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Abstract 

 

The residual stresses were proven to play a relevant role in the fatigue life 

expectations of components and specimens. It is well established that almost every 

manufacturing process to some extent leads to the residual or internal stress fields 

formation. The challenge is to properly account for these internal stress fields in the fatigue 

life prediction.  

In this essay a comprehensive study of the mechanical fatigue subject is presented, 

with particular focus on the residual stresses issue, as their impact on the fatigue life 

expectations, the manufacturing processes behind their formation, their measurement 

methods and the most preforming way to account them in the fatigue life estimates. 

The most challenging issues in terms of the residual stress simulation in fatigue are 

presented through the previous works found in literature and finally in this thesis my 

personal contribution was given in the development of a Python program for the optimized 

insertion of a residual stress field on a finite element model, which will be potentially 

employed at FCA Automobiles for research purpose.  
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Introduction 

 

This master thesis focus on the subject of the fatigue life prediction in its classical 

approaches, known also as stress-life and strain-life based approaches and on the fracture 

mechanics approach in its variants. 

The target of this research was to comprehensively determine, through the works 

found in literature, the most performing strategies to account for the residual or internal 

stress fields, inherited by the component after its manufacturing process, in their fatigue 

life estimates. 

In order to gain a deep understanding of this subject a complete study on the residual 

stress issue was performed, starting from their classification, the most common 

manufacturing processes behind their formation and the techniques employed in the 

industrial practise to esteem their field and magnitude, with particular attention to the 

limits and difficulties commonly encountered. 

A relevant point of this work was a collaboration with the engineers of FCA 

Automobiles, through my academic advisor Eng. Paolo Baldissera, which were conducting 

a research indeed on the residual stress issue in FEM simulation on a product. 
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The essay is structured in two parts, in the first chapter a literature state of the art 

review was made, whereas the second chapter focuses on the Python program developed. 

The literature review is subdivided into three sections, starting with a deep study on 

the mechanical fatigue branches, that are the strain-based, stress-based and fracture 

mechanics approaches, and some outlines to the thermomechanical fatigue. 

A sound background on fracture mechanics was very important for the research 

purpose, since the bulk of the authors in literature have provided empirical models and 

approaches starting from the well-known Paris law, which have been adapted to account 

for the residual stress fields. 

In addition, a brief subsection on the thermomechanical fatigue was added, since the 

product under investigation in FCA Automobiles is interested by both thermal and 

mechanical stresses, then it was sensible to gain some knowledge on the subject. 

The second section of the review, deals totally with the residual stresses. As first some 

outlines are given on the manufacturing processes inducing these stress fields, that are 

broadly speaking welding, shot-peening or quenching processes. Subsequently a 

subsection describes the internal stress measurement methods used in the industrial 

practise, classified according to their degree of damage caused on the specimen. 

In the third and last section of the chapter, all the works found in literature, dealing 

with the residual stress issue in the mechanical fatigue subject, have been gathered and 

analysed, in such a way to break down all the presented approaches into few common steps, 
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and underlining per each step the pros and cons of the different strategies adopted and the 

technical difficulties and limits. 

In the second chapter and part of the proposed work a Python program was 

developed in order to solve a problem encountered in a research of FCA Automobiles, 

during the simulation and the importing of the residual stress fields. 

The program is thought to allow the importing of the residual stress tensors per each 

model element, from a text file or a previous analysis, to Abaqus. 

An iteration loop, allows the software to solve the technical problem of internal stress 

equilibration, which will be explained in deep afterwards, based on the first approach 

developed by O’Dowd et al. [27] in his studies. 

The chapter starts with a general description of the program and its potential 

applications; then follows a complete description of each program subscript, and finally a 

couple of analysis examples are presented in order to show the potentials of the developed 

software. 

The last subsection describes some further versions and enhancements which are 

applicable to the original program, since it was developed to have a robust basis and flexible 

for further potential improvements and add-ons. 

 

 

  



William Mosca 

“Fatigue life prediction models for components subjected to manufacturing induced residual stresses” 

 
 

13 

 

 

 

 

 

Chapter 1 

1) Literature state of the art review  

 

In this chapter a literature review was made, comprehensive of all the theoretical 

background needed to carry out the Master thesis work. As first the main fatigue life 

prediction approaches found in literature are presented. Afterwards, a second section is 

dedicated to the residual stresses topic, namely the manufacturing processes to which they 

can be ascribed and the measurement techniques. Finally, a third section is dedicated to the 

state of the art of the models used to take into account the potential detrimental or beneficial 

residual stresses effects on the fatigue life prediction. 

1.1 Mechanical fatigue literature review 

The approaches known in literature can be subdivided into the classical approaches, 

which are the stress-based and the strain-based methodologies, and the fracture mechanics 

methodology. The choice of the method to be employed is related to the application, the 

stress magnitude, and the number of cycles to failure. 
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1.1.1 Stress-based fatigue approach 

The so called stress-life approach for fatigue analysis in metals has its own origins in 

the work of Wöhler from about 1850. In this method the stress amplitude σa at a suitable 

location in the specimen is the key parameter which takes the leads in the number of cycles 

to failure Nf evaluation. 

Wöhler called a “safe stress level” the one below which failure does not occur: above 

this safe stress level, failure will occur within a certain life, measured as number of cycles. 

Crack growth is not explicitly accounted for in the stress-life method. Because of this, 

stress-life methods are often considered crack initiation (or incubation) life estimates [1]. 

This method involves the experimental determination of S-N or σ-N curves (the latter 

referred to the so called “true stresses”), which are characterized by the following 

equations: 

𝑆𝑎 =
Δ𝑆

2
=

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

2
 

𝑆𝑚 =
𝑆𝑚𝑎𝑥 + 𝑆𝑚𝑖𝑛

2
 

𝑆𝑚𝑎𝑥 = 𝑆𝑚 + 𝑆𝑎 

𝑆𝑚𝑖𝑛 = 𝑆𝑚 − 𝑆𝑎 

In figure 1.1 the concept of alternating and mean stress is furtherly clarified: 
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Figure 1.1 “Alternating and mean stress concept [2]”. 

 

Where Smax and Smin are respectively the maximum and minimum stresses and ΔS is 

the stress range. Other largely employed parameters are the stress ratio R and the 

alternating stress ratio A, namely: 

𝑅 =
𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥
 

𝐴 =
𝑆𝑎

𝑆𝑚
 

The stress ratio R is commonly employed in literature in its two common reference 

values, that are “R=0”, implying the so called “pulsating tension”, and “R=1”, which 

involves the “fully reversed” condition. 

As to the experimental determination of the Wöhler curve, a group of specimens is 

tested at least at three different stress levels; the data are then used to obtain the life 

probability curves at each of these stress levels [1]. 



William Mosca 

“Fatigue life prediction models for components subjected to manufacturing induced residual stresses” 

 
 

16 

 

 

 

 

Figure 1.2a: “experimental S-N curve determination”, 1.2b: “stress-life curves”[1]. 
 

The fatigue limit can be then determined with the “staircase” method, by which a 

small number of equally spaced stress levels is set around the expected fatigue limit: the 

first specimen is tested at the highest stress level and if failure occurs, a further test is carried 

out at a lower stress level. 

If failure does not occur at a certain number of cycles, the test is stopped and a further 

specimen is tested at the upper stress level. 

The obtained S-N curve can then be subdivided into three different ranges, according 

to the number of cycles to failure and the magnitude of the applied alternating stress, as in 

fig. 1.3: 
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Figure 1.3: “Wöhler’s curve of a steel specimen”[1]. 
 

Hence, the curve can be divided into a low cycle fatigue range in which the 

phenomena is said to be strain controlled, and an intermediate range called high cycle 

fatigue and stress controlled and finally an infinite life range characterized by a stress 

threshold or fatigue limit σD, below which theoretically no failure occurs independently on 

the number of cycles undergone by the specimen. It is important to specify that many non-

ferrous metals and alloys, such as aluminium, magnesium, and copper alloys, do not exhibit 

well-defined endurance limits; these materials instead display a continuously decreasing  

S-N response [1]. Hence, in this instance a fatigue limit σD must be specified case by case. 

In addition, according to the employed guidelines a certain number of corrections to 

the parameters of these curves, such as the fatigue limit, must be employed. Generally 

speaking, the aim is to transfer the statistical data obtained when dealing with the 

standardized test specimens, to the real components, therefore accounting also for the scale 
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effects, the process influence, the temperature, the surface finishing, and the kind of load 

applied. 

An important factor which must be taken into account is the mean stress influence 

summed to the alternating stress. A popular tool available is the so called Goodman’s curve, 

which relates the mean stress σm to the fatigue limit of the Wöhler’s curve; it was proven 

that broadly speaking a compressive (negative) mean stress distribution over the specimen 

implies a beneficial effect on the fatigue life, whereas by contrast a tensile (positive) mean 

stress may compromise the life expectancy of the component. In fig.1.4 this concept is 

furtherly clarified and Goodman’s curve for a steel is reported: 

 

Figure 1.4: “Goodman’s curve, mean stress effect depicted on the Wöhler’s curve” [1]. 
 

However, the Goodman’s model is not the only one present in literature, others 

curves are indeed the Gerber and Soderberg which are compared in figure 1.5: 
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Figure 1.5:” Qualitative Gerber, Goodman and Soderberg’s curves in comparison” [1]. 
 

These Goodman, Gerber and Soderberg’s models are represented by the following 

equations respectively: 

𝜎𝐷

𝜎𝐷−1
+

𝜎𝑚

𝑅𝑚
= 1 

𝜎𝐷

𝜎𝐷−1
+ (

𝜎𝑚

𝑅𝑚
)

2

= 1 

𝜎𝐷

𝜎𝐷−1
+

𝜎𝑚

𝑅𝑒
= 1 

Where σD-1 is the fatigue limit in absence of mean stress, Rm is the material strength 

and Re is the yielding strength of the material. 
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1.1.2 Strain-based fatigue approach 

The so called strain-life method concerns the low cycle fatigue range, characterized 

by higher stresses and lower excitation frequencies. This means that elastic and plastic 

strains might occur together. Hence, under these conditions a characterization of the 

material through the applied strain is generally better than a stress-based characterization. 

An interesting fact is that the material, during its life-cycle is likely to reach its 

yielding point, which implies the arising of a hysteretic phenomenon, described by the so 

called Bauschinger effect [2]. 

The Bauschinger effect refers to a property of materials where the material's 

stress/strain characteristics change as a result of the microscopic stress distribution of the 

material. For example, an increase in tensile yield strength occurs at the expense of 

compressive yield strength [3]. 

 

Figure 1.6:”Hysteresis cycle ascribed to the Bauschinger effect during a test [3]”. 
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The Bauschinger effect is normally associated with conditions where the yield 

strength of a metal decreases when the direction of strain is changed. It is a general 

phenomenon found in most polycrystalline metals. The basic mechanism for the 

Bauschinger effect is related to the dislocation structure in the cold worked metal. As 

deformation occurs, the dislocations will accumulate at barriers and produce dislocation 

pile-ups and tangles [3]. 

According to the loading cycle applied to the specimen and the material properties, 

different hysteresis loop shapes and material responses can be obtained, namely both 

hardening and softening responses can be observed. 

An important issue in the attempt to describe the material behaviour in low cycle 

fatigue is the estimation of a suitable stress-strain hardening curve, able to describe the 

relationship amid the cyclic plastic deformation and the true or engineering stress, namely: 

𝜎 = 𝑔−1(𝜖𝑝) 

For instance, the descriptions of Ramberg and Osgood, Hollomon and Ludwick, 

respectively reported: 

𝜎 = 𝜎𝑦 + 𝐾𝑦𝜖
1

𝑀𝑦 

𝜎 = 𝐾𝜖𝑝
𝑛 

𝜎 = 𝜎𝑦 + 𝐾𝜖𝑝
𝑛 

Where Ky, My, K and n, are material constants. The most common hardening models 

named in literature are essentially the isotropic and the kinematic hardening: in the first 
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case it is assumed that the material works in the plastic field both in tension and in 

compression following a uniform expansion of the flow surface, meanwhile at each cycle 

the elastic limit increases and the area of the hysteresis loop decreases. 

As to the kinematic hardening model, it is instead assumed a translation of the elastic 

domain and a constant hysteresis loop area at each loading cycle. 

 

Figure 1.7:” isotropic hardening” [1]. 

 

Figure 1.8: “kinematic hardening” [1]. 

 

However, it is important to remark that the hardening phenomenon in real materials 

cannot in general be described by the isotropic or kinematic models. Indeed, it is generally 

assumed a combined model, closer to the real phenomenon. 
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Along with the formulation of an assumption to describe the plastic behaviour of the 

material, it is then necessary to consider a suitable model for the fatigue life estimate. 

Several models have been developed in literature, suitable for both pure 

phenomenological and thermo-mechanical fatigue conditions, the most relevant are herein 

reported: 

Basquin-Manson-Coffin 𝜖𝑎 =
𝜎𝑓

′

𝐸
(2𝑁𝑓)

𝑏
+ 𝜖𝑓

′ (2𝑁𝑓)
𝑐
 

Morrow 𝜖𝑎 =
𝜎𝑓

′

𝐸
(1 −

𝜎𝑚

𝜎𝑓
′ ) (2𝑁𝑓)

𝑏
+ 𝜖𝑓

′ (1 −
𝜎𝑚

𝜎𝑓
′ )

𝑐
𝑏

(2𝑁𝑓)
𝑐
 

Walker 𝜖𝑎 =
𝜎𝑓

′

𝐸
(

1 − 𝑅

2
)

1−𝛾

(2𝑁𝑓)
𝑏

+ 𝜖𝑓
′ (

1 − 𝑅

2
)

𝑐
1−𝛾

𝑏
(2𝑁𝑓) 

Smith-Watson-Topper 𝜎𝑚𝑎𝑥𝜖𝑎 =
(𝜎𝑓

′)
2

𝐸
(2𝑁𝑓)

2𝑏
+  𝜎𝑓

′𝜖𝑓
′ (2𝑁𝑓)

𝑏+𝑐
 

 

Where b and c are fitting constants to be determined experimentally, σf’ is the fatigue 

strength coefficient and ϵf’ is the fatigue ductility coefficient. The mathematical models of 

Morrow, Walker and SWT are suitable to take into account also the mean stress effect on 

the fatigue life expectancy, the first two by incorporating the mean stress σm, or the stress 

ratio R into the equation. The SWT equation is based on strain-life data obtained by various 

mean stress values; this equation is based on the assumption that for different combinations 

of strain amplitude, and mean stress, the product σmax*ϵa remains constant for a given life 

[2]. 
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1.1.3 Fracture mechanics 

In contrast to the classical approaches (stress-life or strain-life), in the fracture 

mechanics methodology the presence of flaws or defects is taken for granted. Indeed, 

fracture mechanics is strictly related to the damage tolerant design philosophy, which 

assumes as well the potential presence of a certain damage or defect in each part of a system, 

which not necessarily will lead to the component or structure total impairment. The aim is 

indeed to foresee the potential damage evolution during the component service life, and so 

to prevent a possible catastrophic failure. 

Several theories were developed in literature, which may be more or less suitable for 

describing the actual phenomenon according to the material physical properties and the 

loading conditions. 

1.1.3.1 Linear elastic fracture mechanics 

The so called LEFM is particularly suitable for brittle materials characterized by a 

small plasticization area at crack tip. 

In its studies Griffith developed a theory based on an energy approach; the 

fundamental study case was a plate of thickness s, subjected to a tensile stress σ, in which a 

crack of length 2a is present at the plate centre. It is assumed that a certain amount of energy 

Γ is required to form the crack and so to divide two equal rectangular surfaces of area 2as, 

where the separation energy can be regarded as: 

Γ = 4𝑎𝑠𝛾 
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Where γ represents the separation energy per unit area. 

 

Figure 1.9: “Griffith case study, a cracked plate subjected to tensile stress” [4]. 
 

It is then possible to demonstrate that the difference in elastic energy of the cracked 

and uncracked version of the plate can be computed as: 

𝑈0 − 𝑈 =
𝜋𝜎2𝑎2𝑠

𝐸
 

According to the theory, when the crack extends of a length of 2a some of its energy 

is spent for the separation but in turn a certain amount of elastic energy is generated. If the 

generated elastic energy is of a greater amount respect to the separation energy, then the 

crack is bound to propagate in an instable manner. The propagation condition can be 

described by the next equations: 

𝑑(𝑈0 − 𝑈)

𝑑𝑎
≥

𝑑Γ

𝑑𝑎
 

𝜎√𝜋𝑎 ≥ √2𝐸𝛾 

Where the term on the right represents a measure of the crack propagation driving 

force, which is not only dependent on the applied stress, but the crack length a plays an 
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important role as well; the term on the left is a sort of measure of the material toughness, 

also Kc: the higher the toughness, the higher the material resistance to the crack propagation. 

The fracture toughness can be detected through a Charpy test, but depends strictly 

on the fracture mode: 

 

Figure 1.10: “Fracture modes relative to KIc, KIIc, KIIIc respectively [1].” 
 

The stress field at the crack tip was firstly analytically computed by Westergaard as 

follows: 

𝜎𝑖𝑗(𝑟, θ) =
KI,II,III

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) 

It is interesting the fact that in these solutions the stress field is strictly related to the 

stress intensity factor K or SIF, which has the dimension of a stress multiplied for the square 

root of a length, namely: 

𝐾 = 𝑌𝜎√𝑎 

Where Y is the shape factor and depends on the crack type/shape. In case of plane 

stress conditions, the equivalent stress can be computed as follows: 

𝜎𝑖𝑑 =
𝐾

√2𝜋𝑟
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Instead in case of plane strain condition it follows: 

𝜎𝑖𝑑 =
𝐾

√2𝜋𝑟
(1 − 2𝑣) 

Therefore, in the latter case the crack tip normal stress is higher and the plasticized 

area is smaller (more critical situation). 

It was then proven that the critical value of the SIF which leads to the instable crack 

propagation, is inversely proportional to the specimen thickness, and stabilizes at a 

minimum value regarded as fracture toughness Kc. 

 

 

Figure 1.11:” Critical SIF versus plate thickness” [1]. 
 

In addition, generally speaking the fracture toughness is inversely proportional to the 

material strength Rp02 [4]. 
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1.1.3.2 Nonlinear fracture mechanics 

It is also called elastoplastic fracture mechanics (EPFM), and it is more suitable when 

the small scale yielding assumption of LEFM is no longer valid. 

Crack tip opening displacement 

As described in [5], let consider an xy-coordinate system placed at the centre of the 

crack, with the crack aligned along x, the crack displacement along the opposite direction 

uy can be calculated as follows: 

𝑢𝑦 =
𝜎√𝜋𝑎

2𝜇
√

𝑟

2𝜋
[sin (

1

2
𝜃) {𝑘 + 1 − 2 cos2 (

1

2
𝜃)}] 

This displacement is function of the angle θ and the radius of the plasticized zone r: 

 

Figure 1.12: “Crack tip geometry description” [1]. 
 

The material points displacement at crack tip results for “θ=π” and by taking “r=a-x” 

it follows: 

𝑢𝑦 =
(1 + 𝜈)(𝑘 + 1)

𝐸
(

𝜎

2
) √2𝑎(𝑎 − 𝑥)  

The crack opening displacement COD or δ is two times this displacements, whereas 

trivially the crack tip opening displacement CTOD or δt is nil. 
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𝛿(𝑥) = 2𝑢𝑦(𝑥) =
(1 + 𝜈)(𝑘 + 1)

𝐸
𝜎√2𝑎(𝑎 − 𝑥)  

𝛿𝑡 = 𝛿(𝑥 = 𝑎) = 0 

The CTOD can be used in a crack growth criterion, when plasticity at the crack tip is 

taken into account and the actual crack length is replaced by the effective crack length [5]. 

According to Irwin the influence of the crack tip plastic zone can be taken into account 

by using an effective crack length aeff, which is the actual crack length plus the length of the 

plastic zone in front of the crack tip [5]. 

𝑎𝑒𝑓𝑓 = 𝑎 + 𝑟𝑦 = 𝑎 +
1

2𝜋
(

𝐾𝐼

𝜎𝑦
)

2

 

 

Figure 1.13: “Irwin correction” [5]. 
 

 

According to this correction the CTOD can be calculated as follows for plane stress 

and plane strain respectively: 

𝛿𝑡 =
4𝐾𝐼

2

𝜋𝐸𝜎𝑦
=

4𝐺

𝜋𝜎𝑦
 



William Mosca 

“Fatigue life prediction models for components subjected to manufacturing induced residual stresses” 

 
 

30 

 

 

 

𝛿𝑡 =
4(1 − 𝜈2)𝐾𝐼

2

√3𝜋𝐸𝜎𝑦

 

Differently from the LEFM theory by which the CTOD can be related to the energy 

release rate by means of the SIF in EPFM or NLFM the CTOD is a measure for the 

deformation at the crack tip, which can then be compared to a critical value in a crack 

growth criterion. 

J-Integral 

The J integral was firstly introduced by Rice, and basically it is a vector made up of 

three components in the Cartesian coordinate system. The integration is performed along a 

trajectory Γ, and for each interested point the specific elastic energy must be calculated from 

the known stress and strains. 

The J integral can be calculated as follows: 

𝐽𝑘 = ∫ (𝑊𝑛𝑘
−

𝑡𝑖𝜕𝑢𝑖

𝜕𝑥𝑘
) 𝑑Γ

Γ

 

𝑊 = ∫ 𝜎𝑖𝑗𝑑𝜖𝑖𝑗

ϵpq

0

 

When integration path is closed it can be proven that the resulting value is always 

zero, under the conditions that there are no singularities in the area within the closed path. 

In addition, if the behaviour is hyper-elastic and homogeneous, the material is not subjected 

to volume loads and the acceleration is nil [5], along with the assumption of linear strain-

displacement, implying small rotations and deformations. 
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Under these assumptions it follows: 

𝐽𝑘 = ∫(𝑊𝛿𝑗𝑘 − 𝜎𝑖𝑗𝑢𝑖,𝑘)𝑛𝑗𝑑Γ
Γ

 

Thanks to the assumption of no singularities along the path, the Stokes theorem 

yields: 

∫ ((
𝑑𝑊 

𝑑𝜖𝑚𝑛
) (

𝜗𝜖𝑚𝑛

𝜗𝑥𝑗
) 𝛿𝑗𝑘 − 𝜎𝑖𝑗𝑢𝑖,𝑘 − 𝜎𝑖𝑗𝑢𝑖,𝑘𝑗) 𝑑Ω

Ω

 

Homogeneous hyper-elastic  

𝜎𝑚𝑛 =
𝜗𝑊

𝜗𝜖𝑚𝑛
 

Linear strain 

𝜖𝑚𝑛 =
1

2
(𝑢𝑚,𝑛 + 𝑢𝑛,𝑚) 

Equilibrium equations 

𝜎𝑖𝑗,𝑗 = 0 

Finally, 

∫ (
1

2
𝜎𝑚𝑛(𝑢𝑚.𝑛𝑘 + 𝑢𝑛,𝑚𝑘 − 𝜎𝑖𝑗𝑢𝑖,𝑘𝑗)) 𝑑Ω = ∫ (𝜎𝑚𝑛𝑢𝑚,𝑛𝑘 − 𝜎𝑖𝑗𝑢𝑖,𝑘𝑗)𝑑Ω = 0

ΩΩ

 

Another important feature of the J integral is the path independency; thanks to this 

the integration path can be chosen to be a circle around the crack tip centre. It is also possible 

to use the J integral in LEFM instead of K or G because strictly related, for mode I it follows 

for plane stress and plane strain respectively: 

𝐽 =
1

𝐸
𝐾𝐼

2     𝐽 =
1 − 𝜈2

𝐸
𝐾𝐼

2 
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Moreover, it is related also to the CTOD as follows for plane stress and plane strain 

respectively: 

𝐽 =
𝜋

4
𝜎𝑦𝛿𝑡   𝐽 =

𝜋

4
𝜎𝑦𝛿𝑡√3 

In addition, the ASTM guidelines suggests a more precise empirical relationship 

which accounts also for the specimen size W: 

𝐽 = 𝑚𝜎𝑦𝛿𝑡 

𝑚 = −0,111 +
0,817𝑎

𝑊
+

1,36𝜎𝑢

𝜎𝑦
 

 

HRR crack tip stresses and strains 

This solution for the crack tip stress and displacement was derived by the researchers 

Hutchinson, Rice and Rosengren. The Ramberg-Osgood material model was taken into 

account, namely: 

𝜖

𝜖𝑦0
=

𝜎

𝜎𝑦0
+ 𝛼 (

𝜎

𝜎𝑦0
)

𝑛

 

Where n is the hardening exponent, and the subscript 0 is related to the initial 

conditions. 

The HRR solution for the stress and displacement at the crack tip is wholly 

determined by means of a special parameter β, which is strictly related to the J integral, the 

hardening exponent n, and a constant In which can be determined experimentally. It 

follows: 
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𝜎𝑖𝑗 = 𝜎𝑦0𝛽𝑟−
1

1+𝑛 𝜎𝑖𝑗
̃

(𝜃) 

𝑢𝑖 = 𝛼𝜖𝑦0𝛽𝑛𝑟
1

1+𝑛 𝑢𝑖
̃

(𝜃) 

𝛽 = [
𝐽

𝛼𝜎𝑦0𝜖𝑦0𝐼𝑛
]

1
𝑛+1

 

Finally, analogously to the energy release rate or the SIF in LEFM, in NLFM the J 

integral wholly describes the stress and deformation state at crack tip, and must be 

compared to a critical value Jc which potentially lead to failure. That value can be 

experimentally derived. 

Fatigue crack growth (FCG) models 

In this section the most important FCG models found in literature are reported, 

starting with the well-known Paris law, which is at the basis of all the other developed 

models. Such models are in the form of power laws, and generally depend upon the SIF, 

the SIF range, experimentally determined fitting constants and in some cases other 

parameters related to the mean stress influence or other phenomena. 

It is important to remark that the Paris law and its extended versions are valid for the 

high cycle fatigue regime, where stresses are so low that ΔK characterizes the stress 

amplitude. For low cycle fatigue this is not the case anymore. Crack growth laws for this 

high stress regime with large plastic crack tip regions, are still under development. For high 

values of crack tip stress and consequently a large plastic zone, the Paris law may be used 

with ΔJ instead of ΔK [5]. 
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Paris law 

According to Paris, if the plastic zone in proximity of the crack tip is sufficiently small, 

the fatigue crack growth can be evaluated essentially by means of the stress intensity factor, 

generally regarded as K; the power law proposed by Paris and Erdogan was: 

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚 

Where C and m are fitting constants related to the material properties; this 

relationship implies that the crack growth ratio da/dN is strictly related to the stress intensity 

factor range of the loading cycle, which can be regarded as “driving force”. As we may 

notice this law can be regarded as a one parameter driving force law. 

We recall that the stress intensity factor range is defined as: 

Δ𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 

Where Kmax and Kmin are respectively the maximum and the minimum stress intensity 

factors affecting the specimen during its fatigue cycle. 

In fig.1.14 the FCG curve is depicted in its three characteristic regions: 
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Figure 1.14: “Fatigue crack growth curve”[1]. 
 

The curve can be subdivided into three parts, that is a first region in which there is a 

slow crack growth, a second region described by the Paris, or a Paris-like power law, and a 

third region characterized by a fast crack growth which yields eventually to a fracture. 

Another important parameter in the FCG study is the stress ratio R, defined as: 

𝑅 =
𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥
 

That is the ratio of the minimum versus the maximum SIF of the loading cycle. 

Generally speaking, as the stress ratio increases, the FCG ratio increases as well. 

The Paris law is not able to take into account its effect, then other more complex 

versions have been developed, and have been largely used to deal with mean stress, or 

residual stress fields. 

Hereafter some Paris law variants used in literature in this field are reported. 

 



William Mosca 

“Fatigue life prediction models for components subjected to manufacturing induced residual stresses” 

 
 

36 

 

 

 

Walker’s equation 

𝑑𝑎

𝑑𝑁
= 𝐶 [

Δ𝐾

(1 − 𝑅)1−𝑚]
𝑛

 

The Walker’s equation was essentially an enhancement of the Paris Equation, in order 

to account for the stress ratio R effects. 

Forman’s equation 

𝑑𝑎

𝑑𝑁
=

𝐶Δ𝐾𝑚

(1 − 𝑅)(𝐾𝑐 − 𝐾𝑚𝑎𝑥)
 

The above relationship is suitable to depict the FCG both in regions 2 and 3; actually 

C and m are fitting constants, whereas Kc is the SIF at fracture and R the stress ratio. 

This equation was indeed an improvement to the Walker’s equation to account to the 

third region of FCG in which the data becomes asymptotic to the value of ΔKc at fracture 

[89]. 

Klesnil and Lukas equation 

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾𝑚 − Δ𝐾𝑡ℎ

𝑚) 

In the above equation the importance of the SIF range threshold in the FCG driving 

force is underlined, that is, the SIF range must overcome a certain value to contribute to the 

further crack extension. 

McEvely’s equation 

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾 − Δ𝐾𝑡ℎ)2[1 +

Δ𝐾

𝐾𝑐𝑟𝑖𝑡 − 𝐾𝑚𝑎𝑥
] 
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The McEvely’s equation was an attempt to depict the FCG rate versus the SIF range 

curve throughout its domain, that is from region 1 to region 3. Indeed, generally speaking, 

these power laws focuses on the second region only. 

Erdogan equation 

𝑑𝑎

𝑑𝑁
=

𝐶(1 + 𝛽)𝑚(Δ𝐾 − Δ𝐾𝑡ℎ)𝑛

𝐾𝐼𝐶
− (1 + 𝛽)Δ𝐾

       𝑤𝑖𝑡ℎ   𝛽 =
𝐾𝑚𝑎𝑥 + 𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛
 

Broek and Schijve 

𝑑𝑎

𝑑𝑁
= 𝐶𝐾𝑚𝑎𝑥

2 Δ𝐾 

Donahue 

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾 − Δ𝐾𝑡ℎ)𝑚 

Priddle 

𝑑𝑎

𝑑𝑁
= (

Δ𝐾 − Δ𝐾𝑡ℎ

𝐾𝐼𝑐
− 𝐾𝑚𝑎𝑥

)

𝑚

 

NASGRO equation 

The NASGRO equation was firstly developed by NASA’s researchers to be 

implemented in their homonym crack growth prediction program NASGRO [89]. 

The equation is here presented: 

𝑑𝑎

𝑑𝑁
=

𝐶 [(
1 − 𝑓
1 − 𝑅) Δ𝐾]

𝑛

(1 −
Δ𝐾𝑡ℎ
Δ𝐾 )

𝑝

(1 −
𝐾𝑚𝑎𝑥
𝐾𝑐𝑟𝑖𝑡

)
𝑞  

Where C, p and q are empirically derived. A more detailed explanation of this model 

can be found in literature [6]. 
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Fatigue crack growth related phenomena 

In this section some potentially relevant aspect of the fracture mechanism influencing 

the fatigue life of a structure are treated. 

Overload effects 

As stated in [106], “since fatigue-crack growth is driven predominantly by the crack-

tip plasticity, and plastic strains are irreversible, changes in the load patterns invariably 

result in transient effects, which affect FCG rates and fatigue lives”. Figure 1.15 better 

clarifies the overload phenomenon: 

 

Figure 1.15: “Overload and its effect on the FCG” [7]. 
 

 

In fig.1.15 is depicted a regular, pulsating loading cycle interested by a sudden 

overload of relatively short duration; as it is observable from the curves below, the overload 
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causes a tangible retardation of duration NR which dramatically changes the FCG trend. 

From the literature it is known that this retardation period increases with the magnitude 

and the number of overloads [7]. 

Other important observations made in [7], are that the retardation effect depends on 

the overload ratio, namely: 

𝑂. 𝑅. =
𝐾𝑚𝑎𝑥

𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑

𝐾𝑚𝑎𝑥
𝑓𝑎𝑡𝑖𝑔𝑢𝑒

 

 
Along with ΔK and the stress ratio R. In addition, it was found that the overload can 

produce a very short initial FCG rate acceleration followed by a much longer and more 

significant deceleration, like it is visible in the curves of figure 1.15. 

It is additionally appreciable that the maximum deceleration of growth rate occurs at 

a short distance from the overload point; this phenomenon is called delayed retardation 

and depends upon the overload ration, R and ΔK. 

The overload is supposed to eventuate into a larger plasticized area all over the crack 

tip, indeed according to the theory the retardation continues until the crack has propagated 

and moved out of such area. 

Moreover, the retardation effect depends upon the specimen geometrical properties, 

such as its thickness, since the plastic zone size, under plane stress and plane strain 

conditions differ. The effects of the retardation phenomenon are generally larger under 

plane stress conditions. 
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Crack closure 

The overload-induced retardation is strictly related to the crack closure phenomenon, 

which can arise due to many reasons, such as the crack tip blunting, crack deflection, 

branching, plasticity induced closure, roughness induced closure, oxidation induced 

closure and phase transformation induced closure. 

This phenomenon was demonstrated to have an important role in crack growth 

propagation and was firstly documented by Elber [8]. He proposed an explanation for both 

the stress ratio R effect and the SIF range threshold ΔKth. He noticed that at low loads, the 

fatigue specimen behaviour was very close to that of an uncracked body, whereas at higher 

loads, the trend shifted dramatically [13]. 

Elber proposed indeed that this change in stiffness was due to crack face contact, or 

crack closure. 

 

Figure 1.16:”Change in stiffness due to the crack opening/closing”[13]. 
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The picture above depicts the change in behaviour due to the crack closure effect. In 

addition, he noticed that this phenomenon causes a reduction in the actual SIF range, and 

proposed a correction to its definition. 

Indeed, he proposed the concept of the opening stress intensity factor, generally 

indicated as Kop, namely the minimum SIF required to cause the crack surfaces detachment 

and the consequent crack growth; any applied load below this threshold value should 

therefore not be considered in the damage evolution. Consequently, Kop can be used to 

calculate as effective SIF range as: 

Δ𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝 

Which can be employed as effective driving force in a power law, namely: 

𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑒𝑓𝑓

𝑚  

 

A better understanding of the Kop concept can be given by figure 1.17: 

 

Figure 1.17:” The crack opening stress intensity factor”[13]. 
 

As to the plastically induced crack closure, it results from compressible residual 

stresses developing in the plastic wake. This concept assumes that a plastically transformed 
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area is formed at the crack tip which leaves a wake of plastically deformed zone along the 

crack length. This zone has residual compressive stress induced by the elastic and plastic 

deformation of the material during unloading. During the next cycle, while loading, the 

crack tip does not open unless the applied load is enough to overcome the residual 

compressive stress present in the plastic wake zone. Thus the effective stress at the crack 

tip is lowered [3]. 

 

1.1.4 Thermomechanical fatigue 

In the previously illustrated models the effect of the temperature was in general not 

taken into account. In order to consider this effect two issues must be tackled, that are, to 

find an equivalent constant temperature in such a way to induce the same damage of the 

thermal loading cycle applied to the specimen, and to consider the potential occurrence of 

creep or/and oxidation, induced by the high temperature. 

1.1.4.1 Taira model 

As to the equivalent temperature evaluation it is interesting to resume the Taira’s 

theory; the correlation amid thermal fatigue and isothermal LCF at high temperatures was 

investigated. In order to account for the temperature variations Taira modified the Manson-

Coffin model as follows: 

𝜆(𝑇)(Δ𝜖𝑝)
𝑛

𝑁𝑓 = 𝐶 
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Where λ, n and C are material constants to be experimentally determined. Hence, this 

model assumes that the TMF is a particular case of LCF tested at an equivalent temperature, 

and giving the same damage of a thermal cycle amid two temperatures [1]. 

1.1.4.2 Neu-Sehitoglu model 

The Neu-Sehitoglu model considers the total damage due to both phenomenological 

and thermal fatigue as the linear combination of mechanical, creep and oxidation fatigue 

damages. 

𝐷𝑡𝑜𝑡 = 𝐷𝑓𝑎𝑡 + 𝐷𝑐𝑟𝑒𝑒𝑝 + 𝐷𝑜𝑥 

The above equation corresponds to the Miner’s formulation, and according to this model 

it is assumed that failure occurs when Dtot equals 1. The total damage is related to the 

number of cycle to failure as: 𝐷𝑡𝑜𝑡 =
1

𝑁𝑓
 . 

The fatigue damage Dfat is related with the mechanical strains and can be evaluated 

with a Manson-Coffin-like approach. The creep damage can be computed as follows: 

𝐷𝑐𝑟𝑒𝑒𝑝 = Φ𝑐𝑟𝑒𝑒𝑝 ∫ 𝐴𝑒−
Δ𝐻
𝑅𝑇 (

𝛼1𝜎 + 𝛼2𝜎𝐻

𝐾
)

𝑚

𝑑𝑡
𝑡𝑐

0

 

Finally, the oxidation damage contribution is given by: 

𝐷𝑜𝑥 =

(
ℎ𝑐𝑟𝛿0

𝐵Φ𝑜𝑥𝑘𝑝
𝑒𝑓𝑓)

−
1
𝛽

(2Δ𝜖𝑚𝑒𝑐ℎ

1+
2
𝛽

)

𝜖𝑚𝑒𝑐ℎ
. 1−

𝛼
𝛽

 

For further details, look up [10]. 
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1.1.4.3 Chaboche model 

The Chaboche model is a fatigue damage evolution model, based on stresses and on 

the assumption that the cumulated damage is not linear. Another important aspect is its 

definition of reciprocal interaction between creep and fatigue damages. This model defines 

an incremental damage as the sum of mechanical fatigue and creep damage contributions, 

both depending on the instantaneous value of the total damage: 

𝑑𝐷 = 𝑑𝐷𝑓𝑎𝑡 + 𝑑𝐷𝑐𝑟𝑒𝑒𝑝 

Further details on these models and further models can be found in the TMF overview 

given in [10]. 
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1.2 Residual stresses 

1.2.1 Overview 

The residual stresses are internal stresses existing in the specimen in absence of any 

load applied externally. They are said to be “self-equilibrated”, that is, both compressive 

and tensile residual stresses must exist in the body to achieve a self-balancing condition. 

∫ 𝜎𝑑𝐴 = 0 

∫ 𝑑𝑀 = 0 

Above all, the RS can be classified according to their scale of action, namely: 

 Type 1: Macroscopic RS, constant in magnitude and scale of action over a relatively 

large area (several grain diameters). 

 Type 2: Microstructural RS, constant over an area of about the size of a grain. 

 Type 3: Intergranular RS, they are mainly due to dislocations and reticular defects, 

and are not constant in magnitude even at the Intergranular scale. 

 

In the structural field the main attention is on the RS of type 1, that is, macroscopic 

RS. However, in some cases there is interest also for the RS of type 2, especially when 

dealing with superficial coatings [11]. 

RSs are implied by the presence of an incompatible strain field produced from the 

extern, due to a change in the object geometry and shape. As to the origins of the RS, the 

possibilities are: 
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 Mechanically induced RS: from milling, turning, extrusion, cold working, etc. 

 Thermally induced RS: due to non-uniform heating and cooling processes, 

such as welding, quenching, tempering and other heat treatments. 

 Chemically induced RS: in this case are induced by volume variations due to 

physical/chemical transformations, such as phase change, reactions, 

precipitations, coating depositions, etc. 

 

1.2.1.1 Welding residual stress 

In this case the RS are both due to thermal stresses and plastic strains; the longitudinal RS 

has a peak in the welding region  

 

Figure 1.18: ” weldments RS [11]”. 
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The combination of thermal and mechanical RS in the HAZ zone (thermally affected 

zone), might produce premature cracking and rupture. 

In the case of fig.1.18 the longitudinal stress can be calculated analytically as follows: 

𝜎𝑥(𝑦) = 𝜎𝑚 (1 − (
𝑦

𝑏
)

2

) 𝑒
−

1
2

(
𝑦
𝑏

)
2

 

1.2.1.2 Shot-peening residual stresses 

This process is performed on components in order to achieve beneficial effects on the 

fatigue endurance. Indeed, through the indentation of small balls it is possible to provoke 

a compressive residual stress state on the component surface. 

The process actually produces the stretching of the surface layers though the balls 

indentation, and the plasticization of the sub-superficial layers through the Hertzian 

pressure. 

 

Figure 1.19: “Shot peening treatment” [11]. 
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1.2.1.3 Quenching residual stresses 

The RSs arise after quenching due to the temperature gradient occurring during its cooling. 

Indeed, the external layers of the component are subjected to a more intense and rapid 

cooling with respect to the inner layers, and to a temperature drop correspond a volume 

change, which is at the basis on the RSs formation. Namely, the outer layers shrink more 

rapidly than the others, therefore they will be initially subjected to a tensile stress, while the 

inner layers to a compressive stress. Afterwards, also the inner part cools down and shrinks 

causing a compressive stress state in the outer layers and conversely a tensile stress state at 

the core. Figure 1.20 qualitatively shows the phenomena for a quenched cylinder: 

 

 

Figure 1.20: “Cylinder specimen quench” [11]. 
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1.2.2 Residual stresses measurement methods 

The measurement methods are classified according to the degree of damage they imply on 

the specimen, namely: 

 Non-destructive techniques: X-ray diffraction, ultrasounds, magnetic method, 

photo-elasticity method. 

 Semi-destructive techniques: hole drilling, strain gauges, rosettes. 

 Destructive techniques: layer cut, section cut. 

 

1.2.2.1 Non-destructive methods 

Ultrasounds velocity method 

When a body features internal residual stresses the propagation velocity of the sound waves 

is altered. This is the physical phenomenon exploited in this kind of measurement; let be v 

the sound velocity across the material subjected to internal stress, v0 the velocity in their 

absence, and k a parameter related to the material, the internal stress σi can be derived as 

follows: 

𝑣 = 𝑣0 + 𝑘𝜎𝑖 

It is preferable to use ultrasounds, because at high frequencies the sound waves better 

propagate in the material and the wavelengths are measurable [11].  
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Photo-elastic method 

This method can be employed only for some material categories, such as glass. It is 

commonly used to measure residual stresses in tempered glasses. 

Magnetic methods 

These techniques exploit the magnetic properties of the materials, the most commonly used 

is the Barkhausen noise method. It consists in the measure of the magnetic field variations 

ascribed to the internal stresses. 

A constant external magnetic field is applied, and the magnetization of the material is 

measured: this property is directly proportional to the magnetic permeability whose value 

is influenced by the RS. 

𝑀 = 𝜇𝐻 

Where M is the material magnetization, H is the applied magnetic field and μ is the 

magnetic permeability. 

 

X-ray diffraction 

The diffraction phenomenon occurs when a crystal lattice is invested by impinging rays 

with a certain angle θ and assuming that the wavelength is comparable to the inter-planar 

distance in the crystal lattice. 

Since the inter-planar distance d0 is for each material is known a priori, this technique 

assumes to measure the actual inter-planar distance of the stressed material d1 and therefore 

to estimate the internal stress state thanks to this information.  
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The diffractometric technique assumes indeed to impinge the material with a beam of 

monochromatic X-rays with a sufficient energy to interact with the material atoms, which 

will react in turn emitting a radiation of the same wavelength. 

In order to measure the interplanar distance we can exploit of the Bragg equation 

𝑑 =
𝑛𝜆

2 sin 𝜃
 

After some passages it follows: 

Δ𝑑 = −𝑑𝑐𝑡𝑔𝜃Δ𝜃 

And by definition the strains are calculated as: 

𝜖 =
Δ𝑑

𝑑
= −𝑐𝑡𝑔𝜃Δ𝜃 

Subsequently, the internal stress can be determined by the calculated strains, in figure 1.21 

the machine used in this measurements is reported: 

 

Figure 1.21: “X-ray diffractometer” [11]. 
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1.2.2.2 Destructive methods 

Stäblein method 

This is a layer removal method and can be used for linear beams and planar plates. By 

removing some superficial layers, the RSs are relaxed and the cut surfaces tend to deform; 

the layer removal can be performed mechanically, chemically or electrochemically. 

After the layer removal the surfaces curvature is measured, for example with gauges, and 

by means of analytical formulas is possible to calculate the internal stresses. 

Sachs method 

It is a layer removal method and is used for cylinder elements characterized by an axial 

symmetric RS distribution, constant along its longitudinal axis. 

Some layers are removed by turning and subsequently the longitudinal and circumferential 

strains are measured on the component surface. Then, the RSs components can be 

calculated analytically as follows: 

𝜎𝐼 =
𝐸

1 − 𝜈2
[
(𝑆𝐼 − 𝑆)𝑑𝐿

𝑑𝑆
− 𝐿] 

𝜎𝑟 =

𝐸
1 − 𝜈2 (𝑆𝐼 − 𝑆)𝐶

2𝑆
 

𝜎𝑐 =
𝐸

1 − 𝜈2
[
(𝑆𝐼 − 𝑆)𝑑𝐶

𝑑𝑆
−

(𝑆𝐼 + 𝑆)𝐶

2𝑆
] 

Where      𝐿 = 𝜖𝐼 − 𝜈𝜖𝑐     𝐶 = 𝜖𝑐 + 𝜈𝜖𝐼 

Where σI, σr, and σc are respectively the longitudinal, radial and circumferential stresses, 

and S1 and S are the external and internal cylinder section area. 
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1.2.2.3 Semi-destructive methods 

Hole drilling method 

The hole drilling strain gauge method is the most widely used for measuring RSs. The 

measurement procedure involves some basic steps. A three or six strain gauge rosette is 

installed on the specimen, above the part of interest for the RS measurement. 

Afterwards a precision milling guide is attached to the test part and centred over the 

drilling target on the rosette. Hence, after zero-balancing the gage circuits, a small, 

shallow hole is drilled and the readings are effected of the relaxed strains, corresponding 

to the initial RSs. 

Finally, using data-reduction relationships, the principal RSs and their angular orientation 

are calculated from the measured strains [12]. 

 

Figure 1.22: “Hole drilling method [12]”. 
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1.3 Fatigue life prediction models including residual stresses 

1.3.1 The approaches in literature 

The approaches found in literature dealing with fatigue crack growth analysis in 

presence on residual stresses can be broken down into different steps that must be carried 

out to fulfil the finite element simulation; these steps are essentially: 

 Geometry model realization 

 Application of the residual stresses on the unnotched model 

 Creation of the initial crack on the model 

 Definition of the parameters and the method used to account for the residual 

stresses in the fatigue analysis 

 Fatigue crack growth simulation 

Hereafter the most interesting steps will be analysed. 

1.3.1.1 Geometry model realization 

The case studies in literature are generally based on standard geometries, in which 

often a symmetry condition is used to spare computational effort during the simulations, 

and the crack is applied on the symmetry line, i.e. SENT specimens [13, 14], welded plates 

[15, 16, 17], notched CT specimens [18 ,19, 20], M(T) specimens [21]. 
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1.3.1.2 Application of the residual stresses on the unnotched model 

This is the first critical issue, because it was found by many authors that an accurate 

residual stress field applied to the model is crucial in order to obtain a good correlation 

between the experimental fatigue crack growth curves and the ones obtained by FEM. 

The mechanical processes which the majority of the researches have dealt with, as to 

the FE modelling of residual stress fields are the shoot-peening treatments [22], welding 

processes [23, 21, 24, 25], four-points bending tests [26, 13, 27], or quenching processes [19]. 

In the literature study three different approaches have been identified; An used 

approach is to simulate the physical process causing the residual stress fields by means of 

a commercial software for elastic-plastic analysis, such as ABAQUS. 

In this case the main issue is to insert into the program the right material constants, 

to choose an appropriate yield criterion (ex: Von Mises) and a hardening model (isotropic, 

kinematic or combined) in order to rightly characterize the material behaviour, and 

furthermore to properly simulate the physical process in terms of applied stress, 

temperatures and constraints. 

The main shortcomings of this approach are the computational effort of doing elastic-

plastic analysis, and the difficulty when trying to reproduce accurately the manufacturing 

process induced plastic deformations and residual stresses [13]. 

Generally, this method is used for weldments analysis, by means of coupled thermal 

and mechanical welding simulations [23], or for simulated four-points bending tests by 
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which the material undergoes an overload causing residual plastic strains and so self-

equilibrated residual stress fields [27]. 

A second possibility is to employ an Abaqus subroutine, in order to insert into the 

geometrical model a desired residual stress or strain field as initial condition. 

As was summarized by Servetti et al. [21] this methodology can be in turn broken 

down into two different approaches, that are the “displacement input method” and the 

“stress input method”. 

In both cases there is the need to precisely know in advance the residual stress state 

of the component after the manufacturing process. In the displacement input method, the 

measured strains are inputted into the numerical model as initial conditions, indirectly 

producing the residual stress field into the model. In the alternative method, the measured 

residual stresses are directly inputted in the model, also in this case by means of a dedicated 

subroutine such as “SIGINI”. Then, the Abaqus command “UNBALANCED STRESSES” 

can be used to balance the inputted stress field and so to satisfy the balance condition. 

The latter approach is generally preferable because more accurately reproduces the 

experimentally measured residual stresses into the FE model, and satisfies the virtual work 

principle. Furthermore, since each node must be constrained, the displacement input 

method cannot be used to develop a FCG model accounting for the residual stresses 

redistribution phenomenon, which plays a relevant role [21]. 

Anyways, O’Dowd [27] pointed out the difficulties in properly employing this 

approach. The first issue is the non-uniqueness of the set initial condition, since a number 
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of different loading histories could result in the same residual stress field. Another practical 

problem in its implementation is that when in a stress-free region a residual stress field is 

applied the resultant stress distribution after an equilibrium step generally differs from the 

expected one. In fact, was demonstrated that the residual stress fields during the 

equilibrium step smoothed out to satisfy the equilibrium condition over the whole body 

causing a discrepancy between the inputted and the output stress fields [27]. 

In order to fix this, a proportional integral adjustment can be used, such as the 

reported equation: 

𝜎(𝑥)𝑖𝑛𝑝
𝑖+1 = 𝜎(𝑥)𝑖𝑛𝑝

𝑖 + 𝛽(𝜎(𝑥)𝑡𝑎𝑟𝑔 − 𝜎(𝑥)𝑜𝑢𝑡
𝑖 ) 

Very briefly, this iterative method can be implemented to better match the inputted 

and output stress fields. 

The last practical issue, is that generally residual stresses are measured in specimens 

only at selected positions, therefore a full stress distribution is not often available. 

Another approach presented in literature to model the residual stress fields is based 

on the eigenstrain concept firstly developed by Mura [28] and Ueda [29] and then used by 

some authors in their simulations such as Roberts [13], Matos [25]. 

This method is also regarded as inherent strain approach, and was developed for the 

weldments. Very briefly, consists in a second-order tensor of strain fields that represents 

the plastic deformation due to manufacturing operations [30]. 

It is well-known that manufacturing processes induce residual strain fields, which 

generally do not satisfy the geometric compatibility relations. Consequently, residual 
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stresses must be present to eliminate the incompatibility, thereby restoring geometric 

continuity of the component. The description given by Matos et al [25] is here briefly 

reported: 

“The incompatible property is described mathematically by the six strain 

compatibility equations in terms of the three independent displacement components ui in 

Cartesian coordinates it follows: 

𝑅𝑝𝑞 = 𝜖𝑝𝑘𝑖𝜖𝑞𝑙𝑗𝜖𝑖𝑗,𝑘𝑙
∗  

Where the usual index notation with implied summation is employed with commas 

denoting differentiation. Where epki denotes the third order alternating tensor.  

When the symmetric tensor Rpq vanishes for a given field of eigenstrains ϵij* no 

residual stresses are required to restore the geometric compatibility.  

The total (compatible) strain tensor can be decomposed as: 

𝜖𝑖𝑗 = 𝜖𝑖𝑗
𝑒 + 𝜖𝑖𝑗

∗  

Where ϵije denotes the elastic strain tensor necessary to restore compatibility created 

by the eigenstrain tensor ϵij*, and the strains arising from separately applied mechanical 

loads. Under such conditions, the final linear-elastic stresses are then given by: 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙(𝜖𝑘𝑙 − 𝜖𝑘𝑙
∗ ) 

In the absence of mechanically applied loads (or restraints), the response of the 

component to the eigenstrains must generate a residual stress field σ*ij that satisfies 

equilibrium: 

𝜎 ∗𝑖𝑗= 𝐷𝑖𝑗𝑘𝑙𝜖𝑘𝑙
𝑒  

𝜎𝑖𝑗,𝑗
∗ = 0, 𝜎𝑖𝑗

∗ 𝑛𝑗 = 0 
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And compatibility”: 

𝑅𝑝𝑞 = 𝜖𝑝𝑘𝑖𝜖𝑞𝑙𝑗(𝜖𝑖𝑗
𝑒 + 𝜖𝑖𝑗

∗ ),𝑘𝑙 ≡ 0 

In their works, Roberts [13] and Matos [25], computed the eigenstrains simply as 

thermal strains, by means of the methodology developed by Hill and Nelson [31]. This 

approach consists in setting a spatial distribution of anisotropic thermal expansion 

coefficients, and applying a unit thermal load, such that: 

𝑎𝑖𝑗 = 𝜖𝑖𝑗 

Anyways, the implementation of this method is not always straight forward [13]. 

 

1.3.1.3 Definition of the parameters and the method used to account for the 

residual stresses in fatigue analysis 

Generally speaking, the aim is to capture the effect of the initial residual stresses on 

the fatigue crack growth driving force. According to the chosen empirical law, listed in the 

background section, this driving force may be proportional to one or more parameters. 

The residual stresses affect the stress field at crack tip and have effect on the 

parameters Kmax, R, and Kmin. That is why, many authors preferred to the well-known Paris 

law, a two parameter driving force like the Walker law. 

A common approach is the superposition method, which is suitable in case of small 

scale yielding condition. 
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According to this approach it is sufficient to compute a SIF factor only related to the 

residual stresses, to be then superposed to the SIF factor only related to the applied stress, 

namely: 

𝐾𝑡𝑜𝑡 = 𝐾𝑎𝑝𝑝 + 𝐾𝑟𝑒𝑠 

According to this simple rule it is possible to calculate the total maximum and 

minimum SIFs, and the effective stress ratio Reff, namely: 

𝐾𝑚𝑎𝑥
𝑡𝑜𝑡 = 𝐾𝑚𝑎𝑥

𝑎𝑝𝑝 + 𝐾𝑟𝑒𝑠 

𝐾𝑚𝑖𝑛
𝑡𝑜𝑡 = 𝐾𝑚𝑖𝑛

𝑎𝑝𝑝 + 𝐾𝑟𝑒𝑠 

𝑅𝑒𝑓𝑓 =
𝐾𝑚𝑖𝑛

𝑡𝑜𝑡

𝐾𝑚𝑎𝑥
𝑡𝑜𝑡 

It is straightforward that with this approach the SIF range is not affected by the 

residual stresses, namely: 

𝛥𝐾 = 𝐾𝑚𝑎𝑥
𝑡𝑜𝑡 − 𝐾𝑚𝑖𝑛

𝑡𝑜𝑡 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 

Indeed, this method is always coupled with a fatigue crack growth law accounting 

for Kmax or Reff instead of the SIF range only. 

This approach has been employed in [32,13,33,34,21,35,36,16,17,19,24], and anyway 

features some shortcomings and difficulties. 

The first issue is how to compute the SIF factor due to residual stresses, namely Kres; 

the possibilities are essentially two, that is, by means of a weight function approach or by 

FEM. Broadly speaking, the weight functions are suitable when dealing with simple 

geometries, whereas FEM are necessary for more complex cases. 

Assuming that the weight function is known, the Kres can be computed as [13]: 
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𝐾𝑟𝑒𝑠 = ∫ 𝜎𝑟𝑒𝑠(𝑥)ℎ(𝑥, 𝑎)𝑑𝑥
Γ𝑐

 

Where σres is the initial residual stress distribution and h is the employed weight 

function. 

As to the use of weight functions for the calculation of K at the crack tip, Fitzpatrick 

in his analysis stated: “solutions for different geometries have been tabulated by, among 

others, Rooke and Cartwright, and Tada et al. Even though many solutions are available, 

derived by various means and levels of complexity, the results are often not applicable to 

new problems with complex structures and loading conditions” [37]. 

Roberts [13] in his work tried to compare weight function methods and FEM when 

dealing with residual stress fields in specimens and concluded that “comparison of this 

energy method for obtaining Kres with that of the weight function method has revealed a 

very significant discrepancy. The weight function method, while seemingly appropriate for 

external loading, appears to require at least two inherent assumptions which do not apply 

to residual stresses. The first of these assumptions is that the residual stress maintains its 

initial magnitude and distribution throughout the entire crack growth process. The second 

inherent assumption in the use of weight functions for residual stress is that it is sufficient 

to consider only that part of the residual stress that was acting on the crack plane up to the 

current crack tip”. 

Both of these conditions arising when using weight functions were demonstrated to 

be erroneous in practise, implying simplistic simulations, far from the experimental 

evidences.  
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As to the FEM methods to compute the SIF at crack tip the analysis of Lin and Chang 

[17] is subsequently reported. 

“There are a few approaches for evaluating crack tip stress intensity factor by finite 

element method, such as the crack tip displacement extrapolation, the modified virtual 

crack closure technique and the J-integral. In the displacement extrapolation method, the 

displacement and stress data of the finite element analysis at the vicinity of the crack tip are 

assumed to obey their asymptotic behaviour and the crack tip parameters are computed. 

This method is simple but it is not easy to guarantee the accuracy. The modified virtual 

crack closure technique (also known as virtual crack closure integral method) is another 

way to compute the energy release rate. In this method, energy that is required to close the 

crack for one finite element length is calculated by multiplying the nodal reaction force 

perpendicular to the crack growth path at the crack tip node and the opening displacement 

at the node immediately behind the crack tip. The advantages of the technique are in its 

simplicities in computing the energy release rate such that only the nodal reaction force and 

opening displacement are used in the computation and that using their appropriate vector 

components, the energy release rate is decomposed into the modes I–III components. The 

Jintegral approach can also obtain the energy release rate through the domain integral 

method. The domain integral method utilizes the subroutines in the finite element program 

to perform integrations based on finite element geometries. Therefore, the domain integral 

approach is well suited for fracture mechanics analysis using the finite element method. 
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These methods are widely used practices and easily implemented in commercial finite 

element packages” [17]. 

Some of these approaches will be encountered after and furtherly clarified. 

It is common then to employ a similar alternative to the approach above mentioned, 

considering that the superposition of the applied load and the residual stresses may lead to 

negative results, i.e. compressive stress fields, in case of negative (Ktot)min, this is set to zero 

to simulate a closed crack [36]. 

Another largely employed approach in literature is based on the crack closure effect 

firstly documented by Elber. This method is known as effective stress intensity factor range 

approach, and it is based on the definition of a modified ΔKeff. 

Elber considers that as a crack propagates, crack closure occurs as a result of 

plastically deformed material left in the path taken by the crack. This material is referred to 

as the plastic wake. The plastic wake enables the crack to close before minimum load is 

reached, and Elber reasoned that the stress intensity factor at the crack tip does not change 

while the crack is closed even when the applied load is changing [36]. 

Consequently, the target is to compute a crack opening stress So or its relative crack 

opening SIF, namely Kop, in the residual stress field. This factor can then be used to compute 

the effective stress range as: 

𝛥𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝 

The crack opening SIF can be calculated by means of experimental methods or 

numerically; many researchers tried to compute it through FEM as plasticity induced crack 
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closure. McClung [38] have provided a critical overview of this works. The basic algorithm 

employed is always the same: a crack tip node is released after each cycle allowing the crack 

to advance and the resultant plastic wake to incrementally form, and the crack opening is 

accounted by monitoring the crack faces contact [36]. 

Anyways only few studies have dealt with fatigue crack closure in presence of 

residual stresses, like as Beghini and Bertini [33], Lacarac [34], and Choi and Song [39]. 

More recently Larue and Daniewicz [36] performed a study about the fatigue crack 

growth from a hole with a pre-existing compressive residual stress using two-dimensional 

elastic–plastic finite element analyses. They employed both the ΔKeff method and the 

superposition approach described above, finding that accounting for crack closure effect 

leads to more precise results. 

A requirement for the plasticity-induced crack closure FEA simulation is that the 

element size must be smaller than the size of the plastic zone in front of the crack tip, 

otherwise the plasticity zone is not resolvable [30]. 

However, in their studies, there is no emphasis on the residual stress redistribution 

due to the fatigue crack growth and the effects of the plastic wake left behind the crack are 

not accounted. 

Recently Garcia et al [30] carried out a study on the fatigue crack growth propagation 

in a four-points bending beam in presence of residual stresses. The goal of their work was 

to supply to the lacks of the models found in literature, that is, to develop a model to take 
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into account indeed the residual stress redistribution, due to the crack advancement, and 

the plastic wake effects. 

Indeed, Garcia employed a different strategy to account for residual stresses, that is 

an alternate method to the ΔKeff approach. Namely, contrary to its previous definition they 

used the finite element method to directly compute an effective SIF, or K, of the actual 

residual stresses during the fatigue crack growth, and not the initial ones. This, with the 

aim to account for the residual stress redistribution. 

Hence, the actual K and R are computed accounting for both the externally applied 

stresses and the internal residual stresses under evolution; namely: 

Δ𝐾 = 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛) 

𝑅 =
𝐾𝑚𝑖𝑛−𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝐾𝑚𝑎𝑥−𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
 

And finally the fatigue crack growth rate is computed by integration of a Paris-like 

power law alike the other approaches. 

Actually, the effective Kmax and Kmin were directly computed with the displacement 

correlation method from the finite element nodal displacements behind the crack tip along 

the crack face, namely: 

𝐾 =
𝐸𝑢

4(1 − 𝜈2)
√

2𝜋

𝑟
 

Considering a plane-strain condition, and where u is the node displacement and r the 

distance from the crack tip; E and ν are the material elastic modulus and Poisson’s 

coefficient. 
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Garcia et al. performed the simulations in three cases, that is, without crack closure 

effect, with crack closure effect and with both crack closure and plastic wake effects. 

In order to account for the crack closure effect in the model a rigid crack closure 

condition was set; namely an analytical rigid surface was added at the symmetry plane of 

the model (where the crack was added), and a contact interaction was set between the crack 

surface and the analytic rigid surface. 

Basically, to account for the plastic wake effects, at each load cycle the crack is 

advanced of one element size by releasing the crack tip nodes. This process is repeated 

several times for the formation of the plastic wake [30], and at each increment K and R are 

calculated to be used in the fatigue crack growth simulation. 

1.3.1.4 Fatigue crack growth simulation 

After that the residual stress fields have been determined and employed to properly 

compute the fracture mechanics corrected parameters, with the approaches before 

discussed, there is the choice of the empirical power law to employ in order to calculate the 

fatigue crack growth rate and then the fatigue life until a critical crack size is reached. 

The most important power laws have already been reported in the Background 

section, and some of them have been frequently used in literature when dealing with 

residual stress fields in specimens. 

However, the choice of the FCG law is not independent from the approach to correct 

the fracture mechanics parameters employed, they are instead strictly related. 
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For instance, Roberts [13] in his work employed the Forman equation here reported 

again: 

𝑑𝑎

𝑑𝑁
=

𝐶Δ𝐾𝑚

(1 − 𝑅)(𝐾𝑐𝑟𝑖𝑡 − 𝐾𝑚𝑎𝑥)
 

In combination with a superposition approach, that is the summation of the SIF 

related to the applied stress and the one related to the internal residual stresses. 

He developed a routine in which starting from some input parameters (Forman law 

fitting constants, initial and final crack size) was possible to implement the Forman equation 

and evaluate the crack growth rate. Actually after each cycle the crack was advanced 

releasing the crack tip nodes, and the process reiterated until the predetermined failure 

crack size was achieved. 

Here the scheme from the Roberts work is reported: 
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Figure 1.23: “Computation scheme [13]”. 
 

As pointed out by Roberts, the choice of the power law is suitable, because it allows 

to take into account both R and Kmax corrected via the superposition approach. 

As reported before, Larue et al. [36] performed a study employing the ΔKeff and the 

superposition approaches, in order to make a comparison of the two methodologies. 

Firstly, their analyses allow the determination of the crack opening stress as the crack 

propagates through the residual stress field, from which the effective stress intensity factor 

range ΔKeff and the fatigue crack growth is predicted. 
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Furthermore, they pointed out that predictions from the closure-based method are 

highly dependent on the FCG constitutive relationship used, highlighting the need for 

experimental methods to reliably measure this correlation. 

As to the superposition simulation they simply computed Kres by means of a weight 

function, whereas for the crack closure approach they computed the crack opening stress 

So via FEM simulation. 

The equations employed for the FCG prediction were the Liu baseline crack growth 

curve for “R = 0.7” [99], and the NASGRO equation presented in the Background section. 

Each curve was used to separately predict crack growth rates from the computed effective 

stress intensity ranges. 

The procedure is here reported for the crack closure approach: 

 

Figure 1.24: “Computation scheme [36]”. 
 

Relevant was the contribution of Servetti and Zhang [21] in their studies; they 

proposed a simple method for predicting fatigue crack growth rate in welded butt joints. 
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Three different empirical crack growth laws were employed using the material constants 

that were obtained from the base material coupon tests. Based on the superposition rule of 

the linear elastic fracture mechanics, welding residual stress effect was accounted for by 

replacing the nominal stress ratio R in the empirical laws by the effective stress intensity 

factor ratio Reff. The key part of the analysis process was to calculate the stress intensity 

factor due to the initial residual stress field and also the stress relaxation and redistribution 

due to crack growth. The finite element method in conjunction with the modified virtual 

crack closure technique was used for this analysis. Fatigue crack growth rates were then 

calculated by the empirical laws and comparisons were made among these predictions. Test 

samples were M(T) geometry made of aluminium alloy 2024-T351 with a longitudinal weld 

by the variable polarity plasma arc welding process. 

For each crack length, the SIF was calculated at the applied stress level followed by 

releasing the crack tip node to the next crack length. This process was repeated for the crack 

length range from the initial to the final crack size. Therefore, residual stress redistribution 

due to crack extension was modelled [21]. 

Virtual crack closure technique, or modified virtual crack closure technique is a 

method to compute the SIF, starting from the strain energy release rate, namely: 

𝐺 =
1

2𝑡Δ𝑎
𝐹𝑦𝑦,𝑖(𝑣𝑗 − 𝑣𝑗

∗) 

Then in case of plane stress: 

𝐾 = √𝐺𝐸 
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 where Fyy,i is the nodal reaction force perpendicular to the crack growth path at the 

crack tip node I, vj-v*j is the crack opening displacement at node j immediately behind the 

crack, Δa the crack extension length that equals to the crack tip element size, and t the plate 

thickness [21]. 

In case Gres and Gapp are computed with two separate FEM simulations, the total 

contribution must account also to the mutual work amid internal residual stresses and 

applied load: 

𝐺𝑡𝑜𝑡 =
1

2𝑡Δ𝑎
(𝐹𝑎𝑝𝑝 + 𝐹𝑟𝑒𝑠)(𝑣𝑎𝑝𝑝 + 𝑣𝑟𝑒𝑠) 

The superposition approach equations are here reported again for convenience: 

Δ𝐾𝑡𝑜𝑡 = (𝐾𝑎𝑝𝑝,𝑚𝑎𝑥 + 𝐾𝑟𝑒𝑠) − (𝐾𝑎𝑝𝑝,𝑚𝑖𝑛 + 𝐾𝑟𝑒𝑠) = Δ𝐾𝑎𝑝𝑝 

𝑅𝑒𝑓𝑓 =
𝐾𝑎𝑝𝑝.𝑚𝑖𝑛 + 𝐾𝑟𝑒𝑠

𝐾𝑎𝑝𝑝,𝑚𝑎𝑥 + 𝐾𝑟𝑒𝑠
 

Finally, these parameters were used in the Walker equation, NASGRO equation and 

with the Harter-T-method. The first two equations were already reported in the 

Background section, whereas the Harter-T-method will be herein briefly explained: 

Harter-T-method 

This method is well-suited to account for the residual stress redistribution which is 

considered by the change of the stress ratio at each crack step, in that it allows to compute 

at each of these steps the proper crack growth rate da/dN in accordance to the new stress 

ratio R.  
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Then this method is a well-suited alternative to the Walker or NASGRO equations 

used by other authors. 

The Harter T-method employs an interpolation or extrapolation to determine a stress 

intensity factor for a stress ratio R of interest as a function of the FCG rate [30]. A minimum 

of two baseline FCG curves (da/dN vs ∆K) are required to apply it. It employs the Walker 

equation which takes into account the stress ratio R and is here newly reported: 

𝑑𝑎

𝑑𝑁
= 𝐶 [

Δ𝐾

(1 − 𝑅)1−𝑚]
𝑛

 

If we consider two FCG curves, for different R and at the same crack growth rate 

(da/dN)I, it follows: 

(
𝑑𝑎

𝑑𝑁
)

𝑖
= 𝐶 [

Δ𝐾1

(1 − 𝑅1)1−𝑚𝑖
]

𝑛

= 𝐶 [
Δ𝐾2

(1 − 𝑅2)1−𝑚𝑖
]

𝑛

 

Which yields to: 

Δ𝐾1

(1 − 𝑅1)1−𝑚𝑖
=

Δ𝐾2

(1 − 𝑅2)1−𝑚𝑖
 

As first is needed to solve for the fitting constant relative for such crack growth rate mi: 

𝑚𝑖 = 1 + [
log10 (

Δ𝐾1
Δ𝐾2

)

log10 (
1 − 𝑅2
1 − 𝑅1

)
]   𝑤𝑖𝑡ℎ 𝑅1 𝑎𝑛𝑑 𝑅2 ≥ 0 

                                       𝑚𝑖 = 1 + [
log10(

𝐾𝑚𝑎𝑥1
Δ𝐾2

)

log10((1−𝑅1)(1−𝑅2))
]   𝑤𝑖𝑡ℎ 𝑅1 < 0 𝑎𝑛𝑑 𝑅2 ≥ 0 

 

Subsequently it is possible to compute the SIF range for any stress ratio of interest Rint, 

namely: 
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Δ𝐾𝑖 = Δ𝐾1 (
1 − 𝑅1

1 − 𝑅𝑖𝑛𝑡
)

𝑚𝑖−1

    𝑤𝑖𝑡ℎ 𝑅1 𝑎𝑛𝑑 𝑅2 ≥ 0 

            Δ𝐾𝑚𝑎𝑥,𝑖 =
Δ𝐾2(1 − 𝑅2)𝑚𝑖−1

(1 − 𝑅𝑖𝑛𝑡)1−𝑚𝑖
     𝑤𝑖𝑡ℎ 𝑅1 < 0 𝑎𝑛𝑑 𝑅2 ≥ 0 

Finally, by means of a linear interpolation in the log-log scale the entire FCG curve 

can be found for the stress ratio of interest [13]. 

The Harter-T-method was not only used coupled to the superposition method, but 

also with the definition of effective ΔK and R given by Garcia [30] in his work. 

The algorithm employed by Garcia was analogous to the previously examined ones 

and is here reported: 

 

Figure 1.25:” Computational procedure” [30]. 
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Also in this case, the procedure starts from the initial and material data (E, v, a0, af) 

and plans to compute the fracture mechanics parameters of interest, in this case via 

displacement correlation, to be then employed in a FCG empirical law. This process is then 

iterated till the critical crack size is reached. 

Schnubel and Huber [14], presented a study about a numerical approach for 

predicting the fatigue crack growth in Aluminium CT specimens containing one line of 

laser heating, which is a process employed to create compressive residual stresses and 

increase the fatigue life of the specimens. 

The proposed methodology exploited the MVCCT technique to calculate the strain 

energy release rate like it has been done by other authors, in order to extract a total SIF 

factor Ktot accounting for both applied and residual stresses. Then a prediction of the 

resulting fatigue crack growth rates by an empirical crack growth law was performed. 

In addition, they validated their numerical approach with experiments, finding a 

good agreement. 

As ΔKtot and Rtot where calculated through the MVCCT techniques they were 

employed in the Walker equation to predict the FCG. 

The steps in the extended procedure adopted are summarized by Schnubel and 

Huber in the follow-up figure: 
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Figure 1.26: “Computation scheme [14]”. 
 

Hence, briefly summarizing, they started with a simulation on the software 

“Sysweld” to simulate the process determining the thermal residual stresses and 

subsequently they transferred this data on Abaqus for applying the MVCCT and calculate 

Ktot and Rtot. Finally, by means of the well-known Walker equation the FCG rate was 

computed.  

Finally, the fatigue life was computed by integration as follows: 

∫ 𝑑𝑁
𝑁

0

= ∫ (𝐶[Δ𝐾𝑡𝑜𝑡[1 − 𝑅𝑡𝑜𝑡]𝑚−1]𝑛)−1𝑑𝑎
𝑎

𝑎0

 

Lin and Zhu [16] presented a study on the change of residual stress distribution 

during fatigue crack propagation. Their research attempted then to predict the crack 
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propagation by considering the residual stress fields. An analysis approach for the change 

in residual stress distribution is then established according to the diffusion theory of cavity. 

The authors also pointed out the importance of the proper selection of the effective 

crack increment used for calculating the crack propagation rate, according to the 

distribution state of residual stress. 

The approach employed by Lin and Zhu can be summarized in few steps; as first the 

critical crack length was calculated starting from the fracture toughness, as follows: 

𝑎𝑐 =
𝐾𝐶

2

𝜋𝜎2
 

The next step is to calculate the appropriate crack length increment Δai according to 

the distribution of residual stress. The selection principle of the crack length increment takes 

place in such a way that there is no obvious mutation of the stress values between two 

consecutive incremental points. Namely, it is ensured the following condition: 

|𝜎𝑟(𝑥𝑟) − 𝜎𝑟(𝑥)|

|𝜎𝑟(𝑥𝑟)|
≤ 𝜂 

Where the first term is the residual stress of crack tip, the second is the distribution 

function of residual stress on the direction of crack propagation and η is a set constant. 

Then another control on the calculation accuracy is performed on the SIF factors: 

Δ𝐾𝑖 − Δ𝐾𝑖−1

Δ𝐾𝑖
< 𝜖 

The final step is to calculate the crack propagation rate of the determined crack 

increments. The total stress intensity factor and the stress ratio were the parameters used 
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for the calculation of crack propagation rate, which was computed according to the 

superposition rule, already explained for other approaches. 

Then, these parameters have been employed in the Forman equation as follows: 

(
𝑑𝑎

𝑑𝑁
)

𝑖
=

𝐶(Δ𝐾𝑡𝑜𝑡,𝑖
̅̅ ̅̅ ̅̅ ̅̅ )

𝑚

(1 − 𝑅)𝐾𝐶 − Δ𝐾𝑡𝑜𝑡,𝑖
̅̅ ̅̅ ̅̅ ̅̅

 

Where, 

Δ𝐾(𝑡𝑜𝑡,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

Δ𝐾𝑡𝑜𝑡,𝑖 + Δ𝐾𝑡𝑜𝑡,𝑖−1

2
 

And the subscript i refers to the crack increment Δai. The procedure stops after a 

critical crack length is reached and further allows to count the number of cycles to failure. 

The interesting fact of this work is the attention deployed to the selection of the crack 

increment based on the stress distribution, indeed other authors in older researches did not 

implement a method to continuously update the optimal incremental crack length step. 

However, in this work the residual stress redistribution due to fatigue crack growth 

was not taken into account, overestimating the FCG rate due to the constant tensile residual 

stresses present in the specimen. 

The following picture better clarifies the procedure: 
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Figure 1.27: “Computation procedure” [16]. 
 

In the study of Lee and Chang [17] a three-dimensional thermal–mechanical finite 

element model was first developed in order to accurately predict the weld-induced residual 

stresses. Then, the rate of fatigue crack growth in the welds subject to the applied 

mechanical stress in conjunction with the residual stress was predicted by calculating the 
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stress intensity factors resulting from the residual stress field using the modified J-integral 

definition. 

The fatigue crack growth rate due only to the applied mechanical stress was also 

computed for comparison. 

In this study, the J-integral technique was adopted to calculate the stress intensity 

factor resulting from the residual stresses. 

After that the SIF was computed as: 

𝐾 = √
𝐸𝐽

𝛽
 

In order to account for the residual stress in the FCG the superposition method was 

used, according to the following formulas newly reported for convenience: 

𝐾𝑒𝑓𝑓 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

Δ𝐾𝑒𝑓𝑓 = (𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑚𝑎𝑥 + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) − (𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑚𝑖𝑛 + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑚𝑎𝑥 − 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑚𝑖𝑛 = Δ𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

𝑅𝑒𝑓𝑓 =
𝐾𝑒𝑓𝑓

𝑚𝑖𝑛

𝐾𝑒𝑓𝑓
𝑚𝑎𝑥 = (

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑚𝑖𝑛 + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑚𝑎𝑥 + 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

) 

As was pointed out before, the superposition approach needs to be coupled with a 

power law incorporating the corrected stress ratio and/or the maximum SIF, then the 

following modified Paris-like law was used: 

𝑑𝑎

𝑑𝑁
=

𝐶(Δ𝐾𝑒𝑓𝑓)
𝑚

1 − 𝑅𝑒𝑓𝑓
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Chapter 2 

2) A python program for the optimized 
residual stress importing into the 
FEA model 

2.1 Introduction 

As was stated by many authors in literature the first critical step in order to perform 

an analysis in presence of residual stresses is the correct determination of their magnitude 

and field. The most modern measurement methods employed in research have been 

described in section 1.2; in addition to the experimental measurement methods, an 

alternative is the residual stress simulation, which implies to simulate the specific 

manufacturing process or loading history at the ground of the internal stress development 

in the specimen. 

When using experimental measurements for the RS, the main shortcoming 

highlighted in the previous sections is due to the fact that such stresses can be estimated 

only in a limited part of the specimen and until a certain depth, still with some accuracy 

limits, as stated in [12]. 

Subsequently, the residual stress data must be inputted into a FEA software for the 

further calculations, such as fatigue life estimates or fatigue crack simulations.  
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This method was used in literature firstly by O’Dowd [27], in that case for studying 

the correct way to simulate the crack growth in a well-established RS field in a 2D simple 

model. 

As was noticed by O’Dowd, when inserting unbalanced stresses into a FEA model 

the software needs to firstly perform an equilibrium step, in which the inserted stresses are 

redistributed and smoothed out to achieve an equilibrium condition for each model’s 

element. 

Hence, when the inputted stresses are strongly unbalanced, or are anyway inserted 

only over a small portion of the model geometry (ex: where measured), the resulting RS 

field after the equilibrium step are likely to be remarkably different from the desired ones. 

In order to comply with this, O’Dowd developed a method to iterate over the inputted 

stress, obtaining to some extent an improvement in the resulting RS distribution. 

As mentioned before, the iterative equation employed was: 

𝜎(𝑥)𝑖𝑛𝑝
𝑖+1 = 𝜎(𝑥)𝑖𝑛𝑝

𝑖 + 𝛽(𝜎(𝑥)𝑡𝑎𝑟𝑔 − 𝜎(𝑥)𝑜𝑢𝑡
𝑖 )  

Where σinp is the inputted stress into the FEA program and is updated at every 

iteration, σout is the resulting stress after the equilibrium step, σtarg is the desired stress in the 

region, and finally β is the integral factor. 

The employed program/method/subroutine to perform this adjustment was not 

available in literature, so the second part of this thesis work dealt with the development of 

my own program. 
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2.1.1 Applications 

The program illustrated in this section was developed for the testing of a product of 

FCA Automobiles. The research scope of the FCA’s engineers was to properly compute the 

residual stress fields of a car engine, or some of its components, inherited by the casting 

manufacturing process, and so the cooling phase along with the follow up heat treatments, 

in order to subsequently employ these data in a fatigue cracking analysis. 

The target was indeed to achieve more satisfactory results in the useful-life estimates 

of the product, and actually the incorporation of the residual stresses into the model 

brought to more accurate results, in comparison to experimental data obtained by means of 

test benches. 

The initial part of the simulation was performed on a dedicated FEM software, 

optimized for casting procedures. The correct simulation of this part is necessary to 

compute a reliable stress field, comparable to real data. 

Subsequently the internal stress data are stored by the software in a text file, whereby 

to each element ID corresponds a stress tensor. 

The next steps are performed by means of the Abaqus solver, hence the stress data 

will be read as input condition for the following simulations. 

The product on which the investigation was made is the engine 2.2 JTD N-S 180CV-

210CV-240CV, which is depicted in pictures 2.1 and 2.2 with the courtesy of FCA 

Automobiles. 
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Figure 2.1: “Comprehensive assembly of the engine 2.2 JTD”. 
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Figure 2.2: “Engine 2.2 JTD, basis, pistons and head”. 

2.1.2 The program 

The software considered for the finite elements analysis was Abaqus, a product of 

Dassault Systems Simulia Corporation, which is the most used in literature in this research 

field. 

As to the residual stresses, the CAE software offers more possibilities; when an 

analysis is performed Abaqus generates a set of output files containing the results, among 

which an output database, with extension ODB which stores all the analysis results 

information at each element’s integration point. 
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It is then possible, according to the Abaqus user’s manual [9] to start a completely 

new analysis only importing the residual stresses as initial conditions from the ODB file, all 

over the model or only over a selected set. A second possibility is instead to select from the 

viewport a set made out of finite elements and to assign a uniform stress tensor manually. 

Hence, there are two practical applications which can be covered thanks to these 

techniques, that are for instance to get the experimental residual stresses measurements 

over a small area of the specimen, for example by means of a cutting and some strain 

gauges, to be subsequently inputted into the FE model. Whereas, the other practical 

application might be to perform a first analysis, with the aim of only computing the residual 

stresses all over the FE model, to be then inputted as initial condition in a second analysis, 

for instance for fatigue life estimates. A practical example might be to simulate an iron alloy 

solidification into its mould to get its initial internal stress field, to be then imported in a 

second moment in a fatigue or cracking analysis. 

However, in both cases attention must be paid to achieve a satisfactory accuracy, and 

it must be taken into consideration that both the RS stress measurements (via either 

destructive or non-destructive methods) and the manufacturing process FE simulation may 

lead to misleading results. 

Moreover, another issue affecting these RS importing techniques is the RS 

smoothening during the equilibrating step, which may be less or more severe according to 

different cases. 
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As already mentioned, the Abaqus user’s manual recommends, when inputting 

residual stresses into the model, to create a first static step in order to check the equilibrium 

condition. In order to then remove the initial out-of-balance forces Abaqus employs the 

following algorithm:  

 The material initial stresses are imported from the ODB file or are either given by direct 

specification of the user, and will refer to the elements material point 

 At each element’s material point a further set of stresses are automatically created; these 

stresses have the same magnitude of the inputted ones, but opposite sign, therefore at 

this time the internal stress at each integration point is null all over the model, and the 

equilibrium is so guaranteed. 

 Subsequently, during this first step, the artificial stresses created by the software are 

gradually decreased, until by the end of the step the static equilibrium is finally 

achieved. 

After these steps, the analysis can proceed with any other kind of analysis step or 

procedure. 

However, the accuracy of this technique for some kinds of applications may not be 

satisfactory, therefore in this thesis a python software was developed with the aim of put 

forward a method to furtherly improve the residual stresses importing in Abaqus. 

Different versions of the software were developed, the more interesting will be 

afterwards illustrated, along with some simple application examples which was employed 

to test its effectiveness and potential worthiness in these kinds of analyses. 
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2.2 The main file logic 

The program hereafter illustrated is thought to be run when dealing with an analysis 

in which the initial condition “initial stress” was specified from an output database file, that 

was the result of a previous analysis. Hence the model assembly and the mesh must be 

consistent amid the two analyses. More in detail, to use the initial condition “initial stress”, 

Abaqus requires the ODB file, and the PRT file (extension “.prt”) which are both results 

files. 

The main file has to be run from the Abaqus GUI or either from the Abaqus PDE, 

which are respectively the graphic user interface and the Python development environment 

provided by the software suite. 

In turn, the main file launches the other scripts with assigned other smaller tasks, the 

scheme of picture 2.1 depicts the program flow and logic in short. 

The Python scripts employ many commercial libraries such as: 

 time: this library allows to use some functions related to the execution time counting 

 numpy: it is often indicated by “np” and it allows to perform several operations on 

arrays with ease 

 math: it allows to use some mathematical functions 

 string: general actions on strings 

 os: miscellaneous operating system interfaces 

 namedtuple: factory function for creating tuple subclasses with named fields 

 inputfile: it allows to work with files and extract data 
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main file 

• it defines the Python libraries to be imported 
• it initializes some constants necessary for the next 

steps 
• it displays in the Abaqus GUI a pop-up window which 

allows the user to enter some analysis data 
• it executes all the other sub-programs in a loop 
• it records the total execution time 

 

extract1 

• it opens the first analysis ODB file and reads per each 
mesh element the value of residual stress 
corresponding to its integration point 

• it stores these data in the array "ex1" at each loop 
cycle (volatile array) and only for the first execution in 
the array “targ” which will stay the same 
 

 

run_job 

• It automatically opens the second analysis model 
database and executes the job 

• The initial condition “internal stress” will read the RS 
from the ODB file of the first analysis 

• A control ensures that the analysis job is carried out 
before to run further code 
 

 

extract2 

• It is equivalent to “extract1”, but this time the 
residual stress at each element integration point are 
read from the output database file (ODB) generated 
by the second analysis 

• These data are then stored in the array “ex2” 
 

 

statistics 

• This script is thought to collect at each loop cycle 
useful statistics about the accuracy of the residual 
stress import procedure at each iteration 

• It exploits the stress data gathered in the arrays “ex2” 
and “targ” 

• It only works on the Von Mises stresses for choice 
 

 

PI_adjustment 

• In this simple script the inputted residual stress 
adjustment is performed by means of the PI equation 

• It employs the data collected in the arrays “ex2” and 
“targ” to adjust the values held in the array “ex1” at 
each iteration loop 

• It employs the integral factor β given as input  

 

stepx 

• The aim of this script is only to modify the string 
which serves a step name for the new fake steps 
created in the first analysis ODB, since all the steps 
must have different names 
 

 

reload_data 

• It opens the first analysis ODB and create at each 
loop cycle a fake step 

• It creates a new field output (stresses) out of the 
values held in the array “ex1” 

• The initial stress condition in the second analysis job 
is set to read the data from the last step of this ODB 
 

 

report 

• This script is executed outside the loop, as the last 
• It creates the file “statistics_report.txt”  
• It writes on such file all the statistics data computed 

when executing the script “statistics.py” which were 
“appended” in some dedicated arrays at each loop 
cycle 
 

 

Figure 2.3: “Program components”. 
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It is then necessary to add some statements to gain access to some Abaqus resources 

and modules, like as the visualization module, or the ODB file, for instance: 

 from abaqus import * 

 from abaqusConstants import * 

 from odbAccess import * 

 from odbMaterial import *    

 from odbSection import * 

All these statements and library calls need to be provided only once, and before the 

execution of their related instructions. Hence, for convenience they were placed at the 

starting lines of the main file. 

All the employed scripts will be hereafter described in detail. 

 

2.2.1 The main file 

from abaqus import * 

from abaqusConstants import * 

from odbAccess import * 

from odbMaterial import *    

from odbSection import *    

import time 

import numpy as np 

import visualization 

import fileinput 

import os 

import sys, getopt, os, string 

import math 

from collections import namedtuple 

 

Import Python libraries and 

Abaqus modules 
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input_data= getInputs(  (('first analysis ODB path:','first_analysis.odb'), 

('last step name:','releasing'), 

('instance name:',''),('second analysis ODB path:','second_analysis.odb'), 

('last step name:','equilibrium_step'), 

('Model database name:',''),('job name:','second_analysis'),('integral factor:','1'), 

('number of iterations:','4')), 

'Input required fields' ) 

 

MyStruct = namedtuple("MyStruct", "first_odb_path first_last_step first_instance  

sec_odb_path sec_last_step sec_MDB sec_job beta iterations") 

 

inp=MyStruct(input_data[0],input_data[1],input_data[2],input_data[3], 

input_data[4],input_data[5],input_data[6],input_data[7],input_data[8]) 
 

 

 

 

start = time.time()   

 

 

 

r=0 

flag1=0 

x=0 

flag3=0 

 

 

execfile('extract1.py') 

 

for x in xrange(int(inp.iterations)): 

 if flag1>0: 

  execfile('reload_data.py')  

  flag1=1 

 

 execfile('run_job.py')  

 execfile('extract2.py') 

 execfile('statistics.py') 

 execfile('PI_adjustment.py') 

 execfile('stepx.py') 

 

Pop-up 

window for 

the data 

insertion 

Start execution time 

recording here 

Variables and 

flags 

initialization 

Loop 

execution 
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end = time.time() 

dt=end-start 

 

execfile('report.py')           
 

 

2.2.2 The pop-up window for the data insertion 

This window was thought to allow even an unexperienced Python programming 

language user to use this code with ease. With the given code, it is indeed necessary to 

specify for any analysis some model data from the first analysis from which take the 

residual stress and from the upcoming analysis as well. 

As to the first analysis the program needs the ODB file path, or just its name if it is 

placed in the same folder of the scripts, the name of the last step, from which take the stress 

data and the assembly instance name. 

With regard to the second analysis are similarly needed its ODB file path, its last 

analysis step name, its model database name or “MDB”, and finally the job name. 

Finally, are required two parameters which are only related to the iteration procedure 

performed on the residual stress importing. These parameters are the integral factor β of 

the adjustment equation and the number of iterations allowed for the script execution. 

The choice for these last two parameters depends to some extent to the kind of model 

involved, therefore their optimum choice must be found by search and trial, in order to 

achieve better results in the least number of iterations. 

Final time 

recording 
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Figure 2.4: “Pop-up window for the inputs”. 

 

Some entries are already set by default as hint, but can be modified by the user. 

 

2.2.3 extract1 

odb = openOdb(path=inp.first_odb_path)                   

lastFrame=odb.steps[inp.first_last_step].frames[-1]         

Stress=lastFrame.fieldOutputs['S'] 

ex1=np.empty([len(Stress.values),6], dtype=np.float32)    

i=0 

 

for S in Stress.values: 

 ex1[i][0]=S.data[0] 

 ex1[i][1]=S.data[1]  

 ex1[i][2]=S.data[2] 

 ex1[i][3]=S.data[3] 

 ex1[i][4]=S.data[4] 

 ex1[i][5]=S.data[5] 

It opens the first analysis ODB file, and 

gets the last frame of the last step stress 

field, to be imported in the array “ex1” 

By means of this loop the stress tensor of each 

mesh element is imported in “ex1”, in such a 

way that each column holds one stress 

component per each element 
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 i+=1 
 

targ=ex1   
 

 

 

 

 

 

 

import os 

myfile=inp.first_odb_path[0:(len(inp.first_odb_path)-4)]+'.lck' 

 

if os.path.isfile(myfile): 

    os.remove(myfile) 

 

 

 

 

 

 

 

 

 

del i, myfile, Stress,lastFrame 

odb.close() 

 

 

 

 

 

 

 

 

 

The data held in “ex1” are copied in the array “targ” which will stay fixed 

in time to be compared with the obtained residual stresses at the end of 

the equilibrium step. The data held in “ex1” will be instead adjusted at 

each iteration cycle 

Every time that an ODB file is 

manipulated Abaqus creates a lock 

file, to avoid the file to be 

read/written concurrently by 

multiple applications. 

It is then necessary to remove this file 

at each cycle to keep on 

reading/writing the file 

Temporary variables and arrays are 

deleted to spare memory space. 

Finally, the ODB file is closed 
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2.2.4 run_job 

 

 

 

 

mdb=openMdb(inp.sec_MDB)     

myJob=mdb.jobs[inp.sec_job]     

myJob.submit() 

myJob.waitForCompletion() 

mdb.close() 
 

 

 

 

 

 

 

##### delete lck file 

import os 

 

myfile=inp.sec_job+'.lck' 

 

if os.path.isfile(myfile): 

    os.remove(myfile) 

 

 

 

 

 

 

 

 

 

 

It opens the second analysis model database (file with 

extension “.CAE”, which holds the model, the mesh, the 

loads and the analysis job. 

Then it submits the job, in this way creating the second 

analysis ODB file, which will have the same name given to 

the analysis job 

 

It checks the presence of a lock 

file, and eventually deletes it 
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2.2.5 extract2 

 

odb = openOdb(path=inp.sec_odb_path)                        

lastFrame=odb.steps[inp.sec_last_step].frames[-1]        

Stress=lastFrame.fieldOutputs['S'] 

ex2=np.empty([len(Stress.values),6], dtype=np.float32)   

i=0 

 

 

 

 

for S in Stress.values: 

 ex2[i][0]=S.data[0] 

 ex2[i][1]=S.data[1]  

 ex2[i][2]=S.data[2] 

 ex2[i][3]=S.data[3] 

 ex2[i][4]=S.data[4] 

 ex2[i][5]=S.data[5] 

 i+=1 

 

 

 

 

import os 

myfile=inp.sec_odb_path[0:(len(inp.sec_odb_path)-4)]+'.lck' 

 

if os.path.isfile(myfile): 

    os.remove(myfile) 

del lastFrame,Stress, i , myfile 

odb.close() 

 

 

 

del lastFrame,Stress, i , myfile 

odb.close() 

 

Analogously to the script 

“extract1”, it initially opens the 

second analysis ODB file, and gets 

the stress field output at the last 

frame of the last step, in order to 

copy it in the array “ex2” which is 

analogous to the array “ex1” 

This loop allows to load the 

stress tensor in “ex2” per each 

mesh element 

It checks the presence of a 

lock file and if so it deletes it 

It deletes temporary 

variables and closes the file 
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2.2.6 statistics 

### CALCULATE STATISTICS DATA 

 

vm1=np.sqrt(0.5*((targ[:,0]-targ[:,1])**2+(targ[:,1]-targ[:,2])**2+ 

(targ[:,2]- targ[:,0])**2+6*(targ[:,3]**2+targ[:,4]**2+targ[:,5]**2))) 

 

vm2=np.sqrt(0.5*((ex2[:,0]-ex2[:,1])**2+(ex2[:,1]-ex2[:,2])**2+ 

(ex2[:,2]-ex2[:,0])**2+6*(ex2[:,3]**2+ex2[:,4]**2+ex2[:,5]**2))) 

 

 

 

if flag3==0: 

 delta_max=[] 

 delta_perc_max=[] 

 delta_mean=[] 

 delta_perc_mean=[] 

 scostd=[] 

 scostp=[] 

flag3=1 

 

 

 

delta_max.append(max(abs(vm1-vm2)))  

delta_perc_max.append(max(abs(((vm1-vm2)*100/vm1)))) 

 

delta_mean.append(np.mean(abs(vm1-vm2))) 

delta_perc_mean.append(np.mean(abs((vm1-vm2)*100/vm1))) 

 

 

 

 

scostd.append(float((abs(vm1-vm2)>1000).sum())*100/len(ex1)) 

scostd.append(float((abs(vm1-vm2)>10000).sum())*100/len(ex1)) 

scostd.append(float((abs(vm1-vm2)>100000).sum())*100/len(ex1))  

scostd.append(float((abs(vm1-vm2)>1E6).sum())*100/len(ex1)) 

scostd.append(float((abs(vm1-vm2)>10E6).sum())*100/len(ex1)) 

scostd.append(float((abs(vm1-vm2)>100E6).sum())*100/len(ex1)) 

scostd.append(float((abs(vm1-vm2)>200E6).sum())*100/len(ex1)) 

The statistics calculated in 

this script take into account 

the Von Mises stress and 

exploits the data held in 

“ex2” and “targ”, so first of 

all the Von Mises stresses 

of these two data sets are 

computed 

Initialization of the arrays which will hold the 

statistics, to be carried out at the first loop 

cycle only 

Calculation of the maximum 

difference and mean 

difference between the 

inputted and obtained 

residual stresses both in 

absolute and percental terms   

Calculation of the cumulative 

percentage of absolute 

differences between the 

input/output stresses 
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scostp.append(float(((abs(vm1-vm2)*100/vm1)>0).sum())*100/len(ex1)) 

scostp.append(float(((abs(vm1-vm2)*100/vm1)>15).sum())*100/len(ex1))  

scostp.append(float(((abs(vm1-vm2)*100/vm1)>30).sum())*100/len(ex1)) 

scostp.append(float(((abs(vm1-vm2)*100/vm1)>50).sum())*100/len(ex1))  

scostp.append(float(((abs(vm1-vm2)*100/vm1)>75).sum())*100/len(ex1)) 

scostp.append(float(((abs(vm1-vm2)*100/vm1)>100).sum())*100/len(ex1)) 

scostp.append(float(((abs(vm1-vm2)*100/vm1)>200).sum())*100/len(ex1)) 

 

 

 

del vm1, vm2 

 

 

 

 

2.2.7 Pi_adjustment 

 

#### ADJUSTMENT OF THE INPUTTED STRESSES FROM THE FIRST ANALYSIS 

 

 

beta=float(inp.beta)       

 

         

 

ex1=ex1+beta*(targ-ex2)     

 

 

 

del ex2, beta 

 

 

 

 

 

Calculation of the 

cumulative percentage of 

the percental differences 

between the input/output 

stresses 

Temporary 

variables deletion 

Integral factor, inputted by the 

user at the pop-up window 

Temporary variables 

deletion 

It corresponds to the equation: 

𝜎(𝑥)𝑖𝑛𝑝
𝑖+1 = 𝜎(𝑥)𝑖𝑛𝑝

𝑖 + 𝛽(𝜎(𝑥)𝑡𝑎𝑟𝑔 − 𝜎(𝑥)𝑜𝑢𝑡
𝑖 ) 
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2.2.8 stepx 

####### step name writer 

 

r=r+1 

a=str(r)  

b='step' 

 

step_name=b+a 

 

del a, b 

 

 

2.2.9 reload_data 

### CREATE A FAKE STEP IN THE FIRST ANALYSIS ODB WITH THE RECOMPUTED INPUTTED 

STRESSES 

 

 

 

odb = openOdb(path=inp.first_odb_path,readOnly=False)      

step1 = odb.Step(name=step_name,description='', domain=TIME, timePeriod=1.0) 

frame1 = step1.Frame(incrementNumber=1,frameValue=0.1, description='') 

 

 

 

 

EL=range(1,len(ex1)+1) 

 

 

 

instance1=odb.rootAssembly.instances[inp.first_instance]                                   

 

stress_field = frame1.FieldOutput(name='S', 

description='stresses', type=TENSOR_3D_FULL) 

stress_field.addData(position=INTEGRATION_POINT, 

instance=instance1, labels=EL, data=ex1) 

Simple script whose duty 

is to create per each loop 

cycle a new name for the 

added fictious step, since 

they must be different 

It opens the first 

analysis ODB file 

and creates a new 

fictious step, 

progressively named 

thanks to the script 

“stepx” at each cycle 

It gets the 

assembly instance 

of interest and 

creates the stress 

field at the last 

frame of the last 

step. 

Finally, it charges 

in the ODB the 

adjusted stresses 

held in “ex1” 
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odb.save() 

odb.close() 

 

 

del step1,frame1,EL,odb,step_name 

 

 

2.2.10 report 

### WRITE STATISTICS TO FILE 

 

 

myfile = open('statistics_report.txt', 'w')                  

 

myfile.write(' MAX(MPa)  MEAN(KPa)  MAX%      MEAN%\n') 

 

 

 

 

 

 

for i in range(len(delta_max)): 

  

 myfile.write('%6.3f     %6.3f     %6.3f  

%6.3f\n'%(delta_max[i]/1E6,delta_mean[i]/1000,delta_perc_max[i],delta_perc_mean[i]))  

 

myfile.write('\n\n\n') 

 

 

 

 

 

 

 

 

 

 

The ODB file has been 

modified, hence must be 

saved and closed. 

Temporary variables 

deleted 

It creates a text file for 

writing the data calculated 

by the script “statistics” 

This loop 

writes to the 

file the 

maximum and 

mean stress 

differences 

collected at 

each cycle 
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for i in range(0,len(scostd),7): 

 

 myfile.write('scostamento%%>0:   %6.3f%%\t\tdelta_sigma>1kPa:   

%6.3f%%\n'%(scostp[i],scostd[i])) 

 myfile.write('scostamento%%>15:  %6.3f%%\t\tdelta_sigma>10kPa:  

%6.3f%%\n'%(scostp[i+1],scostd[i+1])) 

 myfile.write('scostamento%%>30:  %6.3f%%\t\tdelta_sigma>100kPa: 

%6.3f%%\n'%(scostp[i+2],scostd[i+2])) 

 myfile.write('scostamento%%>50:  %6.3f%%\t\tdelta_sigma>1MPa:   

%6.3f%%\n'%(scostp[i+3],scostd[i+3])) 

 myfile.write('scostamento%%>75:  %6.3f%%\t\tdelta_sigma>10MPa:  

%6.3f%%\n'%(scostp[i+4],scostd[i+4])) 

 myfile.write('scostamento%%>100: %6.3f%%\t\tdelta_sigma>100MPa: 

%6.3f%%\n'%(scostp[i+5],scostd[i+5])) 

 myfile.write('scostamento%%>200: %6.3f%%\t\tdelta_sigma>200MPa: 

%6.3f%%\n\n\n'%(scostp[i+6],scostd[i+6])) 

 

myfile.write('\n\n\n') 

 

 

myfile.write('Execution time: %8ds   %8dmin'%(dt,dt/60))  

 

 

 

 

myfile.close()  

 

del delta_max, delta_perc_max, delta_mean,  

delta_perc_mean, scostd, scostp, flag3, dt 

 

 

 

 

This other loop writes the 

percent cumulative difference 

amid the inputted and output 

stresses 

It writes the 

execution time 

recording 

File closure and 

temporary variables 

deletion 
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2.2.11 The calculations of “statistics.py” and “report.py” 

In this section is presented a quick explanation of the statistics calculations performed 

to assess to program effectiveness according to the set parameters (integral factor β and 

number of iterations) as well as the model tested. 

The stress components relative to each mesh element are held in a field output object 

in a tuple as “data= (S11, S22, S33, S12, S13, S23)”. 

Hence, as first is needed to calculate the Von Mises stress as follows: 

𝜎𝑣𝑚 = √(
1

2
∗ ((𝜎11 − 𝜎22)2 + (𝜎11 − 𝜎33)2 + (𝜎22 − 𝜎33)2 + 6 ∗ (𝜎12

2 + 𝜎23
2 + 𝜎13

2 ))) 

Afterwards, all the calculations will be carried out on such stress component, and will 

be indicated simply as σ for convenience. 

The Von Mises stress is calculated for any element in the model and collected in the 

vectors “vm1” and “vm2”, whereby in the first vector are held the data read from the first 

analysis ODB file, that is actually the target the program tries to get closer to, whilst the 

second holds the data relative to the ODB file of the second analysis, after the equilibrium 

step. In the list called “delta_max”, at each iteration cycle, the maximum absolute difference 

between the data of “vm1” and “vm2” is saved, whereas in the vector “delta_perc_max” is 

saved the maximum percent difference, namely: 

Δ𝜎𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑎𝑏𝑠(𝜎𝑖
𝑣𝑚1 − 𝜎𝑖

𝑣𝑚2)) 

Δ𝜎%𝑚𝑎𝑥
= 𝑚𝑎𝑥 (𝑎𝑏𝑠(𝜎𝑖

𝑣𝑚1 − 𝜎𝑖
𝑣𝑚2) ∗

100

𝜎𝑖
𝑣𝑚1) 
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In addition, the mean value of the absolute and percent differences was calculated 

and saved in the lists “delta_mean” and “delta_perc_mean” respectively. 

Δ𝜎𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛 (𝑎𝑏𝑠(𝜎𝑖
𝑣𝑚1 − 𝜎𝑖

𝑣𝑚2)) 

Δ𝜎𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛 (𝑎𝑏𝑠(𝜎𝑖
𝑣𝑚1 − 𝜎𝑖

𝑣𝑚2) ∗
100

𝜎𝑖
𝑣𝑚1) 

Hence, thanks to these data it is already possible to monitor the extent of the 

improvement in terms of maximum and mean stress field distortion. Moreover, a further 

control was added to help concentrating on the most critical distortions both in absolute or 

percent terms. 

Namely, in the vectors called “scostd” and “scostp”, was made a count of the 

elements in which the stress difference was greater than a certain amount, in order to have 

an indication of the amount of severe differences, since in many applications a gap of only 

few MPa would be irrelevant. 

The algorithm employed can be summarized as follows: 

∑(𝑎𝑏𝑠(𝜎𝑖
𝑣𝑚1 − 𝜎𝑖

𝑣𝑚2) > 𝑥) ∗
100

𝑙𝑒𝑛(𝑣𝑚1)
 

∑(𝑎𝑏𝑠(𝜎𝑖
𝑣𝑚1 − 𝜎𝑖

𝑣𝑚2) ∗
100

𝑣𝑚1
> 𝑥) ∗

100

𝑙𝑒𝑛(𝑣𝑚1)
 

Where “x” stands for a value to be compared, by default set to values from 1 kPa to 

200 Mpa and in percent from 0% to 200%. The optimum range should be decided upon the 

magnitude of the RS. 
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2.3 The program testing 

The Python program described in the previous sections was tested by means of some 

simple analysis examples. The number of elements of the selected models was set to a very 

low amount with the aim to reduce to few minutes the analysis time, allowing to make 

several tests with different parameters combinations and models. 

The tests consisted in a first analysis, from which to extract the residual stress data, 

and a second one, on which the residual stresses were given as initial condition by the 

software. 

The first analysis was composed by a first loading step, whereby a load or 

displacement sufficient to produce some plastic deformation on the model was applied. 

Then a second step was created wherein only the boundaries conditions were kept and the 

deforming loads were instead removed. 

In this way at the end of the analysis the plastic residual stresses were the only still 

on the specimen model. 

By running this analysis, the first analysis ODB file was created along with its part 

file (extension “prt”) with all the necessary information for the subsequent analysis. 

The second analysis consisted in only a static step, called equilibrium step, whereby 

only the boundary conditions and the initial condition “initial stress” were set up. 

The employed model was the same for both the analyses in terms of geometry, 

material and mesh. 
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It is indeed very important that the two meshes are identical for the correct program 

execution. 

Finally, the Python main script was executed from Abaqus which displayed the input 

parameters windows and automatically carried out all the remaining tasks. 

Thanks to the text file “statistics_report.txt” generated by the script “report.py” it is 

then possible to check the achieved accuracy improvement in the internal stress importing 

and decide whether is necessary or not to change the number of iterations or the integral 

factor β. 

After ensuring a satisfactory internal stress importing accuracy, any subsequent 

analysis step can be added to the second analysis after the equilibrium step and so the work 

submission can proceed normally. 

 

2.3.1 First example: the CTS specimen 

The specimen adopted for this test example is a compact tension specimen, whose 

dimension are reported as meters in the sketch of figure 2.3. 
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Figure 2.5: “CTS specimen sketch”. 

 

Where its depth is of 0,5 cm and the material chosen is a mild steel with elastic 

modulus E=270 GPa and Poisson coefficient ν=0,3. Since also plastic deformations were 

involved was necessary to define the plastic behaviour of the steel, the chosen values are 

collected in table 2.1: 

 Yield stress (MPa) Plastic strain 

1 200 0 

2 246 0,02352 

3 294 0,04739 

4 374 0,09353 

5 437 0,1377 

6 480 0,1800 
Table 2.1: “Plastic behaviour of the selected steel” 

 

The boundary conditions consist in an encastre on the vertical face of length 10 cm of 

figure 2.3, and in a Z-direction constraint (orthogonal to the drawing and in the upward 

direction). 
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These two conditions are held for the entire analysis time, in contrast with the loads 

which was given as material displacements and was set inactive in the last step, called 

“releasing”. 

The loads consist in displacements imposed to the two holes in upward and 

downward direction, as clarified by picture 2.4. 

The applied displacement is of 1 mm for both the holes, and as suggested by the 

Abaqus user manual, since plastic deformations are produced the option “Nlgeom” was set 

to include the effects of large deformations. 

 
Figure 2.6: “Boundary conditions and loads”. 

 

Finally, the mesh was made out of 8481 elements, and 11940 nodes. The chosen kind 

of element is identified by C3D8R which stands for hexahedral linear elements. 

In figure 2.5 are shown the Von Mises stresses over the specimen after releasing the 

load, therefore consist of residual internal stresses.  
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Figure 2.7: “Residual stress after releasing the load (the data are in Pa)”. 

 

As the first analysis was completed its ODB and PRT files are available, hence is now 

possible to start a second analysis in which we want to import the residual stress data as 

initial condition and then to simulate a further set of loading steps of any kind. 

With the aim of uniquely test the program, in the second analysis only one step was 

created, called “equilibrium step”, in order to then compare the internal stresses given as 

input held in the first ODB file and the ones obtained after the importing procedure and the 

equilibrium step held in the second ODB file. 

In order to test the program, now the file “main.py” is run, and the pop-up window 

which appears immediately is filled in as follows: 
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Figure 2.8: “Filling in the input window”. 
 

Hence, were set four iteration steps and the integral factor to β=1. This means that the 

Python script executes the job for four times adjusting each time the inputted internal 

stresses. 

The script called “report.py” prints the statistics parameters in the file “statistic 

report.txt”, which is reported hereafter: 

 

MAX(MPa) MEAN(KPa) MAX%   MEAN% 

149.406     3456.138     94.470   4.500 

148.062     3241.253     90.356   4.159 

146.742     3097.240     86.163   3.945 

145.439     2983.142     82.192   3.777 
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scostamento%>0:   100.000%  delta_sigma>1kPa:   99.988% 

scostamento%>15:   4.622%  delta_sigma>10kPa:  99.811% 

scostamento%>30:   1.368%  delta_sigma>100kPa: 97.406% 

scostamento%>50:   0.307%  delta_sigma>1MPa:   73.541% 

scostamento%>75:   0.083%  delta_sigma>10MPa:   4.964% 

scostamento%>100:  0.000%  delta_sigma>100MPa:  0.189% 

scostamento%>200:  0.000%  delta_sigma>200MPa:  0.000% 

 

 

scostamento%>0:   100.000%  delta_sigma>1kPa:   99.965% 

scostamento%>15:   3.997%  delta_sigma>10kPa:  99.682% 

scostamento%>30:   1.191%  delta_sigma>100kPa: 96.958% 

scostamento%>50:   0.153%  delta_sigma>1MPa:   72.562% 

scostamento%>75:   0.047%  delta_sigma>10MPa:   4.292% 

scostamento%>100:  0.000%  delta_sigma>100MPa:  0.177% 

scostamento%>200:  0.000%  delta_sigma>200MPa:  0.000% 

 

 

scostamento%>0:   100.000%  delta_sigma>1kPa:   99.976% 

scostamento%>15:   3.584%  delta_sigma>10kPa:  99.705% 

scostamento%>30:   0.931%  delta_sigma>100kPa: 97.382% 

scostamento%>50:   0.130%  delta_sigma>1MPa:   72.232% 

scostamento%>75:   0.047%  delta_sigma>10MPa:   3.938% 

scostamento%>100:  0.000%  delta_sigma>100MPa:  0.153% 

scostamento%>200:  0.000%  delta_sigma>200MPa:  0.000% 
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scostamento%>0:   100.000%  delta_sigma>1kPa:   99.988% 

scostamento%>15:   3.231%  delta_sigma>10kPa:  99.776% 

scostamento%>30:   0.837%  delta_sigma>100kPa: 97.371% 

scostamento%>50:   0.106%  delta_sigma>1MPa:   71.336% 

scostamento%>75:   0.035%  delta_sigma>10MPa:   3.726% 

scostamento%>100:  0.000%  delta_sigma>100MPa:  0.141% 

scostamento%>200:  0.000%  delta_sigma>200MPa:  0.000% 

 

Execution time:      575s          9min 

 

 

In the first group of data, labelled as “MAX(Mpa) MEAN(Mpa) MAX% MEAN%”, 

each row refers to an iteration, after this first group of data other four sets labelled as 

“scostamento%” and “delta_sigma” were written; each set of data refers to a different 

iteration step, indeed four iterations were selected in the initial pop-up window. 

Finally, also the execution time is reported both in seconds and in minutes (rounded 

up). 

Hence, after four iteration steps the absolute stress difference dropped from about 

3,456 MPa to 2,983 MPa and in percent terms from 4,5% to 3,777% and so forth. In figure 2.7 

the Von Mises stress field given as input, the one obtained after the equilibrium step 

without the intervention of the Python program, and after four steps of iterations are 

compared.  
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 Figure 2.9: “Results comparison”. 
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2.3.2 Second example: bent 3D beam 

The second example is a cantilever beam loaded at one of its ends by means of a non-

null displacement boundary condition. The material properties assigned to the model are 

the same used for the compact test specimen of the previous example. 

In figure 2.8 are illustrated the sketch dimensions in meters. 

 

 

 

Figure 2.10: “Cantilever beam sketch”.  
 

The depth of the beam is of 0,5 cm, and as to the boundary conditions at one end face 

is applied an encastre condition, and at the other a displacement of X mm in the Z direction, 

as depicted in figure 2.9: 

 
Figure 2.11: “Boundary conditions”. 
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Also in this case, when executing the Python scripts, at the input pop-up window was 

selected an integral factor β=1 and four iterations; in the following, the “statistic_report.txt” 

file is reported to analyse the results: 

 
 MAX(MPa)  MEAN(KPa)  MAX%      MEAN% 

 1.612           48.071          485.391     3.140 

 1.423           44.286          268.923     2.522 

 1.279           42.028          275.494     2.372 

 1.162           40.429          251.292     2.307 

 

scostamento%>0:   100.000%  delta_sigma>1kPa:   59.921% 

scostamento%>15:   3.172%  delta_sigma>10kPa:  39.820% 

scostamento%>30:   0.989%  delta_sigma>100kPa: 14.581% 

scostamento%>50:   0.356%  delta_sigma>1MPa:    0.112% 

scostamento%>75:   0.213%  delta_sigma>10MPa:   0.000% 

scostamento%>100:  0.127%  delta_sigma>100MPa:  0.000% 

scostamento%>200:  0.045%  delta_sigma>200MPa:  0.000% 

 

scostamento%>0:   100.000%  delta_sigma>1kPa:   58.704% 

scostamento%>15:   1.921%  delta_sigma>10kPa:  40.015% 

scostamento%>30:   0.315%  delta_sigma>100kPa: 13.738% 

scostamento%>50:   0.097%  delta_sigma>1MPa:    0.097% 

scostamento%>75:   0.049%  delta_sigma>10MPa:   0.000% 

scostamento%>100:  0.041%  delta_sigma>100MPa:  0.000% 

scostamento%>200:  0.011%  delta_sigma>200MPa:  0.000% 
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scostamento%>0:   100.000%  delta_sigma>1kPa:   57.966% 

scostamento%>15:   1.708%  delta_sigma>10kPa:  40.000% 

scostamento%>30:   0.292%  delta_sigma>100kPa: 13.352% 

scostamento%>50:   0.090%  delta_sigma>1MPa:    0.082% 

scostamento%>75:   0.049%  delta_sigma>10MPa:   0.000% 

scostamento%>100:  0.034%  delta_sigma>100MPa:  0.000% 

scostamento%>200:  0.015%  delta_sigma>200MPa:  0.000% 

 

scostamento%>0:   100.000%  delta_sigma>1kPa:   57.753% 

scostamento%>15:   1.483%  delta_sigma>10kPa:  39.831% 

scostamento%>30:   0.225%  delta_sigma>100kPa: 12.861% 

scostamento%>50:   0.090%  delta_sigma>1MPa:    0.067% 

scostamento%>75:   0.049%  delta_sigma>10MPa:   0.000% 

scostamento%>100:  0.026%  delta_sigma>100MPa:  0.000% 

scostamento%>200:  0.007%  delta_sigma>200MPa:  0.000% 

 

Execution time:     3211s         53min 

 

Also in this case is noticeable a progressive improvement of the importing procedure 

at each iteration step both in terms of mean and maximum stress difference. 

In this model the mesh features 26700 elements and 32578 nodes, and the kind of 

elements selected is the C3D8R, which stands for 8-node linear brick, reduced integration 

elements. In analogy to the first example, also in this case a first analysis was performed in 

order to produce plastic deformations in the part, which in the last step was released from 
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the applied load in such a way to keep at the end of the analysis only the residual internal 

stresses. Subsequently a second analysis was created, which started with the initial 

condition “input stress” to be read from the previously produced ODB file. 

In figure 2.10 the deformed shape model: 

 

 

 
Figure 2.12: “Deformed shape cantilever beam”. 

 
In this case is not possible to notice the difference at a first sight (fig.2.11) but is 

anyway possible to assess the program effectiveness from the report statistics. 

 

 

 
Figure 2.13: “Comparison between the Von Mises stress given as initial condition and obtained 

after the equilibrium step; is not possible in this case to see the difference”. 
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2.4 Further enhancements 

2.4.1 Input by text file version 

The developed program is quite flexible and can be easily modified, adding or 

substituting subprograms. The most straight forward enhancement possible to the 

presented code is to make it able to read the stress input data from a text file instead of an 

Abaqus ODB file, making then possible to read data from any other FEM software. 

Let suppose to have a text file whereby the stress tensor data per each element are 

listed in order as: 

8.285606E+07 -2.837972E+06 -2.051437E+06 9.665228E+06 -1.037617E+07 2.252248E+06 

Hence, only separated by a tab character “\t”, it is then possible to extract such data 

and to copy them in an array for further calculations: 

f=open('myfile.txt',"r")             #insert input file name 

sigma_targ=f.read() 

sigma_targ=sigma_targ.split('\t') 

sigma_targ.pop() 

a=len(sigma_targ)/6+1 

sigma_targ = np.reshape(sigma_targ,(a-1,6)) 

sigma_targ=np.array(sigma_targ, dtype=np.float32)      

f.close() 

It is therefore possible through Python to easily read and write the stress tensors from 

Abaqus to text files and conversely. For example, in the first phases of the program 

development the tests were performed on simpler model, then it was possible to manually 
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compute statistics by means of excel directly. In order to write the data to an excel workbook 

the following script was employed: 

#DATA CONVERTER 

import xlrd 

import xlwt 

from xlutils.copy import copy 

import os.path 

import xlsxwriter 

 

data = [] 

with open("first_analysis_extraction.txt") as f: 

 for line in f: 

  data.append([word for word in line.split("\t") if word]) 

wb = xlsxwriter.Workbook('first_analysis_extraction.xlsx') 

sheet = wb.add_worksheet("sheet_1") 

iterrange=iter(range(len(data)))                              

next(iterrange) 

for row_index in iterrange: 

 for col_index in range(len(data[row_index])): 

  v=float(data[row_index][col_index])          

  sheet.write_number(row_index, col_index,v) 

for first_col_index in range(len(data[row_index])):           

 sheet.write(0,first_col_index,data[0][first_col_index]) 

 

wb.close() 
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Another solution investigated was the possibility to read as initial stress conditions 

the data relative only to a small portion of the model. This is motivated by a potential 

application that is to measure (estimate) the internal stresses on a real specimen by means 

of strain gauges such as rosettes gauges. It would be then interesting to be able to insert 

these measurements on the FEA problem. However, when dealing with mechanical 

equilibrium this was proven to be not feasible in most cases, since the inputted stresses in 

a small region are pretty prone to smooth out, all over the model. Even the use of the 

developed program does not carry satisfactory results. 

However, this version of the program will be herein briefly reported in case of future 

enhancement which may lead to appreciable results. 

2.4.2 Input on sets version 

This version is thought to allow the user to insert internal stresses as initial conditions 

which do not derive from a previous FEM analysis but instead from a measurement. Hence, 

to be used the user must already be provided with the geometric model, the mesh, and the 

boundary conditions. 

By means of the Abaqus GUI (graphic user interface) is possible to select and create 

an element set. It is then possible to assign a certain stress tensor to all the selected elements 

in the set as initial condition. Anyways, with this simple manual method was not possible 

to implement the correction algorithm used in the script “PI_adjustment”. 
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Hence, the code was modified in order to create a fake first analysis for the residual 

stress evaluation to be inputted in the follow-up analysis. 

In order to better clarify this procedure, the modified main file is presented: 

import time 

start = time.time() 

r=0 

flag1=0 

x=0 

execfile('fictious_odb.py') 

for x in xrange(4): 

 if flag1>0: 

  execfile('reload_data_extra.py')  ###load ex1 in the ODB 

 flag1=1 

 execfile('run_job.py') 

 execfile('extract2_extra.py') 

 execfile('PI_adjustment_set.py') 

 execfile('stepx_extra.py') 

end = time.time() 

dt=end-start 

Hence, as first a new script called “fictious_ODB.py” was created; this script opens 

the model database and gets the number of mesh elements, the number of selected sets by 

the user and their elements. 

Then it creates a fictious job to be executed, in this way a fictious ODB file and PRT 

file is created, with the same name assigned to the job. Subsequently the stress filed is added 
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to this ODB, in which all the stresses are set to zero, except the ones held in the sets selected 

by the user. In these the stress tensor is assigned directly into the code, but may be inserted 

by the user in a pop-up window potentially. 

In the following the script is reported, accordingly to what was the duty of the script 

“extract1.py” also in this case the aim is to create the arrays “ex1” and “targ”. 

 

mdb=openMdb('cantilever_beam_RS.cae') 

k=mdb.models['cantilever_beam'].rootAssembly.instances['beam-1'].elements 

mesh_elements=len(k)      

stress=np.zeros([mesh_elements,6], dtype=np.float32) 

nsets=len(mdb.models['cantilever_beam'].rootAssembly.sets)   

sets=np.empty([nsets],dtype=tuple)                             

h= mdb.models['cantilever_beam'].rootAssembly.sets 

H=[] 

T=[] 

for i in range(nsets): 

 sets[i]='Set-'+str(i+1) 

 

for i in range(nsets): 

 for j in range(len(h[sets[i]].elements)):                 

   H.append(h[sets[i]].elements[j].label)                

   T=str(h[sets[i]].elements[j].type) 

 

H=np.array(H,dtype=int)                                   #array with all the element labels to be imported 
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#### SET STRESS VALUE FOR THE SETS 

ST=(0,0,3E5,0,0,0)                                              #desired stress tensor for the set--300 KPa, 0.3MPa 

 

stress[H-1]=ST                                                    #array to be inserted into the fictious ODB 

 

#create the fictious ODB and prt file 

#create a fictious job in the current mdb 

step1 = mdb.models['cantilever_beam'].StaticStep(name='fictious_step',previous='Initial', 

timePeriod=1.0) 

job1=mdb.Job(name='first_analysis',model='cantilever_beam') 

job1.submit() 

job1.waitForCompletion()             #this will create a fictious .prt and ODB file 

 

#add stress fieldOutput to ODB 

odb = openOdb(path='first_analysis.odb',readOnly=False)  

step1 = odb.Step(name='first_step',description='', domain=TIME, timePeriod=1.0) 

frame1 = step1.Frame(incrementNumber=1,frameValue=0.1, description='') 

EL=range(1,len(stress)+1) 

instance1=odb.rootAssembly.instances['BEAM-1']   #insert instance name 

stress_field = frame1.FieldOutput(name='S', description='stresses', type=TENSOR_3D_FULL) 

stress_field.addData(position=INTEGRATION_POINT, instance=instance1, labels=EL, data=stress) 

#delete fictious step and job 

del mdb.models['cantilever_beam'].steps['fictious_step']  

del mdb.jobs['first_analysis'] 
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#create equilibrium step and second analysis job 

step1 = mdb.models['cantilever_beam'].StaticStep(name='equilibrium_step',previous='Initial', 

timePeriod=1.0) 

job1=mdb.Job(name='second_analysis',model='cantilever_beam') 

 

#create input stress command    

mdb.models['cantilever_beam'].Stress(name='stress_input',distributionType=FROM_FILE, 

fileName='first_analysis', step=-1, increment=-1) 

ex1=stress 

targ=stress       

odb.save() 

odb.close() 

mdb.save() 

mdb.close() 

 

The other scripts employed in this version are equivalent to the ones presented 

beforehand, hence they will not be treated in this section. 

This program version is then able to allow the user to prescribe any stress tensor to 

an element or a selected set in the discretized model. In addition, it exploits the proportional 

adjustment described before to get closer to the aimed result after the equilibrium step. 

However, after some trials it was proven that the adjustment algorithm is not effective 

in this situation, even employing different values for the integral factor β, then a different 

approach must be developed. Indeed, even after several iterations the desired inputted 

internal stresses cannot be obtained, when inputted only on small areas or when strongly 

unbalanced. 
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2.4.3 Lean version 

This version is very close to the original one, and was developed in order to make the 

iteration procedure leaner, in case of very large models (very high number of elements and 

nodes), or in case of high number of iterations expected. 

In the original version, discussed in section 2.2, the script called “reload_data”, had 

the duty to upload on the ODB file at each iteration step the modified stress tensors. In such 

a way, after some loops, the size of the ODB file can grow remarkably, especially in case of 

large FE models. 

However, during the testing and development phases this issue was not accounted 

as negative, since the size of the models was irrelevant, and moreover the data stored at 

each loop were useful for testing and comparison purposes. 

In this new version the script “reload_data.py” was replaced by a new dedicated 

script called “new_input_ODB”. 

The script is hereafter reported: 

 

### DELETE OLD ODB 

if flag4==1: 

 import os 

 myfile=inp.first_odb_path 

 if os.path.isfile(myfile): 

    os.remove(myfile) 

flag4==1 
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### CREATE AN ORIGINAL ODB COPY 

if flag5==0: 

 copyfile(inp.first_odb_path,'temp.odb') 

 flag5==1 

 

### REPLACE THE COPY TO BE MODIFIED 

if flag2==1: 

 copyfile('temp.odb',inp.first_odb_path) 

flag2==1 

  

### MODIFY ODB FILE 

odb = openOdb(path=inp.first_odb_path,readOnly=False)      

step1 = odb.Step(name=step_name,description='', domain=TIME, timePeriod=1.0) 

frame1 = step1.Frame(incrementNumber=1,frameValue=0.1, description='') 

EL=range(1,len(ex1)+1) 

 

instance1=odb.rootAssembly.instances[inp.first_instance]                                   

 

stress_field = frame1.FieldOutput(name='S', description='stresses', type=TENSOR_3D_FULL) 

stress_field.addData(position=INTEGRATION_POINT, instance=instance1, labels=EL, data=ex1) 

 

odb.save() 

odb.close() 

 

del step1,frame1,EL,odb,step_name 
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Above all, the program creates a copy of the ODB file with the stresses to be given in 

input. The copy is saved as “temp.odb”, and this operation occurs only at the first loop 

cycle. Then the original ODB file is modified as it occurred running the script “reload_data”, 

hence the stress tensors modified are uploaded in a newly created fictious step; finally, the 

file is saved and closed. 

From the second loop cycle on, the program will delete the original ODB file (at the 

second run) or either the last used modified ODB file (from the third run). 

Therefore, at each cycle the program will copy the file saved beforehand as 

“temp.odb”, rename it as it was the original file and proceed normally with its data 

modification. 

In this way it is possible to save on the file only the original stress tensors and their 

last update, enabling a consistent memory saving. In turn, all the other intermediate data 

will be lost, apart from the statistics generated in the file “statistics_report.txt”.  

Hence, depending on the kind of application, that is either testing the program 

effectiveness or its normal use, the user must decide which one of the two versions to run. 
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Conclusions 

 

In this master thesis a deep study on the relationship between the residual stresses in 

manufacturing and the mechanical fatigue was carried out. 

The most relevant works in literature were gathered and analysed in order to gain a 

deep understanding on the fatigue life simulation issue in presence of stress fields. It was 

found that the majority of the researchers pursued the fracture mechanics approach, since 

the crack growth rate can be related to a Paris-like power law, able to account to the physical 

phenomenon interesting the fatigue crack growth in a stress field, such as the crack closure 

effect (induced by compressive fields) and the internal stress redistribution, which has been 

the main challenge in the past for the approaches relying on weight function methods for 

the computation of the stress intensity factors, but in recent times thanks to the work of 

Garcia et al. and Roberts et al., was demonstrated that by means of the FEM is actually 

possible to tackle this issue. 

In addition, the more relevant works were found to share some few common steps in 

the simulation procedure, which have been identified in section 1.3 as the model geometry 
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realization, the application of the residual stress field, the definition of the parameters and 

the empirical law to be taken into account for the fatigue life estimate. 

For each of these steps, the encountered alternatives were presented, along with their 

difficulties and limits. 

The second part of the work dealt with the first of these issues, that is to correctly 

create a self-equilibrated stress field into a FE model. The target of the Python program was 

to solve or to fade the problem of the equilibrium step during the analysis. It was indeed 

encountered that if the inputted field is not perfectly self-equilibrated in the model 

geometry, it might be difficult to achieve an equilibrium or it may yield to unsatisfactory 

results in the importing procedure. 

More versions of the Python program were developed, the original one is deeply 

depicted in section 2.2, whereas the others are outlined in section 2.4. 

The performance of the program was assessed by means of two simple FE models, 

which are described in section 2.3. The first example is a 3D compact test specimen or CTS, 

made out by 8481 elements; in this case after the equilibrium step the average error in the 

importing procedure was of 4,5% or 3456 Kpa in absolute terms, whereas after 4 iteration 

steps performed by the developed software it decreased to 3,777% and 2983 Kpa. 

The second example was a simple cantilever beam, made out of 26700 elements, and 

had an initial error in the stress field definition of 3,14% or 48,07 Kpa, whereas after four 

iteration of the program featured an error of 2,307% or 40,429 Kpa. 
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Further details about the software performances are presented in the chapter 2, along 

with the method through which they have been assessed. 

The developed program features a robust base, that allows different and new 

subscripts to be added, removed or modified. Therefore, the software is optimized for 

potential further enhancements. 

In the last section three different versions are outlined; in the base version the stress 

field is inputted by an Abaqus ODB file, then is assumed that such field was computed 

through Abaqus. However, a second version allows to read the tensors directly from a text 

file, thus allowing the user to perform the stress field calculation with any other kind of 

software. Obviously the software would be modified according to the input text file 

formatting. 

Another version was created to make the program run leaner, in terms of computer 

resources. Since this program was thought to work with a FCA Automobiles’ product 

model, counting millions of elements, an enhancement of this kind was necessary. 

Finally, with the aim of cover a different application, was attempted to develop a 

version which was supposed to allow the user to input any kind of stress field obtained by 

an experimental measurement into a small portion of the FE model, but unfortunately in 

this case the approach was proven to not be effective. Further studies need to be performed 

in finding an alternative approach to cover this application. 

Hence, the next step of this research will potentially be to still improve the approach 

developed in this work and to create a more comprehensive and versatile tool for the 
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residual stress fields creation in FE models, in such a way to have an optimal basis for the 

follow up steps in the determination of a method for the fatigue life assessment under these 

conditions.  
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