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Abstract 

The aim of this thesis is the study and modeling of an innovative concept of mobile 

robot called Ballbot, this robot is designed to be dynamically stable on a single ball, 

due to its omnidirectionality this robot presents an astounding mobility which makes 

it very interesting to be applied in human environments.  

Firstly, in order to understand the dynamical behavior of this robot, a physical model 

was developed following a top-down approach, starting with a simplified model of a 

two-dimensional decoupled system. Later this model was improved by the 

introduction of physical phenomena originally idealized, which include the friction 

force with nonlinear behavior and the presence of a sloped surface. Finally, a 

linearized three-dimensional model was introduced in order to analyze the coupling 

terms between cartesian planes. 

Due to the natural instability of the Ballbot a sophisticated control is required, to 

achieve this goal an optimal control theory was used, implementing an LQR (linear–

quadratic regulator) controller. The controller was designed to compute the proper 

motor torque aiming to meet the system stability and achieve a velocity tracking. 

Once the control system was designed, the influence of the fundamental parameters 

as height, mass and center of gravity, were analyzed. The choice of those parameters 

will determine the response characteristics of the robot in terms of maximum tilt 

angle, performance and agility. 

Finally, the work ends with several simulations with different input requirements 

which may require some future applications of the Ballbot, in each case the response 

was studied in order to optimize the control system. 
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Chapter 1 - Introduction 

1.1 Motivation 

Historically, mobile robots have been designed to be statically stable, which results in 

the robot not needing to expend energy while standing still. This is typically achieved 

through the use of three or more wheels on a base. These statically-stable mobile 

robots have a wide base for a large polygon of support, and a lot of dead weight in 

the base to lower the center of gravity. The wide base makes it difficult for statically-

stable mobile robots to navigate cluttered human environments. Moreover, these 

robots have several other limitations that make them poorly suited to a constantly 

changing human environment. They can neither roll in any direction, nor can they 

turn in place [1]. 

In this context arises the need to develop a new concept of mobility, with a design 

that gives omnidirectionality to the vehicle, this means a configuration capable of 

moving in any direction without a previous need to reach a specific orientation. 

1.2 The Ballbot concept 

A Ballbot is a mobile robot able to stay stable and move on a single spherical wheel 

(i.e., a ball).  

The Ballbot obtains the property of omnidirectionality due to its single contact point 

with the ground, that makes it agile, maneuverable and able to operate in 

complicated environments. 

Whereas the main feature of this robot is to have a single contact point with the 

ground (Figure 1.1(a)), that generate a natural instability as that of an inverted 

pendulum. Thus, keep the equilibrium point requires an active control system. The 

https://en.wikipedia.org/wiki/Mobile_robot
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drive system works with an inverse computer mouse mechanism principle (Figure 

1.1 (b)) to provide torque to the ball, while the body has no direct actuation. 

The motion principle of the Ballbot is similar to the one of the Segway i.e. controlling 

the position of the center of mass (CM) of the system. When the CM moves forward, 

the motors accelerate towards the same direction in order to maintain the balance of 

the system. The more the CM shifts from the balancing point, the larger the 

acceleration in that direction [2]. 

 

Figure 1.1: At the left (a) Ballbot side view. At the right (b) mouse-ball drive 

mechanism used by CMU Ballbot 

1.3 Practical applications 

The Ballbot concept has several possible practical applications, its design is adaptable 

to mass and height variations, which makes it an ideal nominee for a human mobile 

robot that would work as an omnidirectional Segway, taking as input, the 

movements of the driver or tracking an input device like a control column (Figure 1.2 

(a)). 

Another possible application is the use as an assistance robot, with a host of practical 

fields such as office jobs, home assistance, medical assistance and so on (Figure 1.2 

(b)). Notably, a Ballbot device works in relatively smooth and even surfaces, which 

limits its application.  
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Figure 1.2 Possible applications of the Ballbot, at the left (a) human mobile robot. 

At the right (b) medical assistance. both proposed by [3] 

 

In this thesis we focus on designing a Ballbot for large payloads (50 kg or more). 

Although this work does not focus on a specific application the research done is 

applicable for a human mobile robot or an unmanned device.  
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Chapter 2 - State of the art 

In this chapter, we will make a brief historical review about the development of 

robots based on inverse pendulum principle, starting with the one that maybe is the 

precursor of this device, the Segway. Then, by entering the specific field of the Ballbot 

we will make a brief description about the most notable devices and prototypes 

developed in the academic field, among them, the CMU Ballbot (The first successful 

Ballbot), developed by Prof. Ralph Hollis, the Rezero developed at ETH Zurich and 

finally an interesting concept of human-readable Ballbot named B. B. Rider 

developed at the university of Tokyo.  

2.1 The Segway 

One of the first devices that use the inverted pendulum principle is the Segway PT 

(personal transporter) a two-wheeled, human readable device developed by Dean 

Kamen. The working principle of a Segway is based on controlling the position of the 

center of mass (CM) of the system. The user’s orientation is observed about 100 times 

per second using gyroscopes and tilt sensors within the vehicle.  

 

Figure 2.1 Segway operating principle [2] 

To move the Segway forward or backward, the rider simply leans slightly forward or 

backward respectively, Figure 2.1. When the CM moves forward, the motors of the 

Segway accelerate towards the same direction in order to maintain the balance of the 
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system. The more the CM shifts from the balancing point, the larger the acceleration 

in that direction. A manual turning mechanism on the control bar is used to steer the 

vehicle [2]. 

2.2 CMU Ballbot 

The was first Ballbot built in 2005 [4] by Prof. Ralph Hollis of the Robotics Institute at 

Carnegie Mellon University (CMU). The goal of Prof. Hollis and his team have 

developed a new type of mobile robot (Figure 2.2) that is the height, width, and 

weight of a person, having a high center of gravity, that balances dynamically on a 

single spherical wheel. this robot must be slender enough to easily maneuver in 

cluttered, peopled environments, this research group also developed group a robust 

control system able to withstand large disturbances, and handle crashes with objects 

[5]. This device presents interesting applications in human-robot collaboration. 

 

Figure 2.2: CMU Ballbot: (a) with three legs deployed, (b) with legs retracted into 

body, (c) balancing and station keeping [4] 



6 

2.3 Rezero 

This Ballbot was developed in 2010 by a research group at ETH Zurich, [6] this device 

is one of the most sophisticated in the field. Not only is it able to stabilize and move 

in a sphere but also interacts with the environment, by means of a laser distance 

sensor. The sensor it is able to set up a distance with a person and follow it. 

Compared with other prototypes, Rezero reach fast responses and agile motions that 

can be achieved using Ballbots. 

 

Figure 2.3: Rezero Ballbot 

2.4 BB Rider 

An interesting case to analyze is that of the BB rider, a human-readable Ballbot 

developed at the same time as the CMU Ballbot (2005) by a group of researchers led 

by Yoshihiko Nakamura from the University of Tokyo [7]. They presented this human 

mobility device that balances on a basketball, Nakamura and his group proposed an 

operating principle similar to that of the Segway, this means, who rides on the 

vehicle, can moves to all directions by shifting one’s the center of mass. 

However, the Ballbot did not reach a consistently stabilization and no extra labor was 

presented. 
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Figure 2.1 ”B. B. Rider” Ballbot 
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Chapter 3 - Preliminary Design 

In order to perform a preliminary study of the operation and performance of this 

device, it is necessary to define a preliminary design, specify geometric parameters 

and the macrostructure of the Ballbot. In order that, some existing devices will be 

studied, and a new design based on requirements needed will be proposed. 

3.1 Main requirements 

 3.1.1 Performance and functionality 

This section presents the main requirements that the prototype of the Ballbot must 

meet, in future calculations the other requirements must be adapted to meet these 

ones. 

• The Ballbot must be able to stabilize and transport a large payload (50 kg or 

more) 

• The Ballbot must maintain stable against disturbances of 5% of the maximum 

load. 

• The Ballbot shall follow a velocity input given by the user. 

 3.1.2 Control requirements 

In chapter 4 the controller will be designed to meet these requirements: 

• Stable system i.e. all the closed loop poles should have a respective negative 

real part. 

• Overshoot in body pitch angle response to a step input should be less than 10º. 

• The control system must decrease frequencies above 80 Hz for at least 70% in 

order to guarantee the correct data acquisition by the IMU. 

• The settling time of the inverse step response of the pitch body angle should be 

between 5 and 6 seconds in case of position keeping. 
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• Torque saturation should be minimized. 

3.2 Drive mechanism 

The motion principle of the Ballbot requires that the ball can be moved in any 

direction. This may be achieved implementing actuated wheels, the disposition of 

these actuated wheels it can be realized by several possible arrangements. 

The table 3.1 shows a tradeoff analysis with the different types of arrangements used 

in functional prototypes at this moment and summarized in [8]. In order to perform a 

qualitative assessment, it is necessary to define figures of merit, among which, is 

highlighted: 

• Construction (/10): How easily will be the construction or prototyping. 

• Controllability (/10): How directly the action on the motor system is related to 

the Ballbot motion. 

• Encumbrance (/10) understands, how many parts and transmission elements 

must be used and its influence on the total weight of the device. 

• Friction (/10): it is understood as the spent energy, necessary to overcome 

friction, directly related to the number of pieces in contact with the sphere. 

 

Assigning a relative value to each of these figures of merit, it was concluded that the 

best drive mechanism is use three omniwheels over ball center (Table 3.1) 
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Table 3.1 Trade off Matrix: Drive Mechanism 

Concept Controllability Construction Encumbrance Friction Final score 

Four friction wheels at ball 

center 

Figure 3.1 (a) 

9 5 3 3 20 

Two omniwheels at ball 

center and one omniwheel 

for yaw movement. 

Figure 3.1 (b) 

7 6 5 8 26 

Four omniwheels over ball 

center 

Figure 3.1 (c) 

6 7 6 6 25 

Three omniwheels over ball 

center 

Figure 3.1 (d) 

5 9 8 8 30 

 

Figure 3.1 :  (a) Four friction wheels at ball center.    (b) Two omniwheels at ball center and one omniwheel for yaw 

control. (c) Four omniwheels over ball center. (d) Three omniwheels over ball center. Images by  [8]



12 

3.2 Geometric parameters 

In order to obtain a functional mathematical model and perform future simulations, 

it is necessary to define certain geometric parameters as shown in table 3.2.  

In chapter 6 we will see how these parameters influence the dynamics of the Ballbot. 

 

Table 3.2 Geometric parameters of the preliminary design 

Parameter Symbol Value 

Distance between CM and ball center 𝑙 0.6 [𝑚] 

Ball radius 𝑅𝑠 0.16 [𝑚] 

Ball mass 𝑀𝑠 2.5 [𝑘𝑔] 

Ball inertia 𝐽𝑠  0.016[𝑘𝑔.𝑚2] 

Pitch moment of inertia about CM 𝐽𝜓 12.48 [𝑘𝑔.𝑚2] 

Roll moment of inertia about CM 𝐽𝜑 12.48 [𝑘𝑔.𝑚2] 

Body mass 𝑀𝑏 50 [𝑘𝑔] 
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Chapter 4 - Model Design 

4.1 Planar system model 

This section describes the mathematical model according to the work carried out by 

Yorihisa Yamamoto [9]. His methodology will be followed performing new 

assumptions and different simplifications according to our model described in 

chapter 3. 

 4.1.1 Description of two-dimensional model 

As a first step we can take the Ballbot model and consider it as an inverted spherical 

pendulum without considering the omnidirectional wheels as an initial approach 

(Figure 3.1) thus the final system involves two rigid bodies, called the sphere and the 

body. In order to take the three-dimensional problem and reduce it to a two-

dimensional system we must make the following assumptions: 

• The motion in the pitch and roll plane (XZ and YZ respectively) are 

decoupled. 

• The device present revolution symmetry therefore the equations for both 

planes are identical. 

We also make the following simplifying hypothesis. 

• There is no slip between the sphere and the ground. 

• As a first approximation we consider rolling friction as negligible. 

We take the XZ plane and present the model in a system of cartesian axes where we 

introduce the coordinates and main parameters involved. At this point we can notice 

that the system has two degrees of freedom, the body pitch angle( 𝜓) and the sphere 

rotation angle (𝜃). 
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Figure 4.1: inverted spherical pendulum with coordinate system 

We propose to find a relationship between the torque applied to the sphere and the 

response of the variables 𝜓 and 𝜃. 

 4.1.2 Kinetic relationships 

Based on the coordinate system of the figure 3.1, Assuming that 𝜃 = 0 at 𝑡 = 0 it is 

possible to express the kinematic relationships of the system as: 

(𝑥𝑠, 𝑧𝑠) = (𝑅𝑠𝜃, 𝑧𝑠) 

(�̇�𝑠, �̇�𝑠) = (𝑅𝑠�̇�, 0) 

(𝑥𝑏 , 𝑧𝑏) = (𝑥𝑠 + 𝐿 sin𝜓 , 𝑧𝑠 + 𝐿 cos𝜓) 

(�̇�𝑏 , �̇�𝑏) = (𝑅𝑠�̇� + 𝐿 �̇�cos𝜓 ,−𝐿 �̇�sin𝜓) 

 4.1.3 Dynamics equations 

At this point it's possible derive motion equations with the method of Lagrange for 

this it is necessary to define, a mathematical function called the Lagrangian, which 

summarizes the dynamics of the entire system, this function is expressed as follows: 

𝐿 = 𝑇1 + 𝑇2 − 𝑈 

Where: 

• 𝑇1: Translational kinetic energy 

• 𝑇2: Rotational kinetic energy 

• U: Potential energy 
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The ranslational kinetic energy is expressed as the as the sum of the energy of the 

body and the energy of the sphere 

𝑇1 =
1

2
𝑀𝑠(�̇�𝑠

2 + �̇�𝑠
2) +

1

2
𝑀𝑏(�̇�𝑏

2 + �̇�𝑏
2) 

Introducing 𝜃 e  𝜓 

𝑇1 =
1

2
𝑀𝑠(𝑅𝑠�̇�)

2
+

1

2
𝑀𝑏 ((𝑅𝑠�̇� + 𝐿 �̇�cos𝜓)

2
+ (𝐿 �̇�sin𝜓)

2
) 

Otherwise the expression of the rotational kinetic energy is given by: 

𝑇2 =
1

2
𝐽𝑠�̇�

2 +
1

2
𝐽𝜓�̇�2 

and finally, the potential energy is expressed like: 

𝑈 = 𝑀𝑠𝑔𝑧𝑠+𝑀𝑏𝑔𝑧𝑏 

considering that 𝑧𝑏 = 𝑧𝑠 + 𝐿 cos𝜓 it is possible to manipulate the last equation to 

arrive at: 

𝑈 = (𝑀𝑠 + 𝑀𝑏)𝑔𝑧𝑠 + 𝑀𝑏𝑔𝐿 cos𝜓 

 

Taking theta (𝜃) and psi (𝜓) like system degrees of freedom it is possible to obtain the 

equations of motions using the Lagrange's equations of the second kind. 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 𝐹𝜃 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜓
= 𝐹𝜓 

Developing this last expression (see appendix A) we arrive at: 

[(𝑀𝑏 + 𝑀𝑠)𝑅𝑠
2 + 𝐽𝑠]�̈� + [𝑀𝑏𝐿𝑅𝑠 cos𝜓]�̈� − 𝑀𝑏𝐿𝑅𝑠�̇�

2 sin𝜓 = 𝐹𝜃 (4.1) 

[𝑀𝑏𝐿𝑅𝑠 cos𝜓]�̈� + [𝑀𝑏𝐿
2 + 𝐽𝜓]�̈� − 𝑀𝑏𝑔𝐿 sin𝜓 = 𝐹𝜓 

 

(4.2) 

 4.1.4 Linearization of the model 

In order to obtain a state space representation to apply modern control theory 

techniques the equations 4.1 and 4.2 must be linearized. To do this, was chosen the 
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equilibrium point (𝜓 = 0) as a point of linearization, it means: sin𝜓 → 𝜓, cos𝜓 → 1 

and neglecting the second order term �̇�2 = 0. We arrive to the expression: 

[(𝑀𝑏 + 𝑀𝑠)𝑅𝑠
2 + 𝐽𝑠]�̈� + [𝑀𝑏𝐿𝑅𝑠]�̈� = 𝐹𝜃 (4.3) 

[𝑀𝑏𝐿𝑅𝑠]�̈� + [𝑀𝑏𝐿
2 + 𝐽𝜓]�̈� − 𝑀𝑏𝑔𝐿𝜓 = 𝐹𝜓 (4.4) 

That can be reformulated as 

𝐸 [
�̈�
�̈�

] + 𝐹 [
�̇�
�̇�

] + 𝐺 [
𝜃
𝜓

] = [
𝐹𝜃

𝐹𝜓
] 

Where 

𝐸 = [
(𝑀𝑏 + 𝑀𝑠)𝑅𝑠

2 + 𝐽𝑠 𝑀𝑏𝐿𝑅𝑠

𝑀𝑏𝐿𝑅𝑠 𝑀𝑏𝐿
2 + 𝐽𝜓

] 

𝐹 = [0̅] 

𝐺 = [
0 0
0 −𝑀𝑏𝑔𝐿

] 

 4.1.5 State Space Formulation 

So far, we have arrived to a linear differential equation system with constant 

coefficients that can be written in state-space representation where the state variables 

are whose values evolve through time: 

�̅� = [𝜃, 𝜓, �̇�, �̇�] 

Besides, the input or control will be the motor torque applied to the sphere 

𝑢 = 𝐹𝜃 

Thus, we can derive state equations from equations 4.3 and 4.4 

�̇� = 𝐴�̅� + 𝐵𝑢 

Where: 

𝐴 = [

0 0 1 0
0 0 0 1
0 𝐴(3,2) 𝐴(3,3) 𝐴(3,4)
0 𝐴(4,2) 𝐴(4,3) 𝐴(4,4)

]             𝐵 = [

0
0

𝐵(3)
𝐵(4)

] 
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𝐴(3,2) = −𝑀𝑏𝑔𝐿 𝐸(1,2)/ det(𝐸)                             𝐵(3)=[ 𝐸(2,2) + 𝐸(1,2)]/det (𝐸) 

𝐴(4,2) = 𝑀𝑏𝑔𝐿 𝐸(1,1)/ det(𝐸)                                 𝐵(4)= [ 𝐸(1,1) + 𝐸(1,2)]/det (𝐸) 

𝐴(3,3) = −[ 𝐸(2,2) + 𝐸(1,2)]/ det(𝐸)                  𝐴(3,4)= [ 𝐸(2,2) + 𝐸(1,2)]/det (𝐸) 

𝐴(4,3) = [ 𝐸(1,2) + 𝐸(1,1)]/det (𝐸)                     𝐴(4,4) = [ 𝐸(1,1) + 𝐸(1,2)]/det (𝐸) 

 

4.2 Friction modeling 

The friction phenomenon is a complex, nonlinear problem, involved in many areas of 

engineering. Modeling of friction is very important in pre-design phase. The correct 

representation of this phenomenon will be directly related to the veracity of the 

simulation.  

Delving into the Ballbot problem, the main acting friction force is the rolling 

resistance. 

 4.2.1 Rolling resistance 

Considering the sphere of the Ballbot resting on the ground and subjected to a load 

𝐹𝑁, due to the weight of the entire device. Since the ball material is elastic, the contact 

between the body and the ground becomes a surface. In order to counteract the 

action of external forces i.e. the weight, arises a pressure distribution on this surface. 

In the absence of movement, the pressure distribution is symmetrical, thus, the 

resulting is collinear with the force 𝐹𝑁, therefore there is no resistant moment (Figure 

4.2 (a)). 

In rolling condition, it is verified that the resulting pressure distribution is 

asymmetrical and is shifted in the direction of motion, thus the reaction force no 

longer passes through the center of the ball instead is moved a distance 𝑢, called 

rolling resistance parameter. This creates a moment that tends to stand against the 

rolling torque 𝑀𝑣 (Figure 4.2(b)). 
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Figure 4.2 (a) pressure distribution reaction on a static condition (b) pressure 

distribution reaction on a rolling condition [10].  

As regards the rolling resistance evaluation, the rolling friction coefficient often 

replaces the rolling friction parameter u. This non-dimensional coefficient, is defined 

as following: 

𝑓𝑣 =
𝑢

𝑟
 

Concerning that the rolling friction coefficient grows with the increase of the rolling 

speed, as demonstrated in the following law: 

𝑓𝑣= 𝑓𝑣0 + 𝑓𝑣𝜔
2 (4.5) 

In conclusion, for have a correct representation in the model, we must add a 

resistance moment given by: 

𝑀𝑅 = 𝐹𝑁 . 𝑅𝑠. 𝑓𝑣 
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 4.2.2 Numerical Model 

To model the behavior of the resistant moment it is necessary to employ a simulation 

routine able to handle the dynamic behavior of the friction, this means that the 

software should be able to distinguish between the static condition and the slipping 

and to compute the eventual stop of the previously running rolling ball. 

Several systems have been conceived, many of them based on the Coulomb friction 

model and with the use of discontinuous arrangement in this paper we will use the 

model proposed by L. Borello [11]. 

 4.2.3 Borello friction model and related algorithm 

In [11] the authors conceived an algorithm according to the aforesaid physical friction 

model with a layout not so different from the Karnopp’s structure [12]; as the authors 

claims “both of them are divided in two alternative procedures related to the sticking 

or slipping condition. In sticking conditions, the friction force/torque is considered 

equal to the sum of the active forces/torques and opposing it, but its absolute value 

must be not greater than its limit represented by the static value of friction (FS)”. 

The mathematical model can be expressed as: 

𝐶𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = {

−𝐶𝑀                    𝑖𝑓  𝜔 = 0  ∧  |𝐶𝑀| ≤ 𝐶𝑆

−𝑠𝑔𝑛(𝐶𝑀)𝐶𝑆     𝑖𝑓  𝜔 = 0    ∧   |𝐶𝑀| > 𝐶𝑆

−𝑠𝑔𝑛(𝐶𝑀)𝐶𝐷                                     𝑠𝑒  𝜔 ≠ 0

 

Where 𝐶𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 represents the computed friction Moment, 𝐶𝑆 is the value of the 

friction torque under static conditions and, 𝐶𝐷 is the frictional force under dynamic 

conditions, function of the velocity and 𝐶𝑀 denotes the active torque applied to the 

system 

The authors’ Simulink algorithm implements the aforesaid breakaway detection by 

means of a switch block that, as a function of instantaneous value of DXJ (velocity 

parameter), selects between sticking and slipping condition (by means of a hit 

crossing block) and, so, gives in output the proper value of static or dynamic friction 
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force FF (block A in Figure 4.3). In slipping conditions, the friction force/torque is the 

sum of a viscous and a constant term, opposing the motion; the viscous term is 

computed, by the coefficient CJ, within Act_Th in statement 1, while the constant one 

is equal to the dynamic value of friction FD, according to the statement 2. The result 

is, by the statement 4, an acceleration value D2XJ proportional to the difference 

between Act_Th and FD, having the sense coming from the algebraic difference itself. 

 

Figure 4.3 Representation of the Matlab- Simulink Friction 

force/torque algorithm presented by [11] 

 

 4.2.4 The influence of friction 

This section shows the frictional effect on the mathematical model proposed, in figure 

4.4 is shown the torque applied by the motor system and the response in terms of 

body pitch angle for an initial disturbance of 3º. 
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Figure 4.4 Comparation between friction and frictionless models for an initial 

disturbance of body pitch angle.  

It shows how the system stabilization is positively influence by taking into 

consideration the friction in the model, this means that in the presence of an equal 

disturbance the friction model will have a less aggressive response, also is verified 

that the motor system will have a less expensive actuation with friction consideration. 

In figure 4.5 is shown the response on terms of delivered torque for a velocity 

tracking 
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Figure 4.5 Torque delivered by the motor system for an initial disturbance of body 

pitch angle. 

It is exposed how, at the end of the transitional period, will remain a difference of  

near 2 Nm between the torque that the system must really deliver to the torque of the 

frictionless system, this difference is the friction torque that the real system must 

overcome in order to keep a constant velocity. 

 4.2.5 Non-linearity analysis 

It is important to analyze the role played by introducing a non-linear phenomena 

such as friction in the mathematical model, it is clear from the equation 4.5 that the 

value of the rolling friction coefficient and therefore the friction force, is directly 

proportional to the square of the angular velocity. The figure 4.6 shows the effect of 

angular velocity in the non-linearity behavior.  
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Figure 4.6 Friction Torque for a step velocity input 

 

It follows how the influence of non-linearity is notable for values greater than 20 rad / 

sec. In the cases analyzed in chapter 1, it can be highlighted that a prototype of 

Ballbot rarely exceeds 7 rad/sec, therefore for future developments, could be adopted 

a linear model of friction. 

4.3 Non-Zero floor slope 

So far it has been considered that the Ballbot moves on a completely smooth surface, 

however, this situation is not usually presented in a real human environment, the 

performance analysis with a floor slope is crucial to expand the possible applications 

of the Ballbot.  

This problem has been treated by Prof. Ralph Hollis in [13]. Working with an 

analogous approach, it will be possible to arrive to the equations that describe the 

dynamic behavior of the Ballbot. 

  



24 

 4.3.1 Modeling 

As first assumption is considered the slope angle as constant, at least in parts, and the 

slope is defined as the angle between the horizontal and the ground, where a positive 

slope means that the elevation of the floor decreases in the positive X direction. 

The equations of motion have been developed using the Lagrangian method as the 

work done in 4.1. Considering for this case a new coordinate system X’Z’ whereas, X 

'is coincident with the ground. 

 
  

 

Figure 4.7 Bi-dimensional coordinate system for non-zero flor slope  

Expressing the energies involved in this problem, The translational kinetic energy 

𝑇1 =
1

2
𝑀𝑠(𝑅𝑠�̇�)

2
+

1

2
𝑀𝑏 ((𝑅𝑠�̇� + 𝐿 �̇�cos(𝛾 − 𝜓))

2
+ (𝐿 �̇�sin(𝛾 − 𝜓))

2
) 

The Rotational kinetic energy 

𝑇2 =
1

2
𝐽𝑠�̇�

2 +
1

2
𝐽𝜓�̇�2 

And the potential energy 

𝑈 = 𝑀𝑠𝑔𝑧′𝑠 + 𝑀𝑏𝑔𝐿 cos(𝛾 − 𝜓) 
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Taking theta (𝜃) and psi (𝜓) as system degrees of freedom, it is possible to obtain the 

equations of motions using the Lagrange's equations of the second kind. 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 𝐹𝜃 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜓
= 𝐹𝜓 

Using a calculation routine built in Wolfram Mathematica, it is possible to arrive to 

the expression: 

E[
�̈�
�̈�

] + 𝐹 [
�̇�
�̇�

] + 𝐺 [
𝜃
𝜓

] = [
𝐶𝑀

0
] 

 Where  

E= [
𝑎 𝑏. cos(𝛾 − 𝜓)

𝑎 + 𝑏. cos(𝛾 − 𝜓) 𝑐 + 𝑏. cos(𝛾 − 𝜓)
] 

F= [
0 −𝑏. 𝑠𝑖𝑛(𝛾 − 𝜓)�̇�

0 −𝑏. sin (𝛾 − 𝜓)�̇�
] 

G= [
−𝑑. 𝑠𝑖𝑛(𝛾) 

−𝑑. sin(𝛾) − 𝑔𝑙𝑐𝑚𝑏sin (𝜓) 
] 

With 

𝑎 = 𝑟2(𝑚𝑏 + 𝑚𝐵) + 𝐼𝐵 

b = 𝑟𝑙𝑐 𝑚𝐵 

𝑐 = 𝐼𝐵 + 𝑙𝑐
2𝑚𝐵 

𝑑 = 𝑔 𝑟(𝑚𝑏 + 𝑚𝐵) 

Isolating the variables �̈� e �̈� as follows: 

[
�̈�
�̈�

] = 𝑀−1 [[
𝐶𝑀

0
]  − 𝐶 [

�̇�
�̇�

] − 𝐺 [
𝜃
𝜓

]] 

It is possible to arrive at 
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�̈�=
1

𝑎𝑐−𝑏2cos (𝛾−𝜓)
(𝑐 𝐶𝑀 + 𝑏 𝐶𝑀 cos(𝛾 − 𝜓) + 𝑏 𝑐 sin(𝛾 − 𝜓)�̇�2 + 𝑐 𝑑 sin(𝛾) −

𝑏 𝑔 𝑙𝑐  𝑚𝑏 sin(𝜓) cos (𝛾 − 𝜓)) 

�̈�=
1

𝑎𝑐−𝑏2cos (𝛾−𝜓)
(𝑎 𝑔𝑙𝑐𝑚𝑏 sin(𝜓) − 𝑏 𝑑 sin(𝛾) cos(𝛾 − 𝜓) − 𝑎 𝐶𝑀 + 𝑏2 sin(𝛾 − 𝜓)cos (𝛾 −

𝜓) �̇�2) 

4.4 Three-dimensional Model 

So far, the coupling effects between the planar systems were neglected. This implies 

that if the Ballbot is moving in one direction, a sudden change of route does not 

involve any effects in the new course, this behavior does not represent the 

performance of the real system and therefore it is necessary consider a better physical 

model. 

In this section It will be appropriately analyzed the Three-dimensional System 

considering the complete geometry and taking into account physical parameters 

simplified in previous sections. The purpose of this section is assessing the effects of 

the choice of a model and What role will the simplifications play in the final model. 

 4.4.1 Geometric Description 

The Three-dimensional representation of the Ballbot (figure 4.7) could be construed 

as the union of five solids: 

• The main body 

• Three motor plants: consistent in electric motor and omnidirectional wheel 

• The sphere 
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Figure 4.8 Three-dimensional Model adopted by [6] 

 

 

We also consider the following simplifying hypothesis. 

• There is no slip between the sphere and the ground. 

• The rotation might be only in planes perpendicular to the ground, namely, 

there is no rotation in the vertical axis. 

• Omnidirectional wheels are always in contact with the sphere. 

 4.4.2 Kinetic relationship 

In order to express the kinetic relationship of the Ballbot its necessary to define a 

Coordinate system to write the orientation of the body in Euler Angles, in this case is 

consider the same representation adopted by Peter Fankhauser in [14], figure 4.8. 
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Figure 4.9 Coordinate system [14] 

 

The original Inertial frame is denoted as “I” and the three elemental rotations will 

occur about the rotating coordinate system, which changes its orientation after each 

elemental rotation, after the first rotation 𝜃𝑦  a new frame, called “L” arises, which is 

rotated again a  𝜃𝑢  to generate the frame “A’”, the last rotation 𝜃𝑦 generate the final 

frame solidary to the body called “A”. 

The velocity vectors of the solids involved are denoted as follows: 

• Angular velocity of the sphere: 

Relative to the frame L 

Ω𝑆
̅̅̅̅ = [

�̇�𝑥

�̇�𝑦

0

] 
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• Angular velocity of the omniwheels 

 In direction of the wheel axis and referenced to the system A 

𝜔𝑂𝑊𝑖 = �̇�𝑖               𝑖 = 1,2,3 

Furthermore, to express the absolute angular speed of the omniwheels 

in the body reference frame about the motor axis it is necessary to write 

Ω𝑂𝑊𝑖
̅̅ ̅̅ ̅̅ ̅ = 𝜔𝑂𝑊𝑖 +

𝑀𝑊𝑖
̅̅ ̅̅ ̅̅

||𝑀𝑊𝑖
̅̅ ̅̅ ̅̅ ||

Ω𝐵
̅̅ ̅̅  

Where 𝑀𝑊𝑖
̅̅ ̅̅ ̅̅  represent the distance between the node of the motor axis 

to the center point of the wheel I, and Ω𝐵
̅̅ ̅̅  is the angular velocity of the 

body in the frame A. 

 

• Angular velocity of the body 

 

To indicate the angular velocity of the body with the angles 𝜃𝑧 , 𝜃𝑦, 𝜃𝑥 it 

is necessary to use the Jacobian matrix and the Euler angles �̇̅�. 

Ω𝐵
̅̅ ̅̅ = 𝐽.̅ �̅� = [

�̇�𝑥 − sin(𝜃𝑦) ∙ �̇�𝑥  

cos(𝜃𝑥) ∙ �̇�𝑦 + cos (𝜃𝑦) ∙ sin(𝜃𝑥) ∙ �̇�𝑧

−sin(𝜃𝑥) ∙ �̇�𝑦 + cos (𝜃𝑥) ∙ cos(𝜃𝑥) ∙ �̇�𝑧

] 

 

• Linear velocity of the sphere 

 

If the contact point between the sphere and the ground is denoted as B 

and the center of the sphere is denoted as C the translational vector of 

the spher can be computed as. 

�̇̅�𝑝 = Ω𝑆 × 𝐵𝐶̅̅ ̅̅  
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 4.4.3 Dynamics equations 

Analogously to the planar system introduced in (4.2), the Lagrange equation are used 

to compute the equations of motion 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
= 𝐹𝑁𝑃 

Where L represents the energies of the system 

𝐿 = 𝑇𝐵 + 𝑇𝑆 + 𝑇𝑊1 + 𝑇𝑊2 + 𝑇𝑊3 − 𝑈 

• 𝑇𝐵: Kinetic energy of the body 

𝑇𝐵 =
1

2
 𝑚𝐵 �̇̅�𝑝

𝑇
�̇̅�𝑝 + 𝑚𝐵 (�̅�𝐴𝐼 ∙ �̇̅�𝑝) ∙  (Ω𝐵

̅̅ ̅̅ ∙ �̇̅�𝑝) +
1

2
 Ω𝐵
̅̅ ̅̅ 𝑇

𝐼�̅�Ω̅𝐵 

• 𝑇𝑠: Kinetic energy of the sphere 

𝑇𝐾 =
1

2
 𝑚𝑆 �̇̅�𝑝

𝑇
�̇̅�𝑝 +

1

2
 Ω𝑆
̅̅̅̅ 𝑇

𝐼�̅�Ω̅𝑆 

 

• 𝑇𝑊𝑖: Kinetic energy of the omniwheel i (i=1,2,3) 

We consider only the rotational energy of the omniwheel and the motor 

𝑇𝑂𝑊 =
1

2
 𝐼𝑂𝑊
̅̅ ̅̅ ̅ Ω𝑂𝑊𝑖

̅̅ ̅̅ ̅̅ ̅2
  

 

• 𝑈: Potential energy 

𝑉𝐵 = −𝑚𝐵 �̅� �̅�𝐴𝐼 �̇̅�𝑝 

 

 The term “q” caracterized the minimal coordinates  represented by 

�̅� = [𝜃𝑥, 𝜃𝑦, 𝜓𝑥 , 𝜓𝑦, 𝜓𝑍] 

And 𝐹𝑁𝑃 represents the non potencial forces, in this case the motor torques acting 

directly in each omniwheel called T 

 
 



31 

 4.4.2 Linearization of the model 

The Lagrange equations that represent the dynamics of the System are solved by 

computing system, due to the size of this equations, its study is limited to a linearized 

equation, using a state space representation as in section 4.1.4 it is possible to write 

 

�̇� = 𝐴�̅� + 𝐵�̅� 

𝑦 = 𝐶�̅� + 𝐷�̅� 

Where the state vector is: 

�̅� = [𝜃𝑥�̇�𝑥, 𝜃𝑦, �̇�𝑦, 𝜓𝑥 , �̇�𝑥, 𝜓𝑦, �̇�𝑦, 𝜓𝑍, �̇�𝑍]
𝑇
 

And the input vector is characterized by the motor torque applied to each omniwheel 

𝑢 = [

𝑇1

𝑇2

𝑇3

] 

As a first approach was taken the unstable equilibrium position (𝜓 = 0) as a point of 

linearization, this outcome in the following state matrix 

𝐴0 =

[
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 52 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0

−52 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 −52 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

 

Analyzing the matrix 𝐴0 , it is possible notice that the system presents three 

subsystems linearly independent, corresponding to the three spatial planes, they are 

presented in one decupled system corresponding to the yz plane and two identical 

pairs corresponding to yz and xz planes, equality is due to the perfect symmetry 

adopted in this phase of design.  

For the control matrix was computed the following result 
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𝐵0 =

[
 
 
 
 
 
 
 
 
 

0 0 0
6.2 −3.1 −3.1
0 0 0
0 0 0
0 3.1 −3.1
0 0 0
0 0 0

−15.2 8.48 8.48
0 0 0
0 −12.5 −12.5]

 
 
 
 
 
 
 
 
 

 

Next, it is interesting to study a linearization for an arbitrary point such as 

�̅� = [�̇�𝑥, �̇�𝑦, 𝜓𝑥 , �̇�𝑥 , 𝜓𝑦 , �̇�𝑦, �̇�𝑍]
𝑇

= [4
𝑟𝑎𝑑

𝑠
, 8

𝑟𝑎𝑑

𝑠
, 0.3𝑟𝑎𝑑,−0.5

𝑟𝑎𝑑

𝑠
, 0.2𝑟𝑎𝑑, 0.4

𝑟𝑎𝑑

𝑠
, 0.4

𝑟𝑎𝑑

𝑠
]
𝑇

 

For this case we will obtain the following matrices 

State matrix: 

𝐴𝑖 =

[
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0
15.3 −0.8 72 1.2 0 4.2 0 0.03 0 0.12
0 0 0 1 0 0 0 0 0 0

−70.5 4.12 25.3 −8.4 0 −5.4 0 −0.8 0 −1.2
0 0 0 0 0 1 0 0 0 0

−40.2 −10.2 4.2 25 0 6.8 0 1.86 0 2.2
0 0 0 0 0 0 0 1 0 0

−15.2 −3 −32.15 1.64 0 −2.68 0 0.03 0 0.30
0 0 0 0 0 0 0 0 0 0

52.2 0.45 −43.6 −5.01 0 5.1 0 −0.58 0 −0.4]
 
 
 
 
 
 
 
 
 

 

Control Matrix: 

𝐵𝑖 =

[
 
 
 
 
 
 
 
 
 

0 0 0
3.8 −4.2 −4.2
0 0 0

4.58 8.12 3.2
0 0 0

−15.25 −8.95 −16.51
0 0 0

−15.39 10.52 10.52
0 0 0

−6.1 −15.2 9.6 ]
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These results show that a model based on a linearization point other than the 

equilibrium point, presents strong terms of coupling between planes and from this it 

follows that the two-dimensional model, proposed in section 4.1 will respond with 

accurate outcomes at operating points where all states are nearby zero. 

From this point forward, the two-dimensional model will be adopted under the 

assumption of small angles. 
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Chapter 5 - Controller Design 

5.1 Control properties 

Once the space state system has been defined with the dynamic modeling of the 

previous chapter, we propose to design a control system capable of stabilizing the 

Ballbot. To achieve this goal, it is necessary first, analyze two important system 

properties, controllability and observability. 

 5.1.1 Controllability 

Controllability of a system is its ability to reach any state value manipulating only the 

input vector i.e. that an arbitrary configuration of the body pitch angle( 𝜓) and the 

sphere rotation angle (𝜃) is reachable by acting with a proper input torque. Consider 

for this case the continuous linear system: 

�̇� = 𝐴�̅� + 𝐵𝑢 

𝑦 = 𝐶�̅� 

Where: 

• �̅� is the [4 × 1] state vector, 𝑦 is the [4 × 1] output vector and 𝑢 is the [1 × 1] 

control vector. 

• 𝐴 is the [4 × 4] state matrix, 𝐵 is the [4 × 1] control matrix and 𝐶 is the [4 × 4] 

output matrix. 

Thus, it is possible to define the [4 × 4] controllability matrix 𝑅 as follows 

𝑅 = [𝐵     𝐴𝐵      𝐴2𝐵 …  𝐴𝑛−1𝐵] 

The system will be controllable if the R matrix has full row rank i.e. 𝑅𝑎𝑛𝑘(𝑅) = 4. For 

the system proposed in the previous section the controllability matrix is given by 

𝑅 = [

0 10,15 −156,99 2571,55
0 2571,55 82,06 −1401,02

10,15 −156,99 2571,55 −42566,4
−5,30 82,06 −1401,0 23128,87

] 
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Using the MATLAB command ctrb we can obtain the controllability matrix and verify 

that the system is controllable. 

 5.1.2 Observability 

Observability give us an idea of how states of the system can be measured from of its 

external outputs. Formally, a system is observable if, for any arbitrary state and 

control vectors, the current state can be computed in finite time using the output. 

Considering the system defined in (5.1.1) 

�̇� = 𝐴�̅� + 𝐵𝑢 

𝑦 = 𝐶�̅� 

The observability matrix is defined as follows 

𝐶 = [𝐶     𝐶𝐴      𝐶𝐴2  …  𝐶𝐴𝑛−1
] 

If the row rank of the following observability matrix 𝑅𝑎𝑛𝑘(𝐶) is equal to the number of 

state variables, then the system is observable. Using the MATLAB command obsv we 

can obtain the observability matrix and verify that the system observable i.e. 

𝑅𝑎𝑛𝑘(𝑅) = 4 

 

 4.1.3 Open-Loop Analysis 

Before connecting the feedback signals, let's Perform some open-loop analysis to 

project possible control approaches. It is known that the system is naturally unstable, 

this means that in the face of a disturbance the body will inevitably fall. 

It is possible to base this behavior analyzing the poles of a system. We will 

specifically study the poles of the system using the MATLAB function pzmap. The 

poles of the system where the pitch angle is the output are found as shown below: 

𝑝 = [

0
−16.5687

3.1737

−2.0665

] 
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The pole at 3.173 the pole has positive real part, this is due to system instability. 

Analyzing the pole-zero map in Figure 4.1 we note how the pole is in the right half of 

the complex s-plane. This confirm what we observed above. 

 

Figure 5.1: Pole Zero Map for the open loop system 

5.2 LQR control 

Huibert Kwakernaak (1972) claims [15] that a time-invariant linear system under a 

condition of complete controllability system can always be stabilized by a linear 

feedback law. In fact, more can be done. Because the closed-loop poles can be located 

anywhere in the complex plane, the system can be stabilized; but, moreover, by 

choosing the closed-loop poles far to the left in the complex plane, the convergence to 

the zero state can be made arbitrarily fast. To make the system move fast, however, 

large input amplitudes are required. In any practical problem the input amplitudes 

must be bounded; this imposes a limit on the distance over which the closed-loop 

poles can be moved to the left. These considerations lead quite naturally to the 

formulation of an optimization problem, where we consider both the speed of 

convergence of the state to zero and the magnitude of the input amplitudes. 
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Therefore, in order to design a control with a good compromise between the speed of 

convergence and the energy expended by the system a control is implemented with 

the LQR (Linear Quadratic Regulator) technique, this method is based on the 

manipulation of matrix equations, using the control and state matrices and weighting 

factors chosen by the designer according to his criteria evaluating the performance of 

the control system. 

 5.2.1 LQR Methodology 

Given the continuous-time linear system in a state space representation as follows 

{
�̇� = 𝐴�̅� + 𝐵𝑢

𝑦 = 𝐶�̅�
 

The LQR technique is based on determining the feedback gain matrix K (where 𝑢 =

−𝐾𝑦 ) that minimizes the value of a quadratic performance index (PI). The 

minimization of this PI or cost function must guarantee system stability and good 

time response, the PI is defined as: 

𝐽 =
1

2
∫ (�̅�𝑄�̅�𝑇 + �̅�𝑅�̅�𝑇)

∞

0

 

where Q and R are the weighting factors. Q and R non-negative definite symmetric 

matrices, this implies a positive value of 𝐽 and consequently design of the control 

system is transformed into a minimization problem of the cost function; in other 

words, we want to minimize the energy fed into the system by commands over time. 

In the case where 𝑅 ≫ 𝑄 the cost function is weighted by the control effort u, then the 

regulator focuses on minimizing the control action this could be consider as an 

expensive control solution. Conversely if 𝑄 ≫ 𝑅 the cost function is weighted by the 

state errors and the system's response becomes arbitrarily fast. 

Once the weight matrices have been defined, the K matrix will be compute by means 

of numerical techniques with the assistance of the MATLAB function lqr(). 
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5.3 Velocity tracking 

Consider the state system introduced which describes the dynamic behaviour of the 

system  

 

{
�̇� = 𝐴�̅� + 𝐵𝑢

𝑦 = 𝐶�̅�
 

Whereas the state vector is defined as: 

�̅� = [𝜃, 𝜓, �̇�, �̇�] 

 

Now a state variable is defined as control variable to ensure the controllability of the 

System. In this case, by assuming 𝜃  as reference variable. Besides, an error function is 

defined as the difference between the measured signal and the reference one. 

𝑒(𝑡) = 𝜃(𝑡) − 𝜃𝑟𝑖𝑓 

Now, a new variable z is added. This variable is defined as the integral of the error, as 

follows: 

 𝑧(𝑡) = ∫𝑒(𝑡) = ∫(𝜃(𝑡) − 𝜃𝑟𝑖𝑓)  (5.1) 

The next step is the definition of an augmented system (AG) formed by the state 

vector �̅� and the variable 𝑧(𝑡). 

 
[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝐴 0
𝐶𝜃 0

] [
𝑥(𝑡)

𝑧(𝑡)
] + [

𝐵
0
] 𝑢(𝑡) − [

0
𝐼
] 𝐶𝑥𝑟𝑖𝑓 

(5.2) 

The equation (4.2) converges to the equation (4.3) if the Augmented System is 

assumed as stable. 

 
[
�̇�(∞)

�̇�(∞)
] = [

𝐴 0
𝐶𝜃 0

] [
𝑥(𝑡)

𝑧(𝑡)
] + [

𝐵
0
]𝑢(𝑡) − [

0
𝐼
] 𝐶𝑥𝑟𝑖𝑓 

(5.3) 

The state equation of the Augmented System could be obtained by the subtraction 

between (4.2) and (4.3). 

 
[
�̇�𝐴𝐺(𝑡)

�̇�𝐴𝐺(𝑡)
] = [

𝐴 0
𝐶𝜃 0

] [
𝑥𝐴𝐺(𝑡)

𝑧𝐴𝐺(𝑡)
] + [

𝐵
0
]𝑢𝐴𝐺(𝑡) 

(5.4) 

Or in the state space representation: 

�̇̅�𝐴𝐺 = �̅�𝐴𝐺�̅�𝐴𝐺 + �̅�𝐴𝐺�̅�𝐴𝐺  
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Reminding that the  𝑥𝐴𝐺  𝑧𝐴𝐺  variables were defined as: 

𝑥𝐴𝐺 = 𝑥(𝑡) − 𝑥(∞) 

𝑧𝐴𝐺 = 𝑧(𝑡) − 𝑧(∞) 

At this point it is possible to apply the LQR technique, defined in the previous section 

5.2.1, taking into account that is required to consider the parameters  �̅�𝐴𝐺  and �̅�𝐴𝐺 as 

state and control matrix of the system, respectively. 

Once computed a gain matrix K, it is possible to write the input of the system as 

shown in the following equation. 

�̅�𝐴𝐺 = 𝐾�̅�𝐴𝐺 = 𝐾𝑓𝑥𝐴𝐺 + 𝐾𝑖𝑧𝐴𝐺 = 𝐾𝑓(𝑥(𝑡) − 𝑥(∞)) + 𝐾𝑖(𝑧(𝑡) − 𝑧(∞)) 

 

It is important to remember the definition of 𝑧(𝑡) that was described in (5.1). By 

tending both, 𝑥(∞) → 𝑥𝑟𝑖𝑓 and 𝑧(∞) → 0, the input of the system will be: 

�̅�(𝑡) = 𝐾𝑓(𝑥(𝑡) − 𝑥𝑟𝑖𝑓) − 𝐾𝑖 ∫(𝜃(𝑡) − 𝜃𝑟𝑖𝑓) 𝑑𝑡 

 

5.4 Controller gains calculation 

In LQR theory there is no a standard technique to choose the values of Q and R in the 

cost function (equation 5.1), instead, an empirical technique is used based on the 

experimentation and observation of the results. 

𝐽 =
1

2
∫ (�̅�𝑄�̅�𝑇 + �̅�𝑅�̅�𝑇)

∞

0

 
(5.1) 

A first approach may be computed using the Bryson’s Rule [16] to achieve a selective 

penalization of the states. In this technique Q and R are chosen as diagonal matrix 

with 

𝑄𝑖𝑖 =
1

𝑒𝑖,𝑚𝑎𝑥
2  

𝑅𝑖𝑖 =
1

𝑢𝑖,𝑚𝑎𝑥
2  
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Where 𝑒𝑖,𝑚𝑎𝑥
2

 is the square of the maximum acceptable error of the measured state i 

and 𝑢𝑖,𝑚𝑎𝑥
2

 is the square of the maximum aadmissible input. Reminding the section 

3.1.2 where the control requirements were defined, the maximum acceptable error for 

the body pitch angle is chosen to be 10º, furthermore the maximum error for the 

sphere rotation angle, which represents the position of the Ballbot, is chosen to be 1 

rad. For the derivatives of the states are taken the double of the errors of the 

respective states, which results in the following matrices. 

𝑄 =

[
 
 
 
 
 
 
1 0 0 0 0

0
1802

(10𝜋)2
0 0 0

0 0 1 0 0

0 0 0
1802

(20𝜋)2
0

0 0 0 0 1]
 
 
 
 
 
 

 

As soon as input limits, it is proposed adopt a maximum of 30 Nm which 

corresponds to a nominal value of a stepper motor, then: 

𝑅 =
1

302
 

This lead to the following gain matrix: 

𝐾 = [−5.75 −208 −6.02 −46.23 −3.16] 

5.5 Simulink implementation 

Firstly , the signal generator is built. Due to the control command will be the angular 

velocity of the sphere, it is necessary to integrate this signal in order to obtain the 

value of the reference variable  𝜃𝑟𝑖𝑓.  
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In order to simplify the system, the reference generator was grouped into a 

subsystem, in which the outputs will be 𝜃𝑟𝑖𝑓  and 𝑥𝑟𝑖𝑓. Now, the development of the 

model requires to close both of the two control loops, the one that works in the state 

vector ensuring the stabilty and the other related to the signal 𝜃𝑟𝑖𝑓  and  makes the 

model to follow the velocity command.  

 

 

Figure 5.2: Signal generator block 

Figure 5.3: Complete system modeling 
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Finally, to demonstrate the functionality of the control system in Figure 5.4 it is 

prensented the response in terms of 𝜃 (rotation of the sphere, in, �̇� (angular velocity 

of the spher) and body pitch angle 𝜑 to an initial distrubance. 

 

Figure 5.4 Initial disturbance response. rotation of the sphere, body pitch angle and 

angular velocity of the sphere, 
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Chapter 6 - The influence of design parameters 

6.1 Mass influence 

Let's see how the Ballbot responds to an increase in its weight, for this case is 

consider the model developed in chapter 4. In figure 6.1 in figure it is shown the 

response of the pitch body angle (psi) and ball angular velocity (theta_dot) to a step 

unitary input in velocity.  

 

Figure 6.1 Mass variation for an step input on velocity tracking. 

 

 It is possible to see how an increase in mass negatively influences the stability of the 

system i.e. a longer settling time and a larger overshoot. 

Likewise, it is important to note how the mass influences on the energy of the motor 

system in terms of torque (Figure 6.2), this implies that in order to move the Ballbot 

with a greater weight it will be necessary to use further energy, increasing the 

encumbrance of the system, battery and so on. 
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Figure 6.2 Torque of the motor system for mass variation 

 

 6.2.1 Mass Variation with a non-zero floor slope 

Let's see an analogous analysis to the previous one with the consideration of different 

values in the floor slope.  

 

Figure 6.3 Body pitch angle response for mass variation with diferent floor slopes 
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Figure 6.3 shows how the increase in mass has a similar effect as in the case analyzed 

in section 6.1. Nonetheless, due to the presence of a floor slope, once the transitional 

is over, the body will keep a constant pitch angle in order to keep the system in 

balance, this angle will be a function of the slope angle and the mass. 

6.2 COM distance influence  

The COM (Center Of Mass) distance is one of the most important parameters in the 

design, because a small change in this parameter can result in large differences in a 

later state. Figure 6.4 shows the response of the system to a velocity tracking. 

 

Figure 6.4 System Response for a COM distance variation 

Analyzing the response of the body pitch angle (psi) it is possible to notice how an 

increase in the COM distance, influence negatively on the stability of the system, also 
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in the lower graph it shows how for an increase in the COM distance the velocity 

tracking presents a more pronounced oscillation with higher overshoots. 

At other constant parameters we find a limit of L = 0.9m where from there the system 

becomes unstable 

 

Figure 6.5 Torque of the motor system for a COM distance variation for a velocity 

tracking 

Figure 6.5 shows an intuitive result considering the previous explanations, the 

outcome is that for a larger COM distance, the torque provided by the Motor System 

must be greater, the result is explained by the fact that the body has more energy 

kinetics to balance. 
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6.3 Floor slope isolated influence 

In this section will be analyzed the behavior of the Ballbot for different floor slopes 

according to the model developed in the section 4.3. Figure 6.6 shows five different 

cases for the stabilization front of a disturbance of 3º degrees, the behavior is studied 

for slopes of  ±3º,±6º and a 0º slope as reference case. 

 

Figure 6.6 System response for a initial disturbance with floor slopes variations 

 

It shows how an increase in the slope angle influences the stability of the system, that 

means, with an increase in pending it will be more difficult to stabilize the Ballbot it 

also stands out how the sign of pendency influences in the stabilization, reminding 

the convention adopted in section 4.3 a positive slope declines the terrain in the 

direction of the x-axis as indicated Figure 6.7, then, is highlighted the intuitive result 

that a positive slope helps stabilization for a negative disturbance. 
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Figure 6.7 Slope sign convention 
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Chapter 7 - Case analysis and control optimization 

In this chapter it will be considered two important motion profiles that could appear 

in the practical applications of the Ballbot 

• Angular velocity step input of 1 3 y 5 rad/seg 

• Trapezoidal input with maximum acceleration of 1 3 y 5 rad/seg2 

After analyzing each case, comparing them with the requirements proposed in 

chapter 3, a controller improvement was proposed in order to achieve a better 

performance taking care not to exceed the limits of power required. 

7.1 Angular velocity step 

In the first case it will be analyzed a velocity-step of 8 seconds of duration, this is 

equivalent to a linear displacement of the Ballbot, Figure 7.1 shows the response in 

terms of the angular velocity of the sphere, Figure 7.2 shows the body pitch angle and 

in Figure 7.3 displays the torque applied by the motor system. 

 

Figure 7.1 Angular velocity of the sphere for three different step inputs 
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Figure 7.2 body pitch angle for three different step inputs 

 

Figure 7.3 Torque provided by the motor system for three different step inputs 
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Analyzing the figure 7.1, it is noted that for the case of 5 rad/sec an excess in the body 

pitch angle is obtained, also for the same speed was find very high torque values in 

the deceleration of the Ballbot (Figure 7.3). These behaviors should be improved with 

an improvement in the control system. Table 7.1 summarizes the characteristic values 

of each response comparing them with the requirements introduced in the chapter 3. 

 

Table 7.1 characteristic values and maximum requirements for a velocity step input 

Case Settling Time [s] Overshoot on 𝜓 [º] Maximun Torque 

 value Max. value Max. value Max. 

1 rad/seg 4.2 𝑠𝑒𝑐 

6 𝑠𝑒𝑐 

2.1º 

10º 

8𝑁𝑚 

30𝑁𝑚 3 rad/seg 4.8 𝑠𝑒𝑐 7.3º 21 𝑁𝑚 

5 rad/seg 5 𝑠𝑒𝑐 12.8º 35 𝑁𝑚 

 

7.2 Trapezoidal Input 

This type of input is interesting to analyze to evaluate how the velocity tracking 

adapts to ramp input profile, in order to achieve this, three trapezoidal profiles with 

maximum accelerations of 1 , 3 𝑎𝑛𝑑  5  𝑟𝑎𝑑
𝑠𝑒𝑐⁄  were simulated. The responses in 

terms of angular velocity of the sphere, body pitch angle and the torque applied by 

the motor system are presented in Figure 7.4, 7.5 and 7.6 respectively. 
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Figure 7.4 Angular velocity of the sphere for three acceleration profiles 

 

Figure 7.Body pitch angle for three acceleration profiles 
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Figure 7.5 Torque provided by the motor system for three acceleration profiles 

 

Analyzing figures 7.4, 7.5 and 7.6, and considering the limits proposed in chapter 3, it 

is noted that in the three cases the requirements are met, however, the tracking 

efficiency on the ramp it will improved, ensuring that the system follows the input 

path accordingly. 

 

7.3 Controller improvement 

The results presented so far were obtained with the controller proposed in section 5.4, 

this was a first approach for the gain matrix calculation, given the results of section 

7.1 and 7.2 it is proposed modify the controller to improve the behavior of the 

system. 

In order to do this, is required to adjust the weighting matrices of the function cost 

(equation 5.1). The adjustment will be made changing the factors relative to the body 

pitch angle and the tracking error, which results in the following matrix 
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𝑄 =

[
 
 
 
 
 
 
1 0 0 0 0

0
1802

(30𝜋)2
0 0 0

0 0 1 0 0

0 0 0
1802

(60𝜋)2
0

0 0 0 0 6𝑒3]
 
 
 
 
 
 

 

 

Since most of the torque profiles are acceptable the value of R remains unchanged 

This lead to the following gain matrix: 

𝐾 = [−86.5 −834 −38 223 −100] 

7.5 Final results 

Launching the simulations with the new control system defined in 7.4, the system 

shows a clear improvement, Figure 7.6 and 7.7 shows the comparison between the 

preliminary system and the improved system for slightest edge. 

 

Figure 7.6 Body pitch angle (psi) and angular velocity of the sphere (theta dot) with 

a step input of 5rad/sec in velocity tracking for two controller models. 
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Figure 7.7 Body pitch angle (psi) and angular velocity of the sphere (theta dot) with 

a trapezoidal input in velocity tracking for two controller models. 

 

It is noted as an improvement was achieved, observing a damping response for the 

new proposed system. It is also noted how better characteristically parameters 

(maximum overshoot and settling time) are obtained for both cases. 
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Chapter 8 - Conclusion 

This thesis covered an early design phase for an innovative idea of mobile robot 

called Ballbot, the main objective was design and validate a model-based concept of 

this device. 

As a first step, a physical model was developed starting with a simplified model of a 

two-dimensional decoupled system, later this model was improved by the 

introduction friction and the presence of a sloped surface. To finish the mathematical 

modeling, a linearized three-dimensional model was introduced, concluding that the 

two-dimensional model may be adopted under the hypothesis of small variations in 

pitch and roll angle. 

In chapter 5 an optimal control theory was introduced for the implementation of an 

LQR (linear–quadratic regulator) controller to meet the system stability and achieve a 

velocity tracking given as input. 

In chapter 6, the influence of the fundamental parameters as height and mass was 

analyzed, finding a strong impact in the behavior of the system, moreover, the 

limitation in the COM (Center Of Mass) distance, a key parameter in the design, was 

individualized. 

Finally, the work ends with simulations of different input requirements which may 

require some future applications of the Ballbot, in each case the response was 

studied, and a control optimization was proposed in order to improve the dynamical 

behavior. 
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Appendix A - Derivation of the equations of motion 

We start from: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 𝐹𝜃 

(A1.1) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜓
= 𝐹𝜓 

(A2.1) 

 

Deriving respect theta 𝜃 and psi �̇�: 

 
𝜕𝐿

𝜕𝜃
=

𝜕𝑇1

𝜕𝜃
+

𝜕𝑇2

𝜕𝜃
−

𝜕𝑈

𝜕𝜃
= 0 

 

𝜕𝐿

𝜕�̇�
=

𝜕𝑇1

𝜕�̇�
+

𝜕𝑇2

𝜕�̇�
−

𝜕𝑈

𝜕�̇�
 

𝜕𝑇1

𝜕�̇�
=

𝜕 [
1
2

𝑀𝑠(𝑅𝑠�̇�)
2
+

1
2

𝑀𝑏 ((𝑅𝑠�̇� + 𝐿 �̇�cos𝜓)
2
+ (𝐿 �̇�sin𝜓)

2
)]

𝜕�̇�
= 𝑀𝑠𝑅𝑠

2�̇� + 𝑀𝑏𝑅𝑠
2�̇� + +𝑅𝑠𝑀𝑏𝐿 �̇�cos𝜓 

𝜕𝑇2

𝜕�̇�
=

𝜕 [
1
2

𝐽𝑠�̇�
2 +

1
2

𝐽𝜓�̇�2]

𝜕�̇�
= 𝐽𝑠�̇� 

 
𝜕𝑈

𝜕�̇�
= 0 

𝜕𝐿

𝜕�̇�
= 𝑀𝑠𝑅𝑠

2�̇� + 𝑀𝑏𝑅𝑠
2�̇� + 𝐽𝑠�̇� + 𝑅𝑠𝑀𝑏𝐿 �̇�cos𝜓 

 

𝜕𝐿

𝜕𝜓
=

𝜕𝑇1

𝜕𝜓
+

𝜕𝑇2

𝜕𝜓
−

𝜕𝑈

𝜕𝜓
 

𝜕𝑇1

𝜕𝜓
=

𝜕 [
1

2
𝑀𝑠(𝑅𝑠�̇�)

2 +
1

2
𝑀𝑏((𝑅𝑠�̇� + 𝐿 �̇�cos 𝜓)2 + (𝐿 �̇�sin 𝜓)2)]

𝜕𝜓
= 

                     = −𝑀𝑏𝐿 �̇�sin𝜓 (𝑅𝑠�̇� + 𝐿 �̇�cos𝜓) + 𝑀𝑏𝐿 �̇�cos 𝜓 (𝐿 �̇�sin𝜓) 

                     = −𝑀𝑏𝐿 �̇�sin𝜓 𝑅𝑠�̇� 

𝜕𝑇2

𝜕𝜓
=

𝜕 [
1
2 𝐽𝑠�̇�

2 +
1
2 𝐽𝜓�̇�2]

𝜕𝜓
= 0 
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𝜕𝑈

𝜕𝜓
=

𝜕[(𝑀𝑠 + 𝑀𝑏)𝑔𝑧𝑠 + 𝑀𝑏𝑔𝐿 cos𝜓]

𝜕𝜓
= 𝑀𝑏𝑔𝐿 sin𝜓 

𝜕𝐿

𝜕𝜓
= −𝑀𝑏𝐿 �̇�sin 𝜓 𝑅𝑠�̇� + 𝑀𝑏𝑔𝐿 sin𝜓 

 

𝜕𝐿

𝜕�̇�
=

𝜕𝑇1

𝜕�̇�
+

𝜕𝑇2

𝜕�̇�
−

𝜕𝑈

𝜕�̇�
 

𝜕𝑇1

𝜕�̇�
=

𝜕 [
1

2
𝑀𝑠(𝑅𝑠�̇�)

2 +
1

2
𝑀𝑏((𝑅𝑠�̇� + 𝐿 �̇�cos 𝜓)2 + (𝐿 �̇�sin 𝜓)2)]

𝜕�̇�
 

= −𝑀𝑏𝐿 cos 𝜓 (𝑅𝑠�̇� + 𝐿 �̇�cos𝜓) + 𝑀𝑏𝐿 sin𝜓 (𝐿 �̇�sin 𝜓) 

= −𝑀𝑏𝐿 𝑅𝑠�̇�cos 𝜓 + 𝑀𝑏𝐿
2 �̇�(cos𝜓2 + sin𝜓2) 

𝜕𝑇2

𝜕�̇�
=

𝜕 [
1
2 𝐽𝑠�̇�

2 +
1
2 𝐽𝜓�̇�2]

𝜕�̇�
= 𝐽𝜓�̇� 

𝜕𝑈

𝜕�̇�
=

𝜕[(𝑀𝑠 + 𝑀𝑏)𝑔𝑧𝑠 + 𝑀𝑏𝑔𝐿 cos𝜓]

𝜕�̇�
= 0 

 

𝜕𝐿

𝜕�̇�
== −𝑀𝑏𝐿 𝑅𝑠�̇�cos 𝜓 + 𝑀𝑏𝐿

2 

 

Furthermore 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) =

𝑑

𝑑𝑡
([[𝑀𝑠 + 𝑀𝑏]𝑅𝑠

2 + 𝐽𝑠] �̇� + 𝑅𝑠𝑀𝑏𝐿 �̇�cos𝜓̇ ) 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) = [[𝑀𝑠 + 𝑀𝑏]𝑅𝑠

2 + 𝐽𝑠] �̈�+[𝑅𝑠𝑀𝑏𝐿 cos𝜓]�̈� − 𝑅𝑠𝑀𝑏𝐿 �̇�2sin𝜓 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) = [𝑀𝑏𝐿

2 + 𝐽𝜓]�̈� + [𝑀𝑏𝑅𝑠𝐿 cos𝜓]�̈� − [𝑀𝑏𝑅𝑠𝐿 �̇�sin𝜓]�̇� 

Introducing these terms in (A1.1) and (A1.2) we arrive to: 

 

[(𝑀𝑏 + 𝑀𝑠)𝑅𝑠
2 + 𝐽𝑠]�̈� + [𝑀𝑏𝐿𝑅𝑠 cos𝜓]�̈� − 𝑀𝑏𝐿𝑅𝑠�̇�

2 sin𝜓 = 𝐹𝜃 (3.1) 

[𝑀𝑏𝐿𝑅𝑠 cos𝜓]�̈� + [𝑀𝑏𝐿
2 + 𝐽𝜓]�̈� − 𝑀𝑏𝑔𝐿 sin𝜓 = 𝐹𝜓 

 

(3.2) 
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