polito.it
Politecnico di Torino (logo)

Automated Tracking System for Identification of Tagged Mice for Automatic Social Behavior Analysis

Fabio Marcuccio

Automated Tracking System for Identification of Tagged Mice for Automatic Social Behavior Analysis.

Rel. Danilo Demarchi. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2018

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (8MB) | Preview
Abstract:

Monitoring mice social behaviors is extremely important for neurobehavioral analysis. State-of-the-art monitoring systems still require human handling for phenotype characterization with high cost and low standardization. Mice tracking and identity preservation is the first step for phenotyping. This paper focuses on a new computer-vision-based automated tracking system able to identify mice and keep their identities frame by frame, laying the groundwork for automatic social behavior analysis. Our system achieves more than 80% accuracy on metal ear tags identification on one-minute long videos recorded at 30 fps.

Relatori: Danilo Demarchi
Anno accademico: 2018/19
Tipo di pubblicazione: Elettronica
Numero di pagine: 118
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Biomedica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA
Ente in cotutela: Johns Hopkins University - Computational Sensory-Motor Systems (CSMS) Laboratory (STATI UNITI D'AMERICA)
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/8516
Modifica (riservato agli operatori) Modifica (riservato agli operatori)