance is returned by the 'alpha' function.

The latter receives as input the distance at which the robot wants to move and the

robot's dimensions and returns the number of degrees of an angle  necessary to form

a rope such that its length is greater than the width of the robot.

Concerning the TurtleBot3, the worst case of width is related to the Waffle, that has a

dimension higher respect to the Burger; therefore, within the algorithm the thickness

value of the robot was set at 50 cm slightly larger than the length of the Waffle diameter

equal to 44 cm, to better avoid the collisions.

Once the algorithm knows the angle , starting from the direction in front of the robot

it analyses a number of angles equal to /2 on the right side and /2 on the left side,

5 Navigation 5.2 Algorithms

 59

checking whether each degree has a value of distance to the obstacle (find by the

LiDAR) higher than the distance d considered.

If this condition is not verified, the robot alternatively looks for the next 1° into the

right and left side, until, if it does not find a direction, it scans all 180° degrees in front

of the robot. In this case, when it finishes to scans all the 180° without finding a

direction, it takes the second value of distance inside the ‘distance_differ’ vector and

the analysis restart from the calculation of the number of angles  necessary with the

new distance and continues with the control of all the 180°.

This method is repeated until either the robot finds a motion or all the distance values

inside ‘distance_vector’ are controlled, this second case means that the robot was

placed inside a completely closed area like a hole, being blocked.

In the lucky case in which the robot is able to find a possible direction of motion (value

of angle  and distance d), that correspond to the positive response "Yes" at the

"Direction Found" question in the Flow Chart, the algorithm checks whether it can be

also done at all the distances closer to the one found with the same angle  that has

been chosen as valid.

This investigation is done by the ‘control’ function, that is within the ‘direction’

function, because in the case of negative response of the control, that means that the

robot does not have enough space to reach the goal in all the possible path, the

algorithm restarts looking for a new motion.

Finally, when this check is positive too, so when the algorithm found an angle α and a

distance d that are good (in the Flow Chart it is represented by the answer “Yes” at the

question “Obstacle found”), the ‘medium’ function tries to understand if there are other

angles closer to the one found (), which are free of collision considering the same

distance d.

This analysis allows the robot to check if there are other free angles after the one found

at the same distance d, in this way if they are found, the robot moves towards a medium

angle inside the free space.

Let's analyse an example to better understand this point, consider that the algorithm

finds the first possible path at a distance of d = 3 m and an angle α = 20 °. The 'medium'

function will check that at a distance of 3 m the robot can move even at 21° degrees,

this procedure continues until a negative response is given.

5 Navigation 5.2 Algorithms

 60

Figure 5.9 Flow Chart of the 'Autonomous Navigation' algorithm

5 Navigation 5.2 Algorithms

 61

In the hypothesis that γ = 30° is the last angle in which the robot can move at 3 meters,

the result of the 'medium' function will give as a value 𝛽 =
(𝛼 + 𝛾)

2
=

20+30

2
= 25°

degrees. The final values of distance d and angle β represent the values that are

returned by the 'direction' function.

These values d and β are the ones used to give the linear and angular velocity to the

robot; this is done inside the ‘motion' function.

Before explaining how the linear and the angular velocities have been calculated in this

algorithm, the distances travelled by the robot should be measured by computing via

dead reckoning and then compensating the pose with inertial data or estimating

translational speed and angular speed with an IMU sensor.

“ROS defines the pose as the combination of the robot’s position (x, y, z) and

orientation (i, j, k, w). The orientation is described by i, j, k, and w in quaternion form,

whereas position is described by three vectors, such as x, y, and z.” [31]

Considering the shape of the TurtleBot3 there are two parameters that are relevant: the

distance D between the wheels and the radius r of them; the rotation speed of the left

and right wheels (𝑣𝑙 , 𝑣𝑟) is given by:

𝑣𝑙 =
(𝐸𝑙2−𝐸𝑙1)

𝑇12

𝜋

180
 (rad/s)

𝑣𝑟 =
(𝐸𝑟2−𝐸𝑟1)

𝑇12

𝜋

180
 (rad/s)

Where 𝑇12 is the interval between two instants (𝑇2 − 𝑇1), 𝐸𝑙2 𝑎𝑛𝑑 𝐸𝑙1 are the values

given by the left encoder at the time (𝑇2, 𝑇1).

The velocities of the left and right wheel (𝑉𝑙 , 𝑉𝑟) can be calculated by knowing the radius

r of the wheel:

𝑉𝑙 = 𝑣𝑙 · 𝑟 (m/s)

𝑉𝑟 = 𝑣𝑟 · 𝑟 (m/s)

Finally, from the left and right wheel velocity, it is possible to find the linear and angular

velocity (𝑣𝑡 , 𝑤𝑡),

𝑣𝑡 =
𝑉𝑙+ 𝑉𝑟

2
 (m/s)

𝑤𝑡 =
𝑉𝑙− 𝑉𝑟

𝐷
 (rad/s)

5 Navigation 5.2 Algorithms

 62

𝑣𝑡 and 𝑤𝑡 are the linear and angular velocity of the robot, these parameters are defined

by the ‘Autonomous navigation’ algorithm based on the value of distance d and angle

 that are returned by the ‘direction’ function.

𝑣𝑡 = +(0.26 − 0.26 𝑒−(𝑑−0.3)) (m/s)

𝑤𝑡 = ±(1.8 − 1.8 𝑒−0.35|𝛽𝑣𝑡
1.5|) (rad/s)

The two Figure 5.10 shows the variation of linear velocity (Sub-figure b) and of angular

velocity (Sub-figure a), according to the value of distance d and of angle 𝛽.

For what concerns 𝑣𝑡, the more the distance d is high the more the linear speed

increases with an exponential trend; this trend, for high values of distance, is

asymptotic to the 0.26 m/s velocity, which represents the maximum linear speed at

which TurtleBot3 can move.

Figure 5.10 The linear vt (Sub-figure b) and the angular wt (Sub-
figure a) velocity applied to the robot on the y axis

Sub-figure a

Sub-figure b

wt

vt

5 Navigation 5.2 Algorithms

 63

A similar analysis can be done for the sub-figure a, for a high value of 𝛽 and 𝑣𝑡 its trend

is asymptotic to 1.8 m/s, which represent the maximum angular speed of the robot. In

addition, every single red line represents the trend of the angular velocity, given a

specific value of the angle 𝛽, as the linear velocities change. The direction of the motion

is given by the sign of the angle 𝛽, positive in the case of rotation to the left (counter

clockwise), negative in case of rotation to the right (clockwise).

At this point, the description of the algorithm linked to the calculation of the variables

necessary for the movement of the robot is finished, so the linear velocities and angles

are calculated every time the LiDAR topic sends new information, that means every

0.2 seconds (5 Hz).

As already mentioned this algorithm is also able to generate a map of the area scanned

by the robot. This part of the algorithm is managed within the 'slam' function. The map

is created by combining the LiDAR information and the robot's odometry data.

In the previous algorithms, the part related to the mapping was managed by the RViz

tool, that uses the two-dimensional Occupancy Grid Map (OGM). The map obtained

using RViz, already shown in Figure 5.6, colours the area in different ways: white if it

is free of collision, black if it is occupied by obstacles in which the robot cannot move,

and grey if it is an unknown area.

The points in the map are represented using grayscale values which range from ‘0’ to

‘255’. To compute the right value, the algorithm of RViz uses the posterior probability

of the Bayes’ theorem. This theorem calculates the occupancy probability, that means

the probability that a point is an obstacle or not.

The occupancy probability is expressed with a variable that the closer it is to 1, the

higher the probability that it is occupied, instead, the closer is to ‘0’, the less likely the

point is occupied.

The message generated by the topic of the map (generated by RViz), when the SLAM

is performed, is a matrix. With '0' it indicates the free area, with '100' an occupied area

and '-1' is used to point out an unknown one. Each pixel of the map can be converted

to 5 cm.

The map, that the ‘Autonomous navigation' algorithm tries to create, takes inspiration

on the RViz algorithm but does not use the posterior probability of the Bayes’ theorem.

Whenever the algorithm is launched, once it has finished the part linked to the

movement, it merges the data of the LiDAR with the information generated by the

‘Odometry' topic, to generate a matrix.

5 Navigation 5.2 Algorithms

 64

The dimension of the matrix has been defined a priori and each pixel of the map

obtained from the matrix can be transformed to 1 cm. Every time (each 0.2 second), it

updates the map inserting a 1 on each point where the LiDAR has identified an

obstacle, and a ‘0’ where is free.

The advantages of this map are linked to its greater precision, to the simplicity with

which it was written, which makes it easy to understand and modify. This last

advantage was used to represent the entire path of the robot and the shape of it (when

it travels a distance greater than 2 meters).

However, the RViz algorithm has a greater complexity and it is able to assign the

occupation probability of a cell with greater precision, thanks to which it avoids errors,

that sometimes are present in the ‘Autonomous navigation’ algorithm.

Errors such as the excessive or insufficient thickness of the objects in the image

compared to the real one, which is due to an excessive density of inserted points or a

wrong evaluation; the presence of obstacles (random black points) outside the mapped

area and errors due to the high angular velocity that is applied during some rotations.

The main advantages of the 'Autonomous Navigation' algorithm are the great

improvement on the kind of motion that includes up to 980 movements due to the

different combination of the angular and the linear velocity. The robot is able, to

perform curved trajectories and the LiDAR scans 180° in front of the robot to

understand the correct direction and all the 360° are scanned when the algorithm

perform the control of the motion.

Another advantage is related to the time to map the previously considered space, the

floor of the LIM department; now it is reduced to 4-5 minutes thanks to the new

capabilities of the robot. The last improvement is the autonomous creation of the map

that as already shown it has advantages and disadvantaged with respect to the one

created by RViz.

6 Conclusion 6.1 Experimental Results

 65

6 Conclusion

6.1 Experimental Results

This section presents the obtained results of the proposed project evaluated on

different unknown indoor environments and it finally describes the advantages and

the limitation of the algorithms, proposing reasonable improvement to the Obstacle

Avoidance Algorithm.

Now, the outcome of some tests performed at the LIM laboratory is shown, with the

starting condition of considering an unknown indoor area, the used algorithm is

‘Autonomous Navigation’ on TurtleBot3 (Waffle), so the sensor used to detect and

avoid the obstacles is always the LiDAR.

The first simulation scenario is a Circle. In Figure 6.1, on the left the real environment

can be seen and on the right the map created by the ‘Autonomous Navigation’

algorithm is shown. The trajectory obtained by the robot is smooth and precise

(highlighted by the blue line), the starting point is depicted by the red shape of the robot

that proceeds clockwise around the waste basket.

As already said the map is updated every 0.2 seconds, with insertion of a 1 on each

point where the LiDAR has identified an obstacle, and a ‘0’ where free space is present.

Even if the map of the circle is comparable to the real one, however, the left Figure

highlights some troubles of this method with respect to the map created by RViz.

For example, the insufficient thickness of the basket in some sides so that it is not well

defined or the presence of obstacles (random black points) outside the mapped area

that can be caused by the high angular velocity that is applied during some rotations.

Figure 6.1 Circle

6 Conclusion 6.1 Experimental Results

 66

Figure 6.2 shows the floor of the LIM department. The area considered in this

experiment is quite big, where the red position of the robot is updated every 2 meters,

the blue line continues to represent the trajectory of the robot.

The map is always created using the algorithm inside “Autonomous Navigation”, in

which the x and y axes represent the centimetres travel by the robot (around 5 meters

on the x and 15 meters on the y).

This map can be compared with the one design by RViz (Figure 5.6), as is possible see

the main difference is the thickness and precision of the wall that is well defined using

the ROS tool, while in this case it presents some holes or a wrong concentration that is

due to the lower complexity of the algorithm with respect to the one of RViz, that better

work with higher levels of speed.

Figure 6.2 Floor of the LIM department

6 Conclusion 6.1 Experimental Results

 67

The third scenario in which the TurtleBot is running, tries to reproduce on an indoor

environment an outdoor one, that is an agricultural field. The vineyard was replicated

inside a room of the LIM department, dimension 4.5 𝑥 7.5 meters; where vine rows

were created using polystyrene panels, dimensions 1 𝑥 0.1 meters and height 0.5

meters.

The goal is to create a map of the environment that could be represent a vineyard,

where is possible recognize each vine row and the different agricultural land. The aim

has been reached using the ‘Autonomous Navigation’ as Obstacle Avoidance

algorithm, with few modifications with respect to the one explained before, because in

this circumstance the map is created using the RViz tool.

The Waffle robot, using the LiDAR, could recognize the different vine rows, where the

ones of the same parcel are separated from each other by 0.75 meters, in this way the

robot is able to pass inside having considered its maximum size of 0.5 meters

(Appendix A, Autonomous Navigation, line 31).

Figure 6.3 shows two images from the vineyard map. The image on the left is the one

captured by RViz while the robot moves within the unknown environment and creates

real-time a map. As already analysed, RViz shows the obstacles in black, the areas

without collisions in white, the areas not yet explored in grey and finally the obstacles

surrounding the robot captured at the instant in which the image was taken are

highlighted in green.

Figure 6.3 Simulation of the Vineyard

6 Conclusion 6.1 Experimental Results

 68

In the beam of light, at the bottom left of the image, it is not a mistake, but it is due to

the presence of a slit in the obstacles that bounded the perimeter, so the rays of the

Lidar, mapping this area, shone through the small hole in the wall.

The other image of Figure 6.3 is instead generated at the end of the simulation in the

vineyard, using a script in python, in which the entire path executed by the robot, is

represented from the starting point to the final one. It is possible to point out the

presence of small errors of odometry, which are more evident when the robot performs

curved trajectory and gradually spreads, decreasing the accuracy of the blue trace.

This experiment was done in collaboration with another master student, who worked

on a parallel project, consisting of identifying, given a generic map of the agricultural

environment in the form of a binary matrix, the parcels within it in order to generate a

path plan for the robot able to cover all the environment with an optimal criterion.

Figure 6.4 defines the path inside the vine rows of each parcel, that the robot must

follow, to examine each vine row, being able to minimize the distance travelled. The

vineyard has been reproduced in multiple configuration, to test different scenarios of

the obstacles.

Once the robot knows the trajectory to perform, that means the starting point S, the

final point F and all the intermediate goals Gi to reach in which it must change the

linear or the angular velocity, the motion can be begin.

This algorithm is called “Path Following”, the idea behind is very simple, knowing

every time the starting position of the robot S and the sequence of goals G which allow

a motion without collision; the robot performs firstly a rotation toward the next goal

Gi+1 using only the angular velocity, and subsequently, proceeds straight on toward the

goal until it is get.

The procedure is repeated as far as the robot arrives at the final point F. To perform the

trajectory the robot needs the distance and the orientation of each goals respect to a

fixed reference system.

The last environment to analyse the performance and the behaviour of the

“Autonomous Navigation” algorithm, is the replication of a maze without exit in which

the robot is trapped, and it is forced to move. The maze is done using the polystyrene

panels inside a real indoor environment, represented in Figure 6.4.

Figure 6.5 shows the evolution of the map created by RViz tool, and the path followed

by the Waffle running the “Autonomous Navigation” algorithm. When the algorithm

starts the robot does not know the environment it is going to explore, but through the

6 Conclusion 6.1 Experimental Results

 69

information coming in real time from the LiDAR it is able to navigate and

simultaneously create the map.

.

Figure 6.4 Maze exploration

Figure 6.5 Simultaneous Localization and Mapping inside the Maze, showing the
evolution of the map step by step

Sequenze 1 Sequenze 2

Sequenze 3 Sequenze 4

6 Conclusion 6.2 Future Work

 70

6.2 Future Work

In this thesis, we have shown a possible solution to the problem of both the navigation,

applying Obstacle Avoidance algorithms, that allow a robot to move and perform in an

unstructured and unknown indoor environment, and the realization of the map of the

scanned area using RViz (the ROS tool) or an implemented method.

The final approach called “Autonomous Navigation” is based on the idea of combining

different real time Obstacle Avoidance algorithms to reach a goal position (the farthest

distance the robot can reach) in an unknown environment.

The mobile robot (Turtlebot3: Waffle and Burger), by analysing the information of the

LiDAR, generates a free collision motion to move around the detected obstacles from

its position towards the goal. No prior knowledge about the environment is assumed

in this approach, which makes use only of onboard sensors to acquire information

during the motion

Satisfactory results have been obtained regarding the problem of autonomous

navigation of a mobile robot in unknown environments (as shown in previous

chapter), but some improvements could be brought using, for example, different

sensors, such as cameras, LiDAR 3D or ultrasonic sensors. Using the information from

the on-board stereo camera, it would be possible to improve the navigation quality of

the mobile robot, to enable 3D SLAM and navigation, or objects recognition.

A further improvement would also be necessary for the odometry of the robot, which,

as analysed, get worse the more the distance of the robot increases. The use of GPS

could be a solution, especially in open environments.

Finally, in a high-level planning technique that understands the world, where it is likely

that robots will need to seek out very specific pieces of information. For example, in

order to exit a building, the robot will be equipped with some learned knowledge in

order to find an exit route. These techniques greatly improve the performances than a

random search method.

In the near future, we would like to improve this approach for the implementation of

an algorithm based on the idea of combining the global path planning with a real time

Obstacle Avoidance algorithm in external environments such as agricultural lands.

7 Appendix A Autonomous_Navigation.py

 71

7 Appendix A

Autonomous_Navigation.py

1 im port t ime

2 im port threadi ng

3 im port math

4 im port numpy

5 im port t ime as tm

6 im port matplot l i b .pyp lot as mt

7 im port rospy

8 im port copy

9 f r om sensor_msgs .msg i m port LaserScan

10 f r om geometry_msgs .msg im port Twist

11 f r om nav_msgs .msg i m por t Odometr y

12 f r om geometry_msgs .msg im port PoseWit hCov ar ia nce

13 f r om geometry_msgs .msg im port PoseSta mpe d

14 g loba l pub, m ove , cn t , t i me, f ree _t ime , g loba l_dis tan ce , g loba l_m od, x , y , a ,

b , w, z , f lag , computa t i on , odometr y , pos i t i onx , pos i t iony , r obotx , r oboty

15 rospy . ini t _n ode('obsta c le _av oida n ce ' ,an onymous= True)

16 pub=r ospy .Publ ishe r(' / cmd_ve l ' ,T wist ,queue_siz e=10)

17 move =T wist()

18 f la g = 0 , t i me = 0 , x = 0, y = 0, a = 0 , b = 0 , cnt = 0,

19 global_dis tan ce = 0 , g lobal_ m od = 0, pos i t i onx = 0, pos i t i on y = 0, r obotx = 0,

roboty = 0

20 comput at i on = []

21 odome tr yx = n umpy.arr a y([])

22 odome tr yy = n umpy.arr a y([])

23 odome tr yw = n umpy.arr a y([])

24 odome tr yz = n um py.arr a y([])

25 map_mat r ix = n umpy. fu l l ((5000, 5000) , 0)

26 turt le bot = n um py.zer os((30 , 30))

27 in i t = [2500, 2500]

28

29 def a lpha (dis tan ce_ di f fe r , k) :

30 chor d = 0.5

31 d = dis t an ce_ di f fe r[k]

32 angle = 2 * 180 / ma th .pi * mat h.ata n(chord/ 2/ d)

33 re t urn int(ang le) + 1

34 def mot ion(m od, k , d is ta nce _di f fer , a lpha) :

35 g lobal f lag

36 d is tan ce = f loat(dis ta n ce_ di f fer [k])

37 l inear = r oun d(0.26 -0 .26* mat h .exp(-1* (dis tan ce -0.3)) ,2)

38 i f l inear > 0.04:

39 f lag = 0

40 angu lar =numpy.s i g n(m od) *r oun d(1.8 - 1.8*m ath .exp(-

0.35*a bs(m od*ma th .pow(l ine ar ,1.5))) ,2)

41 e l i f f lag == 0:

42 f lag = 1

43 i f mod != 0:

44 angu lar = num py.s ign(m od) * 0 .4

7 Appendix A Autonomous_Navigation.py

 72

45 e lse :

46 angu lar = 0.4

47 re t urn l inear , ang u lar

48

49 def s tar t2(msg , x , y) :

50 angle = ran ge(x ,360) + range(0,y)

51 maps = {}

52 f or i i n angle :

53 i f round(f loat(ms g.r anges [i]) ,2) = = 0:

54 va lue = f loa t(5)

55 e lse :

56 va lue = r oun d(f loat(msg .ra nges [i]) ,2)

57 maps [i] = va lue

58 map_ dist an ces = s orte d(ma ps .v alues() , reverse = True)

59 re t urn maps

60

61 def s tar t(msg, x , y) :

62 angle = ran ge(x ,360) + range(0,y)

63 maps = {}

64 maps_ copy = {}

65 f or i i n angle :

66 i f round(f loat(ms g.r anges [i]) ,2) = = 0:

67 va lue = f loa t(5)

68 e lse :

69 va lue = r oun d(f loat(msg .ra nges [i]) ,2)

70 maps [i] = va lue

71 map_ dist an ces = s orte d(ma ps .v alues() , reverse = True)

72 map_ ang les = []

73 d is tan ce _di f fer = []

74 maps_ copy = ma ps .copy()

75 f or j in map_dist an ces :

76 f or i in range(le n(m aps_ copy)) :

77 i f maps_copy.va lues() [i] == j :

78 map_an gles .a ppend(ma ps_ copy.ke ys() [i])

79 maps_ copy[ma ps .keys () [i]] = -1

80 brea k

81 max_ma p = [m ap_ ang les , ma p_dista nces]

82 f or i i n range(len(m ap_dist an ces)) :

83 j = 0

84 i f i != 180:

85 i f map_dista n ces[i] ! = ma p_ dista n ces[i +1]:

86 d is tan ce_di f fer .appen d(m ap_ dist an ces [i])

87 j += 1

88 e l i f i == 180 a n d map_dis tan ces [i] ! = ma p_ di stan ces [i - 1]:

89 d is tan ce_ di f fer .a ppen d(m ap_dist an ces [i])

90 re t urn maps , m ax_ma p, dis t an ce_ di f fer

91

92 def direct i on (m aps , dis ta nce _di f fer , m aps 2):

93 g lobal g loba l_ dis ta n ce , g lobal _m od

94 angle = ran ge(270,360) + range (0 ,91)

95 mod = 0 , k = 0 , poin t = 0, bet a = 0

96 c lock = Tr ue

7 Appendix A Autonomous_Navigation.py

 73

97 whi le (c lock) :

98 se lect ion = []

99 p_star t = l en(a ng le) /2 + mod

100 poin t = a lpha (dis tan ce_ di f fer , k)

101 f or i in range(poin t) :

102 p = p_st art - poin t/2 + i

103 se lect i on .a ppe nd(ang le[p])

104 va lue = dis t an ce_ di f fer[k]

105 f lag = 0

106 f or j i n se lect i on:

107 i f maps[j] > = va lue:

108 f lag = 1

109 e lse :

110 f lag = 0

111 brea k

112 i f f lag == 0:

113 i f mod < 0:

114 mod = a bs(mod)

115 e lse :

116 mod = - mod - 1

117 e lse :

118 con tr ol ler = con tr ol (ma ps2 , dis tan ce _di f fer , m od, k)

119 i f contr o l le r == 1 :

120 i f mod == 0:

121 coun ter , con tro l ler = me dium (m od, maps , ma ps2 , se le c t ion, v a lu

e , d is t an ce_ di f fer , k)

122 beta = m od + counter

123 c lock = Fa ls e

124 brea k

125 e lse :

126 coun ter , con tro l ler = me dium (m od, maps ,ma ps 2 , se le c t i on, v a lue

, d is t an ce_ di f fer , k)

127 i f mod > 0:

128 beta = m od + r ound(counter / 2)

129 e lse :

130 beta = m od - r oun d(counter / 2)

131 i f abs(globa l_m od- bet a) <= ((a bs(g loba l_dis ta nce -

value)+ 0.04) *500):

132 c lock = F alse

133 brea k

134 e lse :

135 i f mod < 0:

136 mod = abs(m od)

137 e lse :

138 mod = -mod - 1

139 e lse :

140 i f mod < 0:

141 mod = a bs(mod)

142 e lse :

143 mod = -m od -1

144 i f mod >= 90 - poin t /2:

145 k += 1

7 Appendix A Autonomous_Navigation.py

 74

146 mod = 0

147 i f k >= len (dis t an ce _di f fe r) :

148 k = 'E RROR'

149 c lock = Fa lse

150 re t urn beta , k , a lpha, v a lue

151

152 def contr o l (m aps 2, dis ta nce _di f fer , m od, k) :

153 angle = ran ge(181,360) + range (0 ,181)

154 poi nt = 0

155 z = len(dis t an ce_ di f fer) -1

156 ban diera = True

157 f ree_spa ce = 0

158 whi le (bandie ra) :

159 space _an gle = []

160 p_star t = l en(a ng le) /2 + mod

161 poin t = a lpha (dis tan ce_ di f fe r , z)

162 f or i in range(poin t) :

163 p = p_st art - poin t/2 + i

164 space_ ang le .appe nd(a ng le [p])

165 va lue = dis t an ce_ di f fer[z]

166 f or j i n space_a ngle :

167 i f maps2[j] >= v a lue:

168 f ree_spa ce = 1

169 e lse :

170 f ree_spa ce = 0

171 bandier a = Fa lse

172 brea k

173 i f f ree_space == 1:

174 z += -1

175 i f z == k:

176 bandier a = Fa lse

177 re t urn f ree_spa ce

178

179 def medium (m od, ma ps ,maps 2, se le ct i on , va lue , d is ta nce _di f fer , k) :

180 coun ter = 0, g = 0 , in dex = 0, cont ro l ler = 0

181 f lag = True , f lag 1 = Tr ue , f lag 2 = True

182 i f mod ! = 0:

183 whi le (f lag) :

184 i f mod > 0:

185 g += 2

186 index = se le ct i on [- 1]+g

187 e l i f mod < 0:

188 g -= 2

189 index = se le ct i on [0]+g

190 prova = tm .t ime ()

191 i f maps .has _ke y(i ndex) :

192 i f maps[index] < value:

193 f lag = Fa lse

194 e lse :

195 contr o l ler = contr o l(m aps 2, dis t an ce_ di f fer , m od+g, k)

196 i f con tr ol ler == 1:

197 coun ter + =2

7 Appendix A Autonomous_Navigation.py

 75

198 e lse :

199 f lag = Fa lse

200 e lse :

201 f lag = Fa lse

202 e l i f mod == 0:

203 whi le (f lag1) :

204 g += 2

205 index = se le ct i on[-1]+g

206 i f maps .has _ke y(i ndex) :

207 i f maps[index] < value:

208 f lag1 = F als e

209 e lse :

210 contr o l ler = contr o l(m aps 2, dis t an ce_ di f fer , m od+g, k)

211 i f con tr ol ler == 1:

212 coun ter + =2

213 e lse :

214 f lag1 = F alse

215 e lse :

216 f lag1 = Fa lse

217 g = 0

218 whi le (f lag2) :

219 g -= 2

220 index = se le ct i on[0]+g

221 i f maps .has _ke y(i ndex) :

222 i f maps[index] < value :

223 f lag2 = F als e

224 e lse :

225 contr o l ler = contr o l(m aps 2, dis t an ce_ di f fer , m od+g, k)

226 i f con tr ol ler == 1:

227 coun ter - =2

228 e lse :

229 f lag2 = F alse

230 e lse :

231 f lag2 = Fa lse

232 re t urn counter , contr o l ler

233

234 def s lam(ma p_m atr ix , ma ps , in i t , odometr yx , odom etryy, odometr yw):

235 g lobal t ime, pos i t i onx , pos i t i on y, r obotx , r obot y, obs ta c le

236 index = in i t

237 thet a = 0 , space = 0 , r obot = 0, n = 2

238 thet a = odome tryw[- 1] , x = odometr yx [- 1] , y = odome tr yy[-1]

239 f or i i n range(len(m aps)/n):

240 i = i*n

241 maps_va lue = m aps .values() [i]

242 i f maps_va lue > 0 a n d maps_value < 5 a n d t ime % 10 == 0:

243 index = copy .copy(ini t)

244 index[0] += in t(x *100 + maps _va lue *100* mat h.cos((the ta+i)*m at h.pi

/180))

245 index[1] += in t(y*100 + maps _va lue *100* mat h.s i n((t het a+i) *ma th .pi

/180))

246 i f map_matr ix [i n dex[0]] [i ndex [1]] != 2 a n d

map_mat r ix[i ndex [0]] [in dex[1]] != 3:

7 Appendix A Autonomous_Navigation.py

 76

247 map_ma tr ix [in dex[0]] [i ndex [1]] = 1

248 pr in t "value % d" % (int (ma ps_v alue* 100))

249 f or j i n range (1, i nt (ma ps_v alue* 100 - 30)) :

250 index = copy .copy(i ni t)

251 index[0] += in t (x*100 + (ma ps_v alue* 100 -

j)*m at h.cos((the ta+i) *ma th .pi /180))

252 index[1] += in t (y* 100 + (ma ps_va lue* 100 -

j)*m at h.s i n((t het a+i) *ma th .pi /180))

253 i f map_matr ix [index [0]] [in dex[1]] != 2 a nd

map_mat r ix[i ndex [0]] [in dex[1]] != 3:

254 map_mat r ix [in dex[0]][index [1]] = 0

255 space = ma th .sqrt ((x- pos i t i onx)*(x -pos i t i onx) + (y -pos i t i on y) *(y-

pos i t i on y))

256 robot = ma th .sqrt ((x-r obotx)*(x -r obotx) + (y- robot y)*(y-r obot y))

257 i f t ime == 1 or robot > 0.3:

258 robotx = odometr yx [-1]

259 robot y = odometr yy[- 1]

260 i f space > 2:

261 pos i t i onx = odom etryx [- 1]

262 pos i t i on y = odom etryy[- 1]

263 f or i in range(13):

264 f or j i n range(13) :

265 index = copy .copy(i ni t)

266 index[0]+=in t(x*100+i *ma th .cos((t het a)*mat h .pi /180) -

j*m at h.s in ((t het a)*m at h.pi/ 180))

267 index[1]+=in t(y* 100 + i *mat h .s in((t het a)*ma th .p i/ 180)+ j*m at h.co

s((theta) *ma th .pi /180))

268 i f j == 0 a n d i >= 0:

269 i f space > 2 or t ime == 1:

270 map_mat r ix[in dex[0]] [index [1]] = 3

271 e l i f map_ma tr ix[i ndex [0]] [in dex[1]] ! = 2 a n d

map_mat r ix[i ndex [0]] [in dex[1]] != 3 :

272 map_mat r ix[in dex[0]] [index [1]] = 0

273 e lse :

274 i f space > 2 or t ime == 1:

275 map_mat r ix[in dex[0]] [index [1]] = 2

276 e l i f map_ma tr ix[i ndex [0]] [in dex[1]] ! = 2 a n d

map_mat r ix[i ndex [0]] [in dex[1]] != 3 :

277 map_mat r ix[in dex[0]] [index [1]] = 0

278 i f j > 0:

279 index = copy.copy(i ni t)

280 index[0]+ =i nt(x* 100+i *ma th .cos ((t heta)*m at h.pi/ 180)+ j* mat h.s

in((t het a)* m at h.pi/ 180))

281 index[1]+ =i nt(y* 100+i *mat h .s in((t heta)*m at h.pi/ 180) -

j*m at h.cos((t he ta)* mat h .pi/ 180))

282 i f space > 2 or t ime == 1:

283 map_mat r ix[in dex[0]] [index [1]] = 2

284 e l i f map_ma tr ix[i ndex [0]] [in dex[1]] ! = 2 a n d

map_mat r ix[i ndex [0]] [in dex[1]] != 3 :

285 map_mat r ix[in dex[0]] [index [1]] = 0

286 i f i > 0:

287 index = copy.copy(i ni t)

7 Appendix A Autonomous_Navigation.py

 77

288 index[0]+ =i nt(x* 100- i* mat h .cos ((t he ta)*m at h.pi/ 180) -

j*m at h.s in ((t het a)* m at h .pi/ 180))

289 index[1]+ =i nt(y* 100 -

i*mat h .s in((theta) *ma th .pi/ 180)+ j*m at h.cos((the t a)* ma th .pi /180))

290 i f space > 2 or t ime == 1:

291 map_mat r ix[in dex[0]] [index [1]] = 2

292 e l i f map_ma tr ix[i ndex [0]] [in dex[1]] ! = 2 a n d

map_mat r ix[i ndex [0]] [in dex[1]] != 3 :

293 map_mat r ix[in dex[0]] [index [1]] = 0

294 index = copy.copy(i ni t)

295 index[0]+ =i nt(x* 100 -

i*mat h .cos((t heta)*ma t h.pi/ 180)+ j*m at h.s i n((t het a)* ma th .pi /180))

296 index[1]+ =i nt(y* 100 - i* mat h .s in((the ta)*m at h.pi/ 180) -

j*m at h.cos((t he ta)* mat h .pi/ 180))

297 i f space > 2 or t ime == 1:

298 map_mat r ix[in dex[0]] [index [1]] = 2

299 e l i f map_ma tr ix[i ndex [0]] [in dex[1]] ! = 2 a n d

map_mat r ix[i ndex [0]] [in dex[1]] != 3 :

300 map_mat r ix[in dex[0]] [index [1]] = 0

301 re t urn map_m atr ix

302

303 def L iDAR(msg):

304 g lobal t ime , g loba l_ dis tan ce , g loba l_m od, com putat ion, odometr yx ,

odome tr yy , odome tr yw, odometr yz , x , y , w, z , a ,b , map_ mat r ix , in i t

305 i f cnt == 1:

306 t ime += 1

307 pr i nt '* '*5 + 'Ti me ' + '* '* 5

308 pr i nt t ime

309 i f t ime == 1:

310 a = x

311 b = y

312 maps , m ax_m ap, dis tan ce_ di f fer = s tar t(ms g, 270, 91)

313 maps2 = s tar t2(msg , 181 , 181)

314 beta , k , a lpha , va lue = dire ct i on (ma ps , dis ta n ce_ di f fer , ma ps 2)

315 l inear , an gu lar = m ot ion(be ta , k , d is tan ce_ di f fer , a lpha)

316 g loba l_ dis t an ce = v alue

317 g loba l_ m od = num py.s i gn(beta)* in t(a bs(beta) -

angula r*0 .2*180/m at h.pi)

318 move . l ine ar .x = l i ne ar

319 move .ang ular .z = an gular

320 pr i nt '* '*5 + " T he r obot m oves at %.2f me ter s , ro tat i ng f or

%.2 f deg rees " % (va lue , beta) + ' * ' *5

321 pr i nt '* '*5 + " L i nea r ve loc i t y = % .2 f m/s , An gular ve loci ty = % .2f r ad/ s "

%(l i near , an gu lar) + '* '* 5

322 w = n umpy.s ign(z)* round(f loat(2*m at h.acos(w)* 180/ mat h .pi) , 2)

323 pr i nt '* '*5 + " Odom etry x = %.2f m , y = % .2f m, t heta = % .2f degree " %(

x-a , y-b , w)+ '* '* 5+"\n "

324 odomet ryx = numpy.con caten ate((odometr yx , [x -a]))

325 odomet ryy = num py.con caten ate((odometr yy, [y-b]))

326 odomet ryw = numpy.con caten ate((odometr yw, [w]))

327 odomet ryz = numpy.con caten ate((odometr yz , [z]))

7 Appendix A Autonomous_Navigation.py

 78

328 map_m atr ix = s la m(map_mat r ix , m aps 2, i n i t , odome tr yx , odome tr yy ,

odome tr yw)

329 e l i f cnt== 2:

330 move . l ine ar .x =0 .0

331 move .ang ular .z =0 .0

332 pub .publ is h(m ove)

333 X = []

334 Y = []

335 Green_X = []

336 Green_Y = []

337 Red_X = []

338 Red_Y = []

339 f i le_m = open("m ap.tx t " , "w")

340 f or i in range(le n(m ap_ matr ix)) :

341 f i le_m .wri te(m ap_matr ix[i])

342 f or j i n range(len (map_ma tr ix)) :

343 i f map_matr ix [i] [j] = = 1:

344 X .appen d(i)

345 Y .appen d(j)

346 e l i f map_ma tr i x[i][j] == 3:

347 Green_X.append(i)

348 Green_Y.append(j)

349 e l i f map_ma tr i x[i][j] == 2:

350 Red_X.appe nd(i)

351 Red_Y.appe nd(j)

352 mt .p lot(X , Y , ' k . ')

353 mt .p lot(Re d_X , Re d_Y, ' r . ')

354 mt .p lot(G reen_X , G reen_Y, 'g . ')

355 mt .p lot(odometr yx* 100+ 2500, odome tr yy*100+ 2500 , ' b- ')

356 f i le_m .close()

357 mt .show()

358 pub .publ is h(move)

359

360 def Pos i t ion (msg):

361 g lobal x ,y ,z ,w

362 x = msg.pose .pose .pos i t ion.x

363 y = msg .pose .pose .pos i t ion.y

364 w = msg .pose .pose .or i entat i on.w

365 z = msg.pose .pose .or ie ntat i on.z

366

367 c lass Publ is her(t hre adin g .Thread) :

368 de f __ini t__(se l f) :

369 threa ding .T hrea d._ _ini t __(se l f)

370 de f run(se l f) :

371 osub=r ospy .S ubs cr i ber('/s can ' ,L aserS ca n,Li DAR)

372 sub1 =r ospy.Subs cr i ber("/ odom" ,Odometr y , P os i t i on)

373 rospy.s pin()

374

375 i f __name_ _= = '_ _ma in_ _' :

376 p=Publ ishe r()

377 p .s ta r t()

378 whi le True:

7 Appendix A Autonomous_Navigation.py

 79

379 gost op = ra w_i nput("Press ' g ' - > t o S tart the n avigat i on / ' s ' -

> to St op the robot m ot ion:")

380 i f gostop== 'g ' :

381 cnt = 1

382 e l i f gostop== 's ' :

383 cnt = 2

Bibliography

 80

Bibliography

[1] YoonSeok Pyo, HanCheol Cho, RyuWoon Jung, TaeHoon Lim, ROS Robot

Programming, Dec 22, 2017, Published by ROBOTIS Co.,Ltd .

[2] Morgan Quigley, Brian Gerkey, and William D. Smart, Programming Robots

with ROS, December 2015: First Edition, Published by O’Reilly Media, Inc.,

1005 Gravenstein Highway North, Sebastopol, CA 95472.

[3] Masoud Nosrati * Ronak Karimi Hojat Allah Hasanvand, Investigation of the *

(Star) Search Algorithms: Characteristics, Methods and Approaches, Vol (2),

April 2012.

[4] Nebot E., Bailey T., Guivant J., Navigation Algorithms for Autonomous

Machines in Off-Road Applications, The University of Sydney, NSW 2006

[5] A. Oualid Djekoune, Karim Achour and Redouane Toumi, A Sensor Based

Navigation Algorithm for a Mobile Robot using the DVFF Approach,

International Journal of Advanced Robotic Systems, Vol. 6, No. 2 (2009)

[6] Bruno Siciliano, Oussama Khatib, Eds., Springer Handbook of robotics,

Springer-Verlag Berlin Heidelberg2016

[7] Chuang Ruan, Jianping Luo, Yu Wu, Map navigation system based on optimal

dijkstra algorithm, Proceedings ojCCIS2014

[8] Javier Minguez, Associate Member, IEEE, and Luis Montano, Member, IEEE,

Nearness Diagram (ND) Navigation: Collision Avoidance in Troublesome

Scenarios, ieee transactions on robotics and automation, vol. 20, no. 1, february

2004

[9] Takahashi O, Schilling RJ (1989), Motion Planning in a Plane Using

Generalized Voronoi Diagrams. IEEE Robotics and Automation.

[10] Bhattacharya P, Gavrilova ML (2008), Roadmap-Based Path Planning-Using

the Voronoi Diagram for a Clearance-Based Shortest Path. IEEE Robotics and

Automation.

[11] Gomez EJ, Martinez Santa F, Martinez Sarmiento FHA (2013), Comparative

Study of Geometric Path Planning Methods for a Mobile Robot: Potential Field

and Voronoi Diagrams. In IEEE International Congress of Engineering

Mechatronic and Automation (CIIMA), Colombia.

[12] Abiyev R, Ibrahim D, Erin B (2010), Navigation of Mobile Robots in the

Presence of Obstacles. Advances in Engineering Software.

http://ieeexplore.ieee.org/document/4539723/
http://ieeexplore.ieee.org/document/4539723/
http://ieeexplore.ieee.org/document/4539723/
http://ieeexplore.ieee.org/document/6682776/
http://ieeexplore.ieee.org/document/6682776/
http://ieeexplore.ieee.org/document/6682776/
http://ieeexplore.ieee.org/document/6682776/
http://dl.acm.org/citation.cfm?id=1862531
http://dl.acm.org/citation.cfm?id=1862531

Bibliography

 81

[13] Soltani AR, Tawfik H, Goulermas JY, Fernando T (2002), Path Planning in

Construction Sites: Performance Evaluation of the Dijkstra, A∗, and GA Search

Algorithms. ELSEVIER Advanced Engineering Informatics.

[14] Masehian E, Amin-Naseri MR (2004), A Voronoi Diagram–Visibility Graph–

Potential Field Compound Algorithm for Robot Path Planning. Journal of

Robotic System 21.

[15] Weigl M, Siemiaatkkowska B, Sikorski KA, Borkowski A (1993), Grid-Based

Mapping for Autonomous Mobile Robot. ELSEVIER Robotics and Autonomous

Systems.

[16] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science

and Cybernetics SSC4. doi:10.1109/TSSC.1968.300136.

[17] Jump up Doran, J. E, Michie, D. (1966-09-20). Experiments with the Graph

Traverser program. doi:10.1098/rspa.1966.0205. ISSN 0080-4630.

[18] https://en.wikipedia.org/wiki/Embedded_system

[19] https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

[20] http://www.ros.org/

[21] http://brian.gerkey.org/

[22] http://robots.ros.org/

[23] https://en.wikipedia.org/wiki/Time-of-flight_camera

[24] https://en.wikipedia.org/wiki/Structured-light_3D_scanner

[25] https://en.wikipedia.org/wiki/Range_imaging

[26] Stenz, A. Optimal and efficient path planning for partially-known

environments, Proceedings of IEEE International Conference on Robotics and

Automation, ICRA, San Diego, May 1994, CA, USA.

[27] Stentz, A. The Focussed D* Algorithm for Real-Time Replanning, Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), Montréal,

August 20-25, 1995, Québec, Canada.

[28] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische

Mathematik, vol. 1, 1959.

[29] P.E.Hart, N.J.Nilsson, and B.Raphael, A formal basis for the heuristic

determination of minimum cost paths, IEEE Transactions on Systems Science

and Cybernetics, vol. SSC-4(2), 1968.

[30] http://wiki.ros.org/gmapping

[31] http://docs.ros.org/api/geometry_msgs/html/msg/Pose.html

https://pdfs.semanticscholar.org/8b77/74933740106097e59499f9393f48469bf71e.pdf
https://pdfs.semanticscholar.org/8b77/74933740106097e59499f9393f48469bf71e.pdf
https://pdfs.semanticscholar.org/8b77/74933740106097e59499f9393f48469bf71e.pdf
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109/TSSC.1968.300136
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_ref-4
http://rspa.royalsocietypublishing.org/content/294/1437/235
http://rspa.royalsocietypublishing.org/content/294/1437/235
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1098/rspa.1966.0205
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0080-4630
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://www.ros.org/
http://brian.gerkey.org/
http://robots.ros.org/
https://en.wikipedia.org/wiki/Time-of-flight_camera
https://en.wikipedia.org/wiki/Structured-light_3D_scanner
https://en.wikipedia.org/wiki/Range_imaging
http://docs.ros.org/api/geometry_msgs/html/msg/Pose.html

Acknowledgment

 82

Acknowledgment

I would first like to thank my thesis supervisor Prof. Marcello Chiaberge of Politecnico

di Torino, always ready to help me whenever I ran into a trouble or had a question

about my research.

I would also like to thank all members of the LIM department involved in this project

and the university fellows, for their support that was essential but also for creating a

very conducive work environment.

Then, I must express all my gratitude to my family, for being always present but never

pressing, rejoicing with me of my goal achievement. Thanks to my sister that is my

point of reference, that taught me the determination and the strength to achieve the

goals.

My special thanks go to my friends, you supported and encouraged me during these

years and you were the distraction to escape from the studies.

Finally, thanks to Martina for being always by my side. Thanks for being everything I

need, because spending time together meant forgetting about all problems. For being

always present, filling my life with love.

		Politecnico di Torino
	2018-10-16T15:09:13+0000
	Politecnico di Torino
	Marcello Chiaberge
	S

