Fabio Marcuccio
Automated Tracking System for Identification of Tagged Mice for Automatic Social Behavior Analysis.
Rel. Danilo Demarchi. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2018
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (8MB) | Preview |
Abstract: |
Monitoring mice social behaviors is extremely important for neurobehavioral analysis. State-of-the-art monitoring systems still require human handling for phenotype characterization with high cost and low standardization. Mice tracking and identity preservation is the first step for phenotyping. This paper focuses on a new computer-vision-based automated tracking system able to identify mice and keep their identities frame by frame, laying the groundwork for automatic social behavior analysis. Our system achieves more than 80% accuracy on metal ear tags identification on one-minute long videos recorded at 30 fps. |
---|---|
Relatori: | Danilo Demarchi |
Anno accademico: | 2018/19 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 118 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Biomedica |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA |
Ente in cotutela: | Johns Hopkins University - Computational Sensory-Motor Systems (CSMS) Laboratory (STATI UNITI D'AMERICA) |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/8516 |
Modifica (riservato agli operatori) |