
POLITECNICO DI TORINO

Master’s degree course
in MECHATRONIC ENGINEERING

Master’s Degree Thesis

Vibration compensation for robotic
manipulators by iterative learning

control

Supervisor
Prof. Michele Taragna

Candidates
Davide Cannizzaro
Stefano Votano

Company Tutor
Comau S.p.A.

Dott. Eliana Giovannitti

A.A. 2017/2018



2



Abstract

The elasticity of the mechanical joints used in industrial manipulators induces un-
wanted vibrations in the structure with consequent errors in positioning during machining
operations.
The proposed thesis work is aimed at analysing and improving the performance of the
manipulator in repetitive applications, in which positioning accuracy is particularly impor-
tant, using as strategy the iterative learning control (ILC).
Different algorithms are analysed in terms of stability and robustness, also comparing
the difficulty of implementation and the time consuming. In particular, the type of ILC
developed are: PD-Type ILC, inverse plant ILC and Data Driven ILC.
The different implementations are done both for SISO and MIMO system. In the first case
the plant is represented by the 4𝑡ℎ link of the Comau robot NJ4 220 - 2.4, while in the
second one a 6-DOF industrial manipulator is considered, that is the Comau robot Racer
7 - 1.4. Both the systems are simulated through mathematical models in Simulink environ-
ment. The development of ILC is done both on MATLAB and Simulink environments.
The results obtained show that all the techniques adopted have positive and negative
aspects, but in general all of them revealed promising improvements of the performances.

3



4



Contents

Abstract 3

Introduction 7
Origin of ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Difference with other learning algorithms . . . . . . . . . . . . . . . . . . . . . . 8
Why ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A lot of ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 System Characteristic 15
1.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 System representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Analysis and theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 ILC approaches 21
2.1 PD-Type and Tunable Designs . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Plant Inversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Data Driven ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Optimal adjoint-based ILC . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Data Driven learning using the adjoint sytem . . . . . . . . . . . . 25

3 Robot NJ4 220 - 2.4 27
3.1 PD-Type ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Plant Inversion ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Data Driven ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Robot Racer 7 - 1.4 63
4.1 PD-Type ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Data Driven ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5



4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Conclusion 75

A Matlab Code 77

B Simulink Scheme 95

Bibliography 99

6



Introduction

Origin of ILC
The concept of iterative learning control (ILC) suddenly began to flourish in 1984,

motivated by robots doing the same tasks many times. Arimoto et al. [1], Casalino and
Bartolini [2] and Craig [3] are independent developments of similar ideas in 1984, with
Uchiyama [4] being one of the precursors in 1978. Middleton et al. [5] in 1985, submitted
in 1984, was another independent development motivated by robotics, but using repetitive
control.
The commonly documented starting point for ILC is Arimoto et al. [1], which considered
a simple first order linear servomechanism system for a voltage-controlled dc-servomotor.
In the opening paragraphs a fundamental analogy between ILC and human learning is
written:

“It is human to make mistakes, but it is also human to learn from such experience.
Is it possible to think of a way to implement such a learning ability in the
automatic operation of dynamic systems?”

How it works
“A basketball player shooting a free throw from a fixed position can improve

his ability to score by practicing the shot repeatedly. During each shot, the
basketball player observes the trajectory of the ball and consciously plans an
alteration in the shooting motion for the next attempt. As the player continues to
practice, the correct motion is learned and becomes ingrained into the muscle
memory so that the shooting accuracy is iteratively improved. The converged
muscle motion profile is an open-loop control generated through repetition and
learning. This type of learned open-loop control strategy is the essence of ILC”
[6]

The iterative learning control problem considers a control task that has to perform a
repetitive and specific tracking command. Between each command application, the system
is returned to the same initial position.

7



Each completion or execution of the task is described in general in the ILC literature as a
pass, trial or iteration. Once an iteration is finished, all data used and generated during
its accomplishment are available to compute the control action to be applied in the next
iteration (see Figure 1).

Figure 1: ILC application to a control system. Updating the input signals applied to the
control system, decreasing error signals are obtained iteration by iteration.

The use of previous iteration data is a form of learning and is the base of ILC, embedding
the mechanism through which performance may be improved by experience.

Difference with other learning algorithms
In literature there are many learning-type control strategies to improve the performance

of classical feedback control systems, some of which similar to ILC and other very different.
The main examples could be the following ones:

• Adaptive control: this kind of strategy modifies a system, the controller, while ILC
generally modifies a control input or a reference, which are signals. Additionally,
adaptive controllers typically do not take advantage of the information contained in
repetitive signals [7].

• Machine learning control: similarly to adaptive control techniques, neural network
learning involves the modification of controller parameters rather than a signal; in
this case, large networks of nonlinear neurons are modified. These large networks
require extensive training data but their applications are very common in non-linear
control. Moreover, fast convergence may be difficult to guarantee, whereas ILC
usually converges adequately in just a few iterations [8].

• Repetitive Control (RC): maybe the most similar to ILC technique, except that RC is
intended for continuous operation, whereas ILC is intended for discrete operation
[9].

8



For instance, an ILC application might be to control a robot that performs a task,
returns to its initial position and comes to a rest for a certain interval of time before
repeating the task. On the other hand, an RC application might be to control a hard
disk drives read/write head, in which each iteration is a full rotation of the disk,
and the next iteration immediately follows the current one. The difference between
RC and ILC is the setting of the initial conditions for each trial. In ILC, the initial
conditions are set to the same value on each iteration. In RC, the initial conditions
are set to the final conditions of the previous trial.

Why ILC
The case of study, that can be extended in general to a very large number of similar

situations, involves an industrial manipulator that performs a repetitive application in
which, mainly due to the elasticity of the mechanical joints, unwanted vibrations in the
structure induces errors in positioning during machining operations.
In this context, feedback control tracking error (see Figure 2) comes from several sources:

• deterministic and repeatable errors in following general tracking commands;

• deterministic disturbances that occur each time the same command is given (e.g.
gravity on a robot link that follows a specific trajectory through the workspace);

• random disturbance errors.

Figure 2: Feedback control system.

The aim of the ILC methods is to eliminate as much as possible of the deterministic errors.
As highlighted in the previous paragraph, the choice of this learning strategies is to
be preferred respect to adaptive control and machine learning control because of the
repetitiveness and simplicity.
The ILC mode of operation already outlined is the most common: complete a trial, reset
and then repeat. So, for what concern the scope of this thesis, it is more suitable than RC.
ILC has also several advantages over a well-designed feedback and feedforward controller

9



(Figure 3). In particular, as discussed in [6] [7], the main benefits are in terms of rejection of
repetitive disturbances, robustness respect to system model uncertainties and anticipatory
behaviour due to intrinsically noncausality. The motivations are briefly resumed here for
completeness.

Figure 3: Feedback/feedforward control system.

“Feedback controller reacts to inputs and disturbances and, therefore, always
has a lag in transient tracking. Feedforward control can eliminate this lag, but
only for known or measurable signals, such as the reference, and typically not
for disturbances. ILC is anticipatory and can compensate for exogenous signals,
such as repeating disturbances, in advance by learning from previous iterations.
ILC does not require that the exogenous signals (references or disturbances)
be known or measured, only that these signals repeat from iteration to itera-
tion.[…] A feedback controller can accommodate variations or uncertainties
in the system model. A feedforward controller instead, performs well only to
the extent that the system is accurately known: friction, unmodeled nonlinear
behaviour and disturbances can limit its effectiveness. Because ILC generates
its open-loop control through practice (feedback in the iteration domain), this
high-performance control is also highly robust to system uncertainties. Indeed,
ILC is frequently designed assuming linear models and applied to systems with
nonlinearities yielding low tracking errors, often on the order of the system
resolution.”
[6, Iterative Learning Control Versus Good Feedback and Feedforward Design]

“ILC has over traditional feedback and feedforward control the possibility
to anticipate and pre-emptively respond to repeated disturbances. This ability
depends on the causality of the learning algorithm”
[6, Causal and Noncausal Learning]

Unlike the usual notion of noncausality, that make many techniques non-physically realiz-
able, a noncausal learning algorithm is implementable in practice because the entire time

10



sequence of data is available from all previous iterations.
However, ILC cannot provide perfect tracking in every situation. Most notably, noise
and nonrepeating disturbances make worse ILC performance. As with feedback control,
observers can be used to limit noise sensitivity, although only to the extent to which the
plant is known.
Nevertheless, unlike feedback control, the iteration-to-iteration learning of ILC provides
opportunities for advanced filtering and signal processing.
To reject nonrepeating disturbances and improve the performance despite the noise, a
feedback controller used in combination with the ILC is the best approach.

A lot of ILC

A first classification of different types of ILC techniques can be done considering the
signal which is applied when it is combined with a feedback loop: in the serial architecture
[10] the ILC control input is applied to the reference before the feedback loop, while in the
parallel architecture [11] the ILC control input and feedback control input are combined.
The first type of architecture (Figure 4) is useful when ILC is applied to a pre-existing
system that does not allow a direct access to the controller and the control input.

Figure 4: Example of serial ILC architecture integrated in a feedback control system.

The second type of architecture (Figure 5) is like a feedforward signals directly added
to the system input in order to improve the performance and reduce the effort applied by
the feedback controller when ILC converges.

11



Figure 5: Example of parallel ILC architecture integrated in a feedback control system.

Another classification can be done by the different learning algorithms that are used to
develop the ILC, that in general can be split up in the following classes:

• PD-ILC: the ILC control input is proportional to the error and/or the first derivate
of the error, similarly to an open-loop PD controller. The advantage is clearly the
simplicity, but not in all the systems is possible to find a convergent solution [5][12].

• Inverse plant ILC: the inverse of the transfer function of the plant is used as learning
filter. Neglecting that the model of the plant is just an approximation of the real plant,
the main difficulty of this technique is due to the fact that leads to the inversion of a
non-minimum phase system [13][14].

• Robust ILC: through classical 𝐻∞ synthesis [15] or other techniques based on current
iteration [16], a learning filter that offers the fastest convergence given the model of
the control system is designed. Then, usually μ-analysis approach is used to test its
robustness.

• Optimal ILC: the learning filter is designed in order to minimize a performance
criterion, e.g. in Q-ILC (Quadratically Optimal ILC) a quadratic next iteration cost
functional is minimized [17].

• Data Driven-ILC (DD-ILC): the control input is directly computed through mea-
surable signals avoiding the design of a learning filter [18]. Differently from other
algorithms, higher computation power and data reliability is required. On the contrary
of other classes of ILC, model system uncertainties do not hinge its performance.

The distinctions between different classes is not always possible. In literature, especially
in these last years, a lot of “hybrids” ILC have been developed, taking the positive aspect
of different classes and bringing together in a unique ILC algorithm, e.g. dual-stage robust
ILC [19].

12



Thesis Outline
Chapter 1 and 2 describes essentially ILC approaches developed during the thesis

project work: PD-ILC, Plant inverse ILC and Data Driven ILC. Some theorems about ILC
stability are also shown.
In Chapter 3 and 4 are shown respectively the first (a simplified SISO system of the Comau
robot NJ4 220 - 2.4 – 4𝑡ℎ link) and second (complete MIMO system of the Comau robot
Racer 7 – 1.4) simulator given by Comau, presenting ILC modification required and the
obtained results.
Conclusions and some recommendations for further work are given in Chapter 5.

13



14



Chapter 1

System Characteristic

In the following sections, the system to which we refer during the thesis and its repre-
sentations are described, then some criterions for stability, robustness and performance
are analysed.

1.1 System description
An LTI discrete-time SISO system is considered, but it can be easily generalized for a

MIMO system:
𝑦𝑗(𝑘) = 𝑃(𝑞)𝑢𝑗(𝑘) + 𝑑(𝑘) (1.1)

where 𝑗 is the iteration index, 𝑘 is the time index and 𝑞 is a forward time-shift operator
𝑞𝑥(𝑘) ≡ 𝑥(𝑘 + 1), 𝑢𝑗 is the control input, 𝑦𝑗 is the output, and 𝑑 a repeating disturbance.
𝑃(𝑞) is a proper function in 𝑞 that describes the overall system with its delay of order 𝑚; to
apply the ILC 𝑃(𝑞) must be asymptotically stable so the closed-loop system is considered.
A N-sample sequence of inputs and outputs is collected

𝑢𝑗(𝑘),𝑘 ∈ {0,1,… ,𝑁 − 1},
𝑦𝑗(𝑘),𝑘 ∈ {𝑚,𝑚 + 1,… ,𝑁 +𝑚 − 1},
𝑑(𝑘),𝑘 ∈ {𝑚,𝑚 + 1,… ,𝑁 +𝑚 − 1},

and the desired system output

𝑦𝑑(𝑘),𝑘 ∈ {𝑚,𝑚 + 1,… ,𝑁 +𝑚 − 1}.

The error signal is calculated as 𝑒𝑗(𝑘) = 𝑦𝑑(𝑘)− 𝑦𝑗(𝑘). In some case is better for analysis
and design to consider 𝑁 and the iteration index as infinite [20]. The plant delay, that
depends by the system considered, is assumed to be 𝑚 = 1 for simplicity.
Because ILC requires the storage of past iterations, the domain typically used is the
discrete time. System (1.1) is quite general to consider IIR (Infinite Impulse Response)
and FIR (Finite Impulse Response) system. Repeating disturbances, repeated nonzero

15



1 – System Characteristic

initial conditions and similar disturbances can be captured by 𝑑(𝑘).
A very common ILC learning algorithm [7] is

𝑢𝑗+1(𝑘) = 𝑄(𝑞)[𝑢𝑗(𝑘) +𝐿(𝑞)𝑒𝑗(𝑘 + 1)] (1.2)

where 𝐿(𝑞) and 𝑄(𝑞) are the learning function and the Q-filter.
The scheme of the ILC function (1.2) and the plant dynamics (1.1) are shown in Figure 1.1
[6].

Figure 1.1: ILC scheme. The error is filtered first through L and then Q to obtain the input
to the plant P.

1.2 System representation

One possible representation of the system is the lifted-system: to build it the LTI plant
(1.1) is expanded as an infinite power series obtaining

𝑃(𝑞) = 𝑝1𝑞−1 + 𝑝2𝑞−2 + 𝑝3𝑞−3 +⋯ (1.3)

where the coefficients 𝑝𝑘 are the Markov parameters [21].
From the state space description

x𝑗(𝑘 + 1) = Ax𝑗(𝑘) +B𝑢𝑗(𝑘)
𝑦𝑗(𝑘) = Cx𝑗(𝑘)

16



1.2 – System representation

𝑝𝑘 is given by 𝑝𝑘 = CA𝑘−1B, because 𝑚 = 1 then 𝑝1 ≠ 0. From this representation the
system can be described using an 𝑁 × 𝑁-dimensional lifted form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑗(1)
𝑦𝑗(2)

⋮
𝑦𝑗(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„¶

y𝑗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑝1 0 ⋯ 0
𝑝2 𝑝1 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑝𝑁 𝑝𝑁−1 ⋯ 𝑝1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑗(0)
𝑢𝑗(1)

⋮
𝑢𝑗(𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

u𝑗

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑑(1)
𝑑(2)

⋮
𝑑(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„¶

d

(1.4)

and
⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝑗(1)
𝑒𝑗(2)

⋮
𝑒𝑗(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„¶

e𝑗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑑(1)
𝑦𝑑(2)

⋮
𝑦𝑑(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„¶

y𝑑

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑗(1)
𝑦𝑗(2)

⋮
𝑦𝑗(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„¶

y𝑗

(1.5)

A delay 𝑚 = 1 is considered to ensure that all the diagonal entries are not zero. For a
generic system with a delay of 𝑚, the lifted representation is

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑗(𝑚)
𝑦𝑗(𝑚 + 1)

⋮
𝑦𝑗(𝑚 +𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑝𝑚 0 ⋯ 0
𝑝𝑚+1 𝑝𝑚 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝑝𝑚+𝑁−1 𝑝𝑚+𝑁−2 ⋯ 𝑝𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑗(0)
𝑢𝑗(1)

⋮
𝑢𝑗(𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑑(𝑚)
𝑑(𝑚 + 1)

⋮
𝑑(𝑚 +𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝑗(𝑚)
𝑒𝑗(𝑚 + 1)

⋮
𝑒𝑗(𝑚 +𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑑(𝑚)
𝑦𝑑(𝑚 + 1)

⋮
𝑦𝑑(𝑚 +𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑦𝑗(𝑚)
𝑦𝑗(𝑚 + 1)

⋮
𝑦𝑗(𝑚 +𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The lifted form (1.4) allows us to easily write the SISO system as a MIMO system if
necessary. The time-domain dynamics are contained in the P structure, 𝑦𝑗, 𝑢𝑗 and 𝑑 are
contained in vectors y𝑗, u𝑗 and d.
In a similar way the Q-filter and the learning function can be written in lifted form
considering that they can be non-casual functions

𝑄(𝑞) = ⋯+ 𝑞−2𝑞2 + 𝑞−1𝑞1 + 𝑞0 + 𝑞1𝑞−1 + 𝑞2𝑞−2 +⋯

and

𝐿(𝑞) = ⋯+ 𝑙−2𝑞2 + 𝑙−1𝑞1 + 𝑙0 + 𝑙1𝑞−1 + 𝑙2𝑞−2 +⋯

17



1 – System Characteristic

So (1.2) becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑗+1(0)
𝑢𝑗+1(1)

⋮
𝑢𝑗+1(𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

u𝑗+1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑞0 𝑞−1 ⋯ 𝑞
−(𝑁−1)

𝑞−1 𝑞−2 ⋯ 𝑞
−(𝑁−2)

⋮ ⋮ ⋱ ⋮
𝑞𝑁−1 𝑞𝑁−2 ⋯ 𝑞0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

Q

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑢𝑗(0)
𝑢𝑗(1)

⋮
𝑢𝑗(𝑁 − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

u𝑗

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑙0 𝑙−1 ⋯ 𝑙
−(𝑁−1)

𝑙−1 𝑙−2 ⋯ 𝑙
−(𝑁−2)

⋮ ⋮ ⋱ ⋮
𝑙𝑁−1 𝑙𝑁−2 ⋯ 𝑙0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

L

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝑗(1)
𝑒𝑗(2)

⋮
𝑒𝑗(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„¶

e𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1.6)

When 𝐿(𝑞) and 𝑄(𝑞) are causal functions their matrix representation becomes lower
triangular, because the system is LTI all the entries along each diagonal are identical. So
the matrix are Toeplitz [22].
Another representation is the frequency-domain, that is obtained through the z-transform
by replacing 𝑞 with 𝑧. To apply the z-transformation to the ILC (1.1), (1.2), the number of
samples 𝑁 must be 𝑁 →∞; in practical applications of ILC the trial duration is finite,
so the z-domain representation is approximated. The transformed representation of the
previous equations (1.1), (1.2) are

𝑌𝑗(𝑧) = 𝑃(𝑧)𝑈𝑗(𝑧) +𝐷(𝑧) (1.7)

and
𝑈𝑗+1(𝑧) = 𝑄(𝑧)[𝑈𝑗(𝑧) + 𝑧𝐿(𝑧)𝐸𝑗(𝑧)] (1.8)

where 𝐸𝑗(𝑧) = 𝑌𝑑(𝑧)− 𝑌𝑗(𝑧). For a generic 𝑚 time-step delay, 𝑧𝑚 is used instead of 𝑧 in
(1.8).

1.3 Analysis and theorems
For an ILC system is important to guarantee the stability. System (1.1), (1.2) are

asymptotically stable (AS) if exist ̄𝑢 ∈ ℝ such that

∣𝑢𝑗(𝑘)∣ ≤ ̄𝑢,∀𝑘 ∈ {0,1,… ,𝑁 − 1} and 𝑗 ∈ {0,1,… ,}

and ∀𝑘 ∈ {0,1,… ,𝑁 − 1}
∃ lim

𝑗→∞
𝑢𝑗(𝑘)

The converged control input is defined as 𝑢∞(𝑘) = lim𝑗→∞ 𝑢𝑗(𝑘). The following conditions
for AS are developed in [20]. Substituting (1.5) and (1.4) in (1.6) is obtained

u𝑗+1 = Q(I − LP)u𝑗 +QL(y𝑑 − d) (1.9)

18



1.3 – Analysis and theorems

If 𝜌(A) = 𝑚𝑎𝑥𝑖 ∣𝜆𝑖(A)∣ is considered as the spectral radius of the matrix A, and 𝜆𝑖(A) the
𝑖𝑡ℎ eigenvalue of A, the following condition is obtained that is necessary and sufficient for
stability [20]

𝜌(Q(I − LP)) < 1 (1.10)

If the Q-filter and L are casual, the matrix Q(I − LP) is lower triangular with multiple
eigenvalues

𝜆 = 𝑞0(1 − 𝑙0𝑝1) (1.11)

so 1.10 is equivalent to
∣𝑞0(1 − 𝑙0𝑝1)∣ < 1 (1.12)

Another condition to guarantee AS that is only sufficient is

‖𝑄(𝑧)[1 − 𝑧𝐿(𝑧)𝑃(𝑧)]‖∞ < 1 (1.13)

with an infinite number of samples. If Q and L are casual functions the system is AS also
for finite-duration ILC [20].
The performance characteristic of an ILC system is based on the asymptotic value of the
error.

𝑒∞(𝑘) = lim
𝑗→∞

𝑒𝑗(𝑘)

= lim
𝑗→∞
(𝑦𝑑(𝑘)− 𝑃(𝑞)𝑢𝑗(𝑘)− 𝑑(𝑘))

= 𝑦𝑑(𝑘)− 𝑃(𝑞)𝑢∞(𝑘)− 𝑑(𝑘)

To judge the performance of the algorithm the error from the first iteration can be compared
to the last one or, more quantitatively, various metrics can be used like RMSE or norm-∞,
norm-1, norm-2 based on which minimization is more interesting.
If the ILC system is AS, then with 𝑁→∞

𝑒∞ = [I − P[I − Q(I − LP)]−1QL](y𝑑 − d) (1.14)

or similarly

𝐸∞(𝑧) =
1 − 𝑄(𝑧)

1 − 𝑄(𝑧)[1 − 𝑧𝐿(𝑧)𝑃(𝑧)]
[𝑌𝑑(𝑧)− 𝐷(𝑧)] (1.15)

Many ILC systems are built to converge to zero error 𝑒∞(𝑘) = 0 for all 𝑘. If 𝑃 and 𝐿 are
not identically zero a necessary and sufficient condition for which 𝑒∞(𝑘) = 0 for all 𝑘 is
that the system (1.1), (1.2) is AS and 𝑄(𝑞) = 1. A prof of this can be found in [23] and
[11].
The presence of a lowpass Q-filter can improve the robustness and transient learning.
The transient learning behaviour happens when the tracking error grows rapidly over the
first iterations and decrease only after a huge number of them (e.g. > 100). In practice it is
difficult to distinguish from instability because the initial growth rate and magnitude are

19



1 – System Characteristic

so large.
Some considerations can be done to avoid large learning transient [20], but, in some cases,
this phenomenon can be more important then stability. Some unstable ILC can be effective
when their initial transient quickly decreases the error [24], if the learning is stopped at
a low error and before the system diverges, this condition can be defined as a “practical
stability”.
In the ILC system another key point is robustness. If the system to control is known exactly
a robust ILC controller can be easily found; when the plant is uncertain, it is necessary to
take into account the possible errors in modelling and also the perturbations due to the
nonrepeating disturbances. To guarantee stability and good transient some conditions are
required, which leads to limitations on the achievable performance of the ILC system.
A key question is whether an AS ILC system is also AS to plant perturbations. For example
taking a system where 𝑄(𝑞) = 1 (so zero converged error) and 𝐿(𝑞) is casual, the stability
condition (1.12) is ∣1 − 𝑙0𝑝1∣ < 1. Assuming 𝑙0 and 𝑝1 both nonzero the ILC system is AS
if and only if

𝑠𝑔𝑛(𝑝1) = 𝑠𝑔𝑛(𝑙0) (1.16)

and
𝑙0𝑝1 ≤ 2 (1.17)

In this example to guarantee stability only the sign of 𝑝1 is to be considered so perturbations
on other components of the plant do not destabilize the ILC system, choosing a small 𝑙0 it
can be concluded that the system is robust if the sign of 𝑝1 does not change.
Considering the uncertain plant

𝑃(𝑞) = ̂𝑃 (𝑞)[1 +𝑊(𝑞)Δ(𝑞)] (1.18)

where 𝑊(𝑞) is known and stable, ̂𝑃 (𝑞) is the nominal plant model and Δ(𝑞) is unknown
and stable with ‖Δ(𝑧)‖∞ < 1.
The following condition guarantees robust monotonicity, if

∣𝑊(𝑒𝑖𝜃)∣ ≤
𝛾∗ − ∣𝑄(𝑒𝑖𝜃)∣ ∣1 − 𝑒𝑖𝜃𝐿(𝑒𝑖𝜃) ̂𝑃 (𝑒𝑖𝜃)∣
∣𝑄(𝑒𝑖𝜃)∣ ∣𝑒𝑖𝜃𝐿(𝑒𝑖𝜃) ̂𝑃 (𝑒𝑖𝜃)∣

(1.19)

for all 𝜃 ∈ [−𝜋,𝜋], then the ILC system (1.1), (1.2), (1.18) with 𝑁→∞ is monotonically
convergent with convergence rate 𝛾∗ < 1.
From equation (1.19) it can be seen that monotonic robustness depends on the dynamics
of 𝑃(𝑞), 𝑄(𝑞) and 𝐿(𝑞), the most effective and simplest way to increase robustness is to
reduce the Q-filter gain at a given frequency but this impacts the converged performance, a
trade-off between performance and robustness is required during the choose of the Q-filter.
Other problems that lead to instability are time-varying delay in the plant, nonrepeating
disturbance, noise and initial condition variation, some solutions are discussed in [25],
[26] and [27].

20



Chapter 2

ILC approaches

From a practical point of view, the basic idea of the ILC algorithm is to improve
the response of the system to obtain an output error smaller than the result of a basic
control strategy. ILC generates an open-loop signal that is used to refine the tracking of
the reference and reject the repeating disturbance of the plant.
ILC is able to learn the repeating errors but ignores the nonrepeating disturbances because
there is no feedback mechanism. As already said in the introduction, a possible solution
is to use the ILC control in combination with other control algorithms that can work out
with nonrepeating disturbances, for example using feedback-feedforward controller.
In the following sections, we talk over three ILC algorithms developed during the thesis:
the PD-type, the Plant Inversion and the Data Driven. Some considerations are done about
robustness, performance and convergence.

2.1 PD-Type and Tunable Designs
The PD-type is a learning function with tunable parameters. It is a combination of

simplest learning functions like D-type or P-type used in Arimoto’s work [1], these types
of algorithms are widely used in particular for nonlinear systems [1], [28], [29], [30].
This type of ILC can be applied to a system without a heavy modelling and analysis, so it
is the simplest algorithm. It is similar to a PID feedback control but in ILC the integrator
term I is rarely used because ILC has already an integrator behaviour from one trial to the
next.
The PD-type learning function in discrete-time can be written as:

𝑢𝑗+1(𝑘) = 𝑢𝑗(𝑘) + 𝑘𝑝𝑒𝑗(𝑘 + 1) + 𝑘𝑑[𝑒𝑗(𝑘 + 1) − 𝑒𝑗(𝑘)] (2.1)

From (1.10), the ILC system is AS if and only if ∣1 − (𝑘𝑝 + 𝑘𝑑)𝑝1∣ < 1. When 𝑝1 is knows
is possible to find 𝑘𝑝 and 𝑘𝑑 such that the ILC system is AS. With PD-type learning is
difficult to achieve monotonic convergence but if the iterations are sufficiently short a
solution could be found [31].

21



2 – ILC approaches

A possible solution to the problem of monotonic convergence is achieved modifying the
learning algorithm to include a lowpass Q-filter [9], [32], [33], in order to disable the
learning at high frequency.
In PD-type ILC the most common method for selecting the gains 𝑘𝑝 and 𝑘𝑑 is by tuning
[1], [34], [35], choosing the type and order of the Q-filter, the cutoff frequency becomes a
tuning variable. Despite the popularity of this approach, ILC tuning guidelines are not
available: the goals of the tuning is to achieve a good learning transient and a low error
therefore to find the best solution for each set of gains 𝑘𝑝 and 𝑘𝑑 the learning is reset and
run for sufficient iterations. When a stable baseline of parameters is found, they can be
increased but, depending on the application, the gains influence the rate of convergence,
whereas the Q-filter influences the performance. The Q-filter bandwidth is selected to
satisfy the stability condition: a large bandwidth increases the performance but decreases
the robustness.

2.2 Plant Inversion Methods

In the plant inversion methods the learning function is a model of the inverted plant
dynamics. The inversion ILC algorithm in discrete-time is

𝑢𝑗+1(𝑘) = 𝑢𝑗(𝑘) + ̂𝑃 −1(𝑞)𝑒𝑗(𝑘). (2.2)

Then rewriting it as 𝑢𝑗+1(𝑘) = 𝑢𝑗(𝑘)+ 𝑞−1 ̂𝑃 −1(𝑞)𝑒𝑗(𝑘+ 1) it can be seen that the learning
function is 𝐿(𝑞) = 𝑞−1 ̂𝑃 −1(𝑞), which is casual and has zero relative degree.
Assuming that 𝑃(𝑞) is an exact model of the plant, the convergence occurs in just one
iteration and the converged error is 𝑒∞ ≡ 0. Due to plant uncertainty the previous conditions
is difficult to reach.
One of the most difficult problem with plant inversion is dealing with nonminimum phase
system in which a direct inversion leads to an unstable filter. The use of an unstable
filter generates undesirably large control signals. To avoid this problem a stable inversion
approach could be used, which leads to a noncausal learning function [13], [14]. If the
system is nonlinear, find a stable inverse filter could be difficult but in some case the
inversion of the system dynamics linearized in the operating point could be sufficient to
achieve a good result [32].
Whatever it is the type of 𝑃(𝑞), the goodness of the plant inversion depends on the accuracy
of the model used. A mismatch between the nominal plant and the real dynamics prevents
convergence in one iteration and could lead to a poor transient behaviour. If at a given
frequency the system has an uncertainty greater than 100%, it is not robustly monotonically
convergent and so it is not the plant inversion algorithm. To avoid poor transients due
to model uncertainty a lowpass Q-filter is employed [32]; the cutoff frequency is set
sufficiently low to disable the learning of high frequencies with a large uncertainty and to
achieve robust monotonicity.

22



2.3 – Data Driven ILC

2.3 Data Driven ILC
Iterative learning control algorithms such as Inverse Plant ILC and Optimal ILC are

intrinsically model-based. The convergence and performance properties of these learning
control algorithms are strongly dependent on a model of the controlled system. In particu-
lar, robustness to modelling errors is a key issue, as is evidenced by the development of
robust ILC approaches such as [15] [16].
Robust ILC approaches require both a nominal model and a description of model uncer-
tainty. Especially in the multivariable situation, such models are difficult and expensive to
obtain. The aim of this chapter is to report an optimal ILC algorithm for multivariable
systems without the need of a model to design L and Q filters [18].

2.3.1 Preliminaries
A single-input single-output (SISO) system 𝐽 11 transfer function can be expressed by:

𝐽 11(𝑧) =
∞

∑
𝑖=0

ℎ𝑖𝑧−𝑖 (2.3)

where ℎ𝑖 ∈ ℝ 𝑖 = 0, ...,∞(𝑧) are the Markov parameters of 𝐽 11, and 𝑧 ∈ ℂ. It is assumed
that signals have finite length 𝑁 ∈ ℕ.
More in general, for a multiple-input multiple-output (MIMO) system J with transfer
function matrix 𝐽(𝑧) ∈ ℂ𝑛𝑜×𝑛𝑖 (with 𝑛𝑖 the number of inputs and 𝑛𝑜 the number of outputs),
the finite-time response is denoted as

⎡⎢⎢⎢⎢⎢⎣

𝑦1

⋮
𝑦𝑛𝑜

⎤⎥⎥⎥⎥⎥⎦
·„„„„„„„„‚„„„„„„„„¶

y

=
⎡⎢⎢⎢⎢⎢⎣

𝐽 11 ⋯ 𝐽 1,𝑛𝑖

⋮ ⋱ ⋮
𝐽 𝑛𝑜,1 ⋯ 𝐽 𝑛𝑜,𝑛𝑖

⎤⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

J

⎡⎢⎢⎢⎢⎢⎣

𝑢1

⋮
𝑢𝑛𝑜

⎤⎥⎥⎥⎥⎥⎦
·„„„„„„„„‚„„„„„„„„„¶

u

(2.4)

where 𝐽 𝑖𝑗 is the matrix representation of the 𝑖𝑗𝑡ℎ entry in 𝐽(𝑧), 𝑦 ∈ ℝ𝑛𝑜𝑁, 𝑢 ∈ ℝ𝑛𝑖𝑁

and 𝐽 ∈ ℝ𝑛𝑜𝑁×𝑛𝑖𝑁 as matrix representation of 𝐽(𝑧).

2.3.2 Optimal adjoint-based ILC

Figure 2.1: Multivariable ILC setup.

23



2 – ILC approaches

The ILC framework used is reported in Figure 2.1. The system 𝐽 ∈ ℝ𝑛𝑜𝑁×𝑛𝑖𝑁is a
MIMO system with output 𝑦𝑗 ∈ ℝ𝑛𝑜𝑁, input 𝑢𝑗 ∈ ℝ𝑛𝑖𝑁 and reference 𝑟 ∈ ℝ𝑛𝑜𝑁. The trial
index is denoted as 𝑗.
From Figure 2.1 follows that the tracking errors in trial 𝑗 and 𝑗 + 1 are

𝑒𝑗 = 𝑟 − 𝐽𝑢𝑗 (2.5)

𝑒𝑗+1 = 𝑟 − 𝐽𝑢𝑗+1 (2.6)

and by substituting (2.5) in (2.6), the error propagation from trial 𝑗 to 𝑗 + 1 is obtained
as

𝑒𝑗+1 = 𝑒𝑗 − 𝐽(𝑢𝑗+1 − 𝑢𝑗) (2.7)

In Optimal ILC class algorithms, 𝑢𝑗+1 is determined by minimizing a cost function. In
the proposed technique, the performance criterion J (𝑢𝑗+1) is given by

J (𝑢𝑗+1) ∶= ‖𝑒𝑗+1‖𝑊𝑒
+ ‖𝑢𝑗+1‖𝑊𝑓

(2.8)

with ‖𝑥‖𝑊 = 𝑥𝑇𝑊 𝑥, 𝑊𝑒 ∈ ℝ𝑛𝑜𝑁×𝑛𝑖𝑁, 𝑊𝑓 ∈ ℝ𝑛𝑜𝑁×𝑛𝑖𝑁. 𝑊𝑒 and 𝑊𝑓 are respectively a
positive definite and semi-definite weight matrix.
To minimize 2.7, a gradient descend (or steepest descent) algorithm is used

𝑢𝑗+1 = (𝐼𝜖𝑊𝑓)𝑢𝑗 + 𝜖𝐽 𝑇𝑊𝑒𝑒𝑗 (2.9)

where 0 < 𝜖 < ̄𝜖 is the learning gain. The proof [19, Section IIIB Theorem 2] is given
computing the gradient of (2.8) at the current ILC command 𝑢𝑗 and by performing the
learning update in the steepest descent direction.
[19, Section IIIB - Lemma 4] reveals that the gradient descent ILC algorithm (2.9) can be
interpreted as an adjoint-based algorithm.
For what concern the upper bound ̄𝜖 of the learning gain 𝜖, a criterion for monotonic
convergence is given in [19, Section IIID Theorem 8], briefly reported below.
Let 0 < 𝜖 < ̄𝜖, then ∃ ̄𝜖 > 0 such that ILC algorithm (2.9) is monotonically convergent with

̄𝜖 = 2 ‖𝐽 𝑇𝑊𝑒𝐽 +𝑊𝑓‖
−1 (2.10)

and converged signals

𝑢∞ = lim
𝑗→∞

𝑢𝑗 = (𝐽 𝑇𝑊𝑒𝐽 +𝑊𝑓)−1𝐽 𝑇𝑊𝑒𝑟

𝑒∞ = lim
𝑗→∞

𝑒𝑗 = (𝐼 − 𝐽(𝐽 𝑇𝑊𝑒𝐽 +𝑊𝑓)−1𝐽 𝑇𝑊𝑒)𝑟

The proof is based on the contraction mapping theorem, see [36, Theorem 3.15.2].

24



2.3 – Data Driven ILC

2.3.3 Data Driven learning using the adjoint sytem
An operation with the adjoint of a linear time invariant SISO system can be recast to

an operation on the original system and time-reversal of the input and output signals.

𝐽 11𝑇 = 𝑅𝐽 11𝑅 (2.11)

with

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0 0 1
0 ⋯ 0 1 0
⋮ ⋰ 0 0
0 ⋰ ⋮ ⋮
1 ⋯ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)

an involutory permutation matrix with size 𝑁 ×𝑁. Here, 𝑅 is interpreted as a time-reversal
operator.

𝑦 = 𝐽 11𝑇
𝑢 = 𝑅𝐽 11𝑅𝑢 (2.13)

The time-reversal approach only applies to SISO systems.
For a MIMO system 𝐽, the adjoint 𝐽 𝑇 can be written as:

𝐽 𝑇 =
⎡⎢⎢⎢⎢⎢⎣

𝑅 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅

⎤⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

Rni

⎡⎢⎢⎢⎢⎢⎣

𝐽 11 ⋯ 𝐽 1,𝑛𝑖

⋮ ⋱ ⋮
𝐽 𝑛𝑜,1 ⋯ 𝐽 𝑛𝑜,𝑛𝑖

⎤⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

̃J

⎡⎢⎢⎢⎢⎢⎣

𝑅 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑅

⎤⎥⎥⎥⎥⎥⎦
·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶

Rno

(2.14)

where ̃𝐽 ∈ ℝ𝑛𝑖𝑁×𝑛𝑜𝑁, and 𝑅𝑛𝑖 ∈ ℝ𝑛𝑖𝑁×𝑛𝑖𝑁, 𝑅𝑛𝑜 ∈ ℝ𝑛𝑜𝑁×𝑛𝑜𝑁 are time-reversal op-
erators for the higher dimensional input and output signals. Matrix ̃𝐽 is the finite-time
representation of ̃𝐽(𝑧) ∈ ℂ𝑛𝑖×𝑛𝑜.
The main idea presented in [18] is to develop a data-driven MIMO ILC algorithm by
recasting the system ̃𝐽(𝑧) as

̃𝐽(𝑧) =
𝑛𝑖

∑
𝑖=1

𝑛𝑜

∑
𝑗=1

𝐼 𝑖𝑗(𝑧)𝐽𝐼 𝑖𝑗 (2.15)

where 𝐼 𝑖𝑗 ∈ ℝ𝑛𝑖×𝑛𝑜, is a static system with 𝑛𝑜 outputs and 𝑛𝑖 inputs. For the 𝑘𝑡ℎ and 𝑙𝑡ℎ

entry of 𝐼 𝑖𝑗 holds
𝐼 𝑖𝑗

𝑘=𝑖,𝑙=𝑗 = 1
𝐼 𝑖𝑗

𝑘≠𝑖,𝑙≠𝑗 = 0
(2.16)

i.e., all entries of 𝐼 𝑖𝑗 are zero, except the 𝑖𝑡ℎ, 𝑗𝑡ℎ entry. The structure of 𝐼 𝑖𝑗 is given by

𝐼 𝑖𝑗 =
⎡⎢⎢⎢⎢⎢⎣

0𝑖−1×𝑗−1 0𝑖−1×1 0𝑖−1×𝑛𝑜−𝑗

01×𝑗−1 1 01×𝑛𝑜−𝑗

0𝑛𝑖−𝑖×𝑗−1 0𝑛𝑖−𝑖×1 0𝑛𝑖−𝑖×𝑛𝑜−𝑗

⎤⎥⎥⎥⎥⎥⎦
(2.17)

25



2 – ILC approaches

Let 𝐼 𝑖𝑗 be the finite-time representation of 𝐼 𝑖𝑗, then the finite-time representation of (2.15)
is given by

̃𝐽 =
𝑛𝑖

∑
𝑖=1

𝑛𝑜

∑
𝑗=1

𝐼 𝑖𝑗𝐽𝐼 𝑖𝑗 (2.18)

and by substituting it in (2.14) can be finally obtained

𝐽 𝑇 = 𝑅𝑛𝑖

⎛
⎝

𝑛𝑖

∑
𝑖=1

𝑛𝑜

∑
𝑗=1

𝐼 𝑖𝑗𝐽𝐼 𝑖𝑗⎞
⎠

𝑅𝑛𝑜 (2.19)

So, 𝐽 𝑇 can be computed by performing 𝑛𝑖 × 𝑛𝑜 experiments on system 𝐽.
Data-driven ILC algorithm for MIMO systems, explained in [18, Summary 6] and used in
next chapters of this work, is here reported:

“Given an initial input 𝑢0, set 𝑗 = 0, perform the following steps:
• execute a trial and measure 𝑒𝑗 = 𝑟 − 𝐽𝑢𝑗

• experimentally determine 𝐽 𝑇𝑊𝑒𝑒𝑗 (this step can be also visualized in Fig-
ure 2.2)

o time reverse ̄𝑒𝑗 = 𝑅𝑛𝑜𝑒𝑗
o compute ̄𝑧𝑗 by performing 𝑛𝑖 × 𝑛𝑜 experiments on 𝐽

̄𝑧𝑗 =
𝑛𝑖

∑
𝑖=1

𝑛𝑜

∑
𝑗=1

𝐼 𝑖𝑗𝐽𝐼 𝑖𝑗 ̄𝑒𝑗 (2.20)

o time reverse again to compute 𝐽 𝑇𝑒𝑗 = 𝑅𝑛𝑖 ̄𝑧𝑗

• apply ILC algorithm (2.9), set 𝑢𝑗+1 = (𝐼𝜖𝑊𝑓)𝑢𝑗 + 𝜖𝐽 𝑇𝑊𝑒𝑒𝑗

• set 𝑗 = 𝑗 + 1 and go back to step 1 or stop if a suitable stopping criterion is
met.”

Figure 2.2: [18, Fig.2] Overview of the procedure for 𝑛𝑖 = 𝑛𝑜 = 2

26



Chapter 3

Robot NJ4 220 - 2.4

In this chapter is shown the first simplified SISO system of a 4𝑡ℎ link for the Comau
robot NJ4 220 – 2.4.
All the schemes used for the simulation are reported in the appendix B while the MATLAB
code is in A. Comau has provided two trajectories to work with: the first trajectory is a
generic one while the second is a spot welding. In the following sections we talk about the
steps done and the results obtained with three different ILC approaches, as illustrated in
Chapter 2. We use a general procedure reported in [6] to develop them:

• we start using a Q-filter, as defined in 1, with an initial test frequency;

• when the result obtained is stable and good enough, the Q-filter is tuned to improve
the convergence rate of the system at steady state.

3.1 PD-Type ILC
The first ILC tried is the simplest one: a PD ILC on a serial architecture (see Figure 4).

As already said in the previous chapter we have to select a Q-filter to guarantee the
convergence of the ILC algorithm due to model mismatch.
We choose a Butterworth lowpass filter of 3𝑟𝑑 order and for the cutoff frequency, we
initially select it immediately below the resonance frequency of the robot, equal to 16Hz.
To select the optimal parameters for the PD-Type ILC we adopt as performance indicators
the RMSE, 1-norm, 2-norm and ∞-norm of the errors at each iteration trying to minimize
all or most of them. We consider both the error on the motor (em) and on the load (el)
calculated as reported in Figure B.2.
We used the equation (2.1) and simulate the system cycling over 𝑘𝑝 and 𝑘𝑑. We look for a
first tuning where the system is AS and then we cycle near it, respectively in the range
[−0.5; 1.5] and [−10; 20] with a step of 0.05 and 0.1. For each combination we reset the
system and we apply the ILC for 50 iterations, stopping early only in the case that the

27



3 – Robot NJ4 220 - 2.4

system becomes unstable or one of the performance indicators becomes larger than the
initial one.

200.1

0.2

RMSE_motor

0.3

-0.5

0.4

0.5

10

0.6

R
M

S
E

_
m

o
to

r

0.7

0.8

0.9

0

KdKp

0.5 0
1

-101.5

200.005

RMSE_load

0.01

-0.5

0.015

10

0.02

R
M

S
E

_
lo

a
d

0.025

0.03

0

KdKp

0.5 0
1

-101.5

200

0.5

max_err_motor

1

-0.5

1.5

10

m
a

x
_

e
rr

_
m

o
to

r 2

2.5

3

0

KdKp

0.5 0
1

-101.5

200

max_err_load

0.02

-0.5

0.04

10

0.06

m
a

x
_

e
rr

_
lo

a
d

0.08

0.1

0

KdKp

0.5 0
1

-101.5

200

0.5

em_norm_inf

1

-0.5

1.5

10

e
m

_
n

o
rm

_
in

f 2

2.5

3

0

KdKp

0.5 0
1

-101.5

200

el_norm_inf

0.02

-0.5

0.04

10

0.06

e
l_

n
o

rm
_

in
f

0.08

0.1

0

KdKp

0.5 0
1

-101.5

Figure 3.1: The blue points are stable for all the iterations instead the red ones are unstable.
To be comparable, the red points are quoted to the initial iteration value.

28



3.1 – PD-Type ILC

2050

em_norm_2

100

-0.5

150

10

200

e
m

_
n

o
rm

_
2

250

300

0

KdKp

0.5 0
1

-101.5

202

3

el_norm_2

4

-0.5

5

6

10

7

e
l_

n
o

rm
_

2

8

9

10

0

KdKp

0.5 0
1

-101.5

Figure 3.1: The blue points are stable for all the iterations instead the red ones are unstable.
To be comparable, the red points are quoted to the initial iteration value. (cont.)

In Figure 3.1 are reported the plots of all the metrics, using the first trajectory. As can
be seen increasing 𝑘𝑝 and 𝑘𝑑 the errors decrease, but when 𝑘𝑝 > 1 the system becomes
unstable. From these results we select the sub-optimal parameters 𝑘𝑝 = 1 and 𝑘𝑑 = 5.8 that
minimize all the performance indicators.
Using these parameters, we simulate the system with the two trajectories for 50 iterations.
Because the system is asymptotically stable after few trials the errors converge, so the
plots are reported until the 20𝑡ℎ iteration.
For the first trajectory, reported in Figure 3.2, it can be seen that the errors are monotonically
decreasing and converge after few iterations.

0 2 4 6 8 10 12 14

Time [ms] 104

-3

-2

-1

0

1

2

3

M
o
to

r 
e
rr

o
r

motor position error em 1°iter, 20°iter

em_init

em_final

0 2 4 6 8 10 12 14

Time [ms] 104

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

L
o
a
d
 e

rr
o
r

load position error el 1°iter, 20°iter

el_init

el_final

Figure 3.2: Errors and metrics for the first trajectory tested.

29



3 – Robot NJ4 220 - 2.4

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

RMSE em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

RMSE el

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 i
n

f 
(r

m
-q

m
)

norm inf em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 i
n

f 
(r

l-
q

l)

norm inf el

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 2

 (
rm

-q
m

)

norm 2 em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 2

 (
rl
-q

l)

norm 2 el

Figure 3.2: Errors and metrics for the first trajectory tested, the plots are normalized with
respect to the max value and plot in semi-log. (cont.)

30



3.1 – PD-Type ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 1

 (
rm

-q
m

)

norm 1 em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 1

 (
rl
-q

l)

norm 1 el

Figure 3.2: Errors and metrics for the first trajectory tested, the plots are normalized with
respect to the max value and plot in semi-log. (cont.)

With the ILC, the system is generally more precise to follow the reference both on load
and motor side but in some critical parts there are transitory conditions where the system
does not follow perfectly the reference (see Figure 3.3 and Figure 3.4). The learning can
be stopped after few iterations and is asymptotically stable.

0 2 4 6 8 10 12 14

Time [ms] 104

-80

-70

-60

-50

-40

-30

-20

-10

0

10

P
o
s
it
io

n

Reference motor vs qm

Ref_m

qm_initial

qm_final

4.25 4.3 4.35 4.4 4.45

104

-3

-2

-1

0
Ref_m

qm_initial

qm_final

9.3 9.35 9.4 9.45 9.5 9.55

104

-22

-20

-18

-16

-14

Ref_m

qm_initial

qm_final

Figure 3.3: Comparison for motor position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the top) and a less important transient (on the bottom).

31



3 – Robot NJ4 220 - 2.4

0 2 4 6 8 10 12 14

Time [ms] 104

-2.5

-2

-1.5

-1

-0.5

0

0.5

P
o
s
it
io

n

Reference load vs ql

Ref_l

ql_initial

ql_final

9.3 9.4 9.5 9.6

104

-0.8

-0.7

-0.6

-0.5

4.2 4.3 4.4 4.5

104

-0.08

-0.06

-0.04

-0.02

0

0.02

Figure 3.4: Comparison for load position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the top) and a less important one (on the bottom).

These results are obtained using the resonance frequency of the robot, then the Q-filter
is changed. We use other frequencies of the Q-filter [1,10,16,25,40,100]Hz and simulate
the system for 20 iterations (see Figure 3.5).

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-2

10-1

100

101

102

103

104

lo
g
(R

M
S

E
)

RMSE em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-3

10-2

10-1

100

101

102

lo
g
(R

M
S

E
)

RMSE el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.5: Metrics with different values of the cutoff frequency of the Q-filter.

32



3.1 – PD-Type ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-1

100

101

102

103

104

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-2

10-1

100

101

102

103

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

101

102

103

104

105

106

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-1

100

101

102

103

104

105

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

103

104

105

106

107

108

109

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

102

103

104

105

106

107

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.5: Metrics with different values of the cutoff frequency of the Q-filter. (cont.)

33



3 – Robot NJ4 220 - 2.4

From Figure 3.5 it can be seen that the resonance frequency (16Hz) is the best value
for the cutoff frequency. With a value too low the ILC performances decrease, while with
a frequency too high it induces vibrations on the system that lead to instability.
In a similar way we do for the second trajectory. The parameters chosen are the best
solution for the first trajectory: used also for the second one we notice that the PD-Type
ILC is less effective; the error is smaller than the initial one and is not monotonically
decreasing. From the 2𝑛𝑑 to the 6𝑡ℎ iteration the metrics increase and then they become
stable (see Figure 3.6).

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
o

to
r 

e
rr

o
r

motor position error em 1°iter, 20°iter

em_init

em_final

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

L
o
a
d
 e

rr
o
r

load position error el 1°iter, 20°iter

el_init

el_final

0 5 10 15 20 25 30 35 40 45 50

Iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
M

S
E

RMSE em

0 5 10 15 20 25 30 35 40 45 50

Iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
M

S
E

RMSE el

Figure 3.6: Errors and metrics for the second trajectory tested, the plots are normalized
with respect to the max value.

34



3.1 – PD-Type ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 i
n

f 
(r

m
-q

m
)

norm inf em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 i
n

f 
(r

l-
q

l)

norm inf el

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.75

0.8

0.85

0.9

0.95

1

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.8

0.85

0.9

0.95

1

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

Figure 3.6: Errors and metrics for the second trajectory tested, the plots are normalized
with respect to the max value. (cont.)

With the ILC, the system is generally more precise to follow the reference both on load
and motor side (see Figure 3.7 and Figure 3.8), in some points the result is slightly worse.

35



3 – Robot NJ4 220 - 2.4

This is probably due to the Q-filter that cutoff the high frequency and the system fails to
follow rapidly the reference.

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

P
o

s
it
io

n

Reference motor vs qm

Ref_m

qm_initial

qm_final

1.46 1.47 1.48 1.49 1.5 1.51

105

8

10

12

14

1.07 1.08 1.09 1.1

105

-16

-15.5

-15

-14.5

Figure 3.7: Comparison for motor position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the bottom) and a less important one (on the top).

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-1

-0.5

0

0.5

P
o

s
it
io

n

Reference load vs ql

Ref_l

ql_initial

ql_final

1.46 1.48 1.5 1.52

105

0.3

0.35

0.4

0.45

1.06 1.07 1.08 1.09 1.1

105

-0.52

-0.5

-0.48

Figure 3.8: Comparison for load position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the bottom) and a less important transient (on the top).

36



3.1 – PD-Type ILC

Trying to increase the frequency of the Q-filter we have the same problem of the first
trajectory: the system becomes unstable (see Figure 3.9), so we choose as cutoff frequency
for Q-filter 16Hz that is the best one.

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-2

10-1

100

lo
g
(R

M
S

E
)

RMSE em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

1.5

2

2.5

3

3.5

4

4.5

lo
g

(R
M

S
E

)

10-3 RMSE el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-2

10-1

100

101

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-3

10-2

10-1

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

100

101

102

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o

rm
 2

 (
rl
-q

l)

norm 2 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.9: Metrics with different values of the cutoff frequency of the Q-filter.

37



3 – Robot NJ4 220 - 2.4

0 2 4 6 8 10 12 14 16 18 20

Iteration

103

104

105

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 2 4 6 8 10 12 14 16 18 20

Iteration

150

200

250

300

350

400

450

500

550

N
o

rm
 1

 (
rl
-q

l)

norm 1 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.9: Metrics with different values of the cutoff frequency of the Q-filter. (cont.)

3.2 Plant Inversion ILC
For inverse plant approach is very important the accuracy of the model as remarked in

Chapter 2.2. Because we are applying the ILC command to the reference, the plant seen by
the ILC is the overall system. The transfer function from the reference input to the motor
output is nonminimum phase then, to obtain a stable inverse, we combine some pole/zero
cancellation and phase cancellation techniques [37].
We report the fundamental steps to obtain a stable inverse with the assumptions that the
starting model is a good one.
We rewrite the system in the form

𝐺𝑐𝑙𝑜𝑠𝑒𝑑(𝑧−1) = 𝑧−𝑑𝐵𝑐(𝑧−1)
𝐴𝑐(𝑧−1)

(3.1)

where 𝑧−𝑑 represents a d-step delay normally caused by a delay in the plant. We factorize
𝐵𝑐(𝑧−1) into two parts and write

𝐵𝑐(𝑧−1) = 𝐵𝑎
𝑐 (𝑧−1)𝐵𝑢

𝑐(𝑧−1)

where 𝐵𝑎
𝑐 (𝑧−𝑙) includes zeros of the closed-loop system which are sufficiently inside the

unit circle, and 𝐵𝑢
𝑐(𝑧−𝑙) includes those outside or close to the unit circle.

The tracking controller which cancels all the closed-loop poles and zeros from 𝐵𝑎
𝑐 (𝑧−1) is

𝑟(𝑘) = 𝐴𝑐(𝑧−1)
𝐵𝑎

𝑐 (𝑧−1)𝐵𝑢
𝑐(1)

𝑦∗𝑑(𝑘 + 𝑑) (3.2)

𝑦∗𝑑(𝑘 + 𝑑) = 𝐵𝑢
𝑐(𝑧)

𝐵𝑢
𝑐(1)

𝑦𝑑(𝑘) (3.3)

38



3.2 – Plant Inversion ILC

where 𝑦∗𝑑(𝑘) is related to the desired trajectory 𝑦𝑑(𝑘) and 𝐵𝑢
𝑐(𝑧−1) in the denominator is

to scale the steady state gain to the reciprocal of that of the closed-loop transfer function
given by equation (3.1).
The final result is obtained substituting (3.3) in (3.2)

𝑟(𝑘) = 𝐴𝑐(𝑧−1)𝐵𝑢∗
𝑐 (𝑧−1)

𝐵𝑎
𝑐 (𝑧−1)𝐵𝑢

𝑐(1)
𝑦∗𝑑(𝑘 + 𝑑 + 𝑠) (3.4)

Where the (𝑑 + 𝑠)-step ahead is the desired output. By using this transfer function, the
phase shift between 𝑦𝑑(𝑘) and 𝑦(𝑘) is zero for all frequencies.
Equation (3.4) is called the zero-phase error tracking controller (ZPETC) and is a good
approximation of the inverse needed. We calculate the inverse of the plant (𝑃 −1) and then
multiplying for the plant (𝑃); if the inverse is a good one the bode of 𝑃 𝑃 −1 should give
a zero magnitude and phase but, due to approximations, this is true until a certain low
frequency, as can be seen in Figure 3.10.

0

10

20

30

40

50

M
a
g
n
it
u
d
e
 (

d
B

)

101 102 103 104
-1080

-720

-360

0

360

P
h
a
s
e
 (

d
e
g
)

Bode of P*P
-1

Frequency  (rad/s)

Figure 3.10: Magnitude and phase Bode diagram of 𝑃 𝑃 −1.

Due to model uncertainty we need to add a Q-filter to ensure that the system is stable.
The results obtained by the inverse approach with a Q-filter at same frequency of the PD-
Type are worse than PD-Type in particular in some critical points. To improve the quality

39



3 – Robot NJ4 220 - 2.4

of the results we increase the value of the cutoff frequency to 100Hz that, as can be seen
in Figure 3.18, Figure 3.19 and explained later on, is the best one. For the first trajectory
we report in Figure 3.11 the errors and metrics and in Figure 3.12 and Figure 3.13 the
system position.

0 2 4 6 8 10 12 14

Time [ms] 104

-3

-2

-1

0

1

2

3

M
o
to

r 
e
rr

o
r

motor position error em 1°iter, 20°iter

em_init

em_final

0 2 4 6 8 10 12 14

Time [ms] 104

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

L
o
a
d
 e

rr
o
r

load position error el 1°iter, 20°iter

el_init

el_final

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

RMSE em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

RMSE el

Figure 3.11: Errors and metrics using inverse plant approach on the first trajectory.

40



3.2 – Plant Inversion ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

N
o

rm
 i
n

f 
(r

l-
q

l)

norm inf el

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 2

 (
rm

-q
m

)

norm 2 em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 2

 (
rl
-q

l)

norm 2 el

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 1

 (
rm

-q
m

)

norm 1 em

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 1

 (
rl
-q

l)

norm 1 el

Figure 3.11: Errors and metrics using inverse plant approach on the first trajectory (cont.)

41



3 – Robot NJ4 220 - 2.4

0 2 4 6 8 10 12 14

Time [ms] 104

-80

-70

-60

-50

-40

-30

-20

-10

0

10

P
o
s
it
io

n

Reference motor vs qm

Ref_m

qm_initial

qm_final

9.35 9.4 9.45 9.5 9.55

104

-24

-22

-20

-18

4.2 4.3 4.4 4.5 4.6

104

-3

-2

-1

0

Figure 3.12: Comparison for motor position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the top) and a less important transient (on the bottom).

0 2 4 6 8 10 12 14

Time [ms] 104

-2.5

-2

-1.5

-1

-0.5

0

0.5

P
o
s
it
io

n

Reference load vs ql

Ref_l

ql_initial

ql_final

9.35 9.4 9.45 9.5 9.55 9.6

104

-0.6

-0.5

-0.4

4.2 4.3 4.4 4.5

104

-0.08

-0.06

-0.04

-0.02

0

0.02

Figure 3.13: Comparison for load position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the top) and a less important transient (on the bottom).

Similarly to previous trajectory, for the second one the results are reported in Figure 3.14,
Figure 3.15 and Figure 3.16

42



3.2 – Plant Inversion ILC

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
o

to
r 

e
rr

o
r

motor position error em 1°iter, 30°iter

em_init

em_final

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

L
o
a
d
 e

rr
o
r

load position error el 1°iter, 30°iter

el_init

el_final

0 5 10 15 20 25 30

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

RMSE em

0 5 10 15 20 25 30

Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

RMSE el

0 5 10 15 20 25 30

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 i
n

f 
(r

m
-q

m
)

norm inf em

0 5 10 15 20 25 30

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 i
n

f 
(r

l-
q

l)

norm inf el

Figure 3.14: Errors and metrics using inverse plant approach on the second trajectory.

43



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25 30

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 2

 (
rm

-q
m

)

norm 2 em

0 5 10 15 20 25 30

Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 2

 (
rl
-q

l)

norm 2 el

0 5 10 15 20 25 30

Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 1

 (
rm

-q
m

)

norm 1 em

0 5 10 15 20 25 30

Iteration

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
 1

 (
rl
-q

l)

norm 1 el

Figure 3.14: Errors and metrics using inverse plant approach on the second trajectory.
(cont.)

44



3.2 – Plant Inversion ILC

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

P
o
s
it
io

n

Reference motor vs qm

Ref_m

qm_initial

qm_final

1.46 1.48 1.5 1.52

105

11

12

13

14

15

1.07 1.08 1.09 1.1

105

-16

-15.5

-15

Ref_m

qm_initial

qm_final

Figure 3.15: Comparison for motor position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the bottom) and a less important one (on the top).

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-1

-0.5

0

0.5

P
o
s
it
io

n

Reference load vs ql

Ref_l

ql_initial

ql_final

1.07 1.08 1.09

105

-0.52

-0.51

-0.5

-0.49

-0.48

1.44 1.46 1.48 1.5 1.52

105

0.25

0.3

0.35

0.4

0.45

Figure 3.16: Comparison for load position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the bottom) and a less important one (on the top).

For the Q-filter can be done similar considerations of the PD-Type: with a value too low

45



3 – Robot NJ4 220 - 2.4

of frequency the ILC cannot correctly follow the error and apply a valid correction, instead
with a value too high induces vibrations on the system that lead to instability. To choose
the best frequency we select the global minimization of all the metrics in Figure 3.17 and
Figure 3.18 and finally select the cutoff frequency at 100Hz.

0 5 10 15 20 25

Iteration

10-2

10-1

100

101

102

103

104

lo
g
(R

M
S

E
)

RMSE em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-3

10-2

10-1

100

101

102

lo
g
(R

M
S

E
)

RMSE el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-1

100

101

102

103

104

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-3

10-2

10-1

100

101

102

103

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

Figure 3.17: For the first trajectory, metrics with different values of the cutoff frequency
of the Q-filter.

46



3.2 – Plant Inversion ILC

0 5 10 15 20 25

Iteration

101

102

103

104

105

106

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-1

100

101

102

103

104

105

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

103

104

105

106

107

108

109

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

102

103

104

105

106

107

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

Figure 3.17: For the first trajectory, metrics with different values of the cutoff frequency
of the Q-filter. (cont.)

0 5 10 15 20 25

Iteration

10-2

10-1

100

101

102

103

104

lo
g
(R

M
S

E
)

RMSE em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-4

10-3

10-2

10-1

100

101

102

103

lo
g
(R

M
S

E
)

RMSE el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

Figure 3.18: For the second trajectory, metrics with different values of the cutoff frequency
of the Q-filter.

47



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25

Iteration

10-2

10-1

100

101

102

103

104

105

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-3

10-2

10-1

100

101

102

103

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

101

102

103

104

105

106

107

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

10-1

100

101

102

103

104

105

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

103

104

105

106

107

108

109

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

0 5 10 15 20 25

Iteration

101

102

103

104

105

106

107

108

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

1 Hz

16 Hz

40 Hz

100 Hz

200 Hz

300 Hz

Figure 3.18: For the second trajectory, metrics with different values of the cutoff frequency
of the Q-filter. (cont.)

48



3.3 – Data Driven ILC

3.3 Data Driven ILC
The Data Driven ILC does not require directly the computation of 𝐿 filter, instead it

uses the Markov parameters to evaluate the command to apply to the reference.
The Markov parameters ℎ are computed using a reduced state space representation of the
system with the following definition

h(𝑛) =
⎧⎪⎪⎨⎪⎪⎩

𝐷, if 𝑛 = 0
𝐶𝐴𝑛−1𝐵, if 𝑛 > 0

This is slightly different from the approach adopted in [18] where the authors experimen-
tally identifies the 𝐽 matrix and so the ℎ parameters. We use the theoretical definition and
a state-reduced mathematical model obtained from the linear analysis of the Simulink
model. The ILC command is computed as reported in the previous chapter. We use 𝑊𝑒 = 𝐼
(𝐼 = identity matrix) and 𝜖 = 0.8 as weight for the command evaluation and a Q-filter, with
a cutoff frequency of 16Hz, to guarantee the stability of the system.
For the first trajectory we report in Figure 3.19 the errors and metrics and in Figure 3.20
and Figure 3.21 the system position.

0 2 4 6 8 10 12 14

Time [ms] 104

-3

-2

-1

0

1

2

3

M
o
to

r 
e
rr

o
r

motor position error em 1°iter, 30°iter

em_init

em_final

0 2 4 6 8 10 12 14

Time [ms] 104

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

L
o
a
d
 e

rr
o
r

load position error el 1°iter, 30°iter

el_init

el_final

Figure 3.19: Errors and metrics using Data Driven approach on the first trajectory.

49



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25 30

Iteration

10
-3

10
-2

10
-1

10
0

R
M

S
E

RMSE em

0 5 10 15 20 25 30

Iteration

10
-2

10
-1

10
0

R
M

S
E

RMSE el

0 5 10 15 20 25 30

Iteration

10-3

10-2

10-1

100

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

0 5 10 15 20 25 30

Iteration

10-3

10-2

10-1

100

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

Figure 3.19: Errors and metrics using Data Driven approach on the first trajectory. (cont.)

50



3.3 – Data Driven ILC

0 5 10 15 20 25 30

Iteration

10-3

10-2

10-1

100

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

Figure 3.19: Errors and metrics using Data Driven approach on the first trajectory (cont.)

0 2 4 6 8 10 12 14

Time [ms] 104

-80

-70

-60

-50

-40

-30

-20

-10

0

10

P
o
s
it
io

n

Reference motor vs qm

Ref_m

qm_initial

qm_final

9.3 9.4 9.5 9.6

104

-24

-22

-20

-18

-16

4.2 4.3 4.4 4.5

104

-3

-2

-1

0

Figure 3.20: Comparison for motor position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the top) and a less important one (on the bottom).

51



3 – Robot NJ4 220 - 2.4

0 2 4 6 8 10 12 14

Time [ms] 104

-2.5

-2

-1.5

-1

-0.5

0

0.5

P
o
s
it
io

n

Reference load vs ql

Ref_l

ql_initial

ql_final

9.35 9.4 9.45 9.5 9.55 9.6

104

-0.6

-0.5

-0.4

4.2 4.3 4.4 4.5 4.6

104

-0.08

-0.06

-0.04

-0.02

0

0.02

Figure 3.21: Comparison for load position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the top) and a less important one (on the bottom).

Similarly to previous trajectory, for the second one we have Figure 3.22, Figure 3.23
and Figure 3.24.

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
o

to
r 

e
rr

o
r

motor position error em 1°iter, 30°iter

em_init

em_final

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

L
o
a
d
 e

rr
o
r

load position error el 1°iter, 30°iter

el_init

el_final

Figure 3.22: Errors and metrics using Data Driven approach on the second trajectory.

52



3.3 – Data Driven ILC

0 5 10 15 20 25 30

Iteration

10
-2

10
-1

10
0

R
M

S
E

RMSE em

0 5 10 15 20 25 30

Iteration

10
-2

10
-1

10
0

R
M

S
E

RMSE el

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

Figure 3.22: Errors and metrics using Data Driven approach on the second trajectory.
(cont.)

53



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25 30

Iteration

10-2

10-1

100

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

0 5 10 15 20 25 30

Iteration

10-1

100

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

Figure 3.22: Errors and metrics using Data Driven approach on the second trajectory.
(cont.)

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

P
o
s
it
io

n

Reference motor vs qm

Ref_m

qm_initial

qm_final

1.06 1.07 1.08 1.09 1.1

105

-16

-15.5

-15

-14.5

1.46 1.48 1.5

105

10

11

12

13

14

15

Figure 3.23: Comparison for motor position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the bottom) and a less important one (on the top).

54



3.3 – Data Driven ILC

0 2 4 6 8 10 12 14 16 18

Time [ms] 104

-1

-0.5

0

0.5

P
o
s
it
io

n

Reference load vs ql

Ref_l

ql_initial

ql_final

1.06 1.07 1.08 1.09 1.1

105

-0.52

-0.51

-0.5

-0.49

-0.48

1.46 1.47 1.48 1.49 1.5 1.51

105

0.25

0.3

0.35

0.4

0.45

Figure 3.24: Comparison for load position between the reference (red), the system without
ILC (green) and the system plus ILC (blue) with a zoom during an important transient
condition (on the bottom) and a less important one (on the top).

Proceeding to compute the frequency of the Q-filter, in a similar way to previous cases
can be seen that with a value too low of frequency the ILC cannot correctly follow the
error and apply a valid correction, instead with a value too high the ILC induces vibrations
on the system that lead to instability. To choose the best frequency we consider the global
minimization of all the metrics in Figure 3.25 and Figure 3.26. Finally we maintain as
cutoff frequency 16Hz, the best one.

0 5 10 15 20 25

Iteration

10-3

10-2

10-1

100

101

102

103

104

lo
g
(R

M
S

E
)

RMSE em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-4

10-3

10-2

10-1

100

101

102

lo
g
(R

M
S

E
)

RMSE el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.25: For the first trajectory, metrics with different values of the cutoff frequency
of the Q-filter.

55



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25

Iteration

10-2

10-1

100

101

102

103

104

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-3

10-2

10-1

100

101

102

103

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

100

101

102

103

104

105

106

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-1

100

101

102

103

104

105

N
o
rm

 2
 (

rl
-q

l)
norm 2 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

102

103

104

105

106

107

108

109

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

101

102

103

104

105

106

107

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.25: For the first trajectory, metrics with different values of the cutoff frequency
of the Q-filter. (cont.)

56



3.3 – Data Driven ILC

0 5 10 15 20 25

Iteration

10-3

10-2

10-1

100

101

102

lo
g
(R

M
S

E
)

RMSE em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-4

10-3

10-2

10-1

100

101

lo
g
(R

M
S

E
)

RMSE el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-2

10-1

100

101

102

103

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-4

10-3

10-2

10-1

100

101

102

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

100

101

102

103

104

105

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

10-1

100

101

102

103

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.26: For the second trajectory, metrics with different values of the cutoff frequency
of the Q-filter.

57



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25

Iteration

103

104

105

106

107

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

0 5 10 15 20 25

Iteration

101

102

103

104

105

106

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

1 Hz

10 Hz

16 Hz

25 Hz

40 Hz

100 Hz

Figure 3.26: For the second trajectory, metrics with different values of the cutoff frequency
of the Q-filter. (cont.)

3.4 Conclusion
Comparing the results obtained with the three different approaches in Figure 3.27 and

Figure 3.28, it can be seen that the Data Driven ILC is the best solution but takes time
to compute the command and requires a precise model of the system like for the plant
inversion ILC. Instead the PD-Type, that is the simplest approach, already gives a good
solution and it is less time consuming.

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-3

10-2

10-1

100

R
M

S
E

RMSE em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

R
M

S
E

RMSE el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

Figure 3.27: First trajectory, comparison between the three approaches.

58



3.4 – Conclusion

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-3

10-2

10-1

100

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-3

10-2

10-1

100

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-3

10-2

10-1

100

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-3

10-2

10-1

100

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

Figure 3.27: First trajectory, comparison between the three approaches. (cont.)

59



3 – Robot NJ4 220 - 2.4

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

R
M

S
E

RMSE em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

R
M

S
E

RMSE el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

m
-q

m
)

norm inf em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 i
n
f 
(r

l-
q
l)

norm inf el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 2
 (

rm
-q

m
)

norm 2 em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 2
 (

rl
-q

l)

norm 2 el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

Figure 3.28: Second trajectory, comparison between the three approaches.

60



3.4 – Conclusion

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 1
 (

rm
-q

m
)

norm 1 em

PD-type ILC

Inverse Plant ILC

Data Driven ILC

0 5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

N
o
rm

 1
 (

rl
-q

l)

norm 1 el

PD-type ILC

Inverse Plant ILC

Data Driven ILC

Figure 3.28: Second trajectory, comparison between the three approaches. (cont.)

61



62



Chapter 4

Robot Racer 7 - 1.4

In this chapter is shown how the ILC algorithms described in Chapter 2 can be applied
to a MIMO system, in particular to the Comau robot Racer 7 – 1.4, a 6-DOF industrial
manipulator.
The system is simulated through a rigid body model of the robot, reported in the Simulink
scheme in Appendix B.5. Without the application of any ILC algorithm, the original
control system can be represented as reported in Figure 4.1.

Figure 4.1: Simplified scheme of the original control system.

As shown by the red box, we have in practice only access to the external signals, that
are the reference input and the motor output measured by the encoder. We have to work
with this black box model because we cannot modify the internal signals of the system,
but also because working in this way make easier a possible test of our implementations
on the real plant. So, the most appropriate ILC architecture to develop with these working
constraints is the serial one (see Figure 4.2).

63



4 – Robot Racer 7 - 1.4

Figure 4.2: Simplified scheme of the control system in ILC serial architecture.

Differently from the previous simulator, only the reference and the error on the motor
side are available. The error is computed as difference between the reference on the motor
and the measured output of the encoder in the joint space (seeing Appendix B.5, they are
reported as input_q_motor_ref and output_q_motor_ref signals).
Another difference from the previous chapter is the trajectory: in this case it represents
the movement of the tool center point during a coating task in the cartesian space (see
Figure 4.3). Steady state starting condition are added, prolonging the trajectory, because
starting with non-null reference values can make the system unstable.

0.8

0.35

0.82

0.84

0.3

0.86

0.84
0.82

Z
 a

x
is

 [
m

]

0.88

0.25 0.8

0.9

3D plot of the trajectory in the cartesian space

Y axis [m]

0.78

0.92

X axis [m]

0.760.2

0.94

0.74
0.720.15 0.7

0.68
0.1 0.66

Figure 4.3: On the left, a 3D cartesian plot of the path in the operational space. On the
right, a photo of the mechanical piece involved in the coating task.

For the simulation is used the custom load of the task provided by Comau, which mass
is equal to 5kg.
In the following subchapters, first is presented the simplest and most model independent
ILC algorithm, the PD type, then are presented the results obtained with Data Driven ILC

64



4.1 – PD-Type ILC

approach. The MATLAB code is reported respectively in the Appendix A.4 and A.5.
For what concerns the inverse plant ILC, it is not suitable in this situation due to the
absence of a model of the entire control system (the red box evidenced in Figure 4.1).

4.1 PD-Type ILC
To develop this kind of algorithm, as already seen in previous chapter, we have to

choose the proportional and derivative gain of the error to use in the learning function
(2.1) and the cutoff frequency of the Q filter that optimizes the learning transient and
steady state behaviour.
In a SISO system, when an initial sub-optimal cutoff frequency of the Q filter is chosen, it
is possible to proceed tuning the gains (looking for which minimizes the motor or load
errors) and then adjusting again the cutoff frequency of the Q filter to obtain the optimal
behaviour with the selected parameters.
In our case, we initially adopt this procedure, by starting to optimize the learning filter
for the joint that presents the biggest error. When we proceed to the other joints, we
noticed that the optimal parameters for a specific joint hinge the performance of the others,
making these parameters not globally the optimal ones. So, in a MIMO system this kind
of procedure is not recommended, due to its inefficacy and time-consuming nature.
A global tuning of the parameters that we define, can be obtained adopting two gains for
all the joints in the following way:

• Choose a reasonable cutoff frequency, that gives a good result in terms of steady
state behaviour for some guessed gains.

• Explore the space of 𝑘𝑝 and 𝑘𝑑 parameters, by simulating the system response and
computing the Euclidean distance between the reference input and measured output,
both reported in the operational space. These distances, that should be ideally point by
point equal to zero, gives us a metrics of how globally a ILC with certain parameters
applied to the six joints is better or worse than another that uses other values.

• Once selected the gains that minimizes the error of the tool center point in the
operational space, a tuning of cutoff frequency of the Q filter is done trying to
improve the performance.

In our case, we start with Q frequency equal to 200Hz.
We initially explore a wide range of the gains space, then we focalized in a sub-optimal
range, that can be visualized in Figure 4.4. The sub-optimality is evidenced from the
non-convex nature of this problem, as already find in section 3.1.

65



4 – Robot Racer 7 - 1.4

0.1

0.2

0.3

1.5

0.4

0.5

0.6

0.7

0.8

N
o
rm

a
liz

e
d
 R

M
S

E

0.9

1

2

Kd

2.5

RMSE of the Euclidean distance between desired and obtained position

3
0.15

Kp

0.20.250.30.350.43.5 0.450.50.550.6

Figure 4.4: Normalized RMSE of the Euclidean distance between the desired and obtained
position of the tool center point coordinates, reported as function of the 𝑘𝑝 and 𝑘𝑑 gains.

All the metrics are calculated in the cartesian space using the Euclidean distance of the
tool center point in the desired position from the real position using the ILC. We reported
only the RMSE (in Figure 4.4) but all the norms (1, 2, Inf) are minimized in the point of
coordinates 𝑘𝑝 = 0.33 and 𝑘𝑑 = 3.5.
Adopting these last values as sub-optimal parameters, the improvements obtained in terms
of our performance indicator can be seen in Figure 4.5, simulating the system for 50
iterations.

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
u
c
lid

ia
n
 d

is
ta

n
c
e
 b

e
tw

e
e
n
 d

e
s
ir
e
d
 i
n
p
u
t 
a
n
d
 m

e
a
s
u
re

d
 o

u
tp

u
t

Initial and final distances between measured output and the reference input

Final

Initial

Figure 4.5: Comparison between initial and final distances of measured output from the
reference input, computed point by point, in the first and last iteration.

The results of a simulation with the tuned parameters selected are reported in Figure 4.6,
Figure 4.7 and Figure 4.8, respectively in terms of errors in the joint space, errors in the
operational space and a 3D plot of the obtained cartesian trajectory.

66



4.1 – PD-Type ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 i
n
f-

n
o
rm

 e
m

Infinity norm of motor side error

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 2

-n
o
rm

 e
m

2-norm of motor side error

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 1

-n
o
rm

 e
m

1-norm of motor side error

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 R

M
S

E
 e

m

RMSE of motor side error

Figure 4.6: Motor side error in the joint space, reported with different type of metrics.
Only values for the first 20 iterations (over 50 done) are reported for a better visualization.

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

-5

0

5

10

15

X
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

10-3 TCP error on X coordinate

First iteration

Last iteration

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

-6

-4

-2

0

2

4

Y
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

10-3 TCP error on Y coordinate

First iteration

Last iteration

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

-8

-6

-4

-2

0

2

Z
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

10-3 TCP error on Z coordinate

First iteration

Last iteration

Figure 4.7: Tool center point error, reported in the three different cartesian axis, in the first
and last iteration.

67



4 – Robot Racer 7 - 1.4

0.72 0.74 0.76 0.78 0.8 0.82 0.84

X axis [m]

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Y
 a

x
is

 [
m

]

Reference input VS obtained output

Reference input

Output 1st iteration

Output 50th iteration

Figure 4.8: Reference input and measured output at the first and last iteration reported in
the X-Y plane.

A final refining of the cutoff frequency of the Q filter led us to select a frequency
of 200Hz, already adopted in the simulation whose results are reported in Figure 4.6,
Figure 4.7 and Figure 4.8. As can be seen in Figure 4.9 in a particular part of the entire
path, the Q filter affect the performance in transient condition.

0.7165 0.717 0.7175 0.718 0.7185 0.719 0.7195

X axis [m]

0.296

0.297

0.298

0.299

0.3

0.301

0.302

0.303

0.304

Y
 a

x
is

 [
m

]

Reference input and measured output at different cut-off frequency

0.72 0.74 0.76 0.78 0.8 0.82

X axis [m]

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Y
 a

x
is

 [
m

]

Reference input and measured output at different cut-off frequency

Reference

100 Hz

150 Hz

200 Hz

250 Hz

300 Hz

Figure 4.9: Reference input and measured output at different cutoff frequency of the filter
Q, reported in the X-Y plane. On the left, a part of the path with important transitory.

68



4.2 – Data Driven ILC

Increasing the cutoff frequency of the Q filter makes the ILC faster in tracking signal
in important transient condition but oscillatory behaviour arises, so the chosen frequency
of 200Hz is a good comprise.

4.2 Data Driven ILC
The first step of this technique is to compute the Markov parameters ℎ, using the

theoretical definition reported in the Chapter 3.3 and the mathematical model of the system.
In this case, the reduced state space obtained from the linear analysis of the Simulink
scheme is a roughly approximation of the system presented, due to its complexity.
The weight factors 𝑊𝑒 and 𝑊𝑓 (see (2.10)) used are respectively equal to I and 0, as in
Chapter 3.3.
The maximum learning gain ̄𝜖, defined in (2.10), requires the computation of transpose and
2-norm of large matrix 𝐽. The total points of the trajectory are 7746 (sampling time equal
to 2𝑚𝑠) and the Markov parameters are a six-tuple for each of the six joints for every point
of the trajectory, so the 𝐽 matrix (defined in (2.4)) is a square matrix of dimension about
47𝑘 rows and 47𝑘 columns. Since working with these matrix dimensions can be difficult
or very time consuming, we reduce the sequence of Markov parameters: noting that after
the first 1000 their values decrease of several orders of magnitude, we try to compute the
maximum learning gain increasing the number of the first 𝑁 value considered.

𝑁 ‖𝐽 𝑇𝐽‖ ̄𝜖
484 3.574 0.5596
1294 6.085 0.3287
2064 6.628 0.3017
2844 6.810 0.2937

As can be seen in the table reported before, increasing from 2064 to 2844 over 7746 values,
the 2-norm does not increase so much because the added contributes are very small respect
to the initial ones. So, introducing this approximation we adopt as learning gain

𝜖 = 0.5 ̄𝜖

in order to introducing a safety factor and to make sure anyway asymptotic stability.
The results of a simulation using the parameters described before and the cutoff frequency
of the Q filter initially set to 200Hz, are reported in Figure 4.10, Figure 4.11 and Figure 4.12,
respectively in terms of errors in the joint space, errors in the operational space and a 3D
plot of the obtained cartesian trajectory. Also in this case, we simulate the system for 50
iterations.

69



4 – Robot Racer 7 - 1.4

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li
z
e
d
 i
n
f-

n
o
rm

 e
m

Infinity norm of motor side error

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 2

-n
o
rm

 e
m

2-norm of motor side error

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li
z
e
d
 1

-n
o
rm

 e
m

1-norm of motor side error

0 2 4 6 8 10 12 14 16 18 20

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li
z
e
d
 R

M
S

E
 e

m

RMSE of motor side error

Figure 4.10: Motor side error in the joint space, reported with different type of metrics.
Only values for the first 20 iterations (over 50 done) are reported for a better visualization.

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

-5

0

5

10

15

X
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

10-3 TCP error on X coordinate

First iteration

Last iteration

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

-6

-4

-2

0

2

4

Y
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

10-3 TCP error on Y coordinate

First iteration

Last iteration

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

-8

-6

-4

-2

0

2

Z
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

10-3 TCP error on Z coordinate

First iteration

Last iteration

Figure 4.11: Tool center point error, reported in the three different cartesian axis, in the
first and last iteration.

70



4.2 – Data Driven ILC

0.72 0.74 0.76 0.78 0.8 0.82 0.84

X axis[m]

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35
Y

 a
x
is

[m
]

Reference input VS obtained output

Reference input

Output 1st iteration

Output 50th iteration

Figure 4.12: Reference input and measured output at the first and last iteration reported in
the X-Y plane.

As in section 4.1, the metric adopted to see how the performance of the control system
changes using ILC or not is the Euclidean distance between the motor reference position
and the simulated one in the cartesian space. It can be seen in Figure 4.13.

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
u
c
lid

ia
n
 d

is
ta

n
c
e
 b

e
tw

e
e
n
 d

e
s
ir
e
d
 i
n
p
u
t 
a
n
d
 m

e
a
s
u
re

d
 o

u
tp

u
t

Initial and final distances between measured output and the reference input

Initial

Final

Figure 4.13: Comparison between initial and final distances of measured output from the
reference input, computed point by point, in the first and last iteration.

71



4 – Robot Racer 7 - 1.4

A final tuning of the cutoff frequency of the Q filter led us to confirm a frequency of
200 Hz as the best one, already adopted in the simulation whose results are reported in
Figure 4.10, Figure 4.11 and Figure 4.12. As can be seen in Figure 4.14 in a particular
portion of the entire path, the Q filter hinge the performance of the ILC corrections in
transient condition.

0.72 0.74 0.76 0.78 0.8 0.82

X axis [m]

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Y
 a

x
is

 [
m

]

Reference input and measured output at different cut-off frequency

Reference

100 Hz

150 Hz

200 Hz

250 Hz

0.7865 0.787 0.7875 0.788 0.7885 0.789 0.7895 0.79 0.7905

X axis [m]

0.32

0.325

0.33

0.335

Y
 a

x
is

 [
m

]

Reference input and measured output at different cut-off frequency

Figure 4.14: Reference input and measured output at different cutoff frequency of the filter
Q, reported in the X-Y plane. On the right, a part of the path with important transitory.

Increasing the cutoff frequency of the Q filter, as in the previous case, oscillatory
behaviour arises, so the chosen frequency of 200Hz is a good comprise.

4.3 Conclusion
Between the two kinds of ILC developed, the best results are obtained with PD-Type

ILC. An evidence of this can be seen comparing the results obtained in terms of Euclidean
distance between reference input and obtained output position in the operative space of
the tool center point (see Figure 4.15).

72



4.3 – Conclusion

0 1000 2000 3000 4000 5000 6000 7000 8000

Points of the trajectory

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
u
c
lid

ia
n
 d

is
ta

n
c
e
 b

e
tw

e
e
n
 d

e
s
ir
e
d
 i
n
p
u
t 
a
n
d
 m

e
a
s
u
re

d
 o

u
tp

u
t

Initial and final distances between measured output and the reference input

Initial

Final PD-ILC

Final DD-ILC

Figure 4.15: Comparison between distances from the desired position at the first iteration
and at the last (50𝑡ℎ) iteration using PD-Type ILC and DD-ILC

Another way to compare the two methods is to see the error metrics at steady state
condition. Also in this case, as can be seen from Figure 4.16, the best results are obtained
with the PD-Type ILC except for the 2-norm where the error is comparable with the
DD-ILC.

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 i
n
f-

n
o
rm

 e
m

Infinity norm of motor side error

DD-ILC

PD-ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 2

-n
o
rm

 e
m

2-norm of motor side error

DD-ILC

PD-ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 1

-n
o
rm

 e
m

1-norm of motor side error

DD-ILC

PD-ILC

0 2 4 6 8 10 12 14 16 18 20

Iteration

10
-2

10
-1

10
0

N
o
rm

a
li
z
e
d
 R

M
S

E
 e

m

RMSE of motor side error

DD-ILC

PD-ILC

Figure 4.16: Comparison between motor side error in the joint space, reported with
different type of metrics, obtained with PD-ILC and DD-ILC.

73



4 – Robot Racer 7 - 1.4

Differently from what is obtained with the first simulator, the Data Driven ILC is not
performant as in that case. We expect these results, as already said, due to the Markov
parameters computation: they are not found directly identifying the 𝐽 matrix as in [16],
but we compute them through theoretical definition using a linearised reduced model.
Considering that the control system, differently from the simulator used in Chapter 3, is
more complex, the associated reduced state space is too approximated.

74



Chapter 5

Conclusion

In this thesis we analysed the basis of the Iterative Learning Control and, for two
Comau manipulators, three possible implementations: PD-ILC, Inverse Plant ILC and
Data Driven ILC. Problems in stability, performance, learning transient behaviour and
robustness were discussed along with the design techniques. The ability of ILC to use
available measurements in an offline learning manner, coupled with feedback-feedforward
controller robustness, enables an effective tracking control solution. The effectiveness
depends on many factors: the tuning of the parameters for PD-ILC, the Q-filter frequency,
the accuracy of the model used for the plant inversion or the estimation of the Markov
parameters for the Data Driven are some examples. Each system has to be analysed case-
by-case because, as seen in the previous chapters, a solution or an implementation can be
optimal for a system but not for another one.
During the thesis some questions arise and in future works can be deepened, these include:

1. Independence from the trajectory of the parameters in the PD-ILC: in first approx-
imation we consider the parameters trajectory independent. In the robot NJ4 220
– 2.4 we see that the optimal parameter for the first trajectory are good also for
the second one, so we can suppose that they depend minimally from the path. It is
possible to demonstrate it by the tuning of the parameters also for other trajectories
and comparing the possible improvements respect adopting the same parameters.

2. Difference between results for robot NJ4 220 - 2.4 and robot Racer 7 – 1.4: as
previously said each system has to be analysed case-by-case. In the first simulator
the DD-ILC is better than PD-ILC and Inverse Plant ILC instead in the second one
the PD-ILC is better than DD-ILC and even Inverse Plant ILC cannot be evaluated.
Because the second robot simulator is more complex the linearized model is worse
than in the first simple case and so the effectiveness of the Data Driven is reduced.

3. Importance of a good model identification for Inverse Plant ILC and DD-ILC: as can
be seen by the results of the two simulators, the model plays an important role for
the performance of the ILC, in particular for the Inverse Plant and Data Driven ILC.

75



5 – Conclusion

Without a good model the inverse plant or the Markov parameters lead to a wrong
reference correction and an ineffective ILC. To solve this problem in other papers
they identify the model of the system.

4. Independence between joint parameters for PD-ILC in MIMO systems: in the second
simulator we start to optimize the parameters for each single joint but when we
proceed to other joints we noticed that the optimal values for a specific joint hinge
the performance of other making these parameters not the optimal ones. We define a
global tuning of the parameters adopting two gains for all the joints.

5. Difference between applying ILC correction in the operative space or in the joint
space: all the results reported are obtained applying the ILC correction in the joint
space. To be able to apply the correction in the operative space we have first to obtain
the error or the variable of interest in the cartesian space using the direct kinematics
and then compute the ILC corrections and report it in the joint space using the inverse
kinematics. This last operation is very time consuming. Alternatively, we can use
the Jacobian matrix to make the conversion between the joint and operative space
faster, approximating a small difference in position in discrete time as a velocity.
Unfortunately, the error that we introduced by this approximation is similar to the
position error that we want to correct, so the results obtained are shoddy.

6. Importance of performance metrics reduction in joint space and operative space:
during the simulation of the various ILC types we observe that only in some particular
conditions the performance metrics in the operative space improve while in the joint
space remain stable or increase and viceversa. In principle, if we obtain better results
in one of the space we have almost always improvements in the other one. Based on
which space we are interested we have to focus in particular on the performance in
that space; in almost of all the cases is the cartesian space because is where the task
is originally defined. Considering these aspects, worse performance in the joint space
are not to be considered if accompanied with improvements in the operative space.

7. Use of real exteroceptive sensors instead of simulated proprioceptive ones: during
the thesis, for robot Racer 7 – 1.4, we concentrate to improve the trajectory on motor
side calculating the error using the position from the simulated motor sensor. To
improve the result of the ILC on the link side we have to use external sensors like
accelerometer or camera to acquire the real position of the tool center point of robot
in the cartesian space. In a similar way we can apply the ILC to the link position.

In short, ILC is an interesting approach to control based on the idea that the input reference
can be refined trial by trial using the errors recorded in the past iterations to obtain the
desired output. It has numerous areas of application such as robotics or in general driver
controller and so it has a promising future for continued research and improvements.

76



Appendix A

Matlab Code

Listing A.1: ILC Simulation code Robot NJ4 220 - 2.4
1 % Simulat ion Code
2

3 c l e a r a l l
4 c l o s e a l l
5 c l c
6

7 %% Data robot i n i t i a l i z a t i o n
8

9 data_ax4_nj_4220
10

11 %% Trajec tory gene ra t i on
12

13 genera_tra j ;
14

15 %% Simulink Scheme
16

17 robot_equation
18

19 %% D e f i n i t i o n / computation L f i l t e r
20

21 inverse_ = 0 ;
22 ddi lc_ = 1 ;
23

24 i f inverse_
25 inver se_plant
26 e l s e i f ddi lc_
27 load h.mat
28 we = 1 ;
29 e p s i = 0 . 8 ;
30 e l s e
31 Kp_ilc = 1 ;

77



A – Matlab Code

32 Kd_ilc = 5 . 8 ;
33 L = zpk ( Kp_ilc∗z+Kd_ilc ∗( z - 1 ) ) ;
34 end
35 c l o s e a l l
36

37 %% Q F i l t e r
38

39 f i l t e r _ i n d e x = 1 ; %1 f o r Qz , 2 f o r input f i l t e r , 3 no f i l t e r
40

41 %Qs and Qz d e f i n i t i o n
42 ws_ilc = Cut_Off_frq ;
43 Qs = t f (1 , [ 1/ ws_ilc ^2 sq r t (2 ) / ws_ilc 1 ] ) ;
44 [ num_Qs, den_Qs ] = t fda ta (Qs , ' v ' ) ;
45 Qz = c2d (Qs , Ts , ' zoh ' ) ;
46 [num_Qz, den_Qz ] = t fda ta (Qz , ' v ' ) ;
47

48 %% ILC INITIALIZATION
49

50 l = length ( t r a j e c t o r y ) ;
51 de l t a = 1 ;
52 i termax = 50 ;
53 n = 1 ;
54

55 % i n i t i a l i z a t i o n o f each c i c l e
56 em_z = ze ro s ( l , i termax ) ;
57 el_z = ze ro s ( l , i termax ) ;
58 em_norm_inf = ze ro s (1 , itermax ) ;
59 em_norm_2 = ze ro s (1 , itermax ) ;
60 em_norm_1 = ze ro s (1 , itermax ) ;
61 el_norm_inf = ze ro s (1 , itermax ) ;
62 el_norm_2 = ze ro s (1 , itermax ) ;
63 el_norm_1 = ze ro s (1 , itermax ) ;
64 RMSE_motor = ze ro s (1 , itermax ) ;
65 RMSE_load = ze ro s (1 , itermax ) ;
66 coef_rm_sim = t i m e s e r i e s ( z e r o s ( l , 1 ) ) ;
67 coef_rm = ze ro s ( l , i termax ) ;
68 z_inv = ze ro s (1 , l ) ;
69 rm_ilc_sim = t i m e s e r i e s ( z e r o s ( l , 1 ) ) ;
70

71 f o r i t e r = 1 : itermax
72

73 % di sp l ay i t e r a t i o n number
74 i t e r
75 sim ( ' System_scheme.mdl ' )
76

77 i f i t e r == 1
78 qm_f i r s t_iter = q m . s i g n a l s . v a l u e s ;
79 q l _ f i r s t _ i t e r = q l . s i g n a l s . v a l u e s ;
80 end
81

78



A – Matlab Code

82 % ILC - r e f e r e n c e to update
83 i f inverse_
84 coef_rm ( : , i t e r +1) = r m _ i l c . s i g n a l s . v a l u e s + ...

l s im (L , e m . s i g n a l s . v a l u e s ) ;
85 e l s e i f ddi lc_
86 d d i l c
87 e l s e
88 coef_rm ( : , i t e r +1) = r m _ i l c . s i g n a l s . v a l u e s
89 + Kp_ilc ∗ [ e m . s i g n a l s . v a l u e s ( d e l t a+1 :end ,1 ) ;
90 z e r o s ( de l ta , 1 ) ]
91 + Kd_ilc ∗ ( [ e m . s i g n a l s . v a l u e s ( d e l t a+1 :end ,1 ) ;
92 z e r o s ( de l ta , 1 ) ] - e m . s i g n a l s . v a l u e s ) ;
93 end
94

95 coef_rm_sim = t i m e s e r i e s ( coef_rm ( : , i t e r +1) ,Time) ;
96

97 % data f o r 3D p lo t o f em and e l
98 i t er_x = ones ( l , 1 ) ∗ ( 1 : itermax ) ;
99 em_z ( : , i t e r ) = e m . s i g n a l s . v a l u e s ;

100 el_z ( : , i t e r ) = e l . s i g n a l s . v a l u e s ;
101

102 % norm1 , 2 , I n f e r r o r f o r motor s i d e
103 em_norm_1( i t e r ) = norm( e m . s i g n a l s . v a l u e s , 1 )
104 em_norm_2( i t e r ) = norm( e m . s i g n a l s . v a l u e s , 2 )
105 em_norm_inf ( i t e r ) = norm( e m . s i g n a l s . v a l u e s , I n f )
106

107 % norm1 , 2 , I n f e r r o r f o r load s i d e
108 el_norm_1 ( i t e r ) = norm( e l . s i g n a l s . v a l u e s , 1 )
109 el_norm_2 ( i t e r ) = norm( e l . s i g n a l s . v a l u e s , 2 )
110 el_norm_inf ( i t e r ) = norm( e l . s i g n a l s . v a l u e s , I n f )
111

112 %RMSE
113 RMSE_motor( i t e r ) = ...

s q r t ( immse ( R e f . s i g n a l s . v a l u e s , q m . s i g n a l s . v a l u e s ) )
114 RMSE_load( i t e r ) = ...

s q r t ( immse (1/ Ntr ∗2∗ p i ∗ R e f . s i g n a l s . v a l u e s , q l . s i g n a l s . v a l u e s ) )
115

116 end
117

118 %% Normal izat ion
119

120 normal ized = 1 ;
121 i f normal ized
122 em_norm_inf = em_norm_inf/max( em_norm_inf ) ;
123 em_norm_2 = em_norm_2/max(em_norm_2) ;
124 em_norm_1 = em_norm_1/max(em_norm_1) ;
125 el_norm_inf = el_norm_inf/max( el_norm_inf ) ;
126 el_norm_2 = el_norm_2/max( el_norm_2 ) ;
127 el_norm_1 = el_norm_1/max( el_norm_1 ) ;
128 RMSE_motor = RMSE_motor/max(RMSE_motor) ;

79



A – Matlab Code

129 RMSE_load = RMSE_load/max(RMSE_load) ;
130 end
131

132 %% plo t
133

134 l i n e a r = 0 ;
135 % RMSE motor and load
136 i f l i n e a r
137 f i g 1 = f i g u r e (1 ) ; p l o t (RMSE_motor ( 1 : i t e r ) ) , ...

t i t l e ( 'RMSE(rm-qm) ' ) , g r id on
138 f i g 2 = f i g u r e (2 ) ; p l o t (RMSE_load ( 1 : i t e r ) ) , ...

t i t l e ( 'RMSE( r l - q l ) ' ) , g r id on
139 e l s e
140 f i g 1 = f i g u r e (1 ) ; semi logy (RMSE_motor ( 1 : i t e r ) ) , ...

t i t l e ( 'RMSE(rm-qm) ' ) , g r id on
141 f i g 2 = f i g u r e (2 ) ; semi logy (RMSE_load ( 1 : i t e r ) ) , ...

t i t l e ( 'RMSE( r l - q l ) ' ) , g r id on
142 end
143

144 % e r r o r every i t e r a t i o n
145 f i g 3 = f i g u r e (3 ) ; p l o t3 ( iter_x , 1 : 1 : l , em_z) , t i t l e ( ' motor ...

p o s i t i o n e r r o r rm-qm ' ) , g r i d on
146 f i g 4 = f i g u r e (4 ) ; p l o t3 ( iter_x , 1 : 1 : l , el_z ) , t i t l e ( ' load ...

p o s i t i o n e r r o r r l - q l ' ) , g r i d on
147

148 % e r r o r f i r s t and l a s t i t e r a t i o n
149 f i g 5 = f i g u r e (5 ) ; p l o t (em_z ( : , 1 ) , ' r ' ) , hold on , ...

p l o t (em_z ( : , i t e r ) , ' b ' ) , t i t l e ( s p r i n t f ( ' motor p o s i t i o n e r r o r ...
rm-qm 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( 'em\ _in i t ' , 'em\ _f ina l ' )

150 f i g 6 = f i g u r e (6 ) ; p l o t ( el_z ( : , 1 ) , ' r ' ) , hold on , ...
p l o t ( el_z ( : , i t e r ) , ' b ' ) , t i t l e ( s p r i n t f ( ' load p o s i t i o n e r r o r ...
r l - q l 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( ' e l \ _in i t ' , ' e l \ _f ina l ' )

151 f i g 7 = f i g u r e (7 ) ; p l o t ( abs (em_z ( : , 1 ) ) , ' r ' ) , hold on , ...
p l o t ( abs (em_z ( : , i t e r ) ) , ' b ' ) , t i t l e ( s p r i n t f ( ' abs motor ...
p o s i t i o n e r r o r | rm-qm| 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( 'em\ _in i t ' , 'em\ _f ina l ' )

152 f i g 8 = f i g u r e (8 ) ; p l o t ( abs ( el_z ( : , 1 ) ) , ' r ' ) , hold on , ...
p l o t ( abs ( el_z ( : , i t e r ) ) , ' b ' ) , t i t l e ( s p r i n t f ( ' abs load p o s i t i o n ...
e r r o r | r l - q l | 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( ' e l \ _in i t ' , ' e l \ _f ina l ' )

153

154 % i n i t i a l r e f e r e n c e vs f i n a l qm or q l
155 f i g 9 = f i g u r e (9 ) ; p l o t ( R e f . s i g n a l s . v a l u e s , ' r ' , ' LineWidth ' , 1 ) , ...

hold on , p l o t ( qm_first_iter , ' - . g ' , ' LineWidth ' , 1 ) , ...
p l o t ( q m . s i g n a l s . v a l u e s , ' - -b ' , ' LineWidth ' , 1 ) , t i t l e ( ' Reference ...
motor vs qm ' ) , g r i d on , ...
l egend ( ' Ref\_m' , 'qm\ _ i n i t i a l ' , 'qm\ _f ina l ' )

80



A – Matlab Code

156 f i g 1 0 = f i g u r e (10) ; ...
p l o t ( R e f . s i g n a l s . v a l u e s /Ntr ∗2∗ pi , ' r ' , ' LineWidth ' , 1 ) , hold on , ...
p l o t ( q l _ f i r s t _ i t e r , ' - . g ' , ' LineWidth ' , 1 ) , ...
p l o t ( q l . s i g n a l s . v a l u e s , ' - -b ' , ' LineWidth ' , 1 ) , t i t l e ( ' Reference ...
load vs q l ' ) , g r i d on , ...
l egend ( ' Ref\_l ' , ' q l \ _ i n i t i a l ' , ' q l \ _f ina l ' )

157

158 % e r r o r norm i n f and 2
159 i f l i n e a r
160 f i g 1 1 = f i g u r e (11) ; p l o t ( em_norm_inf ( 1 : i t e r ) ) , ...

t i t l e ( ' i n f i n i t y norm em=rm-qm ' ) , g r i d on
161 f i g 1 2 = f i g u r e (12) ; p l o t (em_norm_2 ( 1 : i t e r ) ) , t i t l e ( ' 2 -norm ...

em=rm-qm ' ) , g r id on
162 f i g 1 3 = f i g u r e (13) ; p l o t (em_norm_1 ( 1 : i t e r ) ) , t i t l e ( ' 1 -norm ...

em=rm-qm ' ) , g r id on
163 f i g 1 4 = f i g u r e (14) ; p l o t ( el_norm_inf ( 1 : i t e r ) ) , ...

t i t l e ( ' i n f i n i t y norm e l=r l - q l ' ) , g r i d on
164 f i g 1 5 = f i g u r e (15) ; p l o t ( el_norm_2 ( 1 : i t e r ) ) , t i t l e ( ' 2 -norm ...

e l=r l - q l ' ) , g r id on
165 f i g 1 6 = f i g u r e (16) ; p l o t ( el_norm_1 ( 1 : i t e r ) ) , t i t l e ( ' 1 -norm ...

e l=r l - q l ' ) , g r id on
166 e l s e
167 f i g 1 1 = f i g u r e (11) ; semi logy ( em_norm_inf ( 1 : i t e r ) ) , ...

t i t l e ( ' i n f i n i t y norm em=rm-qm ' ) , g r i d on
168 f i g 1 2 = f i g u r e (12) ; semi logy (em_norm_2 ( 1 : i t e r ) ) , ...

t i t l e ( ' 2 -norm em=rm-qm ' ) , g r i d on
169 f i g 1 3 = f i g u r e (13) ; semi logy (em_norm_1 ( 1 : i t e r ) ) , ...

t i t l e ( ' 1 -norm em=rm-qm ' ) , g r i d on
170 f i g 1 4 = f i g u r e (14) ; semi logy ( el_norm_inf ( 1 : i t e r ) ) , ...

t i t l e ( ' i n f i n i t y norm e l=r l - q l ' ) , g r i d on
171 f i g 1 5 = f i g u r e (15) ; semi logy ( el_norm_2 ( 1 : i t e r ) ) , ...

t i t l e ( ' 2 -norm e l=r l - q l ' ) , g r i d on
172 f i g 1 6 = f i g u r e (16) ; semi logy ( el_norm_1 ( 1 : i t e r ) ) , ...

t i t l e ( ' 1 -norm e l=r l - q l ' ) , g r i d on
173 end

Listing A.2: Inverse Plant code Robot NJ4 220 - 2.4
1 % Inve r s e p lant
2

3 G = MotPosit ion
4 [numG, denG ] = t fda ta (G, ' v ' ) ;
5 G_z1 = ( t f (numG, denG , Ts , ' Var iab le ' , ' z ^ -1 ' ) ) ;
6 [ numGz1 , denGz1 ] = t fda ta (G_z1 , ' v ' ) ;
7 delay = length (numGz1(numGz1==0)) ;
8 numBcz1 = numGz1(numGz1 =0) ;
9 Bc_z1 = ( t f (numBcz1 , 1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ) ;

10 Bc_z = ( t f (numG, 1 , Ts ) ) ;
11 Ac_z1 = ( t f ( denGz1 , 1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ) ;

81



A – Matlab Code

12 Ac_z = ( t f (denG , 1 , Ts ) ) ;
13

14 G_z1_b = z ^ - de lay ∗Bc_z1/Ac_z1
15 [ numGz1b , denGz1b ] = t fda ta (G_z1_b, ' v ' ) ;
16

17 z e r i = zero (Bc_z1) ;
18 Bca_z1 = t f (1 , 1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ;
19 Bcu_z1 = t f (1 , 1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ;
20

21 i = 1 ;
22 % Stab le ∗ Unstable decomposit ion
23 whi le i <= length ( z e r i )
24 i f abs ( z e r i ( i ) ) < 1
25 i f ( imag ( z e r i ( i ) ) == 0)
26 Bca_z1 = Bca_z1 ∗ ...

t f ( poly ( [ z e r i ( i ) ] ) , 1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ;
27 i = i +1;
28 e l s e
29 Bca_z1 = Bca_z1 ∗ ...

t f ( poly ( [ z e r i ( i ) ; z e r i ( i +1) ] ) ,1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ;
30 i = i +2;
31 end
32 e l s e
33 i f ( imag ( z e r i ( i ) ) == 0)
34 Bcu_z1 = Bcu_z1 ∗ ...

t f ( poly ( [ z e r i ( i ) ] ) , 1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ;
35 i = i +1;
36 e l s e
37 Bcu_z1 = Bcu_z1 ∗ ...

t f ( poly ( [ z e r i ( i ) ; z e r i ( i +1) ] ) ,1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ;
38 i = i +2;
39 end
40 end
41 end
42

43

44 [ ign , ign ,Bcu_K] = zpkdata (Bc_z1) ;
45 Bc_z1_b = t f ( Bca_z1 ∗ Bcu_z1 ∗ Bcu_K) ;
46

47 [ numBcaz1 , ign ] = t fda ta (Bca_z1 , ' v ' ) ;
48 Bca_z = ( t f (numBcaz1 , 1 , Ts ) ) ;
49

50 [ numBcuz1 , ign ] = t fda ta (Bcu_z1 , ' v ' ) ;
51 Bcuz1K = ddcgain (numBcuz1 , 1 ) ;
52 Bcu_z = ( t f (numBcuz1 , 1 , Ts ) ) ;
53 Bcu_z1s = ( t f ( f l i p l r (numBcuz1) ,1 , Ts , ' Var iab le ' , ' z ^ -1 ' ) ) ;
54

55 G_inv = z ^ - de lay ∗(Ac_z1 ∗ Bcu_z1) / ( Bca_z1 ∗ (Bcuz1K) ^2) ;
56

57 L = G_inv

82



A – Matlab Code

Listing A.3: Data Driven code Robot NJ4 220 - 2.4
1 %d d i l c
2

3 e_ i l c = e m . s i g n a l s . v a l u e s ;
4 e_i lc_inv = f l i p u d ( e_ i l c ) ;
5

6 f o r i = 1 : l ength ( e_ i l c )
7 z_inv ( i ) = f l i p l r (h ( 1 : i ) ) ∗we∗ e_i lc_inv ( 1 : i ) ;
8 end
9 z = f l i p u d ( z_inv ' ) ;

10

11 coef_rm ( : , i t e r +1) = coef_rm ( : , i t e r )+e p s i ∗z ;

Listing A.4: PD code Robot Racer 7 - 1.4
1 %Q- f i l t e r
2 ws = 200 ;
3 Q = t f ( 1 , [ 1 / ws^2 sq r t (2 ) /ws 1 ] ) ;
4 [Q_num, Q_den ] = t fda ta (Q, ' v ' ) ;
5

6 %f i r s t i t e r a t i o n
7 N = 7746 ;
8 Ts1 = 0 .002 ;
9 Time1 = 0 : Ts1 : Ts1 ∗(N- 1 ) ;

10 coef_rm = ze ro s (N, 6 ) ;
11 coef_rm_sim = t i m e s e r i e s ( coef_rm , Time1 ) ;
12 save coef_rm_sim.mat - v7 .3 coef_rm_sim
13

14 sim ( ' test_ILC_q_PD.slx ' ) ;
15

16 %c a r t e s i a n e r r o r computation f i r s t i t e r a t i o n
17

18 output_q_motor_first_iter = output_q_motor ;
19

20 xyz_in = ze ro s (3 ,N) ;
21 xyz_out{1} = ze ro s (3 ,N) ;
22 f o r i = 1 :N
23

24 xyz_in ( 1 : 3 , i ) = fkine_motor ( RobotObject , input_q_motor ( i , : ) ' ) ;
25 xyz_out {1} (1 : 3 , i ) = fkine_motor ( RobotObject , ...

output_q_motor ( i , : ) ' ) ;
26

27 end
28

29 xyz_err { 1 } ( 1 : 3 , : ) = xyz_in ( 1 : 3 , : ) - xyz_out { 1 } ( 1 : 3 , : ) ;
30

31 %optimal parameters
32 Kp = 0 .33 ;
33 Kd = 3 . 5 ;

83



A – Matlab Code

34 i termax = 50 ;
35 de l t a = 1 ;
36

37 %v a r i a b l e i n i t i a l i z a t i o n
38 em_z = c e l l ( itermax , 1 ) ;
39 em_norm_inf = ze ro s ( itermax , 6 ) ;
40 em_norm_2 = ze ro s ( itermax , 6 ) ;
41 em_norm_1 = ze ro s ( itermax , 6 ) ;
42 RMSE_motor = ze ro s ( itermax , 6 ) ;
43 em_norm_inf_global = ze ro s ( itermax , 1 ) ;
44 em_norm_2_global = ze ro s ( itermax , 1 ) ;
45 em_norm_1_global = ze ro s ( itermax , 1 ) ;
46 RMSE_motor_global = ze ro s ( itermax , 1 ) ;
47

48 %other i t e r a t i o n
49 f o r i t e r = 1 : itermax
50

51 i t e r
52

53 f o r i = 1 :6
54

55 %data f o r 3D p lo t o f em and e l
56 em_z{ i } ( : , i t e r ) = error_q_motor ( : , i ) ;
57

58 %norm1 , 2 , I n f e r r o r f o r motor s i d e
59 em_norm_1( i t e r , i ) = norm( error_q_motor ( : , i ) , 1 ) ;
60 em_norm_2( i t e r , i ) = norm( error_q_motor ( : , i ) , 2 ) ;
61 em_norm_inf ( i t e r , i ) = norm( error_q_motor ( : , i ) , I n f ) ;
62

63 %RMSE
64 RMSE_motor( i t e r , i ) = sq r t ( immse ( output_q_motor_ref ( : , i ) , ...

. . .
65 input_q_motor_ref ( : , i ) ) ) ;
66

67 end
68

69 %g l o b a l e r r o r
70 em_norm_inf_global ( i t e r , 1 ) = norm( error_q_motor , i n f ) ;
71 em_norm_2_global ( i t e r , 1 ) = norm( error_q_motor , 2 ) ;
72 em_norm_1_global ( i t e r , 1 ) = norm( error_q_motor , 1 ) ;
73 RMSE_motor_global ( i t e r , 1 ) = ...

s q r t ( immse ( output_q_motor_ref , input_q_motor_ref ) ) ;
74

75 i f i t e r < itermax
76

77 %ILC
78

79 coef_rm = coef_rm_sim_f + Kp . ∗ error_q_motor + Kd . ∗ . . .
80 ( [ error_q_motor ( de l t a+1 :end , : ) ; z e r o s ( de l ta , 6 ) ] - . . .
81 error_q_motor ) ;

84



A – Matlab Code

82

83 coef_rm_sim = t i m e s e r i e s ( coef_rm , Time1 ) ;
84 save coef_rm_sim.mat - v7 .3 coef_rm_sim
85 sim ( ' test_ILC_q_PD.slx ' ) ;
86

87 e l s e
88

89 %c a r t e s i a n e r r o r computation l a s t i t e r a t i o n
90

91 xyz_out{ i t e r } = ze ro s (3 ,N) ;
92 f o r i = 1 :N
93

94 xyz_out{ i t e r } ( 1 : 3 , i ) = ...
fkine_motor ( RobotObject , output_q_motor ( i , : ) ' ) ;

95

96 end
97

98 xyz_err { i t e r } ( 1 : 3 , : ) = xyz_in ( 1 : 3 , : ) - ...
xyz_out{ i t e r } ( 1 : 3 , : ) ;

99

100 break
101

102 end
103 end
104

105 %% f i g u r e
106

107 i t er_x = ones (N, 1 ) ∗ ( 1 : i t e r ) ;
108

109 %j o i n t space p l o t
110 f o r i = 1 :6
111

112 % normal i za t i on
113 normal ized = 1 ;
114 i f normal ized
115 em_norm_inf ( : , i ) = em_norm_inf ( : , i ) /max( em_norm_inf ( : , i ) ) ;
116 em_norm_2 ( : , i ) = em_norm_2 ( : , i ) /max(em_norm_2 ( : , i ) ) ;
117 em_norm_1 ( : , i ) = em_norm_1 ( : , i ) /max(em_norm_1 ( : , i ) ) ;
118 RMSE_motor ( : , i ) = RMSE_motor ( : , i ) /max(RMSE_motor ( : , i ) ) ;
119 end
120

121 % plo t
122

123 l i n e a r = 0 ;
124

125 i f l i n e a r
126 f i g 1 = f i g u r e (1 ) ; subplot (3 , 2 , i ) , ...

p l o t (RMSE_motor ( 1 : i t e r , i ) ) , t i t l e ( 'RMSE(rm-qm) ' ) , ...
g r i d on

127 e l s e

85



A – Matlab Code

128 f i g 1 = f i g u r e (1 ) ; subplot (3 , 2 , i ) , ...
semi logy (RMSE_motor ( 1 : i t e r , i ) ) , t i t l e ( 'RMSE(rm-qm) ' ) , ...
g r i d on

129 end
130

131

132 f i g 2 = f i g u r e (2 ) ; subplot (3 , 2 , i ) , p l o t3 ( iter_x , 1 : 1 :N, ...
em_z{ i }) , t i t l e ( ' motor p o s i t i o n e r r o r rm-qm ' ) , g r i d on

133

134

135 f i g 3 = f i g u r e (3 ) ; subplot (3 , 2 , i ) , p l o t (em_z{ i } ( : , 1 ) , ' r ' ) , ...
hold on , p l o t (em_z{ i } ( : , i t e r ) , 'b ' ) , t i t l e ( s p r i n t f ( ' motor ...
p o s i t i o n e r r o r rm-qm 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( 'em\ _in i t ' , 'em\ _f ina l ' )

136 f i g 4 = f i g u r e (4 ) ; subplot (3 , 2 , i ) , ...
p l o t ( abs (em_z{ i } ( : , 1 ) ) , ' r ' ) , hold on , ...
p l o t ( abs (em_z{ i } ( : , i t e r ) ) , ' b ' ) , t i t l e ( s p r i n t f ( ' abs motor ...
p o s i t i o n e r r o r | rm-qm| 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( 'em\ _in i t ' , 'em\ _f ina l ' )

137

138 f i g 5 = f i g u r e (5 ) ; subplot (3 , 2 , i ) , ...
p l o t ( input_q_motor ( : , i ) , ' r ' , ' LineWidth ' , 1 ) , hold on , ...
p l o t ( output_q_motor_first_iter ( : , i ) , ' - . g ' , ' LineWidth ' , 1 ) , ...
p l o t ( output_q_motor ( : , i ) , ' - -b ' , ' LineWidth ' , 1 ) , ...
t i t l e ( ' Reference motor vs qm ' ) , g r id on , ...
l egend ( ' Ref\_m' , 'qm\ _ i n i t i a l ' , 'qm\ _f ina l ' )

139

140

141 i f l i n e a r
142 f i g 6 = f i g u r e (6 ) ; subplot (3 , 2 , i ) , ...

p l o t ( em_norm_inf ( 1 : i t e r , i ) ) , t i t l e ( ' i n f i n i t y norm ...
em=rm-qm ' ) , g r i d on

143 f i g 7 = f i g u r e (7 ) ; subplot (3 , 2 , i ) , ...
p l o t (em_norm_2 ( 1 : i t e r , i ) ) , t i t l e ( ' 2 -norm em=rm-qm ' ) , ...
g r i d on

144 f i g 8 = f i g u r e (8 ) ; subplot (3 , 2 , i ) , ...
p l o t (em_norm_1 ( 1 : i t e r , i ) ) , t i t l e ( ' 1 -norm em=rm-qm ' ) , ...
g r i d on

145 e l s e
146 f i g 6 = f i g u r e (6 ) ; subplot (3 , 2 , i ) , ...

semi logy ( em_norm_inf ( 1 : i t e r , i ) ) , t i t l e ( ' i n f i n i t y norm ...
em=rm-qm ' ) , g r i d on

147 f i g 7 = f i g u r e (7 ) ; subplot (3 , 2 , i ) , ...
semi logy (em_norm_2 ( 1 : i t e r , i ) ) , t i t l e ( ' 2 -norm ...
em=rm-qm ' ) , g r i d on

148 f i g 8 = f i g u r e (8 ) ; subplot (3 , 2 , i ) , ...
semi logy (em_norm_1 ( 1 : i t e r , i ) ) , t i t l e ( ' 1 -norm ...
em=rm-qm ' ) , g r i d on

149 end
150

86



A – Matlab Code

151 end
152

153 %c a r t e s i a n space p l o t
154 f i g u r e (9 ) , subp lot ( 3 , 1 , 1 ) , p l o t ( xyz_err { 1 } ( 1 , : ) , ' - r ' ) , hold on , ...

p l o t ( xyz_err { i t e r } ( 1 , : ) , ' - -b ' ) , g r i d on , t i t l e ( 'TCP e r r o r on ...
X coord inate ' ) , l egend ( ' F i r s t i t e r a t i o n ' , ' Last i t e r a t i o n ' ) , ...
x l a b e l ( ' Points o f the t r a j e c t o r y ' ) , y l a b e l ( 'X p o s i t i o n e r r o r ...
[m] ' )

155 f i g u r e (9 ) , subp lot ( 3 , 1 , 2 ) , p l o t ( xyz_err { 1 } ( 2 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_err { i t e r } ( 2 , : ) , ' - -b ' ) , g r i d on , t i t l e ( 'TCP e r r o r on ...
Y coord inate ' ) , l egend ( ' F i r s t i t e r a t i o n ' , ' Last i t e r a t i o n ' ) , ...
x l a b e l ( ' Points o f the t r a j e c t o r y ' ) , y l a b e l ( 'Y p o s i t i o n e r r o r ...
[m] ' )

156 f i g u r e (9 ) , subp lot ( 3 , 1 , 3 ) , p l o t ( xyz_err { 1 } ( 3 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_err { i t e r } ( 3 , : ) , ' - -b ' ) , g r i d on , t i t l e ( 'TCP e r r o r on ...
Z coord inate ' ) , l egend ( ' F i r s t i t e r a t i o n ' , ' Last i t e r a t i o n ' ) , ...
x l a b e l ( ' Points o f the t r a j e c t o r y ' ) , y l a b e l ( 'Z p o s i t i o n e r r o r ...
[m] ' )

157

158 f i g u r e (11) , subplot ( 3 , 1 , 1 ) , p l o t ( xyz_in ( 1 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_out{ i t e r } ( 1 , : ) , ' - -b ' ) , p l o t ( xyz_out { 1 } ( 1 , : ) , ' - - g ' ) , ...
t i t l e ( ' e r r o r on X coord o f TCP i n i t i a l vs f i n a l ' ) , g r i d on , ...
l egend ( ' i n i t i a l ' , ' f i n a l ' ) , hold on , subplot ( 3 , 1 , 2 ) , ...
p l o t ( xyz_in ( 2 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_out{ i t e r } ( 2 , : ) , ' - -b ' ) , p l o t ( xyz_out { 1 } ( 2 , : ) , ' - - g ' ) , ...
t i t l e ( ' e r r o r on Y coord o f TCP i n i t i a l vs f i n a l ' ) , g r i d on , ...
l egend ( ' i n i t i a l ' , ' f i n a l ' ) , subplot ( 3 , 1 , 3 ) , ...
p l o t ( xyz_in ( 3 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_out{ i t e r } ( 3 , : ) , ' - -b ' ) , p l o t ( xyz_out { 1 } ( 3 , : ) , ' - - g ' ) , ...
t i t l e ( ' e r r o r on Z coord o f TCP i n i t i a l vs f i n a l ' ) , g r i d on , ...
l egend ( ' i n i t i a l ' , ' f i n a l ' )

159

160 %3D plo t
161 f i g u r e (12) , p lo t3 ( xyz_in ( 1 , : ) , xyz_in ( 2 , : ) , xyz_in ( 3 , : ) , ' r ' ) , . . .
162 hold on , p lo t3 ( xyz_out{ i t e r } ( 1 , : ) , xyz_out{ i t e r } ( 2 , : ) , . . .
163 xyz_out{ i t e r } ( 3 , : ) , ' - -b ' ) , . . .
164 p lo t3 ( xyz_out { 1 } ( 1 , : ) , xyz_out { 1 } ( 2 , : ) , xyz_out { 1 } ( 3 , : ) , ' - - g ' )
165

166 %g l o b a l metr ic norma l i za t i on
167 em_norm_inf_global ( : , 1 ) = ...

em_norm_inf_global ( : , 1 ) /max( em_norm_inf_global ( : , 1 ) ) ;
168 em_norm_2_global ( : , 1 ) = ...

em_norm_2_global ( : , 1 ) /max( em_norm_2_global ( : , 1 ) ) ;
169 em_norm_1_global ( : , 1 ) = ...

em_norm_1_global ( : , 1 ) /max( em_norm_1_global ( : , 1 ) ) ;
170 RMSE_motor_global ( : , 1 ) = ...

RMSE_motor_global ( : , 1 ) /max(RMSE_motor_global ( : , 1 ) ) ;
171

172 %g l o b a l metr ic p l o t
173 i f l i n e a r

87



A – Matlab Code

174 f i g u r e (13) , subplot ( 2 , 2 , 1 ) , ...
p l o t ( em_norm_inf_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' Normalized ...
i n f i n i t y norm of motor s i d e e r r o r ' ) , g r i d on

175 f i g u r e (13) , subplot ( 2 , 2 , 2 ) , p l o t ( em_norm_2_global ( 1 : i t e r , 1 ) ) , ...
t i t l e ( ' Normalized 2 norm of motor s i d e e r r o r ' ) , g r i d on

176 f i g u r e (13) , subplot ( 2 , 2 , 3 ) , p l o t ( em_norm_1_global ( 1 : i t e r , 1 ) ) , ...
t i t l e ( ' Normalized 1 norm of motor s i d e e r r o r ' ) , g r i d on

177 f i g u r e (13) , subplot ( 2 , 2 , 4 ) , ...
p l o t (RMSE_motor_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' Normalized RMSE ...
o f motor s i d e e r r o r ' ) , g r i d on

178 e l s e
179 f i g u r e (13) , subplot ( 2 , 2 , 1 ) , ...

semi logy ( em_norm_inf_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' I n f i n i t y ...
norm o f motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized in f - norm em ' )

180 f i g u r e (13) , subplot ( 2 , 2 , 2 ) , ...
semi logy ( em_norm_2_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' 2 -norm of ...
motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized 2 -norm em ' )

181 f i g u r e (13) , subplot ( 2 , 2 , 3 ) , ...
semi logy ( em_norm_1_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' 1 -norm of ...
motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized 1 -norm em ' )

182 f i g u r e (13) , subplot ( 2 , 2 , 4 ) , ...
semi logy (RMSE_motor_global ( 1 : i t e r , 1 ) ) , t i t l e ( 'RMSE of ...
motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized RMSE em ' )

183 end

Listing A.5: Data Driven code Robot Racer 7 - 1.4
1 load h.mat %Markov parameters
2 load eps i lon_bar .mat %max l e a r n i n g gain
3

4 %Q- f i l t e r
5 ws = 25 ;
6 Q = t f ( 1 , [ 1 / ws^2 sq r t (2 ) /ws 1 ] ) ;
7 [Q_num, Q_den ] = t fda ta (Q, ' v ' ) ;
8

9 %f i r s t i t e r a t i o n
10 N = 7746 ;
11 Ts1 = 0 .002 ;
12 Time1 = 0 : Ts1 : Ts1 ∗(N- 1 ) ;
13 coef_rm = ze ro s (N, 6 ) ;
14 coef_rm_sim = t i m e s e r i e s ( coef_rm , Time1 ) ;
15 save coef_rm_sim.mat - v7 .3 coef_rm_sim
16

17 sim ( ' test_ILC_q_DD.slx ' ) ;
18

88



A – Matlab Code

19 %c a r t e s i a n e r r o r computation f i r s t i t e r a t i o n
20

21 output_q_motor_first_iter = output_q_motor ;
22

23 xyz_in = ze ro s (3 ,N) ;
24 xyz_out{1} = ze ro s (3 ,N) ;
25 f o r i = 1 :N
26

27 xyz_in ( 1 : 3 , i ) = fkine_motor ( RobotObject , input_q_motor ( i , : ) ' ) ;
28 xyz_out {1} (1 : 3 , i ) = fkine_motor ( RobotObject , ...

output_q_motor ( i , : ) ' ) ;
29

30 end
31

32 xyz_err { 1 } ( 1 : 3 , : ) = xyz_in ( 1 : 3 , : ) - xyz_out { 1 } ( 1 : 3 , : ) ;
33

34 %i t e r a t i o n s d e f i n i t i o n
35 i termax = 50 ;
36 de l t a = 1 ;
37

38 %v a r i a b l e i n i t i a l i z a t i o n
39 coef_rm = c e l l ( itermax , 1 ) ;
40 coef_rm {1} = ze ro s (N, 6 ) ;
41 coef_rm_selected = ze ro s (N, 6 ) ;
42 em_z = c e l l ( itermax , 1 ) ;
43 em_norm_inf = ze ro s ( itermax , 6 ) ;
44 em_norm_2 = ze ro s ( itermax , 6 ) ;
45 em_norm_1 = ze ro s ( itermax , 6 ) ;
46 RMSE_motor = ze ro s ( itermax , 6 ) ;
47 em_norm_inf_global = ze ro s ( itermax , 1 ) ;
48 em_norm_2_global = ze ro s ( itermax , 1 ) ;
49 em_norm_1_global = ze ro s ( itermax , 1 ) ;
50 RMSE_motor_global = ze ro s ( itermax , 1 ) ;
51

52 %other i t e r a t i o n
53 f o r i t e r = 1 : itermax
54

55 i t e r
56

57 f o r i = 1 :6
58

59 %data f o r 3D p lo t o f em and e l
60 em_z{ i } ( : , i t e r ) = error_q_motor ( : , i ) ;
61

62 %norm1 , 2 , I n f e r r o r f o r motor s i d e
63 em_norm_1( i t e r , i ) = norm( error_q_motor ( : , i ) , 1 ) ;
64 em_norm_2( i t e r , i ) = norm( error_q_motor ( : , i ) , 2 ) ;
65 em_norm_inf ( i t e r , i ) = norm( error_q_motor ( : , i ) , I n f ) ;
66

67 %RMSE

89



A – Matlab Code

68 RMSE_motor( i t e r , i ) = sq r t ( immse ( output_q_motor_ref ( : , i ) , ...
. . .

69 input_q_motor_ref ( : , i ) ) ) ;
70

71 end
72

73 %g l o b a l e r r o r
74 em_norm_inf_global ( i t e r , 1 ) = norm( error_q_motor , i n f ) ;
75 em_norm_2_global ( i t e r , 1 ) = norm( error_q_motor , 2 ) ;
76 em_norm_1_global ( i t e r , 1 ) = norm( error_q_motor , 1 ) ;
77 RMSE_motor_global ( i t e r , 1 ) = ...

s q r t ( immse ( output_q_motor_ref , input_q_motor_ref ) ) ;
78

79 i f i t e r < itermax
80

81 %DD- ILC
82

83 e_reverse = ze ro s (1 ,N) ;
84 z_reverse = ze ro s (1 ,N) ;
85 z_not_reverse = ze ro s (N, 6 ) ;
86 f o r j = 1 :6
87

88 e_reverse = f l i p l r ( error_q_motor ( : , j ) ' ) ;
89

90 f o r j j = 1 :6
91

92 f o r i = 1 :N
93 z_reverse (1 , i ) = ...

f l i p l r (h{ j , j j } ( 1 , 1 : i ) ) ∗ e_reverse ( 1 , 1 : i ) ' ;
94 end
95

96 z_not_reverse ( : , j ) = z_not_reverse ( : , j ) + ...
f l i p u d ( z_reverse ' ) ;

97

98 end
99

100 end
101

102 e p s i l o n = 0 . 5 ∗ eps i lon_bar ;
103 coef_rm{ i t e r +1} = coef_rm{ i t e r } + e p s i l o n . ∗ z_not_reverse ;
104 coef_rm_sim = t i m e s e r i e s ( coef_rm{ i t e r +1},Time1 ) ;
105 save coef_rm_sim.mat - v7 .3 coef_rm_sim
106

107 sim ( ' test_ILC_q_DD.slx ' ) ;
108

109 e l s e
110

111 %c a r t e s i a n e r r o r computation l a s t i t e r a t i o n
112

113 xyz_out{ i t e r } = ze ro s (3 ,N) ;

90



A – Matlab Code

114 f o r i = 1 :N
115

116 xyz_out{ i t e r } ( 1 : 3 , i ) = ...
fkine_motor ( RobotObject , output_q_motor ( i , : ) ' ) ;

117

118 end
119

120 xyz_err { i t e r } ( 1 : 3 , : ) = xyz_in ( 1 : 3 , : ) - ...
xyz_out{ i t e r } ( 1 : 3 , : ) ;

121 break
122

123 end
124 end
125

126 %% f i g u r e
127

128 i t er_x = ones (N, 1 ) ∗ ( 1 : i t e r ) ;
129

130 %j o i n t space p l o t
131 f o r i = 1 :6
132

133 % normal i za t i on
134 normal ized = 1 ;
135 i f normal ized
136 em_norm_inf ( : , i ) = em_norm_inf ( : , i ) /max( em_norm_inf ( : , i ) ) ;
137 em_norm_2 ( : , i ) = em_norm_2 ( : , i ) /max(em_norm_2 ( : , i ) ) ;
138 em_norm_1 ( : , i ) = em_norm_1 ( : , i ) /max(em_norm_1 ( : , i ) ) ;
139 RMSE_motor ( : , i ) = RMSE_motor ( : , i ) /max(RMSE_motor ( : , i ) ) ;
140 end
141

142 % plo t
143

144 l i n e a r = 0 ;
145

146 i f l i n e a r
147 f i g 1 = f i g u r e (1 ) ; subplot (3 , 2 , i ) , ...

p l o t (RMSE_motor ( 1 : i t e r , i ) ) , t i t l e ( 'RMSE(rm-qm) ' ) , ...
g r i d on

148 e l s e
149 f i g 1 = f i g u r e (1 ) ; subplot (3 , 2 , i ) , ...

semi logy (RMSE_motor ( 1 : i t e r , i ) ) , t i t l e ( 'RMSE(rm-qm) ' ) , ...
g r i d on

150 end
151

152

153 f i g 2 = f i g u r e (2 ) ; subplot (3 , 2 , i ) , p l o t3 ( iter_x , 1 : 1 :N, ...
em_z{ i }) , t i t l e ( ' motor p o s i t i o n e r r o r rm-qm ' ) , g r i d on

154

155

91



A – Matlab Code

156 f i g 3 = f i g u r e (3 ) ; subplot (3 , 2 , i ) , p l o t (em_z{ i } ( : , 1 ) , ' r ' ) , ...
hold on , p l o t (em_z{ i } ( : , i t e r ) , 'b ' ) , t i t l e ( s p r i n t f ( ' motor ...
p o s i t i o n e r r o r rm-qm 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( 'em\ _in i t ' , 'em\ _f ina l ' )

157 f i g 4 = f i g u r e (4 ) ; subplot (3 , 2 , i ) , ...
p l o t ( abs (em_z{ i } ( : , 1 ) ) , ' r ' ) , hold on , ...
p l o t ( abs (em_z{ i } ( : , i t e r ) ) , ' b ' ) , t i t l e ( s p r i n t f ( ' abs motor ...
p o s i t i o n e r r o r | rm-qm| 1 i t e r , %d i t e r ' , i t e r ) ) , g r i d on , ...
l egend ( 'em\ _in i t ' , 'em\ _f ina l ' )

158

159 f i g 5 = f i g u r e (5 ) ; subplot (3 , 2 , i ) , ...
p l o t ( input_q_motor ( : , i ) , ' r ' , ' LineWidth ' , 1 ) , hold on , ...
p l o t ( output_q_motor_first_iter ( : , i ) , ' - . g ' , ' LineWidth ' , 1 ) , ...
p l o t ( output_q_motor ( : , i ) , ' - -b ' , ' LineWidth ' , 1 ) , ...
t i t l e ( ' Reference motor vs qm ' ) , g r id on , ...
l egend ( ' Ref\_m' , 'qm\ _ i n i t i a l ' , 'qm\ _f ina l ' )

160

161

162 i f l i n e a r
163 f i g 6 = f i g u r e (6 ) ; subplot (3 , 2 , i ) , ...

p l o t ( em_norm_inf ( 1 : i t e r , i ) ) , t i t l e ( ' i n f i n i t y norm ...
em=rm-qm ' ) , g r i d on

164 f i g 7 = f i g u r e (7 ) ; subplot (3 , 2 , i ) , ...
p l o t (em_norm_2 ( 1 : i t e r , i ) ) , t i t l e ( ' 2 -norm em=rm-qm ' ) , ...
g r i d on

165 f i g 8 = f i g u r e (8 ) ; subplot (3 , 2 , i ) , ...
p l o t (em_norm_1 ( 1 : i t e r , i ) ) , t i t l e ( ' 1 -norm em=rm-qm ' ) , ...
g r i d on

166 e l s e
167 f i g 6 = f i g u r e (6 ) ; subplot (3 , 2 , i ) , ...

semi logy ( em_norm_inf ( 1 : i t e r , i ) ) , t i t l e ( ' i n f i n i t y norm ...
em=rm-qm ' ) , g r i d on

168 f i g 7 = f i g u r e (7 ) ; subplot (3 , 2 , i ) , ...
semi logy (em_norm_2 ( 1 : i t e r , i ) ) , t i t l e ( ' 2 -norm ...
em=rm-qm ' ) , g r i d on

169 f i g 8 = f i g u r e (8 ) ; subplot (3 , 2 , i ) , ...
semi logy (em_norm_1 ( 1 : i t e r , i ) ) , t i t l e ( ' 1 -norm ...
em=rm-qm ' ) , g r i d on

170 end
171

172 end
173

174 %c a r t e s i a n space p l o t
175 f i g u r e (9 ) , subp lot ( 3 , 1 , 1 ) , p l o t ( xyz_err { 1 } ( 1 , : ) , ' - r ' ) , hold on , ...

p l o t ( xyz_err { i t e r } ( 1 , : ) , ' - -b ' ) , g r i d on , t i t l e ( 'TCP e r r o r on ...
X coord inate ' ) , l egend ( ' F i r s t i t e r a t i o n ' , ' Last i t e r a t i o n ' ) , ...
x l a b e l ( ' Points o f the t r a j e c t o r y ' ) , y l a b e l ( 'X p o s i t i o n e r r o r ...
[m] ' )

92



A – Matlab Code

176 f i g u r e (9 ) , subp lot ( 3 , 1 , 2 ) , p l o t ( xyz_err { 1 } ( 2 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_err { i t e r } ( 2 , : ) , ' - -b ' ) , g r i d on , t i t l e ( 'TCP e r r o r on ...
Y coord inate ' ) , l egend ( ' F i r s t i t e r a t i o n ' , ' Last i t e r a t i o n ' ) , ...
x l a b e l ( ' Points o f the t r a j e c t o r y ' ) , y l a b e l ( 'Y p o s i t i o n e r r o r ...
[m] ' )

177 f i g u r e (9 ) , subp lot ( 3 , 1 , 3 ) , p l o t ( xyz_err { 1 } ( 3 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_err { i t e r } ( 3 , : ) , ' - -b ' ) , g r i d on , t i t l e ( 'TCP e r r o r on ...
Z coord inate ' ) , l egend ( ' F i r s t i t e r a t i o n ' , ' Last i t e r a t i o n ' ) , ...
x l a b e l ( ' Points o f the t r a j e c t o r y ' ) , y l a b e l ( 'Z p o s i t i o n e r r o r ...
[m] ' )

178

179 f i g u r e (11) , subplot ( 3 , 1 , 1 ) , p l o t ( xyz_in ( 1 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_out{ i t e r } ( 1 , : ) , ' - -b ' ) , p l o t ( xyz_out { 1 } ( 1 , : ) , ' - - g ' ) , ...
t i t l e ( ' e r r o r on X coord o f TCP i n i t i a l vs f i n a l ' ) , g r i d on , ...
l egend ( ' i n i t i a l ' , ' f i n a l ' ) , hold on , subplot ( 3 , 1 , 2 ) , ...
p l o t ( xyz_in ( 2 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_out{ i t e r } ( 2 , : ) , ' - -b ' ) , p l o t ( xyz_out { 1 } ( 2 , : ) , ' - - g ' ) , ...
t i t l e ( ' e r r o r on Y coord o f TCP i n i t i a l vs f i n a l ' ) , g r i d on , ...
l egend ( ' i n i t i a l ' , ' f i n a l ' ) , subplot ( 3 , 1 , 3 ) , ...
p l o t ( xyz_in ( 3 , : ) , ' - r ' ) , hold on , ...
p l o t ( xyz_out{ i t e r } ( 3 , : ) , ' - -b ' ) , p l o t ( xyz_out { 1 } ( 3 , : ) , ' - - g ' ) , ...
t i t l e ( ' e r r o r on Z coord o f TCP i n i t i a l vs f i n a l ' ) , g r i d on , ...
l egend ( ' i n i t i a l ' , ' f i n a l ' )

180

181 %3D plo t
182 f i g u r e (12) , p lo t3 ( xyz_in ( 1 , : ) , xyz_in ( 2 , : ) , xyz_in ( 3 , : ) , ' r ' ) , . . .
183 hold on , p lo t3 ( xyz_out{ i t e r } ( 1 , : ) , xyz_out{ i t e r } ( 2 , : ) , . . .
184 xyz_out{ i t e r } ( 3 , : ) , ' - -b ' ) , . . .
185 p lo t3 ( xyz_out { 1 } ( 1 , : ) , xyz_out { 1 } ( 2 , : ) , xyz_out { 1 } ( 3 , : ) , ' - - g ' )
186

187 %g l o b a l metr ic norma l i za t i on
188 em_norm_inf_global ( : , 1 ) = ...

em_norm_inf_global ( : , 1 ) /max( em_norm_inf_global ( : , 1 ) ) ;
189 em_norm_2_global ( : , 1 ) = ...

em_norm_2_global ( : , 1 ) /max( em_norm_2_global ( : , 1 ) ) ;
190 em_norm_1_global ( : , 1 ) = ...

em_norm_1_global ( : , 1 ) /max( em_norm_1_global ( : , 1 ) ) ;
191 RMSE_motor_global ( : , 1 ) = ...

RMSE_motor_global ( : , 1 ) /max(RMSE_motor_global ( : , 1 ) ) ;
192

193 %g l o b a l metr ic p l o t
194 i f l i n e a r
195 f i g u r e (13) , subplot ( 2 , 2 , 1 ) , ...

p l o t ( em_norm_inf_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' Normalized ...
i n f i n i t y norm of motor s i d e e r r o r ' ) , g r i d on

196 f i g u r e (13) , subplot ( 2 , 2 , 2 ) , p l o t ( em_norm_2_global ( 1 : i t e r , 1 ) ) , ...
t i t l e ( ' Normalized 2 norm of motor s i d e e r r o r ' ) , g r i d on

197 f i g u r e (13) , subplot ( 2 , 2 , 3 ) , p l o t ( em_norm_1_global ( 1 : i t e r , 1 ) ) , ...
t i t l e ( ' Normalized 1 norm of motor s i d e e r r o r ' ) , g r i d on

93



A – Matlab Code

198 f i g u r e (13) , subplot ( 2 , 2 , 4 ) , ...
p l o t (RMSE_motor_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' Normalized RMSE ...
o f motor s i d e e r r o r ' ) , g r i d on

199 e l s e
200 f i g u r e (13) , subplot ( 2 , 2 , 1 ) , ...

semi logy ( em_norm_inf_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' I n f i n i t y ...
norm o f motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized in f - norm em ' )

201 f i g u r e (13) , subplot ( 2 , 2 , 2 ) , ...
semi logy ( em_norm_2_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' 2 -norm of ...
motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized 2 -norm em ' )

202 f i g u r e (13) , subplot ( 2 , 2 , 3 ) , ...
semi logy ( em_norm_1_global ( 1 : i t e r , 1 ) ) , t i t l e ( ' 1 -norm of ...
motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized 1 -norm em ' )

203 f i g u r e (13) , subplot ( 2 , 2 , 4 ) , ...
semi logy (RMSE_motor_global ( 1 : i t e r , 1 ) ) , t i t l e ( 'RMSE of ...
motor s i d e e r r o r ' ) , g r i d on , x l a b e l ( ' I t e r a t i o n ' ) , ...
y l a b e l ( ' Normalized RMSE em ' )

204 end

94



Appendix B

Simulink Scheme

Figure B.1: ILC filter of the command to be applied.

Figure B.2: Evaluation of motor and load variables.

95



B – Simulink Scheme

Figure B.3: Scope of motor and load variables.

96



B – Simulink Scheme

Figure B.4: Simplified SISO system of a 4𝑡ℎ link for the Comau S.p.A. Robot NJ4 220 -
2.4.

97



B – Simulink Scheme

Figure B.5: MIMO system for the Comau S.p.A. Robot Racer 7 - 1.4.

98



Bibliography

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning”,
J. Robot. Syst., vol. 1, pp. 123–140, 1984.

[2] G. Casalino and G. Bartolini, A learning procedure for the control of movements of
robotic manipulators, In IASTED Sym. Robot. Autom., pages 108–111, San Francisco,
USA, May 1984.

[3] J.J. Craig., “Adaptive control of manipulators through repeated trials”, In Proc. Amer-
ican Control Conf., pages 1566–1572, San Diego, CA, June 1984.

[4] M. Uchiyama, “Formulation of high-speed motion pattern of a mechanical arm by
trial”, Trans. Soc. Instrum. Control Eng., vol. 14, no. 6, 1978.

[5] R. Middleton, G.C. Goodwin and R.W. Longman, “A method for improving the dynamic
accuracy of a robot performing a repetitive task”, Technical Report EE8546, Dept.
Electrical Engineering, Univ. of Newcastle, Australia, 1985.

[6] D.A. Bristow, M. Tharayil, A.G. Alleyne, “A Survey Of Iterative Learning Control:
A Learning-Based Method for High-Performance Tracking Control”, IEEE Control
Systems, vol.3, pp. 96-114, 2006.

[7] K.L. Moore, “Iterative Learning Control for Deterministic Systems”, London: Springer-
Verlag, 1993.

[8] K.J. Hunt, D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, “Neural networks for control
systems-A survey”, Automatica, vol. 28, no. 6, pp. 1083–112, 1992.

[9] R.W. Longman, “Iterative learning control and repetitive control for engineering
practice”, Int. J. Contr., vol. 73, no. 10, pp. 930–954, 2000.

[10] R. Longman, “Designing iterative learning and repetitive controllers, in Iterative
Learning Control: Analysis, Design, Integration and Applications”, Z. Bien and J.-X.
Xu, Eds. Boston: Kluwer, 1998.

[11] D. de Roover and O.H. Bosgra, “Synthesis of robust multivariable iterative learning
controllers with application to a wafer stage motion system”, Int. J. Contr., vol. 73, no.
10, pp. 968–979, 2000.

[12] H. Havlicsek and A. Alleyne, “Nonlinear control of an electrohydraulic injection
molding machine via iterative adaptive learning”, IEEE/ASME Trans. Mechatron.,
vol. 4, no. 3, pp. 312–323, 1999.

[13] K. Kinosita, T. Sogo, and N. Adachi, “Iterative learning control using adjoint systems
and stable inversion”, Asian J. Contr., vol. 4, no. 1, pp. 60–67, 2002.

99



Bibliography

[14] T. Sogo, “Stable inversion for nonminimum phase sampled-data systems and its
relation with the continuous-time counterpart”, in Proc. 41st IEEE Conf. Decision
Contr., 2002, pp. 3730–3735.

[15] D. de Roover, “Synthesis of a robust iterative learning controller using an Hinf
approach”, in Proc. 35th IEEE Conf. Decision Contr., 1996, pp. 3044–3049.

[16] C.J. Goh and W.Y. Yan, “An Hinf synthesis of robust current error feedback learning
control”, J. Dyn. Syst. Meas. Control, vol. 118, no. 2, pp. 341–346, 1996.

[17] N. Amann, D.H. Owens, and E. Rogers, “Iterative learning control for discrete-time
systems with exponential rate of convergence”, IEE Proc.: Control Theory Applicat.,
vol. 143, no. 2, pp. 217–224, 1996.

[18] J. Bolder, T. Oomen, “Data-driven optimal ILC for multivariable systems: Remov-
ing the need for L and Q filter design”, American Control Conference (ACC), DOI
10.1109/ACC.2015.7171880, 2015.

[19] C. Wang, M. Zheng, Z. Wang, M. Tomizuka, “Robust two-degree-of-freedom iterative
learning control for flexibility compensation of industrial robot manipulator”, Proc.
International Conference on Robotics and Automation (ICRA), pp. 2381-2386, 2016.

[20] M. Norrlof and S. Gunnarsson, “Time and frequency domain convergence properties
in iterative learning control”, Int. J. Contr., vol. 75, no. 14, pp. 1114–1126, 2002.

[21] C.T. Chen, “Linear System Theory and Design”, New York: Oxford Univ. Press,
1999.

[22] U. Grenander and G. Szego, “Toeplitz Forms and their Applications”, Berkeley, CA:
Univ. of California Press, 1958.

[23] M.Q. Phan, R.W. Longman, and K.L. Moore, “Unified formulation of linear iterative
learning control”, Adv. Astronautical Sci., vol. 105, pp. 93–111, 2000.

[24] N. Amann, D.H. Owens, E. Rogers, and A. Wahl, “An H∞ approach to linear iterative
learning control design”, Int. J. Adaptive Contr. Signal Processing, vol. 10, no. 6, pp.
767–781, 1996.

[25] Y. Chen, Z. Gong, and C. Wen, “Analysis of a high-order iterative learning control
algorithm for uncertain nonlinear systems with state delays”, Automatica, vol. 34, no.
3, pp. 345–353, 1998.

[26] S.A. Saab, “A stochastic iterative learning control algorithm with application to an
induction motor”, Int. J. Contr., vol. 77, no. 2, pp. 144–163, 2004.

[27] H.S. Lee and Z. Bien, “Study on robustness of iterative learning control with non-zero
initial error”, Int. J. Contr., vol. 64, no. 3, pp. 345–359, 1996.

[28] R. Horowitz, “Learning control of robot manipulators”, Trans. ASME J. Dyn. Syst.
Meas. Control, vol. 115, no. 2B, pp. 402–411, 1993.

[29] S.S. Saab, “Stochastic P-type/D-type iterative learning control algorithms”, Int. J.
Contr., vol. 76, no. 2, pp. 139–148, 2003.

[30] K.H. Park, Z. Bien, and D.H. Hwang, “Study on the robustness of a PID-type iterative
learning controller against initial state error”, Int. J. Syst. Sci., vol. 30, no. 1, pp.
49–59, 1999.

[31] Y. Chen and K.L. Moore, “An optimal design of PD-type iterative learning control

100



Bibliography

with monotonic convergence”, in Proc. IEEE Int. Symp. Intelligent Contr., 2002, pp.
55–60.

[32] H. Elci, R.W. Longman, M. Phan, J.N. Juang, and R. Ugoletti, “Discrete frequency
based learning control for precision motion control”, in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., 1994, pp. 2767–2773.

[33] T. Kavli, “Frequency domain synthesis of trajectory learning controllers for robot
manipulators”, J. Robot. Syst., vol. 9, no. 5, pp. 663–680, 1992.

[34] D.A. Bristow and A.G. Alleyne, “A manufacturing system for microscale robotic
deposition”, in Proc. Ame. Contr. Conf., 2003, pp. 2620–2625.

[35] D.I. Kim and S. Kim, “An iterative learning control method with application for
CNC machine tools”, IEEE Trans. Ind. Applicat., vol. 32, no. 1, pp. 66–72, 1996.

[36] A. Naylor and G. Sell, “Linear Operator Theory in Engineering and Science”,
Springer, 1982.

[37] Tomizuka M., “Zero Phase Error Tracking Algorithm for Digital Control”, ASME. J.
Dyn. Sys., Meas., Control.;109(1):65-68. doi:10.1115/1.3143822, 1987.

101


	Abstract
	Introduction
	Origin of ILC
	How it works
	Difference with other learning algorithms
	Why ILC
	A lot of ILC
	Thesis Outline

	System Characteristic
	System description
	System representation
	Analysis and theorems

	ILC approaches
	PD-Type and Tunable Designs
	Plant Inversion Methods
	Data Driven ILC
	Preliminaries
	Optimal adjoint-based ILC
	Data Driven learning using the adjoint sytem


	Robot NJ4 220 - 2.4
	PD-Type ILC
	Plant Inversion ILC
	Data Driven ILC
	Conclusion

	Robot Racer 7 - 1.4
	PD-Type ILC
	Data Driven ILC
	Conclusion

	Conclusion
	Matlab Code
	Simulink Scheme
	Bibliography

		Politecnico di Torino
	2018-07-17T09:25:40+0000
	Politecnico di Torino
	Michele Taragna
	S




