POLITECNICO DI TORINO

Master of Science in Mechatronic Engineering

Master Thesis

Automated generation of stable
bias-dependent small-signal
behavioural macromodels for
circuit-level simulation

Supervisor Candidate

Stefano Grivet-Talocia Marco DE STEFANO
ID number 233452

ACADEMIC YEAR 2017-2018

To my family and to those
who supported me during
this journey

Acknowledgements

I would first like to thank my thesis supervisor Stefano Grivet-Talocia for the passion
that he transmits during his work and for using the same care with the students. His
attitude is an unmeasurable source of inspiration, and I am grateful for the opportunity
of learning under his guidance. I hope to have the chance of continuing knocking at his
door, which was always patiently open.

A grateful appreciation to the two colleagues, Alessandro and Tommaso, which whom I
had the possibility of sharing this incredible journey. I would like to thank them for their
patience and passion: they have inspired me to achieve the best. Without their effort
this work would not be the same. I wish them to reach all their goals: T am sure that
with your skills you could do whatever you want to.

Thank you!

Marco De Stefano

Summary

The system-level verification of signal and power integrity of modern electronic systems
such as mobile phones or tablets is still a challenge even for most advanced manufac-
turers, mainly due to the required time-consuming and memory-demanding numerical
simulations. This fact led in recent years to the development of various model simplifica-
tion approaches sometimes denoted as model order reduction, behavioural or surrogate
modelling, and macromodeling. The main idea is to represent complex systems and struc-
tures with numerical simulation models that capture the main features of their electrical
responses that are relevant to the application at hand, and neglect unimportant effects.

Macromodeling is a mature field as applied to electrical interconnects and, in general,
to linear and time-invariant systems. Even if these structures are responsible for all elec-
tromagnetic coupling and interference, the latter effects must be quantified by numerical
simulations that account also for the digital, analog, and mixed-signal circuit blocks that
send and receive signals, and that are connected to the global power distribution network.
A description of such devices based on a fully-detailed transistor-level makes system-level
simulation unfeasibly due to overwhelming complexity.

This work proposes a surrogate modelling approach for those passive or active circuit
blocks that are specifically designed to operate as linearly as possible around a given op-
erating point. Examples are Low Noise Amplifiers (LNA), Operational Amplifiers (OA),
Low Dropout regulators (LDO), programmable filters, and even individual components
such as integrated inductors and capacitors whose inductance and capacitance can be
tuned by changing bias conditions. Our approach approximates the dynamic behaviour
of these components as linear state-space systems, whose state-space matrices depend on
external parameters, such as the nominal bias voltage. This approach allows an accurate
representation of signal and power noise, including the sometimes difficult to represent
signal-to-power noise coupling paths.

The models are constructed starting from small-signal scattering responses, obtained
by numerical simulation of the original system at different bias points. A parameterized
Generalized Sanathanan-Koerner iteration is used to identify the model coeflicients. One
of the main results of this thesis is the inclusion in the identification algorithm of a set
of constraints that are able to enforce by construction the uniform stability of the bias-
dependent model poles, for all values of the bias within its design range. A second main
result is a fully automated synthesis of a SPICE equivalent network that realizes the
parameterized model in a form that can be simulated by off-the-shelf circuit solvers. This
synthesis is based on a parameterization of the bias and in general parameter dependence
in terms of multivariate orthogonal polynomials.

4

Supported by an industrial partner (Intel), we tested our algorithm on several test
cases. The proposed approach was always able to construct very efficient and accu-
rate models for all the structures that were analyzed, which ranged from simple in-
tegrated inductors and capacitors to more complex LDO's and Operational Amplifier
circuit blocks. Our future activities will be devoted to the integration of this method into
well-established industrial design flows, always in collaboration with industrial partners,
in order to demonstrate the feasibility of an all-macromodel-based fast power integrity
verification framework.

Contents

1 General Framework and Motivations
1.1 Data Driven Modeling o
1.1.1 Macromodels: Construction Flow and Advantages
1.1.2 Macromodel Requirements for Simulations
1.1.3 Rational Fitting Algorithms
1.2 Rational Fitting with Fixed Poles
1.2.1 Partial Fractions
1.2.2 Least Squares Formulation of the Fitting Problem
1.3 General Rational Fitting
1.3.1 Generalized Sanathanan Koerner Iteration.
1.4 Multiport (MIMO) Model Formulations.
1.4.1 Transfer Function Formulation
1.4.2 State Space and Descriptor Form
1.5 Stability
1.6 Passivity
1.6.1 The Dissipation Inequality
1.6.2 Passivity Characterization

2 Multivariate Macromodels
2.1 Parametric Model Formulation
2.1.1 Parameter-Dependent Basis Functions
2.1.2 State Space and Descriptor Forms

3 Stability Enforcement
3.1 Uniform Stability and PR Denominator
3.1.1 Sampling Process For Constraints Realization
3.2 Implementation of PR Strategy
3.2.1 Numerical Results 0.
3.3 Final Stability Enforcement on Denominator
3.3.1 Numerical Results
3.4 Robust Enforcement Implementation
3.4.1 Numerical Results

10
10
11
12
13
15
16
16
17
17
19
19
19
22
22
24
24

35
36
37
39

4 Equivalent circuit synthesis 65

4.1 Direct state-space synthesis 0oL, 65
4.1.1 Sparse synthesis L oo 67

4.2 Anexample 69
4.2.1 Scalar Case 69
4.2.2 Multiport Case 72

4.3 GSK Model Synthesis 75
431 Anexampleo 78

4.4 Function Calls o 80
4.4.1 GSK_ Model2Cir 80
4.42 SS2CIr 81
4.4.3 MakeGSKWrapper 82

5 Parametric SPICE synthesis 84
5.1 Parametrized GSK Model Synthesis 84
5.2 Parameter Call 85
5.2.1 Parameter Normalization 87
5.2.2 Partial Evaluation of Parameter-Dependent Basis Functions 89

5.3 Global Parameter 90
5.3.1 Parameter in Wrapper and Admittance Sub-circuits 90
53.2 AnExample 91

5.4 Independent Parameter 95
5.4.1 Parameter in Wrapper and Admittance Sub-circuits 96
54.2 An Example 97

5.5 Control Pin 100
5.5.1 Parameter in Wrapper and Admittance Sub-circuits 100
5.5.2 AnExample 102

5.6 Function Calls L 106
5.6.1 GSK_Model2Cir Parametric 106
5.6.2 makeGSKWrapper Parametric 107

6 SPICE Synthesis of Parametric Components 109
6.1 Parameter-Dependent Basis Synthesis 109
6.2 Parameter-Dependent Circuit Elements 112
6.2.1 Resistors 113
6.2.2 Controlled Sourceso 118

6.3 Synthesis with the Control Pin Interface 126
6.3.1 Topological Issues 126
6.3.2 An Example 128

6.4 Function Calls Lo 130
6.4.1 Resistor Synthesis Functions 130
6.4.2 VCCS Synthesis Functions 133
6.4.3 Multivariate Case Synthesis Functions 135

7

7 SPICE Results and Bias-Dependent Components

7.1 AC Validation Circuits
7.2 SPICE Extractions Comparison
7.2.1 Parameter Call Results

7.2.2 Parametric Components Synthesis Results

7.3 Bias-Dependent Components
7.3.1 NMOS Transistor
7.3.2 Two-Stage Buffer
7.3.3 Operational Amplifier
7.3.4 Low Drop-Out Voltage Regulator

74 Function Calls
7.4.1 GSK-model Synthesis Validation
7.4.2 PSK-model Synthesis Validation

8 Conclusions and Further Improvements
A Test cases

Bibliography

139
139
142
142
146
148
148
151
153
153
156
156
157

159

161

170

Preface

The present thesis project is self-consistent and it has been developed independently by
the Author, under the supervisor guidance. However, the results that have been achieved
are of practical interest only if cast in a more general framework, in which other two
thesis projects are involved: the shared effort of a team composed of Tommaso Bradde,
Marco De Stefano and Alessandro Zanco enabled each member of the group to finalize
his work. Being part of a joint effort, each of the three thesis projects shares a common
background, which has been summarized in Chapters 1 and 2. These two chapters were
written jointly and are common to all three thesis projects. The remaining chapters of
each dissertation are the core of each project and are original for each individual team
member.

Chapter 1

General Framework and
Motivations

This Chapter is co-authored by T.Bradde, M. De Stefano and A. Zanco.

1.1 Data Driven Modeling

This thesis project concerns mathematical modeling of linear dynamic systems, namely,
systems that are governed by linear differential equations. By ”mathematical modeling”,
we refer to the procedure by means of which a representation of a physical phenomenon
or structure is given in a numerically (i.e quantitatively) exploitable form. This kind of
representation grants us the opportunity to describe and predict what would happen in a
given scenario in which the described object is involved; we can say that such a procedure
is at the same time the foundation and the objective of science and a necessary step of
the design process in every engineering field.

Although the first-principle laws of science are theoretically able to properly describe a
broad range of dynamic phenomena, usually making use of partial differential equations,
it is often inappropriate or impossible to derive from them a model able to satisfy the
requirements of a current design process: the (exponentially) increasing complexity of the
structures to be modeled would lead to an excessive computational cost with respect to
the need of an easily manageable description of the item under design. Further, a model
derived from first-principle laws must take care of all the physical quantities involved in
the system dynamic, while often, only a subset of them is of practical interest.

The Data Driven Modeling techniques are intended to overcome these issues and to pro-
vide simpler yet accurate descriptions, able to catch the case-relevant aspects of the
structures under investigation by exploiting, as common ground, a set of data collected
to extract information about the system behaviour. Making use of proper algorithms, a
suitable reconstruction of the relations underlying the data is achieved.

To gather the data, one can either carry out physical measurements of the desired quan-
tities to be tracked or perform (once) a set of first-principle simulations from which the
simplified model can be derived.

The most appropriate algorithm to process the data is always a matter of purposes, since

10

Data Driven Modeling

the structure of the algorithm influences, in some measure, the structure of the final
model.

Beside the possible implementations, a broad spectrum classification of those algorithms
can be based upon the a priori assumptions about the structure of the system: in the
so called white and gray box approaches, a total or partial knowledge of the structure
is assumed and the algorithm is expected to give back some quantities that characterize
the imposed structure from the physical point of view; on the other hand, black box ap-
proaches make no assumptions on this structure and make no claims towards a physical
description of the system, focusing only into the construction of models that fit numeri-
cally the data of the input-output relationship.

The first class of methods can give a deeper insight into the system behaviour, but they
rely on the goodness of the a priori assumptions, that can result to be inaccurate or not
possible to be made at all. Conversely, the lack of physical meaning of a black box model
is counterbalanced by the opportunity to derive an input-output description without any
assumption beyond linearity.

From now on, we will treat the black box methods and we will refer to the obtained model
as ”Macromodel”.

1.1.1 Macromodels: Construction Flow and Advantages

In the following, we will focus on macromodels devoted to the behavioural simulation of
complex electrical interconnects, or, more generally, electromagnetic structures. The main
objective of the macromodeling procedure is to obtain a macromodel that replaces the
high complexity dynamics of the structure with a lower complexity model, which catches
only the main features of the relationship between the electrical inputs and outputs of
interest.
If we are modeling the system in the frequency domain, our starting point is a set of
input-output data:

Hy=H(sy) for k=12,.,K (1.1)

where s;, denotes a complex frequency and H (sg) is the transfer function of the system
sampled at s;. The total number of measurements is K.

In most cases, the measurements are performed at the real frequencies jwy, with si = jw.
In this case we have:

Wi = JWmin, JWK = jWmaz (12)

The objective is then to reconstruct the response by means of an interpolation or approx-
imation procedure that returns a model:

v}

H(jw) = H(jw) for w € [wmin,wWmaz] (1.3)

Throughout this text, we will denote with the symbol H () the true system response,
while with the symbol H(-) the model response. The obtained model is intended to be
exploited in a circuit simulation software such as SPICE or EMTP in a fast and reliable
way.

We now present a brief overview of how a macromodel is usually obtained and of the
strong points that makes it useful.

11

Data Driven Modeling

e Macromodeling from field solver data: a full-wave solver is used to obtain the
input-output data; detailed knowledge of the structures and of the characteristics
of the actual system is required to perform the primary simulation. The data can
be collected both in the time domain or in the frequency domain.

This method is not properly a black-box one, since the structure of the model must
be known to perform the full-wave simulation; anyway, we can say that it is a black
box method for what concerns the macromodeling algorithm, that receives only
data as inputs, without additional informations about structure. This scenario is
common in industrial design environments where commercial field solvers are used.

e Macromodeling from measurements: a physical realization of the system un-
der modeling is provided; the data are collected and reconstructed by performing
measurements over the electrical ports that we wish to characterize. Also in this
case, both frequency and time domain data can be gathered. This approach is truly
black-box, in every step of the identification procedure.

Once the data are processed by the chosen algorithm, one can dispose of the obtained
macromodel with the following advantages:

1. A closed form expression for the behaviour of the system is obtained from the discrete
set of data points collected.

2. The macromodel describes the system behaviour without disclosing any insight
about the physical structure: sharing a macromodel doesn’t represent a risk for
the diffusion of proprietary information.

3. Whatever is the nature of the data set used for the fitting, the resulting macromodel
is intended to permit fast time domain simulations.

4. The obtained macromodel can be interfaced with other macromodels for simula-
tion of large interconnects system, allowing the possibility to simulate and optimize
various design scenarios.

1.1.2 Macromodel Requirements for Simulations

Some features are required on the macromodel, in order to guarantee its exploitability
and reliability. In particular, since we are dealing with the modeling of linear systems, a
suitable model structure should be chosen among all the possible ones; indeed, we know
that when a system is governed by ordinary differential equations, all the transfer func-
tions that can be derived for its input-output description result to be rational functions
of the Laplace variable s.

The choice of a model structure of this type not only catches the underlying governing

laws of the system, but results also particularly appropriate to be exploited to perform
simulations driven by linear circuit simulation software.
The numerical precision of the model must always be consistent with some physical
characteristics of the modeled structure to reproduce its behavior correctly; here, we
list the most relevant in an intuitive fashion, leaving a more precise description to later
sections.

12

Data Driven Modeling

e Realness. Although the rational macromodels make use of complex variables to
describe the input-output behaviours, all the simulated quantities must be real num-
bers when observed in the time domain.

e Causality. Any physical system at rest can change its state only as a result of an
external stimulus; for an input-output description, this fact implies the necessity of
the output to be temporally preceded by its cause, the input.

e Stability. The concept of stability can be provided with various definitions; in the
following we define stable a model whose poles show negative real part, that is, if
{pi} is the set of poles of the model, then:

Re{pi} <0 for i=12,...,n (1.4)

where n is the order of the associated transfer function. The lack of the stability
property can imply numerically unbounded simulations that clearly do not reflect
the behavior of a real system.

e Passivity. A system is passive if it is not able to generate energy on its own; it can
realease energy to the outer environment only if that energy was previously provided
and stored inside it. The property of passivity can be regarded as the most general,
since it automatically implies stability, causality and realness.

1.1.3 Rational Fitting Algorithms

The choice of a particular fitting strategy is the first step in any modeling procedure: we
must first fix the structure of our model in order to restrict the set of all the possible
candidate representations. Since our aim is to model electrical interconnects and their
frequency-dependent behavior, the system will intrinsically exhibit a linear relationship
between input and output, due to the nature of the electromagnetic phenomena.

It is well known that any linear system is fully characterized by a rational function of the
complex variable s through its input-output transfer function:

N(s)
D(s)’

H(s) = (1.5)
Where N(s) and D(s) are polynomials. Therefore, a natural choice is to try to recon-
struct the system through a rational fitting procedure, that returns a model potentially
able to catch all the information of interest.

Rational fitting algorithms make use of rational functions as basis for the model.
Rational functions are universal approximators: any set of data can be fitted by a series
of rational functions if a suitable order (i.e. number of basis functions) is considered.
Even if this is for sure an encouraging starting point, several issues affect a modeling
process relying on rational fitting:

e The behavior of the returned model is very accurate at the fitting points, but might
show an unwanted and improper oscillating nature between the data points and
beyond the limits of the data interval; this is particularly common when a very high

13

Data Driven Modeling

order for the interpolating function is chosen.

This phenomenon is known as over-fitting and must be taken into account during
the identification procedure: one should use a subset of the available data to test
the model quality at points of the domain that are not exploited for the fitting
procedure.

e The imposition of constraints that ensure the model physical consistency can prevent
the convergence of rational fitting algorithms or, most often, be the cause of a poor
quality of the fitting.

From now on, we will assume that the model to be identified is a proper rational
function of the variable s, although an extension to the improper case is straightforward.
The unknowns that the rational fitting algorithm is intended to return depend on the
formulation of the rational function that we want to use. This formulation is fundamental
because, as we will see, it can cast the model in forms that are more suitable with respect
to others to achieve a good approximation. We now present the most common formula-
tions of rational functions together with the unknowns that an algorithm is expected to
return when such formulations are used as starting point.

e Ratio of polynomials: in this case, we assume that the model is representative of
an underlying dynamics expressed as:

H(s;x) = N(siw) _ ao+aisazs’ + -+ apms™ (1.6)
D(s;x) bo+bis+bas? 4 - + by 15"+ 57
in this case, the unknown vector « collects the 2n parameters:
r = <a07 a1,a9,...,0m, b(), bl, bQ, e ,bn_l)T (17)

and the quality of the fitting can be evaluated by means of the residual quantity

o ag + aisi + agsr + - - + s
ri(x) = Hy — 3 k Lt - (1.8)
b0+b15k+b25k+"'+bn715k + 55
evaluated for each of the data samples.
e Pole-zero form: with this formulation the rational function reads
n—1
. (s — 24
H(s,x) = aM; (1.9)
Hj:l(s - ;)
the 2n unknown vector is now:
r = (a7zl7z27--'7Zn—17p17p27"'7pn)T (110)
and each residual quantity is evaluated as:
n—1
. (s — 24
() :Hk—aM. (1.11)
[[i=1(s —pj)

14

Rational Fitting with Fixed Poles

e Partial fractions form: in this case, the rational function is expressed as a series
of partial functions of the form:

n

H(s,z)=Y — (1.12)

)
S—pj

j=1
with the assumption that the multiplicity of each pole equals one, that is:

pi #Fpj Yi#j (1.13)

The 2n unknown vector is now defined as:

T
m:(613627"'acnap17p2a"'7pn)) (114)

and the residual quantities are:

n

ri(w) = Hy, — Z 3 (1.15)

=157 P

e Ratio of rational functions: to formulate the model in this form, we observe first
that any rational function of the variable s can be expressed as a ratio of other two
rational functions in s; for this reason, we can cast the model in a more general form
that reads:

N(s;z) >y cipi(s)

Hisz) = D(s;x) N Z?:l d;ipi(s) (1.16)

where both numerator and denominator are expressed as a sum of rational basis
functions ¢;(s). In this case, the unknowns vector embeds the 2n coefficients of the
series expansions:

ac:(61,02,...,cn,d1,d2,...,dn)T, (117)
while the residual vector is defined as:

v (@) = T, — 2oi=1 Cii(5)
k() = Hy, S dei(s) (1.18)

1.2 Rational Fitting with Fixed Poles

Our main attempt is to formulate the rational fitting problem in such a way that a linear
dependence holds between the unknowns and the basis functions that we want to use
to fit the data. If this linear relation holds, then the rational fitting problem can be
solved by means of a standard least squares problem: the basis functions are sampled in
the points of the domain for which data points are available and the resulting numerical
values are used to build the regressor matrix of the least square problem.

We can see how, among all the formulations of a rational function, the only one that can
guarantee linearity between the unknowns and the basis functions is the partial fractions
expansion (1.12) under the assumption that the poles p; are fixed apriori. This formula-
tion will be deeply exploited in the following since it allows the formulation of the rational
fitting problem as a standard least squares problem.

15

Rational Fitting with Fixed Poles

1.2.1 Partial Fractions

We usually define the frequency-dependent basis functions, due to their very convenient
numerical properties, as a set of partial fractions with a fixed set of poles. In particular,
we realize a prescribed set of distinct 7, real poles ¢; € R~ and n. complex pole pairs
Giiv1 = ¢, £ jq! € C7, where ¢o(s) = 1. The total number of basis functions is assumed
to be n =1+ n, + 2., including the constant term. We can define,

if ; ER— pi(s) = (5— @)
g cC o {%(S) Jeom (1.19)

To improve numerical conditioning, this basis definition is based on normalized inde-
pendent variables and poles throughout

5=, =4 (1.20)
wo wo

where wy is a scaling frequency, which is in general obtained considering the largest model
pole.

1.2.2 Least Squares Formulation of the Fitting Problem

Denoting with ¢;(s) the generic element of our basis of partial fraction defined over a
set of poles {¢;}, with i = 0,1,2,...,n, then the residual quantities related to each data
sample can be written as:

(@) = Hy — ol (1.21)

with
Sog = (801(316)7‘102(816)7 ...,cpn(sk)),a: = (01762> "'7cn)T (1'22)

If we drop the dependency of the residuals on & we can write the above relationship in
matrix form by writing:

r1 2 cp?
i I ‘P:Q x. (1.23)
T.K ﬁK ‘P.1T<
We can use the more compact and general notation:
Ii] 1 r1 =
b— 1{2 p= 71:2 - Lp:g (1.24)
ﬁK 7".K ‘PIFEF(
and write:
r=b—®x (1.25)

16

General Rational Fitting

Since our goal is to minimize the value of the residuals, we can solve the least squares
problem [26,27]:

Pr=~b (1.26)
that returns an unknown vector x* such that the euclidean norm of the vector r is
minimized.

By writing the matrix ® in extended form we obtain the Cauchy matrix:

1 1 1 1
) S1 I q1 S1 I q2 S1 I dn
® = S2—q1 52— Q2 82 = qn |, (1.27)
1 : : :
1 ! 1 !
SK —q1 SK — Q2 SK —Qn

It is well known that the condition number [14,22] of the normal equations associated to

the regressor matrix,
Omaz(PHP)
D)= ————= 1.2
) =\ (BB’ (1.28)

strongly influences the quality of the solution of the least squares problem. Fortunately,
being the partial fraction basis linearly independent (although not orthogonal) the Cauchy
matrix is usually well conditioned.

1.3 General Rational Fitting

The situation explained in the previous section is desirable to solve the fitting problem,
but it is very uncommon to known a priori the set of poles of the underlying system.
For this reason, black box rational fitting algorithms must be able to return a model
without any initial assumption beyond linearity. Two example of such algorithms are the
Generalized Sanathanan-Koerner iteration (GSK), introduced in the following, and the
Vector Fitting Iteration, for which a discussion can be found in [19].

1.3.1 Generalized Sanathanan Koerner Iteration

The GSK [32]iteration makes use of the model formulation (1.16) to iteratively solve a
linearized version of the rational fitting problem. At each iteration v of the algorithm a
modified residual quantity, defined as:

D(sg; a:V)lEIk — N(sg;x,)
p(xy) = ; k=12 .., K 1.29
rk(w) D(Sk;wy_l) fO?” ()

is minimized in LS sense. In this formulation D(sg;x,) is the denominator of the model
at the current iteration (that is the one that will be found after the solution of the LS
problem), while D(sg;x,_1) is the denominator of the model computed at the previous
iteration, evaluated at the fitting points. We denote with x, an iteration-dependent

17

General Rational Fitting

unknowns vector.
The idea behind the GSK algorithm is that as the number of iteration increases, the
estimate of the denominator stabilizes, implying that the residual quantity becomes for

vV — 00 N)
5 Sk oo
r =Hp,— ———= k=1,2,.. K, 1.30
Tk<$00) k D(Sk,woo) fOT' ()
which coincides with the residual that we actually want to minimize. When the model is
cast in the form (1.16), then the components of the residual vector r”(x,) at iteration v

will read: .

[po(sk) + D 25—y dipi(si)| Hi — >-i_g ciwj(sk)
wo(se) + 25— d) oj(sh)
Here we imposed dy = 1 to guarantee a unique solution of the system since the component
o is usually associated with a constant term. We made all the coefficients iteration-
dependent.
The iterative minimization of ||r”(x,)|| is achieved through the least square solution of
the system:

rp(x,) = (1.31)

(M,_1¥)z, ~ M,_1b (1.32)
where: .
Ml/— == d v—1 ¥—1 v-1 v—1 - @
1 Za’g{Tn’I 7m2 ’ 7mK }7 mk D(Sk;w,/_l),
b= (Hipo(s1), Hapo(s2), ... Hipo(sx)) T,
U = (®)— HD),
wo(s1) @1(s1) o @n(s1)
wo(s2) ¢1(s2) .. on(s2) (1.33)
Py =) . .
vo(sr) ¢1(5K) - ¢n(sK)
e1(s1) @2(51) - @nls1)
v1(s2) @a2(s2) - @n(s2)
P, =) . .
v1(sK) ¢2(8K) - ¢n(SK)

The rational basis functions used as a basis is often the partial fractions basis.

We end this chapter by pointing out that the formulations of GSK we presented is given for
the scalar case; anyway, a straightforward extension is possible to the multiport systems.
For details see [19]. From now on, we will denote with the symbol H(-) € CP*F the
multiport response of the true system and with H(-) € CF*F the multiport response
of our models, where the symbol P denotes the number of ports of the system. In the
following, we will describe the main model formulations used to characterize a multiport
system macromodel.

18

Multiport (MIMO) Model Formulations

1.4 Multiport (MIMO) Model Formulations

Approximating the true system response in a suitable macromodel form is fundamen-
tal to include the curve fitting result in system-level simulations using standard circuit
solver such as SPICE. Several mathematical structures are available: the identification
algorithm efficiency, in frequency and time domain, is affected by this choice.

In this Section we are going to describe the model formulation through a transfer matrix
and a state space realization; the latter will be useful for the macromodel characterization.

1.4.1 Transfer Function Formulation

Recalling to the scalar model of (1.5), we extend now the formulation realizing a rational
model of a MIMO system. Considering a generic MIMO LTT system with rational transfer
function, we can adopt the so-called Generalized Sanathanan-Koerner (GSK) form [33]
[19] as

o= NGs) _ Yo Raen(s)
H() D(S) ZZ:O Tn 9011(8) ’ (1‘34)

where we denoted with R, » € RP*P and Tn,e € R the numerator and denominator model
(real-valued) coefficients, respectively.

Frequency variations are induced by chosen basis function ¢, (s), which are rational func-
tions of s, with n frequency basis order.

Avoiding an explicit parameterization of model poles is a critical and necessary condition:
in fact, non-smooth behaviours may occur, e.g. when bifurcations are present, with a pair
of coincident real poles that split into two complex conjugate poles, or viceversa (see [18]
for details).

Both numerator and denominator of (1.34) share the same basis poles set, which are
assumed stable.

1.4.2 State Space and Descriptor Form

We now explore the state space and descriptor realizations of a MIMO LTI system,
starting from the pole-residue or GSK form of the model H(s) in the Laplace domain.

State Space for Pole-Residue Form

Considering a general P x P model in a pole-residue form, we can write

H(s) =Hy + i Re : (1.35)
n=1

S —d(dn

19

Multiport (MIMO) Model Formulations

where Hy, = Rg and 7 is the overall number of poles. We can denote

A = blkdiag{g,Ip}}", (1.36)
B=[1,..1] @l (1.37)
C=[R: - Ry (1.38)
D=H. (1.39)

Starting from the definitions of the matrices above, we can define a regular state-space
realization of the system as

(1.40)

where u,y € R are the system input and output, respectively, and € RY are the
system internal states.
The notation that we provide for the state-space realization is the following

H(s) =D+ C(sT - A)"'B « (%‘%) (1.41)

Considering now the model of (1.34), with ¢(s) defined as the partial-fraction basis with
a prescribed set of real and complex poles ¢, (see Section 1.2.1), we can write

R,

N(s) :R0+Zs—q (1.42)
n=1 n
n -
D(s) =rg+ . 1.43
@ =m+d (1.43)
We now construct the two separate state-space realizations as
Ay Bo
N(s) < 1.44
(s) < Ci1(s) | Di(s)) ()
Ag By
D(s)lp + , 1.45
(8) P < CQ(S) DQ(S)) ()
where
Ao :blkdiag{AOT, Aoc} (146)
BT - [B],.BL] (1.47)
Ci=[R1 -+ Ry (1.48)
Co=[Ipri --- Ipry (1.49)
D; =Ry (1.50)
DQ :]Ip’l“o. (151)

20

Multiport (MIMO) Model Formulations

with
Ay, =blkdiag{g,Ip}I", (1.52)
: ¢.Ip qIp]\™
Ag. =blkd " " 1.53
0c 18 { [—qﬂp alIp|f _, (1.53)
By =[1,..,1] ®1Ip (1.54)

Bo. = [2,0,...,2,0]" @1p (1.55)

where real-valued matrices have been used for complex conjugate poles.

We finally obtain the (compact) model state-space realization by the cascade of expression
(1.44) as

H(s) = N(s)(D(s)"'Ip) < < (1.56)

We recall [19] and [24] for more details.

Ay —ByD;'C; | BD;'
C, -D,D,'C; | D;D;"

Descriptor Form

We now define an alternative descriptor form (or differential-algebraic system of equations
(DAE), see [19]) to (1.56) as
Ex(t) = Ax(t) + Bul(t
y(t) = Cax(t)
where u and y are the system input and output, respectively, and the system internal

states are & € RV*P | with N = aP: the number of states changes with respect to the
state-space realization, increasing the problem dimension. The descriptor matrices of

(1.57) are realized as
In Onp Ay By
E= ’ A =

C=(C; D)) B= <O_f£;’> (1.58)
with 0 x null matrix of size J x K. The other matrices of (1.58) denote the state-space
realization of the model numerator N(s), described by the set {Ag, By, C1,D;1}, and the
(extended) denominator D(s)Ip, described by {Ag, B, Ca, D2}, which are exactly the
same elements of (1.44).

It can be proven that the model expression of (1.34) is equivalent to

H(s) =C(sE—-A)"'B (1.59)

as detailed in [19].

The descriptor form is particularly useful because it requires no block matrix inversion
and moreover all matrix elements depend linearly on the model coefficients, in opposition
with the regular state space realization of (1.34).

In the following sections we are going to describe in more details how the model should
reflect the physical properties of the true system.

21

Stability

1.5 Stability

Several stability definitions may be formulated for an LTI system, analysing the general
properties of all the possible solutions of a system. During our work we only modelled
black-box systems, which can be characterized, from a stability standpoint, through the
matrix A of the state-space realization (1.40) of the model H(s).

For this reason, we can define an LTI system [23] [30] [42] as

o asymptotically stable if and only if all the poles have a strictly negative real part,
Re{gn} <0 Vn;

e stable if and only if all the poles have a non-positive real part, Re {g,} < 0 Vn, and
all the purely imaginary poles have a multiplicity that is at most one;

e unstable if at least one pole has either a strictly positive real part Re{g,} > 0 or a
null real part with a multiplicity higher than one.

Furthermore, since the eigenvalues of A are the model poles ¢, from (1.36), the matrix
A can be denoted as (asymptotically) stable if its eigenvalues have a (strictly) negative
real part.

1.6 Passivity

In electronic systems engineering, it is a common practice to deal with many intercon-
nected sub-systems. Especially during high-speed electronic devices design, it is fun-
damental to assess the signal and power integrity (SI, PI), when all the sub-systems are
connected together, since even individual components like vias and packages may strongly
affect SI and PI performances if the design is poor. In general, it is common to perform
in-depth analyses of these components and, to speed-up the whole process, surrogate
macro-models for each sub-system are used, that will be connected together just in simu-
lation phases. Such analyses of interconnected systems may suffer from instabilities, even
if all the models are internally asymptotically stable. In fact, if one or more of the single
macro-models is not passive, an un-physical energy generation may occur, leading to a
distorted output signal which may have detrimental effects on the whole system. This
fact, under suitable load conditions, may be responsible of an uncontrolled amplification
of the output signal, resulting in an unstable simulation.

Model passivity turns out to be a fundamental requirement that must be carefully anal-
ysed when such macro-models are synthesized to ensure reliable simulations under any
working condition.

The passivity of a system is strongly related to the net power it absorbs at any time
instant ¢. Considering a P-ports system, the absorbed instantaneous power is

P P
p(t) =D pe(t) = > ok(t)in(t) (1.60)
k=1 k=1

that can be written in compact form as
p(t) = v(®)Ti(t) = i) T (1) (1.61)
22

Passivity

where v = [v,...,v]" and i = [i1,... 4] .

In case the system is in immittance representation, input and output variables, denoted
respectively as uk(t) and yx(t) may be either voltage or currents. The instantaneous power
is thus

p(t) =y (Hu(t) = u' ()y(t) (1.62)

Considering input and output as complex valued signals, the instantaneous power defini-
tion can be generalized, as

p(t) = Re {VH(t)i(t)} — Re {i” (t)v(t)} (1.63)

For scattering representations, voltages vy and currents iy are transformed in incident
and reflected scattering waves, respectively a; and b. To this end we recall that

ay (v + Rref,kik) (1.64)

B 2 Rref,k
1

————— (U — Ryet it
2m(k ef.k k)

where R,y > 0 is the normalization resistance of each port.
The power p(t) for scattering representation is thus

by = (1.65)

[ax(t) — be(t)] = a(t)Ta(t) — b(t)Tb(t) (1.66)

,
1
p(t) = ; VEreralar(®) + b0 —p—

with a(t) = [a1(t),...,ar(t)] and b(t) = [b1(¢),. .., bk(t)].
Defining generic input and output signals as u(t) = a(t) and y(t) = b(t), it follows that

p(t) = u(t) u(t) -y (1) y(1) (1.67)

Generalizing this definition to the case in which u and y are complex-valued signals, the
instantaneous power is

p(t) = u(t)"u(t) - y()y(t) (1.68)
The net energy absorbed by a P-ports system in a time interval [t1, to] is defined as

E(t) = /1t " () (1.69)

If the energy for t; — —o0o is vanishing, the cumulative net energy at an arbitrary time
instant ¢ is

E(t) = / " o (1.70)

The definition for passivity now can be stated.

23

Passivity

Definition 1.1 [19,42, /3] A P-ports system is passive if the cumulative net energy in
(1.70) is non-negative for any time t

E(t) >0, Vt (1.71)

and for any input signal u(t).

The term " passivity” is often replaced by its synonym ”dissipativity”, so that a passive
system is also denoted as ”dissipative”.

1.6.1 The Dissipation Inequality

The passivity definition given in the previous section regards only the net input/output
energy flow, without making any reference to the system internal energy. An alternative
way to describe the passivity of a system is to relate the amount of energy it stores and
exchanges with the environment, for any time ¢. Considering a generic system (described
in its state space representation) the following dissipativity definition holds:

Definition 1.2 [19] A system (expressed in its state space representation) is dissipative
with respect to the supply rate p(t) if there exist a scalar-valued function V(x), with x the
system states, such that

Vi(x(t1)) < V(x(to)) + /t1 p(t)dt, ¥ to < trand V u,y,x. (1.72)

to

The integral term in (1.72) is exactly the net cumulative energy entering the system in
the time interval [to, ¢1], as defined in (1.69). The function V(x(t)) is recognized to be
the energy that is stored by the system at any time instant ¢. Equation (1.72) states that
in a system, to be dissipative, the variation on internal energy V(x(t1)) — V(x(t9)) can
not exceed the energy that is supplied from the environment to the system during the
time interval [to, t1].

If the storage function is differentiable, Equation (1.72) can be rewritten in differential

form as
SV(x(t) < (), vi (1.73)

Under the assumption that the energy stored for ¢ — —oo is vanishing, inequality (1.72)
reduces to the passivity condition in Equation (1.71). This way to characterize the pas-
sivity of a system will turn out to be useful later on, when advanced algebraic passivity
assessment methods will be derived

1.6.2 Passivity Characterization

Considering now the class of MIMO (Multi Input-Multi Output) lumped LTI systems
with input u(¢) and output y(¢), for which there exist a transfer matrix representation,

24

Passivity

the previous dissipativity definition can be written in terms of the transfer function,
denoted as H(s), for both immittance and scattering representations.

For an immittance system, in order to derive passivity conditions in terms of its transfer
matrix H(s), we can explicitly write the instantaneous absorbed power under cisoidal
excitation u(s) = u e using (1.63) as

p(t) = Re {uHHu} e*t o =Re{s} (1.74)

The cumulative net energy can be computed as

E(t) = /t p()dr = Re {uHH(s)u} et (1.75)

oo 20

where o > 0 to ensure the integral convergence.
Recalling the passivity condition in (1.71), it must hold £(¢) > 0, V¢. Thus, being 62—: >0
by assumption, it follows that

Re {uHH(s)u} _— B(H(s) + HH(S))} u>0, VueCP (1.76)

We can conclude that an immittance system is dissipative if

H(s) + H"(s) >0, Re{s} > 0. (1.77)

For further details on these derivations see [19].

To derive passivity conditions for scattering systems, as for the immittance case, the
instantaneous power is written in terms of H(s). Under cisoidal excitation u(t), recalling
Equation (1.68), it reads

p(t) = u(O)u(t) — y(t)My(t) = w[- H(s)"H(s)]u e>". (L.78)

As for the immittance case, we compute the cumulative net energy absorbed by the
system at time instant ¢ as

B t H H €2Jt
E(t) = / p(r)dr =u" |I-H"(s)H(s)| u 5 (1.79)

with ¢ > 0. The passivity condition in (1.71) implies that
T—H(s)"H(s) > 0, Re{s} > 0. (1.80)

The two passivity conditions for immittance and scattering representation given above
are now generalized with reference to Positive Real and Bounded Real matrices [4,19,41].

Definition 1.3 A transfer matriz H(s) is Positive Real if:

1. each element of H(s) is defined and analytic in Re {s} >0
25

Passivity

2. H*(s) = H(s*)
3. ©(s) = H(s) + H"(s) > 0 for Re {s} > 0

Definition 1.4 A transfer matriz H(s) is Bounded Real if:
1. each element of H(s) is defined and analytic in Re{s} >0
2. H*(s) = H(s*)
3. O(s) =1—H"(s)H(s) > 0 for Re{s} >0
Condition 1 is related to stability and causality. In fact both causality and stability re-

quires the transfer function to be analytic (must not have poles) in the closed right half
complex plane.

Condition 2 may be interpreted as a ”consistency” one, since it implies that the transfer
matrix is real for any s € R. This condition strongly affects the residues of H(s): in fact,
to be satisfied, they must be real, for real poles, or must appear in complex conjugate
pairs, when corresponding to complex conjugate poles.

Finally, Condition 3 is exactly the one we derived above in Equations 1.77 and 1.80,
related to the energy of the system described by H(s).

We are now ready to re-formulate LTI system passivity conditions in terms of Positive
Real and Bounded Real matrices, as stated in Theorem 1.1 ([4,19,41])

Theorem 1.1 A LTI system with transfer matriz H(s) is defined to be passive if and only
if H(s) is Positive Real (for immittance representations) or Bounded Real (for scattering
representations).

Theorem 1.1 provides a powerful theoretical tool to check the passivity of an LTI system
through its transfer matrix. However, verifying that the three conditions are concurrently
fulfilled in the open complex plane, implies considerable computational efforts.

In the following, we derive some simpler conditions, based on the rational nature of the
model underlying the transfer matrix H(s) to assess whether the model is passive, for
both immittance and scattering representations.

Considering immittance systems, the following Theorem holds [4,19,41]
Theorem 1.2 A rational matriz H(s) is Positive Real if and only if
1. H(s) has no poles in C4
2. H* () = H(—jw)

3. H(jw) +H"(jw) > 0, Yw € C, except for simple poles jw; of H(s) where the transfer
matriz must be Hermitian and nonnegative definite.

26

Passivity

4. for w — oo, H(s) ~ Ruos in Re {s} > 0, with Re real, symmetric and non-negative
definite

The main advantage of this theorem with respect to the more general one, as shown
in [19], is evident from the third condition. In fact, comparing it with the one defined in
1.3, it turns out that the non-negative definiteness of H(s) 4+ H"(s) can be checked just
along the imaginary axis rather than in the right half open complex plane.

If Conditions 1,2,4 are satisfied (as usually are), the only thing we need to check is Con-
dition 3, whose statement can be cast as follows

Amin(jw) > 0, Yw € R (1.81)

with
Amin (jw) = min{ \(H(jw) + H" (jw)}, Vw € R (1.82)

Assuming the transfer matrix to be asymptotically stable, the above eigenvalues are con-
tinuous functions of frequency, therefore \p,i,(jw) is a continuous function of frequency.
This fact enables the use frequency sampling techniques in advanced passivity assessment
algorithms.

In the next sections we will go through a set of fundamental results to perform advanced
and reliable passivity verifications.

Immittance Systems

Particularizing now the dissipation inequality 1.73 for immittance LTI systems, we will
derive a condition to assess system passivity in terms of the state-space representation
matrices.

To this end, we need to have an analytic expression of the supplied power that is given
by Equation 1.74 and reads

1
p(t) = 5[uT(CX + Du) + (Cx + Du)"y] (1.83)
If the storage function is defined as V(x) = 3(x'Px), with P a symmetric positive

definite matrix, its derivative (rate of change of the internal energy) will be

d 1
%V(x(t)) = 5[(AX + Bu)"Px + x"P(Ax + Bu)] (1.84)
Let us now impose the dissipativity condition defined in Equation 1.71. Splitting input
and state signals, with trivial algebraic manipulations we get to the following LMI form,
known as Positive Real Lemma [4,34].

Lemma 1.1 A LTI system in immittance form is passive if and only if, for any signal
X, u satisfying the state equations, it holds that:

T /AT T T
T X A'P+PA P'B-C X
JP=P >0: <u) (BTP—C —(D+DT) u <0 (1.85)
27

Passivity

We now derive a fundamental result, originally proposed in [19], used extensively in
LTI passivity assessment algorithms, that enables the use of algebraic methods to spot
passivity violations. In details, it will be shown that the imaginary eigenvalues of a
particular Hamiltonian-structured matrix are strongly related to the location of passivity
violations along the frequency axis.

First, let us define a support matrix function, called Popov function, ¥(s) as

U(s)=H(s) + H (—s) (1.86)
Recalling that, to be passive, the transfer matrix of an immittance system must satisfy
©(s) =H(s) + H'(s) > 0 (1.87)

in turns out that ©(s) and ¥(s) are equal when evaluated on the imaginary axis. This
enables us to check the non-negative definiteness of ¥(jw) instead of O (jw).
The condition that must be verified to guarantee passivity is thus

¥ (jw) > 0,Vw (1.88)

Focusing our attention to this last equation, we see that the frequencies at which ¥ (jw;)
becomes singular, algebraically pinpoint passivity violations, being W¥(jw;) singular ex-
actly when H(jw) + HT (—jw) = 0.

These frequencies jw; are defined to be the solutions of

¥ (jw;)u =0 (1.89)

for some vector u.
In order to find these frequencies, we derive a state-space realization of W¥(s), the analytic
extension to the open complex plane of W(jw). This turns out to be useful since the
solutions of Equation (1.89) are the poles of ¥~1(s), for which a simple state space
realization is readily computed. The poles of ¥~(s) are the eigenvalues of its dynamic
matrix, that reads

No=Ag-1 = Ay —ByD,'Cy (1.90)

where Ay, By, Cy, Dy are the state-space realization matrices of ¥(s).
Expanding N in terms of the system realization matrices A, B, C, D we get the following
matrix

A-B(D+DNH"C -B(D+DT")~'BT) (1.91)

NOZ < CT(D_’_DT)flC _AT_i_CT(D_i_DT)leT

Defining as J the following matrix
(0 I,
J= (_Hn O) (1.92)

(JN@)T =JN) (1.93)

it holds that

Passivity

which shows that N has a Hamiltonian structure.

Because of that, Ny has some peculiar characteristics. In particular, its eigen-spectrum
is symmetric with respect to both imaginary and real axes. In fact the set of poles of
W(s) includes the ones of H(s) which are symmetric with respect to the real axis, and
their mirror images, symmetric with respect to the imaginary axis.

The following theorem, proposed in [6,15,19], provides a fundamental results that relates
the eigenvalues of Ny with the ones of ¥(jw).

Theorem 1.3 Let H(s) be the transfer matriz of an immittance system, whose state
space matrices are {A, B, C,D}, where A has no purely imaginary eigenvalues and D +
DT is non-singular. Then, jwo is an eigenvalue of Ng if and only if 0 is an eigenvalue

of ¥(jwo).

It follows that, if Ny has imaginary eigenvalues, the related LTI system is not passive
for some frequency bands.
This result is formally stated in Theorem 1.4.

Theorem 1.4 Let H(s) be the transfer matriz of an immittance system, whose state
space matrices are {A, B, C,D}, where A has no purely imaginary eigenvalues and D +
D7 is positive definite. Then the system is passive if the Hamiltonian matriz N'g has no
purely imaginary eigenvalues.

Theorems 1.3 and 1.4 provide an algebraic tool that is able to precisely verify system
passivity and enables us to easily localize violation areas along the frequency axis.

To this end we must notice that Hamiltonian imaginary eigenvalues correspond to the
complex frequencies at which at least one eigenvalue of W(jw) crosses the zero-threshold.
These frequencies induce a partition of the frequency axis in disjoint sub-bands, where
W (jw) is either positive definite or not. This means that, being the Hamiltonian eigen-
values the edges of these sub-bands, the frequency axis is now partitioned in passive and
not-passive areas, so that a detailed passivity characterization is available.

In Figure 1.1 we show the described partitioning of the frequency axis in passive and
non-passive bands induced by imaginary Hamiltonian eigenvalues. In the left panel we
show an eigenvalue of H(jw) + H"(jw) that, becoming negative, denote a non-passive
frequency band, shown in red. Imaginary Hamiltonian eigenvalues are represented as
black dots and bound this violation area. In the right panel we show the Hamiltonian
eigen-spectrum, where it is possible to see that the magnitude of purely imaginary eigen-
values coincides with the edges of the violation interval discussed before. The violation
bands in the complex plane are represented with red lines.

The main result presented here relies on the strong assumption that D+DT is not singu-
lar. However, the same approach can be extended to the case in which D+DT is singular
with minor modifications. For details see [19].

In order to relax the non-singularity condition on D+ DT, it is necessary to slightly mod-
ify Theorem 1.3 resulting in an extended eigenvalue problem where, now, no inversions
on D + DT are required. The new problem, shown in Equation (1.94) is cast in what is
usually called a ”generalized eigenvalue problem”, where the unknowns are no more the
eigenvalues of a matrix, but the ones of a matrix pencil (N, IC).

29

Passivity

%1073
| 80 !
14+ H
12t 60r
10 40+
3 —
N .
3 8r 5 20l
> =
c
= ° o
(Ig.)’ 6r g 0a v -:. .
[0} . o
L]] (] L]
_(Es 4r g .- .A- -~
I 2.20r
o 2r 1S °
L £
ol o -40
2 -60
4L ‘ ‘ ‘] -80 ‘ : :
3 4 5 6 7 -20 -10 0 10 20

Frequency (GHz) Real part (GHz)

(b) Violation bands in the Hamiltonian eigen-

(a) Passive/non-passive frequency axis partition-
spectrum

ing

Figure 1.1: Frequency axis partitioning induced by Hamiltonian imaginary eigenvalues

Ny = jwKCv (1.94)
where
A 0 B I 00
Nit=(0 —-AT -CT |, K=[0T1 0 (1.95)
C B" D+DT 0 00

This matrix pencil is denoted as ” Skew-Hamiltonian/Hamiltonian”, because NG has
Hamiltonian structure while /C is skew-Hamiltonian.

Up to now, just a state-space realization for H(s) has been considered. However
there are several situations for which a descriptor realization is preferable, e.g., when
using MNA (Modified Nodal Analysis) method to automatically solve electrical circuits.
For this reason, a generalization of the Hamiltonian approach to descriptor realization is
needed. Minor modifications to Theorem 1.3 allow to state that, for immittance systems
in descriptor form, the complex frequencies at which passivity violations occur are the
purely imaginary generalized eigenvalues of this generalized eigen-problem:

N = jwolCv (1.96)
where
A 0 B E 0 0
Nett=(o0 —-AT -CT |, K=|(0 ET 0 (1.97)
C B" D+DT 0 0 O

30

Passivity

Scattering systems

We now focus on scattering systems.

Recalling Theorem 1.1, a scattering system, to be passive, must have a Bounded Real
transfer matrix. Again, verifying system passivity throughout the complex plane is too
expensive in terms of computational effort.

As for the Positive Real Lemma, a formulation of the Bounded Real Lemma exists for
rational matrices [4,19,41], that are the main focus of this work.

Theorem 1.5 A rational matriz H(s) is Bounded Real if and only if
1. H(s) has no poles in C
2. H* (jw) = H(—jw)
3. 1-H(jw"H(jw) >0, Vw eR

No further conditions are required, as in the immittance case, for purely imaginary poles,
because passive scattering systems can not have poles on the imaginary axis. As in Theo-
rem 1.2, the main advantage that the rational nature of the system brings with it, is that
Conditions 2 and 3 can be checked just along the imaginary axis. Assuming the system
to be asymptotically stable (all the poles of H(s) has strictly negative real part) and that
the state-space realization matrices real, the first two conditions are verified and only the
third remains to be checked.

Here, in contrast with the immittance case, a product of transfer matrices appears, so a
direct eigenvalues calculation, to guarantee that the smaller one is above the zero thresh-
old, should be avoided. An alternative formulation for Condition 3 is based on the SVD
(Singular Values Decomposition) of H(jw), that reads

H(jw) = U(jw) S (jw) V (jw)" (1.98)

The third condition is then re-formulated in terms of the singular values of H(jw):

T — H(jw)"H(jw) > 0 & 0mee(H(jw)) = |H(Gw)|, < 1, Yo € R. (1.99)

Being additionally, by assumption, the transfer matrix H(jw) regular in an open subset of
the complex plane containing the imaginary axis, singular values are continuous functions
of jw, enabling the use of frequency sampling techniques.

Since any passive system must satisfy the dissipation inequality in (1.73), to derive a
precise passivity characterization, it must be particularized for scattering systems.

The supplied power p(t) is

p(t) =u'u—y'y =u"u— (Cx+ Du)"(Cx + Du), (1.100)

where u,y are respectively the input and output signals and the time dependency has
been omitted for readability.
The storage function V(x), defined as V(x) = x'Px, with P = PT > 0, leads to the

31

Passivity

following equation

%V(x(t)) = (Ax+ Bu)"Px + x"P(Ax + Bu) < p(t), Vt. (1.101)

Combining the previous relation with the dissipation inequality, and splitting the input
and state signals, the so-called Bounded Real Lemma [4,34] can be stated.

Lemma 1.2 A LTI system in scattering form is passive if and only if, for any signal
X, u satisfying the state equations, it holds that:

T /AT T T
T o (x A'P+PA+C'C PB+C'D X
ptoo (X)) (ABAPALCIC PO () o iy

In the following we derive, as for immittace representations, a set of results that
enables to cast the passivity verification problem in a closed algebraic form. See [19] for
details.

Defining ©O(s) as

O(s) =1 - H"(s)H(s), (1.103)
and denoting the Popov function as
U(s)=T—-H"(—s)H(s), (1.104)

it is easy to see that, when evaluating these functions for s = jw, they are equal:

¥ (jw) = O(jw). (1.105)
Passivity condition can be cast in terms of the Popov function as

¥(jw) >0, Yw (1.106)

Equation 1.106 exactly matches the one for immittance representations, where passivity
violations are solutions of
P(jw)u=0 (1.107)

for some vector u.

To find the zeros of ¥(jw), a state space realization for W(s) (whose matrices are
Ay,By,Cy,Dy) is derived, from which it is possible to get a realization for ¥~1(s),
whose purely imaginary poles are the solutions of Equation (1.107). The poles of ¥~1(s)
are the eigenvalues of its state-space dynamic matrix, that reads:

M =Ay -~ ByDy'Cy. (1.108)

Writing now this matrix in terms the state-space realization matrices A, B, C, D of H(s),
we get the following matrix:

<A +B(I-D'D)"!DTC B(I- D'D)"!BT >
M, =

_CT(]I— DDT)—IC AT CTD(H—DTD)_lBT (1.109)

Matrix M has Hamiltonian structure, since it satisfies the condition in (1.93).

What relates matrix M with system passivity is given by the following theorem [6,15,19]:
32

Passivity

Theorem 1.6 Let H(s) be the transfer matrix of a scattering system, whose state space
matrices are {A,B, C,D}, where A has no purely imaginary eigenvalues and 1 — DTD
is non-singular. Then, jwy is an eigenvalue of My if and only if 0 is an eigenvalue of
W (jwo) and 1 a singular value of H(jwy).

This result allows us to derive the following theorem, that provides a sufficient passivity
condition for scattering systems:

Theorem 1.7 Let H(s) be the transfer function of an asymptotically passive (|D]|, < 1)
and stable scattering system, whose state-space matrices are (A,B,C,D). The system is
uniformly passive if M1 has no purely imaginary eigenvalues

Furthermore, the frequencies w; solving ¥(jw;)u = 0, i.e., the Hamiltonian imaginary
eigenvalues, induce a partition of the frequency axis in passive and not-passive sub-
bands. These considerations allow to characterize in details the passivity of a system for
any frequency value.

Figure 1.1 shows the partitioning of the frequency axis in passive and non-passive
bands induced by imaginary Hamiltonian eigenvalues. In the left panel we show sin-
gular values of H(jw) that, denote non-passive areas when exceed the unit threshold,
represented in red. Imaginary Hamiltonian eigenvalues are represented as black dots and
bound these violation areas. In the right panel we show the Hamiltonian eigen-spectrum,
where we can see that the magnitude of purely imaginary eigenvalues coincide with the
edges of the violations interval discussed before. The violations band in the complex
plane are represented with red lines.

14

201

Singular values
>
.
.
.

Imaginary part (GHz)
o

-
o
T
.
.
.
.

-20

0.8

0 5 10 15 20 25 6 _;1 2 0 2 !1 6
Frequency (GHz) Real part (GHz)

(a) Passive/non-passive frequency axis partition-(b) Violation bands in the Hamiltonian eigen-
ing spectrum

Figure 1.2: Frequency axis partitioning induced by Hamiltonian imaginary eigenvalues

As we did for immittance systems, it is possible to relax the non-singularity condition on
I-D'D.

33

Passivity

As proposed in [19], Theorem 1.6 can be generalized to the case in which D is arbitrary.
Slightly modifying its proof, it is possible to define an extended eigen-problem shown in
(1.110), that does not require any inversion of I — DDT and I — DD, as:

My = jwoKCv, (1.110)

where

A 0 B 0
0 —-AT o0 -CT

o BT -1 DT |’
C 0 D I

NG = (1.111)

oo o=
oo H=O
[==J el e R e}
(==l eRY

It can be proven that purely imaginary eigenvalues of 1.110 correspond exactly to the
location on the frequency axis of passivity violations.

Previous results are based on the assumption that a state-space realization for H(s)
is used. Here, we provide a generalization of the Hamiltonian-driven passivity character-
ization to descriptor realizations, that will be used extensively later on in this work, and
are of paramount importance in many other applications.

Passivity violations are again defined by complex frequencies jw; for which ¥ (jw;)v = 0.
Suitably modifying Theorem 1.6, we find that this condition is reached if and only if jw;
is an eigenvalue of the generalized eigenproblem in (1.112)

My = jwoKCv (1.112)
where
A 0 B o0 E 0 0O
et |0 —AT 0 -CT o ET 0 0
NG = o0 BT -1 DT |’ K=1o 0 0o (1.113)
C 0 D I 0 0 00

34

Chapter 2
Multivariate Macromodels

This Chapter is co-authored by T.Bradde, M. De Stefano and A. Zanco.

In the previous chapter, we assumed that the system under modeling is characterized
by a fixed (yet unknown) physical structure. In many situations, however, this hypoth-
esis is not the most suitable: some physical parameters of the system could be design
objectives or could be intrinsically uncertain due to production process tolerances. A
parametric macromodel is able to reproduce the system behaviour for all the possible
values that the varying parameters assume within a prescribed range. This possibility
proves to be extremely useful in many fields of the design process, from the optimization
of the design variables, to the simulation of worst-case scenarios induced by the physical
realization of the structure. Typical examples regard the role of temperature in electronic
devices, the geometrical parameters of an interconnect, the linearization point of a non-
linear device, and many more.

The construction flow of a parametric macromodel requires the knowledge of the input-
output behavior for a discrete number of values within the range that the parameters can
span; once those data are collected and processed, the interpolation algorithm returns a
closed form description of the system within the entire range of variation.

In this case, the input-output data must be representative of the model behavior within
all the range of values assumed by each parameter; in particular, consider the case in
which the model is required to depend on a number p of design parameters. Then, for
the i-th parameter we can denote its variation range as

O; = [0ins Obpaz] for i=12,..p . (2.1)

min? Y max

Thus, the global parameter domain can be defined as:
©=01x062x..,x0, CR. (2.2)

A point in © is uniquely identified by its projections along the parameters axes. To keep
the notation compact, this point is denoted as

Im = Oy Om,) " (2.3)

where m is a multi-index m = [my,...,m,].
To synthetize a parametric macromodel, a set of M points in the parameter domain O is

35

Parametric Model Formulation

defined to be representative of the parametric system response; for each of these points,
we collect K frequency samples of the transfer functions associated with the underlying
system. The resulting dataset reads:

Hy,, = H(sp, 0) for k=12...K m=12,.. M |, (2.4)
If, as it is common, we collect data at real frequencies wy, our goal is to obtain a model:
H(jw,0) ~ ﬁ(jw,@) for 6€0O, weE WninWnax (2.5)

While the structure of an univariate model is supposed to be a rational function of the
Laplace variable, we are free to cast the dependence of the model on the parameters in
a larger set of possible structures: a variety of basis functions can be used to fit the
data. The thesis project is particularly focused on the investigation of issues related to
the construction of precise and reliable parametric macromodels, for which many open
problems still exist.

2.1 Parametric Model Formulation

Approximating the true system response ﬁ(sk,ﬁk) in a suitable macromodel form is
fundamental to include the curve fitting result in system-level simulations using stan-
dard circuit solver such as SPICE. Several mathematical structures are available: the
identification algorithm efficiency, in frequency and time domain, is affected by this
choice. Moreover, all the formulations may suffer from ill-conditioning depending on
the parameter-dependent basis choice.

Therefore, considering a P-ports multivariate macromodel of a generic LTI system, we
adopt the so-called Parameterized Sanathanan-Koerner (PSK) [37], [36], [12], [11], [21]
form

H(s;9) = N) _ Tio Xy Rt §6(9) 0n(s).
D(s:9) 3on o St T &e(9) on(s)

We remark that the model numerator and denominator are constructed by linear combi-
nation of suitable basis functions: it is straightforward to prove that if the basis functions
©n(s) are rational, the model indicated in (2.6) is a rational function V1.
In particular, we denoted with 7 the frequency basis order and with ¢ the cardinality of
the parameter-dependent basis function. To maintain the notation compact, we define a
multi-index ¢ = ({1,...,£,), if p > 1.
Both the numerator and denominator coefficients are guaranteed real-valued: they are
indicated with R, € RP*F and r,, € R, respectively, in (2.6). We can simplify the
model expression presented in (2.6), gathering the parameter information

H(s:9) = NEY) _ ZacoBa(0) on(s)

(2.6)

- D(s,9) Yoo n(V0) ©n(s) ’ @7
where - _
ZN KD
R,(0) = > Rpey & (0) ()= 1oy, &, (9) (2.8)
In=1 {p=1

Parametric Model Formulation

are the numerator and denominator model coefficients, respectively.

Note that a different parameter-dependent basis order for numerator (/) and denominator(£p)
polynomials is possible, as specified in (2.8). Without loss of generality, in the following

we will set Iy =0p =10 .

The model structure presented before is completely general with respect to the input data

set ﬁ(sk, %) representation (scattering, admittance or impedance).

2.1.1 Parameter-Dependent Basis Functions

The variations induced by the external parameters ¥ € © are embedded in the model
structure (2.6) through the parameter-dependent basis functions &(9). These basis func-
tions must be selected carefully because upon this choice depends on the fitting accuracy.
The literature offers several sets of functions, which are characterized by their own nu-
merical properties.
In the following we will consider only one external parameter (p = 1).
One important point for our further observations is the (commonly used) procedure of
improving the numerical conditioning of fitting algorithms by the normalization of the
polynomials argument within [—1, 1]. In particular, we compute the normalized param-
eter value ¥ as:

U — ﬂmzn

79mar - 79mm

J=—1+2- (2.9)

The problem conditioning will direct affect the parameter-dependent basis choice.
We now provide several examples of the available choices for the parameter-dependent
basis.

Monomials

The simplest polynomial function that could be used to capture the parameter evolution
is defined as the standard monomials basis functions [40]

&(0) =", (2.10)

where £ = 0, ..., ¢ (as defined in (2.6)) and £ is the basis order.

We provide a numerical example, realizing a third-order basis as showed in Fig.2.1. This
represents the most intuitive case for parameter-dependent basis definition, but this sort
of basis function usually leads to the construction of an ill-conditioned fitting problem.

Chebychev Polynomials

We introduce here a new set of basis functions, namely the orthogonal polynomials [2],
[28]. From [8], we know that any orthogonal polynomial can be expressed with the
recurrence formula that reads:

Eo41(0) = (e + Be)&e(V) + Sp—160—1 (V). (2.11)
37

Parametric Model Formulation

T

0.5 .

-1 ! ! !
-1 -0.5 0 0.5 1

Parameter 9

Figure 2.1: Monomials parameter-dependent basis evolution for ¢ = 0,1,2,3.

In the following we will extensively use Chebychev polynomials, a special class of orthog-
onal polynomials, for which the expansion coefficients «, 8, are equal to:
oz():l, BOZO, 50:0 f:1, (2.12)
Qp =2, Be =0, 0p=—1 Ve>1. (2.13)
It is well known that the basis functions defined as before present very favourable numer-
ical properties, which lead to a well-conditioned (and easy manageable) fitting problem.

In this case, the regressor matrix created using such basis shows a reasonable condition
number.

We denote the Chebychev polynomials of the first kind basis functions &(¢) = Ty(19)
(see [5] and [13]) as:

Ty(9) = cos[tcos ' ()], We[-1,1], £=0,..5¢ (2.14)
which is equivalent to the standard expression

Ty(cost) = cos(ft), t€l0,2n], £=0,..,07 (2.15)

An example of the fourth order Chebychev polynomials (first kind) is reported in Fig. 2.2.

Fourier Series

In order to guarantee a parameterization from a smooth function, when ¢ implies periodic
variations, with ¥ € [0, 27| (e.g. the external parameter is an angle), as discussed in [18§],
we can define a parameter-dependent basis function as the standard Fourier basis in the

38

Parametric Model Formulation

T
|

0.5

_1 1 I !
-1 -0.5 0 0.5 1

Parameter ¥

Figure 2.2: Chebychev parameter-dependent basis evolution for ¢ = 0,1,2,3

trigonometric form
L,

=0
&(¥) =< cos([¢/2]9), (=1,
sin([¢/2]9), £=2

3,5,... (2.16)
4,6, ...

where the argument of [-] is rounded to the nearest larger integer. Figure 2.3 provides a
numerical example for the first five terms of the Fourier basis (¢ = 0, ...,4).

2.1.2 State Space and Descriptor Forms

We now present the state-space and descriptor realizations of a parameter-dependent LTI
system, starting from the pole-residue form of the model H(s;¥). As in the univariate
case, also for a multivariate model this representation is appropriate to describe the
properties of the model in algebraic form.

State Space Realizations

Following the procedure reported in Section 1.4.2, we can realize a parameter-dependent
macromodel equivalent state-space description. Recalling the pole-residue model form of
(1.35) and embedding the parameter dependency ¥, the extension is straightforward.

In fact, considering the model of (2.7), with ¢,(s) defined as the partial-fraction basis

39

Parametric Model Formulation

1
05F i
= 9
vy
-05r -
_1 /
0 90 180 270 360

Parameter v
Figure 2.3: First four terms (¢ = 0,1,2,3) of the Fourier parameter-dependent basis,

through the parameter range ¥ € [0°,360°]. The polynomials arguments is normalized
within [—1,1] using the variable range.

with a prescribed set of real and complex poles g, (see 1.2.1), we can write
N(s, Z

D(s,9) = ro(¥ +ZT” (2.18)

S_Qn

(2.17)

which allows us to construct the two separate state-space realizations for N(s,?)) and
D(s,?) as

N(s,d) < < C?(%) D]f’(‘;?)) (2.19)
D(s,9)Ip + < 0?(29) D]?(%) , (2.20)
where
Ao = blkdiag{Aor, AQC}
B = [B},,BJ.] (2.21)
Ci(¥) = [R1(9) --- Ra(¥)]
02(19) = [Hp?”l(’ﬁ) HpTﬁ(ﬁ)]
D1 (?) = Ro(V)
D5 () = Ip ro(9). (2.22)

Parametric Model Formulation

with
Ao, =blkdiag{g,1p};2,

. plp piIp] ™
Ay =blkdiag { [—p'ﬂp Plp

By, = [1,..,1] ®Ip
Bo. = [2,0,...,2,0]' @1Ip (2.23)

n=1

Following the steps described in [36], we finally obtain the (compact) model state-space
realization by the cascade of expression (2.19) as:

H(Saﬁ)ZN(S’ﬁ)(D(s,ﬁ)1HP)<—>< Ao —BD, (9)Co(¥) | ByD, ' (Y))

C1(¥) — D1(9)D; ' (9)C2(v) | D1(9)D5 " (V)
(2.24)
We recall [36] for more details.

Descriptor Forms

Recalling to the descriptor representation (1.57) of Section 1.4.2, we now define its
parameter-dependent form [36] to (2.24).
The descriptor matrices, which now depend on the external parameter ¥, are

E_ (O]L]?[N g];’j:) A() = (c?((;?) Dl:(%)

C() = (C1(¥) Dy()) B_<O_Aﬁ’]f> (2.25)

with 0 x null matrix of size J x K. The other matrices of (1.58) denote the state-space
realization of the model numerator N(s,), described by the set {Ag, Bo, C1(¥), D1(9)},
and the (extended) denominator D(s,d)Ip, described by {Ag, Bg, C2(1), Da(¥)}, which
are exactly the same elements of (2.19).

The model expression of (2.6) is equivalent to

H(s;9) = C(9)(sE — A(9))"'B, (2.26)
as detailed in [36] and [16].

41

Chapter 3
Stability Enforcement

Our main objective is to realize a multivariate parametric macromodel H(s;) which can
be used for SI/PI circuit simulation: the identification process must be able to guarantee
the model stability in the entire parameter domain ©.

In this Chapter, we propose a strategy that is able to assure such condition by realiz-
ing a constrained fitting algorithm, which is based on the realization of a real positive
model denominator. By starting from a finite set of samples of the true system response
fI(jw,ﬁ) we will able to generate robust and stable parameterized macromodels: these
will be used in Chapter 5 and Chapter 6 to extract equivalent SPICE netlists for circuit
simulation.

The procedure adopted here is not new [21], [9]. However, some fundamental improve-
ments are presented, which guarantee uniform stability (different from previous ap-
proaches, which were not able to provide a stability certificate). These improvements
are based on a final passivity enforcement, that is realized through a final loop on the
denominator sub-model. Furthermore, a robust implementation was realized and it is
here reported.

In the following, we provide numerical examples to illustrate the main characteristics
of the procedure, by focusing on the stability enforcement. At the moment we will not
stress the bias-dependent small signal systems, which will be the main subject of circuit
simulations in later chapters.

3.1 Uniform Stability and PR Denominator

By using a model in the PSK-form (2.6), we adopt the (Parameterized) Sanathanan-

Koerner (PSK) iterative procedure [21]. The related optimization problem can be sum-

marized as .

N” (527 fi, V) — D (327 fis V) Him
D=2 fios Um)

(3.1)

which is a sequence of linear least-squares (LS) problems, where the denominator is
initialized to D° = 1. The minimization solution is achieved through estimations of the
model coefficients RY , and 7', at each iteration p: the process terminates when the

42

Uniform Stability and PR Denominator

model coefficients stabilize. If the solution converges, the final model provides a good
approximation of the raw data response.

The above basic procedure does not ensure that the model poles have a strictly neg-
ative real part for possible values of the parameters . Moreover, from (2.6) we recall
that a direct parameterization of the model poles p,(¥) is not possible, due to a likely
non-smooth behaviour of them when 9 changes (see [18] for details). A direct stability
condition can be stated as

Re{pp(9)} <0 V9e€O, n=1,..,n (3.2)

where p,,(v) are the denominator zeros (D(py(¢),9) = 0).

Indeed, since the frequency-dependent basis poles ¢, are actually only apparent singu-
larities of the model (see Sec. 1.2.1), we can focus on the denominator sub-system and
investigate only its properties (namely, its zeros). We refer to the denominator expansion
series as

2
(V) = Z 7,0 &e(V) (3.3)
=1

where 7, o are the model coefficients.
We can now observe that

e assuming D(s,?) as a passive immittance function (Positive Real, PR), then its
inverse D~!(s,4) is also a passive immittance function;

e any (rational) PR function has stable real poles.

These concepts lead us to the conclusion that if we want to ensure the uniform model
stability it is sufficient to define a PR denominator D(s,?)) for any ¢ € ©: its zeros,
which are the model poles p, (1), will be guaranteed stable independently by .

By recalling the definition of a Positive Real transfer matrix (Def. 1.3), we see for the
case of a parameter-dependent scalar denominator (3.3) that:

1. D(s,?) is regular for Re {s} > 0 since the poles ¢, of the frequency-dependent basis
function ¢, (s) are stable by construction;
2. D*(s,v) = D(s*,) is guaranteed by construction.
Only the third condition is not granted so that a sufficient condition that guarantees a
PR denominator is the following
Re{D(jw,9)} >0, Vw,V¥e€O. (3.4)
A set of constraints must be realized to impose such condition at each iteration of the
fitting algorithm (3.1).
By sampling (3.4) through an adaptive procedure, we can obtain a set of points to realize
the linear inequalities constraints as
Re {D(jw;,¥;)} >0, (3.5)

which are reformulated during each iteration.
We now focus on the sampling procedure, which is necessary to proceed with the
stability enforcement.

43

Uniform Stability and PR Denominator

3.1.1 Sampling Process For Constraints Realization

In order to formulate the inequalities constraints as in (3.5), a set of points (w;, ¥;) must
be created at each iteration p of the optimization problem.

One of the most interesting improvements of this work, presented in [9], is provided by
the automatic sampling procedure, based on two set of points:

1. a set of fixed points F = {(jwg, Im), k= 1,..., K ,m =1,..., M}, which includes all
the points from the raw data responses H(jwy, J,,), both as frequencies or parame-
ters values; we denote with n; the dimension of this first set;

2. a set of adaptive-sampled points denotes as WH = {(jw;,?¥;),j = 1, ..., J}, which are
provided searching the local minima in the denominator passivity violation regions
of the (w,) space; we identify with n/ the overall number of components (at the
u-th iteration) of this set;

The combination of the above sets defines
Zh=F U WH (3.6)

which is the overall set of points at each p iteration, of dimension ny + n;. We denote
the elements of this data-set as

ZZH = (sz,ﬁl) S ZN7 1=1,...,1 (37)

We now focus on the adaptive search process, previously introduced in [21]. In partic-
ular, we note that looking for the local minima point, the parameter ¥ span is restricted
to the interval ©, and the frequency domain is unlimited: the denominator may present
a passivity violation outside the modelling bandwidth €. This corresponds to

Re {D(jw;,¥;)} <0 (3.8)

where 9; € © and w; ¢ Q identify a passivity violation point in the (w,) space.

A Hamiltonian eigenvalue computation solves this problem since all frequencies w; where
the real part of the denominator response crosses the zero baseline are purely imaginary
eigenvalues jw; of the Skew-Hamiltonian/Hamiltonian Pencil

A 0 B T 00
M) =] 0 —AT —-CT(v)], K=(0o I 0 (3.9)
c(@W) BT 2D(®) 0 00

with (A, B, C(9), D(¥)) state space representation matrices of the (immittance) denom-
inator sub-model D(s,v) (2.20).

The automatic procedure that provides the second data-set VW can be realized by
following two strategies.
The first approach was built on the distance of the Hamiltonian eigenvalues set from
the imaginary axis 1 (). Passivity violations points were founded by using this distance,
which is larger than zero if the model is passive (otherwise is null), with a local-descendent

44

Implementation of PR Strategy

based search. This procedure is strongly affected by the initial coarse grid on ©.
A second strategy solves this issues and provides a more efficient procedure to reach even
better results in terms of local minima search. By using the parameter-dependent basis
derivative (instead of ¥(¢))) and the Hamiltonian eigenvalue computation, an automatic
refinement of the sampling in the parameter space © is realized. Due to the intrinsic
complexity of a multivariate case, the algorithm guarantees a successful procedure finding
the passivity violations regions for two external parameters at most: this represents, at
the present day, the best result available. We refer to A.Zanco thesis [44] and to [45] for
details.

Nevertheless, the practical implementation of the proposed stability enforcement suf-
fers from this limitation: the case with p > 2 is not supported yet.

By combining the above two data-sets and realizing Z, we are now able to formulate
a feasibility region for the constrained least-squares fitting problem which leads to a
(guaranteed) stable and accurate model extraction.

3.2 Implementation of PR Strategy

We now focus on the practical implementation of the PR strategy to impose the uniform
stability of a multivariate macromodel, by recalling to the T.Bradde thesis results [7].
Through his work, the Fast-PSK (or FPSK) scheme was implemented and the entire al-
gorithm has achieved a significant speed-up. The stability enforcement implementation
finds its place in this context, where a decoupling of the denominator coefficients in terms
of numerator unknowns is realized. We provide a brief description of the FPSK scheme
in the following (for details see [17]).

Starting from the PSK model structure (2.6), we can

(A+1)T

e collect both the coefficients r,, and R, in a column vector d € R and

C(i,j) € R™HDT respectively, where we indicate with (i,7) the corresponding model
response element;

e define a row vector function ¢(s,?) collecting in its entries all combinations of fre-

quency and parameter basis functions ¢, (s) £/(¥) with a suitable ordering. We have
that g(s,9) € C>*@+DT

e realize a matrix ® € CEMx(+1{ where cach row is the function g(s,) evaluated
at each frequency and parameter values (sg,J,,), available from the raw data-set;

e define the matrix W#~1 = blkdiag{D*~(j27 fx, Im)}

From the above steps, we can write the PSK-iteration minimization problem (3.1) in the
(compact) least-squares matrix formulation as

Uz ~0, (3.10)
45

Implementation of PR Strategy

where
r o .. 0 EL1 e
0T ... 0E2l (@1
¥ =) T = .) (311)
Copo .
0o 0 ... T :(P,P) (fi’P)

with T = W+ 1® and E(; ;) = —~-WHTH; , .
A QR-based application to the above least-squares system enables an efficient decoupling

scheme as follows
R1! R52>

(I‘, E'l/) =QR, =Q < 0 R22 (3.12)

where v denotes any pair (i,7), with v = 1,..., P2, At this point, we solve the least-
squares system that enables the computation of all the denominator coefficients, stored
in the vector d, as
2,2
¥
Ry
° |d=o. (3.13)
R%:
Further orthogonalizations on the diagonal blocks of T" optimize the QR-factorization and
enable to compute all blocks in (3.12) within a loop over v (see [17] for details). Another

least-squares system, with multiple right-hand sides, computes the numerator coefficients
at the end of the PSK-iterations as

I'C~B, (3.14)

where
C=(cay. " ,cmpp) (3.15)
B = (_E(l,l)da c E(P,P)d) . (316)

The identification process defined through the FPSK-iteration does not guarantee the
uniform stability of the resulting model. We can now focus on the stability enforcement
embedded in the identification algorithm.

The novel contribution of the PR strategy for the model stability enforcement arises
during the computation of the denominator unknowns vector d (3.13), starting from the
second FPSK-iteration. Indeed, the inequality constraints (3.5) must be added to the
above least-squares problem (3.13): its solution guarantees that the denominator sub-
model is positive-real by construction.

This corresponds to the following process

1. check the denominator passivity of the model obtained from the previous iteration,
denoted as D*~1(j27 fr, Ui);

2. extract the passivity violation set WH of nf; adaptive points (jw;,?;),;

46

Implementation of PR Strategy

3. realize the complete data set Z#, by combining the fixed data-set F and the adaptive-
sampled data-set W* ;

4. realize (3.4) in a matrix form.

We now focus on the last of these steps.

By employing the elements of the extended data set z!' = (s;,1;) (using the Laplace
variable) and from (2.6), we define a row function gp(s,d) collecting terms @, (s) &, (9)
such that

bisne = gD, ,(8i,V5) = pn(si) Sep (Vi) (3.17)

which enables us to assemble the vector
b? = [bz’;o,l y 7bi;n,€)t 7bi;ﬁ,l7] : (318)

The above procedure is equivalent to evaluate the row function gp(s,) in the points of
the extended data set Z#, which must be recomputed at each FPSK-iteration p. We can
now realize the matrix that realizes (3.4) as

b
_ | r
Al =Re{B"}, B'=|b (3.19)

bi
where A}, € R(s4na)X(A+1)7 jg the constraint matrix of the optimization problem.
We can now apply the inequality constraints (3.5) to the least-squares problem (3.13) in
a matrix form as

Al d>a (3.20)

where o € R(metns)x1

We impose @ > 0 in order both to provide some tolerance to the optimization problem
and to avoid the critical case of a denominator with a real response close to the machine
accuracy'. Even if we apply a conservative assumption by setting each element of the
vector as a; = 1, this condition does not affect the general result of the procedure that still
ensures a positive-real denominator in the parameter space © (3.5). Moreover, the cost
function remains the same of the standard fitting algorithm (3.13) and still guarantees a
good accuracy of the resulting model.

We can summarize the constrained minimization problem as

P2
m;nZHR?de; st. Apd>a, v=1,.,P?, (3.21)
v=1

! In MATLAB this value corresponds to le™*°

47

Implementation of PR Strategy

which is a convex problem and its solution is straightforward.
After that, the denominator unknowns are computed through the constrained least-
squares problem, the FPSK-iteration can advance normally.

A note of attention is placed here. We actually started our investigation by applying
the linear inequality constraints (3.19) to the basic PSK-iteration scheme. The resulting
models from this first implementation were still guaranteed stable but, unfortunately,
the time required for the optimization was very high. For this reason, we abandoned
the PSK implementation, by focusing on the improvement of the above strategy for the
FPSK-scheme only. Nevertheless, we will present some numerical result of a denominator
passivity enforcement in a PSK-interation, in order to compare the time required for the
model generation with the two procedures.

3.2.1 Nwumerical Results

In this section, we apply our modelling scheme for selected examples in order to highlight
the critical points of the above procedure. We are going to use the Test Cases that are
reported in Appendix A: we refer to this part for details about the physical structures
under investigation.

We now focus on the main aspects of the PR strategy, comparing the above procedure
results with the standard fitting procedures, both for an FPSK and PSK scheme. Indeed,
we are going to report the main drawbacks which lead to abandoning the enforcement on
a PSK-iteration in the following.

Case 1

First, we investigate a ’simple’ case, which is characterized by a resulting model (from
a standard system identification) with a non-positive real denominator in the parameter
space. Nevertheless, even if a fine sweep of the external parameter does not indicate any
unstable poles, there is not a guarantee that the model will be stable irrespective of the
value of ¥ € ©.

Left panels of figure 3.1 show the results from a standard FPSK model generation, with-
out imposing the passivity constraints (3.5), which requires 1.5 seconds to extract the
final result. The bottom panel confirms that there exist some points in the space (w,)
such that Re {D(jw,)} < 0. The same results are achieved with a standard PSK extrac-
tion that took 9.75 seconds to generate the overall model.

The maximum absolute and relative errors for all the ports and parameters are reported
in Table 3.1. Right panels of Fig. 3.1 compares the above results with the model gener-
ated from a constrained FPSK-scheme: the overall accuracy is maintained to all model
ports. Moreover, the denominator model does not present any passivity violations in the
parameter space ©: bottom right panel of Fig. 3.1 confirms this assumption through a
fine sweep on the parameter domain. The overall model extraction requires only 22.9
seconds.

This runtime is significantly smaller with respect to the time required by embedding the
same procedure in a basic PSK-scheme, which took 601 seconds. This gap cannot be
attributed to the two different approaches used to the passivity violations regions search:
by using a derivative-based approach or a Hamiltonian distance, the same effects are

48

Implementation of PR Strategy

achieved both in terms of local minima results and elapsed time.

Moreover, the last generation produces a final model with a denominator that is still not
PR for all the space (w,).

We are going to further investigate this last point with the next example.

Validation Fitting
abs ‘ rel ‘ abs ‘ rel
FPSK | 2.98¢-03 | 4.38¢-03 | 1.86¢-03 | 2.73¢-03
FPSK
with PR | 3:00€-03 | 4.47e-03 | 1.80e-03 | 2.64e-03
PSK
with PR | 2:98e-03 | 4.38¢-03 | 1.85e-03 | 2.72e-03

Table 3.1: Maximum absolute and relative errors on validation and fitting points, for all
the parameters and ports, for Case 1 of Appendix A.

Case 2
We now analyse a system which results in an unstable model from the standard fitting
procedures, both FPSK (0.80 seconds) and PSK (0.74 seconds), and which shows a weak-
ness of the proposed model generation.
In order to obtain a final positive-real denominator, we have applied first the constrained
PSK-scheme and in a second step the constrained FPSK-scheme: they required 16.4 and
17.4 seconds, respectively, to extract a final model that is not guaranteed stable. Indeed,
Figure 3.2 compares the real part of the two denominators responses and reports the
corresponding Hamiltonian spectral distance from the imaginary axis: a null value of the
curve corresponds to a denominator passivity violations region (see Section 3.1.1).
Top panels of Fig. 3.2 present these results.
The differences between the constrained FPSK and PSK cannot be attributed to the
distinct sampling procedure used for the local minima search by building the constraints
(3.20), which for this case provide the same passivity violations points. Nevertheless, this
fact is out of the scope of this example, which is used to prove that both the procedures
are not sufficient to provide a stable guaranteed result for this particular case.
Otherwise, the effectiveness of the proposed model generation is demonstrated by a
variation of the same test case. Indeed, by imposing as an option the minimization of
the relative error (for details see [7]), the model results guaranteed stable through a
positive real denominator and the fitting accuracy is not compromised. Figure 3.3 shows
the validation of the two models obtained through a standard FPSK (left) and the same
scheme with the embedded stability enforcement (right): their extraction require 0.80
and 14.4 seconds, respectively. The absolute and relative errors for all the ports and
parameters are reported in Table 3.2.
From these examples, it is clear that the uniform stability is still not guaranteed in
general, and some more advanced enforcement is required. This is the subject of next
section.

49

Implementation of PR Strategy

S$(1,1) Magnitude

0.8

0.6

0.4

0.2

Fequency (Hz)

S(1,1) Phase

200

100

-100

-200 : :

Fequency (Hz)

Real(D)

100
Frequency [Hz]

$(1,1) Magnitude

15
Fequency (Hz)

$(1,1) Phase

200

100
ok
-100 - S(1,1) data
= = +§(1,1) model
-200 : :
0.5 1 15 2
Fequency (Hz) %1010
25 :
oL
_15F
a
s
Q
2 o1+
0.5
Op-=-7--=-f=-=-7=--=-¢f=-=-Z=--=-7-=-=7]
10° 10° 100 10'® 00

Frequency [Hz]

Figure 3.1: Validation of selected parameterized macromodel for Case 1.

Left Panels, standard FPSK: (unstable) model responses and (bottom) real part of the
model denominator, computed over a fine sweep of the parameter value.

Right Panels, FPSK with PR enforcement: (stable) model responses after stability en-
forcement and (bottom) real part of the model denominator. Since Re {D(jw,d)} > 0, it
is guaranteed that the model poles are stable over 9 € ©.

50

Implementation of PR Strategy

Real(D)
3

10° 10° 10'° 10'° £ 10° 10° 10'° 10'° 00

Frequency [Hz] Frequency [Hz]
007 Hamiltonian spectral di from imaginary axis 0.01 Hamiltonian spectral di: from imaginary axis
. T T T T T T . T T T T T

0.06 -
0.008

0.05 -

0.04 0.006

0.03 - 0.004

0.02 -
0.002

0.01

0 ! e ! ! ! ! !
300 350 400 450 500 550 600 300 350 400 450 500 550 600
Parameter Parameter

Figure 3.2: Case 2 of Appendix A results. Left Panels, PSK with PR enforcement:
(top) real part of the final model denominator, computed over a fine sweep of the pa-
rameter value; (bottom) Hamiltonian spectral distance from the imaginary axis, which
corresponds to a passivity violation region when the curve assumes a null value.
Right Panels, FPSK with PR enforcement: (top) and (bottom) figure as above.

Validation Fitting
abs ‘ rel ‘ abs ‘ rel
FPSK | 8.25¢-03 | 1.25¢-02 | 8.25¢-03 | 1.31e-02
FPSK
with PR | 76303 | 1.16e-02 | 8.35e-03 | 1.17e-02

Table 3.2: Maximum absolute and relative errors on validation and fitting points, com-
puted over all the parameter values and port responses, for Case 2 macromodel.

51

Implementation of PR Strategy

$(1,1) Magnitude $(1,1) Magnitude

02 ‘ 0.2 :
10° 100 10° 1010
Fequency (Hz) Fequency (Hz)
0 $(1,1) Phase o $(1,1) Phase
20 8 20 8
40t 4 40 4
——$S(1,1) data
60 - = :S(1,1) model >~ 60 - ——S(1,1) data ~
= = 'S(1,1) model
-80 . -80 .
10° 100 10° 1010
Fequency (Hz) Fequency (Hz)

L

10° 10° 10'° 10" o
Frequency [Hz] Frequency [Hz]

Figure 3.3: Validation of selected parameterized macromodel for Case 2, imposing the
minimization of the relative error.

Left Panels, standard FPSK: (unstable) model responses and (bottom) real part of the
model denominator.

Right Panels, FPSK with PR enforcement: (stable) model responses after stability en-
forcement and (bottom) real part of the model denominator. Since Re {D(jw,d)} > 0, it
is guaranteed that the model poles are stable over ¥ € ©.

52

Final Stability Enforcement on Denominator

3.3 Final Stability Enforcement on Denominator

By embedding positive real denominator constraints at each iteration of the identification
process is actually not a sufficient condition to guarantee the stability of the resulting
model. Indeed, the last PSK-iteration may realize a model which could actually be not
PR: some passivity violation regions of the denominator may be still present. To eliminate
this possibility, a final bivariate passivity enforcement based on first order-perturbation
is realized on the denominator sub-model after the last fitting iteration. We now focus
on this procedure [16], providing some additional details.

A perturbed denominator based on (2.6) is defined as
D(s,9) = D(s,¥) + AD(s,9) (3.22)
with
no L
AD(s,9) = >) " Ary 0 £6(9) pn(s) (3.23)
n=0 (=1

We compute the coefficients perturbations Ar,, » such that the response of the perturbed
denominator will be PR V4, satisfying the condition (3.4). These unknowns are located
in a vector of decision variables denoted as

@ =[Argg, - Arpg,-- Arp g with @ e RTDE (3.24)

We formulate the algebraic passivity constraints similarly to what we did in Section 3.2.
In particular, we create the constraint matrix Al at each iteration of the passivity en-
forcement p, by evaluating the function gp(s,) which collects ¢, (s) &/(19) in the points
(jws, ;) of the complete set Z, which is obtained combining the passivity violation check
results and the fixed points from the raw data-set.

Moreover, to formulate the inequality constraints we have to consider that our goal is
to realize a positive real final model D(s,)). This condition read as

AL >« (3.25)

where a is defined as in (3.20) and Z is the vector that stores the perturbed model
coefficients. From (3.13) and (3.24), we can denote it as

r=d+=x. (3.26)
By combining (3.25), and (3.26) we obtain the following expression
And+ Al x> a. (3.27)

From (3.19) we can see that A, d = Re{D(jw;,?;)}, and we can define the resulting
vector as
w” = Re {D"(jw;,¥;)} with i=1,...,1T, (3.28)

53

Final Stability Enforcement on Denominator

The final inequality constraint can be cast in an algebraic form as
Ar x> at (3.29)
with
at =at —wh (3.30)

where a* € R™ 1" x 1 realizes an adaptive threshold that considers the denominator
passivity violations regions at each enforcement iteration.

A proper cost function must be realized to guarantee that accuracy is preserved, by
recalling to the raw data set flhm, as

K M
2= ") " |AD(sg, Im)|? (3.31)

k=1m=1

By referring the function g(s,), we can now define the single element

bk,m;n,f = gn,f(ska ﬁm) = @n(sk)gf(ﬁm) (332)
of the vector denoted as
bim = [bk,m;o,l P 7bk,m;n,€)t 7bk,m;ﬁ7[] . (333)
This enables us to cast the cost function as
) _ 2
e <[, =
where .
b1,1
- [Re{F})
F= {Im {F}} , F = bm,k (3.35)
bir i)

Since F € RZEMx(n+1E collects a number of rows equal to the available frequencies and
parameters samples and usually 2KM > (7 + 1)/, a QR-factorization is suggested to
both changes the unknown variable and to reduces the optimization problem dimension.
We can see that, using F = QU with QTQ =1, the cost function can be written as

£ = || w3 = [|yll5 - (3.36)

This procedure implies to change accordingly the constraint definition, by applying the
following transformation to the condition matrix

A -1
Ap. =AW (3.37)
so that the resulting constrained minimization problem at each u iteration reads

min |yll5 st Ay y> & (3.38)
54

Final Stability Enforcement on Denominator

with
x=U"ly. (3.39)

This represents a convex problem with a direct solution. Nevertheless, the first order
approximation may require that this optimization has to be repeated until all the passiv-
ity violations are removed, and so until the denominator sub-model is guaranteed to be
passive (and so Positive Real).

The Algorithm 3.1 shows the entire process in a pseudocode form: a maximum number
of passivity enforcement iterations § is imposed to extract a final model with a restricted
number of perturbations. Indeed, with the continuation of the final enforcement on the
denominator sub-model, the accuracy of the fitting process is reduced, as we are going to
detail in the numerical examples.

Algorithm 3.1 Final Stability Enforcement (PR) Algorithm

Require: raw data fI(jw,)
Require: frequency basis ¢, forn=1,...,7;
Require: parameter basis & for £ =1, ..., ;
Require: non-positive real denominator D(s,?) coefficients 7, ¢;
Require: maximum number of iterations §
1: Set pu=0
2: Get current denominator passivity violations vector W* as in Section 3.1.1
3: while W* is not empty or p < § do
4: build complete data set Z¥* = F U WH

5. build constraint matrix Ap, (3.20) for each element in Z#

6: build vector w* as Re {D(s,?)} for each element in Z#

7: build vector & in (3.30)

8 build matrix F in (3.35)

9: build matrix ® in (3.36)

10: build reduced constraint matrix A, in (3.37)

11: solve convex optimization problem (3.38)

12: evaluate denominator coefficients perturbation Ar,, ; using (3.39)
13: update D(s, 9) coefficients as r,, ¢ <= 1 ¢ + Arp g

14: pw—pu+1

15: get passivity violations WH* of the perturbed denominator model

16: end while R
17: return PR denominator D(s, 1)) and number of iterations

After the denominator is guaranteed Positive Real, the numerator model coefficients
are re-optimized, by considering the new (perturbed) denominator which is guaranteed
passive. In this case, we adopt a standard procedure that computes, through a simple
linear least-squares system, the numerator coefficients by ’removing’ the denominator
contribution from the equation. We can define

v

$C~H (3.40)
55

Final Stability Enforcement on Denominator

where C is the numerator coefficients vector (3.14) and @ is a matrix defined from (3.11)

as
P

D(sk, Um)
By evaluating the denominator model, the ordering of (sg,9;,,) must be chosen to accord
the one selected for ® and C.

In order to ensure real-valued numerator coefficients, a standard re-arranging of the above
least-squares matrices by splitting their real and complex contributions is required.

P = k=1,..K;m=1,... M. (3.41)

We recall that this strategy is an extension of a standard passivity enforcement pro-
cedure [16] and that its implementation to a multivariate case is straightforward.

The above procedure was not implemented also in a basic PSK-scheme due to the
significant time required for the model extraction.

3.3.1 Numerical Results

In this section, we provide numerical results that demonstrate the effectiveness of the
above final stability enforcement. We refer to Appendix A for the description of the
structures under investigation.

Case 2

We now apply the final stability enforcement to the same test case of Sec. 3.2.1. In this
example, we do not provide any comparison with the PSK-scheme, which was not imple-
mented also with this final passivity enforcement.

An FPSK extraction provides a resulting model which is now guaranteed stable, as Fig-
ure 3.4 demonstrates, with an overall elapsed time for the model extraction of 18.1 sec-
onds. Only two final passivity enforcement iterations are necessary, in this case, to obtain
a still acceptable result, which actually shows a slightly degraded fitting accuracy with
respect to the non-stable model. Nevertheless, this is the only approach that leads to a
stable final model. The maximum absolute and relative errors are reported in Table 3.3.

Validation Fitting
abs rel abs rel
FPSK 8.61e-03 | 1.31e-02 | 7.47e-03 | 1.75e-02
FPSK
with PR 1.01e-02 | 1.54e-02 | 1.16e-02 | 1.77¢-02
PSK
with PR 1.01e-02 | 1.54e-02 | 1.16e-02 | 1.76¢e-02

Table 3.3: Maximum absolute and relative errors on validation and fitting points, com-
puted over all the parameter values and port responses, for Case 2 macromodel.

56

Final Stability Enforcement on Denominator

S$(1,1) Magnitude $(1,1) Magnitude

10° 100 10° 100
Fequency (Hz) Fequency (Hz)

S(1,1) Phase $(1,1) Phase

10° 100 10° 100
Fequency (Hz) Fequency (Hz)

=200

10° 10° 100 108 00
Frequency [Hz] Frequency [Hz]

Figure 3.4: Validation of selected parameterized macromodel for Case 2.

Left Panels, standard FPSK: (unstable) model responses and (bottom) real part of the
model denominator, computed over a fine sweep of the parameter value.

Right Panels, FPSK with PR enforcement: (stable) model responses after to two iter-
ations of final stability enforcement and (bottom) real part of the model denominator.
Since Re {D(jw,)} > 0, it is guaranteed that the model poles are stable over 9 € ©.

57

Final Stability Enforcement on Denominator

Case 3

We now investigate a critical case that presents a non-convergent final passivity enforce-
ment on the denominator. Nevertheless, we specify that this issue is not directly related
to the proposed procedure, which effectiveness is demonstrated above all the other test
cases used (and documented in Appendix A). Indeed, this specific case presents a re-
cursive trend of the perturbed denominator during the final enforcement iterations: the
algorithm as proposed above is not sufficient to guarantee a convergent solution in such
conditions. Next section will present an optimization of the procedure that is focused on
this subject.

Moreover, we document a system which requires all the available points in the pa-
rameter space during the fitting procedure, to obtain an acceptable result in terms of
final model accuracy: this case indicates, in general, a critical condition for any fitting
process.

The above statement holds also for the standard model generation strategy (FPSK),
which requires 1.08 seconds to extract an unstable but sufficiently accurate model.
Nevertheless, after 20 iterations of the final stability enforcement, we are not still able to
perturb sufficiently the denominator: the resulting model by interrupting the procedure
is still not guaranteed stable. The entire extraction requires 61.86 seconds and produces
the unstable model poles of Figure 3.5(top).

By proceeding with the final passivity enforcement on the denominator we discovered
an increasing degradation of model accuracy: for this reason, we imposed a maximum
number of iterations. Figure 3.5(bottom) compares the result from a standard model
generation and from the constrained extraction stopped at the 20-th iteration. As it can
be seen, the perturbed model is no more accurate for high frequencies.

From this example, it is clear that a convergent solution is not guaranteed in general.
An advance improvement of the enforcement is the subject of next section.

58

Final Stability Enforcement on Denominator

x10° Unstable model poles
10+ .
g
R
N A A -,
5r
o‘.4 o.‘s o.‘s 1‘ 112 1‘.4 1.‘6 1.‘3
Im(p)/27 [Hz] %1010
o S(1,1) Real ‘
%,
0N
\.éffoﬁ‘\‘\\i\\ 4 }“2\“\ ‘
0 “*‘«‘s\}‘\“:{é" \‘g,\

0.051
—S(1,1) data
-0.1 = = +5(1,1) model
0.15 :
0 2 4 6 8 10
Fequency (Hz) «10°
S(1,1) Ima
0.1 S(,1)Imag
——S(1,1) data
0.05 F = = 'S(1,1) model

\\\\\}:{///’\;s;‘ - ,,4’)/ X
X \3\32’ ‘é“ ",!

V
5
“‘

0.05

-0.1

Fequency (Hz) x10°

%10° Unstable model poles

0 05 1 15 2
Im(p)/2m [Hz] %1010

S(1,1) Real

0.1

0.051

005¢ ——S(1,1) data
= = +5(1,1) model
-0.1
0.15 , , , ,
0 2 4 6 8 10
Fequency (Hz) «10°
S(1,1) Ima
0.1 S(1,1) Imag_

—S(1,1) data
= = +§(1,1) model

Fequency (Hz) «10°

Figure 3.5: Validation of selected parameterized macromodel for Case 3. Left Panels,
standard FPSK: (top) unstable parameterized model poles, computed over a fine sweep
of the parameter value; (bottom) validation of the model responses. Right Panels, FPSK
with denominator passivity enforcement, stopped at the 20-th iteration: (top) model poles
still unstable; (bottom) validation of the model responses, which shows a degradation of

model accuracy.

59

Robust Enforcement Implementation

3.4 Robust Enforcement Implementation

The final passivity enforcement on the denominator sub-model enables to realize a positive-
real system: nevertheless, sometimes many iterations are necessary in order to achieve
this result and a convergent solution is not always guaranteed. To improve the algorithm
we realized a 'robust’ version of this enforcement, which is able to restrict the feasibility
set of the optimization problem and provides an accurate final model.
Indeed, by using a ’'predictive’ approach for the passivity violation regions search, we
are able to increase the number of the algorithm constraints during each iteration of the
passivity enforcement. This procedure enables a better approximation of the feasibility
region and ensures a convergent solution of the optimization problem.

The final passivity enforcement robust implementation is mainly composed of two
nested loops.
An inner loop realizes the 'predictive’ part of this algorithm through i iterations. Indeed,
exactly the same passivity enforcement of Section 3.3 is performed, by changing the
notations as follows

e the denominator model is defined as D(s, 9)

e the perturbed coefficients of (3.24) are denoted as Ag(f)g
e the data-sets of the i-th iteration are built as Z; = FUW,.

The inner loop variables are initialized as
DO(s,9) =D(s,9), Wy =W, (3.42)

where D(s,9) and W* are the denominator model and the sampled-data set from the
external loop, respectively.

The innovative improvement provided by this internal procedure is that the passivity
violations regions of the inner perturbed model are stacked, at the end of each i-th
iteration, in an extended data-set denoted as W, .

The ’predictive’ loop ends when either the internal perturbed model D(s,) is passive
or the maximum number of iterations « is reached. We recall that the internal model
D(s,1) does not preserve any memory of the inner loop iterations and it is not affected
by the extended data-set Wey .

At the end of the ’predictive’ iterations, the new (extended) sampled data-set is passed
to the external loop, which builds the constraints of (3.29) from

ZF = We UF. (3.43)

This procedure results in a 'restricted’ feasibility set of the optimization problem (3.38)
that leads to a completely different solution in terms of denominator coefficients pertur-
bations, which are denoted now as A7, o. The resulting perturbed model D(s, 1) and the
data-set W*#, which is obtained from the local minima search at the end of each iteration
of the external loop, are passed to the next u iteration and, consequently, as inputs of
the inner loop.

60

Robust Enforcement Implementation

Algorithm 3.2 Robust Final Stability Enforcement (PR) Algorithm

Require: raw data ﬂ(jw,)

Require: frequency basis ¢, forn=1,...,7;
Require: parameter basis & for £ =1, ..., ;
Require: non-positive real denominator D(s,) coefficients 7, ¢;
Require: maximum number of final iterations

Require: maximum number of predictive iterations ~y

1: Set pu=0

2: Get current model passivity violations vector W as in Section 3.1.1

3: while W" is not empty or ; < § do

4: Set DO (s,9) = D(s,9) and Wy = WH

5: Set i =1 and W,y as empty

6: while i <y do

7: Get perturbation coeflicients AES,)e as in Algorithm 3.1, given Z;, = W; U F
8: Update D@ (s,9) coefficients as L(fjl) — zﬁf’)e + AL(;@ to get the perturbed

intermediate model DU (s, 9)

9: Get DU+ (s, 49) passivity violations Wiy as in Section 3.1.1
10: if Wi41 is not empty then
11: Stack passivity violations vector Wiy 1 in Wey = W1, WZTH]T
12: else
13: break
14: end if
15: 1 1+1

16: end while

17: Get perturbation coefficients A7, ; as in Algorithm 3.1 with the extended set of
passivity violations Wy, , such that Z# = W, UF

18: Update D(s,9) coefficients as Ty, s < Tpp + ATy 0

19: n<— pu+ 1

20: Get passivity violations W* of the perturbed model

21: end while

22: return PR denominator D(s,?) and number of iterations u

The procedure is repeated until the solution of the optimization problem converges or
the maximum number of external iterations J is reached.
Algorithm 3.2 shows the entire process in a pseudocode form.

The above procedure presents several drawbacks.

First, the positive real assumption is an only sufficient condition to the macromodel sta-
bility: even if the resulting model from a standard identification does not reveal any
unstable pole, if its denominator is not PR the above enforced fitting procedure is re-
quired, also if (theoretically) this would be not necessary.

Unfortunately, at the present day, a uniform stability enforcement on the parameter space
© which is able to overtake this issue does not exist and the only way to reveal the model
unstable poles is to perform a brute force sampling through the parameter domain. The

61

Robust Enforcement Implementation

PR strategy remains, for this reason, the only way to uniformly guarantee the stability
of a parameterized macromodel.

Moreover, the practical implementation of this strategy reveals a remarkable depen-
dency on the number of parameters raw data points, in order to obtain an accurate
resulting model. Furthermore, the parameter-dependent basis order chosen, together
with the fitting points selected to the generation procedure, strongly affects the final
result precision.

3.4.1 Numerical Results

In this section, we provide some numerical results that document the effectiveness of
the above final stability enforcement. Nevertheless, all the examples reported in Chap-
ter 7 will use this robust implementation as a standard for the stability enforcement and
provides accurate results. The following cases are selected to stress the main aspect of
the proposed algorithm. We refer to Test Cases of Appendix A for the structures under
investigation.

Case 2

We now provide the numerical results from the same test case of Sec. 3.3.1, which is
now passed to a 'predictive’ final passivity enforcement. Table 3.4 demonstrates that the
proposed robust implementation provides even better results in terms of model accuracy,
while the overall time required for the model extraction remains invariant imposing only
one 'predictive’ iteration +.

Validation Fitting
abs ‘ rel ‘ abs ‘ rel
FPSK | 8.61e-03 | 1.31e-02 | 7.47e-03 | 1.75e-02
FPSK
with PR 1.01e-02 | 1.54e-02 | 1.16e-02 | 1.77e-02
FPSK

with Predictive PR 1.01e-02 | 1.54e-02 | 1.16e-02 | 1.76e-02

Table 3.4: Maximum absolute and relative errors on validation and fitting points, com-
puted over all the parameter values and port responses, for Case 2 macromodel.

Case 3

We now investigate the same critical case of Sec. 3.3.1, which highlights a recursive per-
turbed denominator trend during the final passivity enforcement. Due to the advanced
improvement provided above, a convergent solution is now reached.

By imposing a maximum number of predictive iterations v = 3, the fitting algorithm
requires only one denominator perturbation () and succeeds obtaining a positive real
admittance sub-model. The entire extraction requires only 38.6 seconds to succeed and
provides a result with the same accuracy obtained without the robust implementation.

62

Robust Enforcement Implementation

Indeed, Figure 3.6 compares the validation responses from the unstable model obtained
after 20 passivity enforcement iterations on the denominator and the resulting model
extracted with the robust strategy.

Around the same loss of accuracy is detected, which proves the efficacy of the "prediction’
iterations: it is shown that the robust implementation does not corrupt the model extrac-
tion. Moreover, we recall that the degradation of model accuracy is directly related to the
restricted data-set, barely sufficient to provide a result. However, even if in this specific
case the proposed approach does not completely solve the problem related to the fitting
precision, which is affected by the problem itself (raw data available, basis functions order
chosen and other secondary causes), the reduced number of final passivity enforcement
iterations p provides a general speed-up of the method. In particular, we support the
above statements providing the maximum relative error for all the ports and parameters
values as

e .. = 5.53-1072 for a basic FPSK procedure;
o .o =2.10-107! for the FPSK-scheme with a standard final passivity enforcement;

o e, = 2.69 107" for the FPSK with a robust implementation of the passivity
enforcement.

Nevertheless, this is the only procedure available to guarantee a stable model extrac-
tion, as demonstrated in Fig. 3.6 (bottom): since Re {D(jw,)} > 0, it is guaranteed that
the model poles are stable over ¥ € ©.

Moreover, we refer to the Test Cases of Appendix A where the effectiveness of the
proposed guaranteed stable model extraction is proved, proving the maximum relative
errors for all the examples used.

63

Robust Enforcement Implementation

0.1

0.051

0.05

-0.1

Real(D)

S(1,1) Real

% g\
(XXX
XA
S

XX

/X XR
Py

L

N

Fequency (Hz)

$(1,1) Imag

—8(1,1) data
- = -S(1,1) model

' \/ AR5, 27
\\\\‘%}* 7Y
Qe “)’ ,

() IR
AT
‘\\‘lll

10° 10"
Frequency [Hz]

0.1

0.05

0.05

-0.1

0.15

0.1

0.05

0.05

S(1,1) Real

% '\‘\\:2;2\3
QK

«'\\.,’,'\\

g

Fequency (Hz) %10°

$(1,1) Imag

- 70%
S(1,1) model /I

4]
A
i
A
)
’

Frequency [Hz]

Figure 3.6: Validation of selected parameterized macromodel for Case 3. Left Panels,
FPSK with denominator passivity enforcement, stopped at the 20-th iteration: (unstable)
model responses and (bottom) real part of the model denominator, computed over a fine
sweep of the parameter value.

Right Panels, FPSK with robust passivity enforcement: (stable) model responses and

(bottom) real part of the model denominator.

64

Chapter 4
Equivalent circuit synthesis

Circuit solvers used in an industrial environment cannot always be interfaced with ratio-
nal function-based models: usually, they only interpret netlists made of standard com-
ponents, such as resistors, capacitors, inductors and controlled sources. Due to this
limitation, user-provided models in the form (1.34) cannot be implemented in a circuit-
level simulation, which is the main scope of our efforts. Therefore, we need to define a
synthesis procedure to convert a rational macromodel in an equivalent circuit, which can
be easily translated in a solver compatible netlist. In this context, literature offers sev-
eral alternatives to convert models from state-space or pole residue form to an equivalent
description that can be parsed by a circuit solver [19].

In the following sections, we focus on the state-space (sparse) synthesis, providing
a process that allows the realization of an equivalent circuit, starting from the rational
macromodel transfer function of (1.34). This procedure is not new [19,21], but we extend
it to all the available input-output macromodel representations (scattering, admittance
and impedance). Our work is always supported by numerical results: the function calls
necessary to produce these examples are reported at the end of this chapter.

We place a word of caution here. A truncation error may be introduced in a numerical
simulation, due to the restriction of the admissible number of digits in the definition of
each circuit components [25]. This characteristic, depending on the circuit solver, may
lead the overall system to a significant loss of passivity or stability. For this reason, it is
suggested to define the equivalent circuit elements imposing at least the same number of
significant digits available by the machine precision. In our examples, we always set an
exponential notation of 20 digits with a precision of 16 digits.

4.1 Direct state-space synthesis

In order to synthesize an equivalent macromodel circuit, a direct formulation from its
state-space description is a common procedure [3], [19]. Recalling the state-space equa-
tions

Ax(t) + Bu(t),
Cx(t) + Du(t),
65

(4.1)

—N—
< 8
==
(I

Direct state-space synthesis

Tj == 1F 'T Ajwy - 'T AjnTN T‘ Bjiuy - 1‘ Bjpup

(State equation: uy = {ig, vg, ax} for admittance, impedance, and scattering form)

i

[¢
+
Uk ‘L Crazy - »L Crny l‘ Dypvy -+ - l‘ Dy.pvp
o
(Output equation, admittance representation)
i
o + 1 + | + 1 + |
Craz1 CynTn Diivy Dypvp
U,
o
(Output equation, impedence representation)
i
[¢
+
Uk §R0 T Crzy " T Cinen T Dyay - T Dypap
o

(Output equation, scattering representation ({C, ﬁ}kj =2v/Go{C, D}y;))

Figure 4.1: Direct circuit synthesis from state-space equations. Originally depicted in [19].

we can split their individual contributions as

N P
i) = 3 Agee®) + 3" Bjm (), (4.2)
/=1 m=1

N P
k() =Y Crewe(t) + Y Dign (1) (4.3)
(=1 m=1

An equivalent circuit representation of these equations is in Figure 4.1. The top row
shows the first dynamic equation (4.2) where we assume to realize the state variable x;
as a voltage. The current that flows through the unitary capacitor corresponds to the
state derivative, which is obtained as the sum of current sources: these are controlled
by all the other states variables through the corresponding matrix elements Ajy, or by
the input signals u,, and their coefficients Bj,,. The macromodel representation changes

66

Direct state-space synthesis

the synthesis of the output equation (4.3): the last three circuits of Figure 4.1 show the
admittance, impedance and scattering representations. All of them take advantage of
controlled sources. The first two realize a KCL and KVL, respectively. Instead the last
one requires a mapping between circuit variables (i and vg) and scattering variables
(recalling that 21/Goby, = Govg, — iy, where Gy = Ry). This is realized through the shunt
resistance Ry [19].

The procedure reported above (and presented in [19]), even if completely general and
not dependent on the circuit solver, it is strongly affected by the large number of con-
trolled source, which scales as O(N2P?). As suggested in [19], we can try to exploit the
arbitrariness of the state-space realization to produce a circuit equivalent either without
controlled sources or with a minimum number of circuit components.

Both these solutions find their application field, such as noise analysis in RF and Mixed /Sig-
nal applications for the first one. Otherwise, reducing the number of circuit elements to
a minimal quantity lead to an increased efficiency of circuit solver and, in general, to
simulations speed-up.

4.1.1 Sparse synthesis

1F ==

§ 1
bj

T Bjmum

Figure 4.2: Contribution of a single real pole, for a direct circuit synthesis from state-space
equations in the diagonal (multi-SIMO) realization case. Originally depicted in [19].

+
s 1 o
1F == 7j 7; T WjiTj41 T Bjmum
+
1
1F == Tj+1 - ¢ W;T;
gj

Figure 4.3: Contribution of a complex conjugate pole pair, same realization of Fig. 4.2.
Originally depicted in [19].

67

Direct state-space synthesis

Starting from a pole-residue model form

H(s) = Hy + i Rn (4.4)
n=1

)
_ S —(4n

we can realize a state-space macromodel equivalent description using the multi-SIMO
(Single-Input Multi-Output) structure [19]. We define these systems as a number P of
independent SIMO systems, each producing all P outputs, but each driven by a single
independent input u;. Furthermore, their state-space realization in matrix form is

A = blkdiag{A,, ..., Ap}, B = bikdiag{by, ..., bp}, (4.5)
C=(Cy,...Cp), D= {dy,...dp}. (4.6)
(4.7

where
Aj = diag{pj,la "'7pj,Nj}7 bj = (1a "'71)T7 (48)
Cj = diag{rj’l, -5 T4 N }, d]’ =Tj0 (4.9)

are the state-space matrices of the single j-th column realization h;(s) for the model
transfer function H(s) [19]. This description can be real if and only if all the N; poles
{pje,l =1,...,N;} are real. Otherwise a blocks substitution of A; , b; and C; is required
to obtain a purely real single-column: this allows to eliminate the imaginary contribution
of the complex conjugate poles from the model residues r;;. The procedure is

<Uj,é + Jwie 0 ' > e < 95t WM) (4.10)
0 Oj0— Jwje ~wje Oje)’
1 2
<1> - (0) | (4.11)
(Tj}g r;‘%) — (Re {r;e} Im {’I’j’g}), (4.12)

The single-lined contribution of the block-diagonal matrix A (which is necessarily
composed by 2 x 2 blocks) corresponds to a real valued pole and it can be expressed as

(t) = Ajjx;(t) + Bjmum(t) (4.13)

for a generic m, with A;; = p; < 0 and Bj,, = 1. A complex conjugate poles pair
pj = 0j £ jw; is, instead, embedded in two consecutive rows denoted as

i‘j(t) = ijj(t) + wjxj+1(t) + Bjmum(t) (4.14)
Tjp1(t) = —wjzj(t) + ojajp(t) (4.15)

for some m, with o; < 0 and By, = 2 (see [19]). Figure 4.2 and Figure 4.3 provide a
circuit representation of (4.13) and (4.14) respectively, synthesising the diagonal entries
of the matrix A with positive resistors and using controlled sources and capacitor for the
state-space variables, following the same procedure adopted in Section 4.1.

68

An example

Observing the complete solution of Figure 4.1(top), we can easily notice the greatest
advantage of adopting a block-diagonal representation. In such case, considering the
first dynamic equation (4.2), the total number of components range from 3N to 3.5N
(assuming only real poles or only complex pair, respectively): to represent the dynamics
through the state variable x; only 3 circuit elements are required, which turn to 7 if we
consider two states associated through a complex pole pair. On the other hand, using
a full realization we can see that the number of components increases to N2 + N (P +
1), where P + N + 1 elements are necessary only for the j-th state z;. The second
(output) state-space dynamics equation usually remains the same: the three bottom
representations of Figure 4.1 still hold, as well as (4.3). This is due to the fact that the
residue matrices are normally full. In conclusion, the total number of circuit elements
scales linearly with the definitions of the states, as O(N P?), for a sparse synthesis: this
relation is instead quadratic in the complete case, with O(N2P?).

4.2 An example

We now consider a two port capacitor (we refer to Case 2 of Appendix A with sidelength
fixed at 609.6 um) with known reference scattering responses (k = 191 frequency samples).
This dataset was processed by proposed algorithm in order to obtain a stable and passive
model with a corresponding SPICE netlist.

A good validation of the final model vs raw data is obtained using n = 4 poles for
numerator and denominator sub-models, imposing a relaxed normalization.

In these sections we are going to focus our attention on the admittance SPICE syn-
thesis, providing numerical results. At first we will introduce a scalar case, using the
denominator model sub-block previously presented. Then we will explore a multiport
case, and in particular we will present a 2 x 2 port model using the numerator model
sub-block as example.

4.2.1 Scalar Case

The state-space representation of the model denominator sub-block is the following

g O 0 0 1

o @ o o R
Ap = 0 0 o5 ws Bp = 9| (4.16)

0 0 —W3 03 0
Cp=(r 712 73 14) Dp = (ro) (4.17)

where r,, are the gsk model coefficients of r (1.34).

The diagonal terms of Dp are realized as resistances in order to reduce the number
of controlled sources inside the circuit. This results in a faster simulation. Moreover,
this allows avoiding the critical case of having a netlist that could lead, in particular
conditions, to a circuit configuration that does not present a DC path to ground.

We used a capacitance value Cap = 1-107'2. This optimal value is close to the inverse

69

An example

iD ay
o
+
Rp1 Gen Gerz Geus G
Up § 1 /7”0 Vo l, T2VC2 l, T3Vc3 l, T4VC 4
o
re
! Main circuit connected to output nodes
- +)
Csi Rs: Gsi Csa Ry Gsa
ve,1 == Clap g_i 'T vp V2 == Cap g_i 'T Up
q1 q2
Real Pole n.1 Real Pole n.2
- V +
Css Rs3 G Gs31 Cs4 Rsy Gr4
v == Cap 1 T W3ve4 T 2-vp Vou == Clap _ 1 l, wW3ve3
03 g3

Complex pair n. 3/4

Figure 4.4: Synthesis of admittance block of the model denominator (netlist elements
titled in red).

of the eigenvalues of the matrix Ap. We only used the real part of the eigenvalues, by
taking the average.

We realized a circuit synthesis imposing:

e a common reference node for all the ports;
e a standard resistor in the interface circuit.

The synthesis results in a SPICE netlist of the sub-circuit reported in the Figure 4.4.
We can see the resulting netlist in the following script™*!

K ok ok Kk ok Kk ok Kk Sk Kk ok KK ok Kk K Kk ok KOk K Kk ok KOk ok Ok K Ok K

x SPICE subcircuit REALIZATION *

x This file is automatically generated =

K ok ok Kk ok Kk ok K K Sk Kk Sk Kk oK Kk Sk Kk ok KK Sk KK ok KOk ok Ok K Rk K

x Created: 22—Dec—2017 by SS2Cir

K ok ok Kk ok Kk ok K K Sk Kk Sk Kk oK Kk Sk Kk ok KK Sk KK ok KOk ok Ok K Rk K

K ok ok Kk K kK KKK KK KK R KK KK KK KK R KK R KK R K R K K R R K R K K Rk Kok

!The note inserted inside the script as [Text] are not in a LTSpice compatible form: it should be
removed to run the netlist.

70

An example

*+ NOTE:
* a_i —> input node associated to the port i
* ref —> reference node, common for all input ports

3k 3k sk >k sk sk sk skosk sk sk >k skosk sk sk ok sk sk sk sk >k sk sk sk sk sk sk Sk >k sk sk sk sk R sk sk sk sk R sk sk sk sk sk sk sk ok sk sk ok sk ok
3k 3k sk >k sk sk sk sk >k sk sk sk sk ok skosk sk kR skosk sk sk >k skosk sk sk ok skosk ok sk kok

x Interface (ports specification) x

3k 3k sk K sk sk sk sk ok skosk sk sk R skosk sk sk R sksk sk sk >k skosk sk sk R sk sk ok sk ok ok

.subckt GSKmodel_den

+ a_l ref

Sk 3k sk K sk sk sk sk R skosk sk sk R skosk sk sk R sksk sk sk >k skosk sk sk R sk sk ok sk kok

3k 3k sk >k sk sk sk sk ok skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sksk sk sk R sk sk sk sk ok sk skok sk ok

* Main circuit connected to output nodes x

3k 3k sk >k sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk R skosk sk sk ok sk skok sk ok

* Port 1

GC_.1.1 a_1 ref NS_.1 0 2.6885991089072886e—01 [rlxvcl]
GC.1.2 a_1 ref NS 2 0 3.5761354482931279e—01 [r2%vc2]
GC_.1.3 a_1 ref NS.3 0 9.2165830598959761e+00 [r3%vc3]
GC.1.4 a_1 ref NS4 0 6.7301898754212051e+00 [rd*vcd]
RD_1.1 a_1 ref 3.6227104848874092e¢—02 [1/10]

*

3k 3k sk 3k sk sk sk sk ok sk sk sk sk sk sk sk sk sksk sk sk sk sksk sk sk >k sk sk sk sk R skosk sk sk ok sk skok sk ok
Sk 3k sk >k sk sk sk sk ok skosk sk kR sk sk sk sk ok skosk sk sk ok sk sk sk sk >k sk sk sk sk ks sk ok sk ok

* Synthesis of real and complex poles x

Sk 3k sk >k sk sk sk skok skosk sk sk >k sk sk sk sk R sk sk sk sk >k sk sk sk sk ok sk sk sk sk ok sk sk ok sk ok

* Real pole n. 1

CS_1 NS_.1 0 9.9999999999999998e—13 [Cap]
RS_.1 NS_.1 0 1.0072196180861735e+03 [—1/ql]
GS_1.1 0 NS_1 a_1 ref 1.0000000000000000e+00 [vd]
*

* Real pole n. 2

CS_2 NS_2 0 9.9999999999999998e—13 [Cap]
RS2 NS2 0 1.9664657708131415e+01 [—1/q2]
GS_2.1 0 NS_2 a_1 ref 1.0000000000000000e+00 [vd]
*

x Complex pair n. 3/4

CS_3 NS_.3 0 9.9999999999999998e—13 [Cap
CS_4 NS4 0 9.9999999999999998e—13 [Cap
RS_.3 NS.3 0 2.7138694198861572e+01 [—1/sigma3

GL.3 0 NS.3 NS4 0 3.8108614844969030e—01 [w3xvc4
GL4 0 NS4 NS3 0 —3.8108614844969030e—01 [w3xvc3
GS_-3.1 0 NS.3 a_1 ref 2.0000000000000000e+00 [2x*vd

*

]
]
]
RS.4 NS4 0 2.7138694198861572e+01 [—1/sigmad]
]
]
]

sk sk sk >k o>k skoskosk sk sk sk sk sk sk sk sk skoske sk sk sk sk sk sk sk k sk sk ok ok
.ends

sk 3k >k >k skosk sk sk sk sk sk sk sk sk ok ok sk sk ok

* End of subcircuit

sk 3k >k >k skosk sk sk sk sk sk sk sk sk ok ok sk sk ok

71

ref

An example

4.2.2 Multiport Case

[{DM (7[712 (’('M G('LZ G('U (’('ll ("('l'x (7‘('11) (7('17 (7'(‘1»
UN, 1/, 701, UNy rvc,a r12Vc2 T13vC,3 T14VC4 T15UC,5 T16VC,6 [k leng [AEL/eA]
o

Main circuit connected to output nodes : Port 1

Gl).’l [“DZZ (?(’21 ("(22 (;(’23 (;(724
UN, 702, UM, 1/70,, r21vc,1 T22VC2 T230C,3 T24VC4

Geos G Goor Geas
T25UC,5 T26VC,6 Torvct TasUCs

Main circuit connected to output nodes: Port 2

Figure 4.5: Synthesis of interface circuit of admittance block of the model numerator
(netlist elements titled in red).

The state-space representation of the model numerator sub-block is the following

_(Ap O _(Bp O
N b (%0 s

r r r r r r r r T T
CN _ 11 12 13 14 15 16 17 18 DN —_ 011 012 (419)
21 T22 T23 T24 T25 T26 T27 728 7021 702

where 7, ,, are the gsk model coefficients, elements of the matrix R,, (1.34). Ap and Bp
are the matrices of the denominator state-space representation reported in sub-section
4.16. As it can be noticed, the two sub-blocks share the same poles.

We recall to the scalar example, of Section 4.16, for the capacitance value (Cap) choice.
The circuit is realized imposing a common node for all the ports and a standard resistor,
as in the scalar case.

The result is a SPICE netlist of the sub-circuit reported in Figure 4.5. The sub-circuits
related to the poles are the same in Figure 4.4 but are repeated twice with increasing
enumeration.

We can see the resulting netlist in the following script*?

3k 3k sk >k sk sk sk sk >k sk sk sk sk 3k sk sk sk sk ok sk sk sk sk ok sk Sk sk sk sk sk sk >k sk sk ko sk ok sk kok
x SPICE subcircuit REALIZATION *
* This file is automatically generated x
3k 3k 3k >k sk sk sk sk >k sk sk sk sk 3k sk sk >k sk >k sk sk sk sk R sk Sk sk skk sk sk >k sk sk ko sk ok sk kok
* Created: 22—Dec—2017 by SS2Cir

>k 3k 3k >k 3kosk >k sk ok ok ok skok ok sk >k skok ok sk skok sk sk sk ok skok ok sk skok ok ko ok skok ok

>k 3k 3k ok 3k >k sk sk ok sk 3k ok sk sk sk ok sk sk ok skok ok skosk ok sk sk sk ok skok ok skok ok skook sk sk sk sk sk skok ok sk ok skook ok ok

2The note inserted inside the script as [Text] are not in a LTSpice compatible form: it should be
removed to run the netlist.

72

An example

*+ NOTE:
* a_i —> input node associated to the port i
* ref —> reference node, common for all input ports

>k ok ok ok ok ok sk sk ok sk sk ok sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok

Sk 3k sk >k sk sk sk sk ok skosk sk sk 3k skosk sk sk ok skosk sk sk >k skosk sk sk ok sk sk ok sk kok
x Interface (ports specification) x
3k 3k sk K sk sk sk sk R skosk sk sk R skosk sk sk R sksk sk sk >k skosk sk sk R sk sk ok sk ok osk
.subckt GSKmodel num

+ a_.1l a_2 ref

>k ok ok ok ok ok sk ok ok sk sk sk ok ok sk sk sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok

3k 3k sk >k sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk R skosk sk sk ok sk skok sk ok
* Main circuit connected to output nodes x
3k 3k sk >k sk sk sk sk ok sk sk sk sk >k sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk R sk sk sk sk ok sk skok sk ok

* Port 1

GC_.1.1 a_1 ref NS_.1 0 2.7854871326954328e—01 [rllxvcl]
GC_.1.2 a_1 ref NS2 0 —5.1007306117455775e—01[r12%vc2]
GC_.1.3 a_1 ref NS3 0 —1.5357730431454714e—01[r13%vc3]
GC.1.4 a_1 ref NS4 0 1.8314313421266970e—01 [rldxvcd]
GC_.1.5 a_1 ref NS5 0 —9.4560420360589124e¢—03[r15%vchH]
GC.1.6 a_1 ref NS6 0 9.4023597990761154e—01 [r16%vc6]
GC_1.7 a_1 ref NS.7 0 1.1903241250691611e+01 [rl17%vc7]
GC_.1.8 a_1 ref NS 8 0 —1.5517141696119687e+00[r18x*vc8]
RD_1.1 a_1 ref 1.8434241986958996e—01 [1/r011]
GD_1.2 a_1 ref a_2 ref —2.2838620218933343e+401[r012xvd2]
*

* Port 2

GC2.1 a_2 ref NS.1 0 —9.4560420360589124e¢—03[r21%vcl]
GC22 a_2 ref NS_2 0 9.4023597990761154e—01 [r22%vc2]
GC2.3 a_2 ref NS.3 0 1.1903241250691611e+01 [r23%vc3]
GC24 a2 ref NS4 0 —1.5517141696119687e+00[r24*vc4]
GC2.5 a_2 ref NS5 0 2.7917891062289341e—01 [r25%vchH]
GC26 a2 ref NS6 0 —5.7478999133408770e—01[r26%vc6]
GC2.7 a_2 ref NS.7 0 —9.7553525941326047e—01[r27*vc7]
GC2.8 a_2 ref NS.8 0 3.0089649221146092e—01 [r28%vc8]
GD_2.1 a_2 ref a_l ref —2.2838620218933343e+01 [r021xvdl]
RD_2.2 a_2 ref 1.4171794507218172e—01 [1/1r022]

*

>k ok ok ok ok ok sk sk ok ok sk sk ok sk ok

3k 3k sk >k sk sk sk sk >k skosk sk sk sk skosk sk sk >k sk sk sk sk >k sk sk sk sk sk sk sk >k sk sk ok sk ok sk kok
* Synthesis of real and complex poles x
Sk 3k sk >k sk sk sk sk ok skosk sk sk >k sk sk sk sk ok sk sk sk sk ok sk sk sk sk >k sk sk sk sk ok ok sk ok sk ok

* Real pole n. 1

CS_1 NS_.1 0 9.9999999999999998e—13

RS_1 NS_.1 0 1.0072196180861735e+03

GS_1.1 0 NS_.1 a_1 ref 1.0000000000000000e+00

73

An example

*

* Real pole n. 2

CS_2 NS_2 0 9.9999999999999998e—13

RS2 NS2 0 1.9664657708131386e+01

GS_2.1 0 NS.2 a_1 ref 1.0000000000000000e+00
*

x Complex pair n. 3/4

CS_3 NS_.3 0 9.9999999999999998e—13

CS_4 NS4 0 9.9999999999999998e—13

RS.3 NS3 0 2.7138694198861572e+01

RS 4 NS4 0 2.7138694198861572e+01

GL.3 0 NS.3 NS4 0 3.8108614844969030e—01
GL4 0 NS4 NS3 0 —3.8108614844969030e—01
GS_3.1 0 NS.3 a_1 ref 2.0000000000000000e+00
*

* Real pole n. 5

CS_5 NS5 0 9.9999999999999998e—13

RS.5 NS5 0 1.0072196180861735e+03

GS_5.2 0 NS5 a_2 ref 1.0000000000000000e+00
*

* Real pole n. 6

CS_6 NS6 0 9.9999999999999998e—13

RS6 NS6 0 1.9664657708131386e+01

GS_6.2 0 NS6 a_2 ref 1.0000000000000000e+00
*

x Complex pair n. 7/8

CS_7 NS_7 0 9.9999999999999998e—13

CS_8 NS_8 0 9.9999999999999998e—13

RS_7 NS.7 0 2.7138694198861572e+01

RS.8 NS 8 0 2.7138694198861572e+01

GL_.7 0 NS_.7 NS.8 0 3.8108614844969030e—01
GL_8 0 NS.8 NS.7 0 —3.8108614844969030e—01
GS_7_2 0 NS_.7 a_2 ref 2.0000000000000000e+00
*

3k 3k sk >k sk skosk sk ok skosk sk sk sk skk sk sk sk sk ok skosk sk sk ok sk sk ok sk

.ends

>k 3k 3k 3k sk sk >k sk sk sk koK sk ok sk ok sk ok

* FEnd of subcircuit

>k 3k 3k 3k sk sk >k sk sk sk koK sk ok sk ok sk ok

74

GSK Model Synthesis

4.3 GSK Model Synthesis

We now consider the problem of synthesizing a standard (non-parameterized) GSK model
as in (1.34) into a SPICE netlist, following and adapting the procedure of [21]. To
avoid numerical issues with circuit solver simulations, we follow a strategy based on
the conservation of the smooth parameterization of model coefficients, decomposing the
model into separate interconnected blocks. The numerator and denominator model can
be denoted as follow.

1. The denominator submodel is defined as a one-port admittance Yp(s) = D(s), with
auxiliary (dummy) port voltage and current vp and ip, respectively. We have

ip=Yp(s)vp and wvp=Yp5'(s)ip. (4.20)

The impedance Zp(s) = Y}, '(s) = D~!(s) is guaranteed (uniformly) stable, due to
the PR enforcement embedded in the fitting algorithm (see Chapter 3). Moreover,
we create P instances denominator, repeated identical and independent one for each
other [See Fig. 4.6(b)]. The port voltages vp j and currents ipy, for k =1,..., P,
are gathered in vectors vp,ip € CP. The result can be interpreted as

ip = D(S) Vp, Vp = Dil(s) ip, (4.21)

where D(s) = diag{D(s)}.
This procedure corresponds to the synthesis reported in Section 4.2.1, for a scalar

case.

2. The numerator sub-model is defined as a P-port admittance matrix Y y(s) = N(s),
with auxiliary (dummy) port voltage and current vectors vy, iy € CP. We can set

’iN = N(S) UN, (4.22)

realized as in Fig. 4.6(a). This corresponds to the synthesis of the multiport case
reported in Section 4.2.2.

3. The GSK model representation characterizes the synthesis of the last block, but the
three cases present a common structure. Indeed we can write

y=H(s)u = N(s)-D'(s) - u. (4.23)

where u,y € CP are the input and output vectors, that depend by the chosen repre-
sentation (scattering, admittance and impedance). The interconnection procedure
between blocks is also common for the three forms, by setting

e vy = u, so that the current vector at the output of the numerator block reads
ip = N(s)u. See Fig. 4.6(a), (scattering) and Fig. 4.7(a) (admittance and
impedance);

e ip =1y, so that vp = H(s) u. See elements (b) of Fig. 4.6 and Fig. 4.7;

e y =vp, so that y = H(s) u. See Fig. 4.6(c), for scattering, and Fig. 4.7(c)(d),
for admittance and impedance.

75

GSK Model Synthesis

Ry -ip

@ iN,P
+
UN,P

| +

Ry - iy : 4 Yy

| +

U1 UN21

ik

Dk

+ 0

. UD,K
INk UD.k Y Vg §RO T R
0

(b) (©)

Figure 4.6: SPICE realization of (a) numerator sub-model; (b) denominator sub-model
(k-th out of P instances); and (c) external interface of the GSK model (k-th out of P
ports, scattering representation, realized in Norton form).

3.1. The model H(s) is here assumed to be in scattering representation. Therefore,
the terms of equation (4.23) become,

y=>b and wu=a, (4.24)

where a,b € C* are the (voltage-normalized) incident and reflected scattering
wave vectors, with components

ap = (Uk + Roik), (4.25)
br, = (v — Roig), (4.26)

and where Ry is the port reference impedance. Interconnection of the various
blocks is realized, as showed in Fig. 4.6 and detailed in the (general) procedure
of point 3, by using
e a pair of controlled voltage sources to synthesize each incident wave ag, as
in the equation (4.25) (see Fig. 4.6(a));
e a set of current controlled current sources, as in Fig. 4.6(b);

e a current source, in parallel to the reference resistor Ry to realize the output
equation (4.26) in Norton form for each model port(see Fig. 4.6(c)).

76

GSK Model Synthesis

@ IN,P
o

+ .
Lk
UN,P > O
+
up + ; Yu Uk UD,k
— IN,1)
+ _
(151 UN21 o———
o ()

(a) i
i[& k +
+
. Vg + UD,k
IN K UD,k Y pi V’
29 o— |

Figure 4.7: SPICE realization of (a) numerator sub-model in admittance and impedance
form (ux = {vk;ix}); (b) denominator sub-model (k-th out of P instances, common to
the two representations); and external interface of the GSK model (k-th out of P ports)
in (c) admittance or in (d) impedance form.

3.2.

3.3.

The model H(s) is here assumed to be in admittance representation. Therefore,
the terms of equation (4.23) become,

y=1¢ and u=w, (4.27)
where i,v € CF are the input current and voltage vectors. Figure 4.7 shows

interconnection of the blocks, following the steps detailed in point 3, by using

e a set of voltage controlled voltage sources (see Fig. 4.7(a), imposing uy =
Ug);

e a set of current controlled current source, as in Fig. 4.7(b);

e aset of voltage controlled current source, so that ¢ = H(s)v (See Fig. 4.7(c)).

The model H(s) is here assumed to be in impedance representation. Therefore,
the terms of equation (4.23) become,

y=v and u=4, (4.28)

where i,v € CP are the same input current and voltage vectors of the admit-
tance form. In this case, Fig. 4.7 shows interconnection of the blocks, again
following the (general) procedure of point 3, by using

7

GSK Model Synthesis

e a set of current controlled voltage sources (see Fig. 4.7(a), imposing uj =
i)

e a set of current controlled current source, as in Fig. 4.7(b);

e aset of voltage controlled voltage source, so that v = H(s)¢ (See Fig. 4.7(d)).

4.3.1 An example

Now we synthesize the example reported in Section 4.2, imposing a scattering represen-
tation. To this end we realize a wrapper circuit between the denominator and numerator
admittance sub-blocks, previously presented as scalar (Section 4.2.1) and multiport ex-
ample (Section 4.2.2).

The equivalent circuit is the one reported in Figure 4.6. We define Ry = 502 as port
reference resistance and a number of ports P = 2. We realize a circuit synthesis imposing;:

e a common reference node for all the ports;
e a standard resistor in the interface circuit.

In this case the two files, containing the numerator and denominator admittance sub-
circuits, are included on top of the SPICE netlist.
We can see the result in the following script*3

ok Kk ok K K ok K K ok ok K K o ok K K o ok K K ok ok K K kK K Ok
x SPICE subcircuit REALIZATION *
x This file is automatically generated =
ok Kk ook ok K ok K K ok ok K K o ok K K o ok K O ok ok K R kK K Ok
* Created: 04—Dec—2017 by GSK_Model2Cir

>k ok ok ok ok ok sk sk ok sk sk sk sk sk sk sk sk sk skook ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

>k ok ok ok ok ok sk sk ok sk sk sk ok ok sk ok sk sk ok ok ok ok ok ok sk sk ok

* NOTE:
* a_i —> input node associated to the port i
* ref —> reference node, common for all input ports

>k ok ok ok ok ok sk sk ok sk sk sk ok ok sk ok sk ok ok sk sk ok ok ok ok ok ok sk sk ok

.INCLUDE GSKmodel . num. cir
.INCLUDE GSKmodel_den. cir

.subckt GSKmodel
+ a_.l a_2 ref

sk sk sk ok sk ok ok o o K K K K K K koK Kk sk sk sk sk ok sk ok ok ok ok Sk ok SR R KK K K K K K K %
* External/output ports of the network

sk sk sk ok ok ok ok o o K K K K K K kK KKk sk ok sk ok ok ok ok ok ok Sk Sk SR R KK K K K K K K K
*Port: 1

G_e_l ref tmp_e.l c.d_1 0 0.02

3 The note inserted inside the script as [Text] are not in a LTSpice compatible form: it should be
removed to run the netlist.

78

GSK Model Synthesis

RO_.1 tmp_e_1 ref 50
Vtmp_e_1 a_1 tmp_e_.1 0.0

*Port: 2

G_e2 ref tmp_e 2 c.d_2 0 0.02
R0O_2 tmp_e_2 ref 50

Vtmp_e 2 a_2 tmp_e_2 0.0

353 oK KR KR KR K KO KK kK ok oKk oK K K R KR KR K K K ko kK ok KOk
* Numerator network (Cn)

353 oK KR KR KR K KO KK kK ok oKk oK K K R KR KR K K K ko kK ok KOk
*Port: 1

E_1n_1 tmpln.1 0 a_1 ref 1.0

H2n_1 tmp2.n_1 tmpl.n_1 Vtmp_e 1l 50
Vtmp.n_1 tmp2.n_.1 c.n_1 0.0

*Port: 2

E_1n_2 tmpln2 0 a_2 ref 1.0
H2n 2 tmp2.n.2 tmpl.n 2 Vtmp_e 2 50
Vtmp.n_2 tmp2.n.2 c.n_2 0.0

XNN.1 ¢.n_-1 c¢_n_2 0 GSKmodel_-num

>k 3k 3k >k skosk >k sk sk ok ok skok ok sk ok skok ok sk skok sk skosk ok sk sk ok sk sk ok ok skok ok skok ok kok
* Denominator network (Dn)

>k 3k 3k >k sk sk >k sk sk ok ok skok ok skosk ok sk sk ok sk skok sk skok ok skok ok sk sk ok skok ok skok ok kok
*Port: 1

F.d1 0 c.d.1 Vtmpn_1 1
XDD.1 c¢_.d-1 0 GSKmodel_den
*Port: 2

F.d2 0 c.d.2 Vtmp.n_2 1
XDD2 c¢_.d-2 0 GSKmodel_den
.ends

79

Function Calls

4.4 Function Calls

In this part we report all the functions necessary to produce the synthesis of Chapter 4.
In particular, we will see the following functions:

o GSK_Model2Cir, driver to the other two functions;
e SS2Cir, realizes a sparse synthesis as in Section 4.1.1;

o MakeGSKWrapper, realizes a wrapper sub-circuit for the admittance sub-blocks, as
described in Section 4.3.

4.4.1 GSK_Model2Cir

This function generates a SPICE sub-circuit that realizes a model in Generalized Sanathanan-
Koerner form (non parameterized).

The input model must be a ratio between numerator and denominator series objects,
which must be defined through the single-factor ’partialfractions’ basis.

Options fields enables a customization of the SPICE synthesis, as detailed below.
Here follows the function call.

function [NumSS,DenSS,om, Href] = GSK_Model2Cir (Model , pathname , name,
Options)

Where the inputs are:

e Model is the model in the gsk form;

pathname is the path where the output files will be located;

name SPICE sub-circuit name in the output file ‘name_.cir’ (Do not include
the extension in the input string);

Options is an (optional) input parameter that includes the fields

— Options.GroundReferences [default = 0]
determines how the reference nodes for all ports are generated. If it is set to
0, each port in the synthesized equivalent circuit will have a ‘private‘ (floating)
reference node. If it is set to 1, all ports will share a common reference node
(useful for grounded multiports).

— Options.ResistorType [default = 1]
controls the synthesis of resistors in the equivalent circuit. These resistors are
not ’true’ resistors, but are just dummy components that are used to translate
the model equations into a SPICE netlist. Therefore, these resistors might lead
to wrong results when employed in a ‘noise’ analysis. Four different types of
synthesis are available, according to the value of Options.ResistorType:

1. synthesis as standard resistor (default)
2. synthesis as a resistor with appended keyword 'noise=0’ (available only for

HSPICE)

synthesis as current-controlled voltage source

4. synthesis as voltage-controlled current-source

80

@

Function Calls

— Options.mustOptimizeCap [default = 1]
optimization of the capacitance value based on the location of the model poles
(for GHz-range models, typical values are 1nF or 1pF). If false, all capacitances
are set to 1F.

— Options.debug [default = 0]
if true, the function computes a validation of model response from individual
numerator and denominator responses and returns the reference model response
and angular frequency samples on output. Otherwise no validation is performed
and both om and Href are empty.

On output, the function returns:

e NumSS, DenSS state-space realizations of numerator and denominator of input
Model.
e om, Href angular frequencies and frequency response.

An example

To synthesize all the netlists used as examples in Chapter 4, it is necessary to type the
following script?:

% path where files will be written

pathname = ’./testGSKModel_spice ’;
if “exist (pathname, ’dir’),

mkdir (pathname) ;

end

% name of Model netlist file

cktname = 'GSKmodel’ ;

% netlist export options
Options. GroundReferences = 1;
Options. ResistorType = 1;
Options. mustOptimizeCap = 1;
Options.debug = 0;

GSK_Model2Cir (Model , pathname , cktname , Options) ;

4.4.2 SS2Cir

This function enables to synthesize a SPICE netlist of a sub-block in a (non-parametric)
state-space form. It is assumed that state-space equations are a realization of a reduced-
order model of a linear multiport, as specified in the sub-section 4.1.1.

The only dynamic elements included in the synthesis are identical capacitances. The

4The variable Model stores the corresponding element reported in Section 4.2, in a IdEMPar toolbox
compatible structure.

81

Function Calls

capacitance value can be provided via field Cap of MOD. If this field is not present, a
unitary value is used.
Here follows the function call

function SS2Cir (MOD, pathname ,name, Options)

The inputs are:

e MOD variable that defines the state-space equations by fields MOD.A, MOD.B,
MOD.C and MOD.D. The number of ports can be deduced by rows of C,D or
columns of B,D. The field MOD.RO is used to distinguish between admittance
(MOD.RO == 0) and scattering representation. In this second case the reference
resistance used for all ports must be the same and it is also stored in MOD.RO.
The capacitance value can be provided via field MOD.Cap. If this is not present, a
unitary valued is used.

e pathname the path where the output files will be located

e name SPICE sub-circuit name in the output file ‘name.cir’ (Do not include
the extension in the input string)

e Options is an (optional) input parameter that includes the fields

— Options.GroundReferences [default = 0]
is an additional option that determines how the reference nodes for all ports
are generated. If it is set to 0, each port in the synthesized equivalent circuit
will have a ‘private’ (floating) reference node. If it is set to 1, all ports will
share a common reference node (useful for grounded multiports).

— Options.ResistorType [default = 1]
controls the synthesis of resistors in the equivalent circuit. These resistors are
not ‘true’ resistors, but are just dummy components that are used to translate
the model equations into a SPICE netlist. Therefore, these resistors might lead
to wrong results when employed in a ‘noise’ analysis. Four different types of
synthesis are available, according to the value of Options.ResistorType:

1. synthesis as standard resistor (default)

2. synthesis as a resistor with appended keyword ‘noise=0’ (available only for
HSPICE)

synthesis as current-controlled voltage source

4. synthesis as voltage-controlled current-source

@

4.4.3 MakeGSKWrapper

Constructs non-parameterized model main interface, consisting in a wrapper that con-
nects the individual numerator and denominator netlists as detailed in Section 4.3.
Here is the function call

function makeGSKWrapper (R0,P,N_name,D_name, pathname , cktname , CommonGND)
The inputs are:
e RO is the reference port resistance which allows to select the model repre-
sentation (0 admittance case ; Inf impedance case ; 0<RO<Inf scattering case)

82

Function Calls

P is the number of model ports

e N_name, D_name are the names of numerator and denominator sub-circuits,

which are supposed to be available in individual files with same name and extension
ok cir?

e pathname is the path where the wrapper netlist will be located
e cktname is the name of the main sub-circuit and corresponding netlist file in the

form ‘name.cir’. (Do not include the extension in the input string)

CommonGND is the type of interface port referencing scheme. If set to 0,
each port in the synthesized circuit will have a ‘private’ (floating) reference node. If
it is set to 1, all ports will share a common reference node.

83

Chapter 5

Parametric SPICE synthesis

We now consider the problem of synthesizing a parametric GSK model in a parameter-
dependent SPICE netlist.

In this chapter we will explore a parametric SPICE-synthesis starting from the non-
parametric procedure proposed in Chapter 4.3. In order to achieve this, we first introduce
an overview of the new strategy, highlighting the main differences with the non-parametric
synthesis procedure.

Then we focus our attention on the assignment of the parameter value to the GSK
model sub-blocks, proposing three different call options. We detail each of them providing
numerical examples. The chapter ends with the calls to the functions necessary to produce
the parametric SPICE synthesis proposed.

5.1 Parametrized GSK Model Synthesis

The circuit synthesis strategy of a gsk-parametrized model is the same explored in Chapter
4.3. The resulting external interface circuit is similar to the one presented in Figure 4.6,
depending on the choice made for the parameter call and synthesis.

The circuit realization of the parameterized admittance blocks corresponding to nu-
merator and denominator is also standard [19,20], as well as the proposed parameteriza-
tion scheme [21]. We focus only to the synthesis of the denominator sub-model, which is a
scalar: the extension to the (matrix) numerator case is straightforward. From (2.7), (2.8)
and (4.21), we can denote

n
ip=D(s,9)vp =Y jpn (5.1)
n=0
where jp o = r9(¥) vp and
ipm =Tn() v, Wwith v, = (s —gn) tup (5.2)
forn =1,...,n. Anelementary RC circuit realizes each auxiliary variable vc,, (Fig. 5.1(a)).

To simplify the notation we assume a set of real-valued! model poles ¢, < 0.

1To realize a complex conjugate pair of poles, it is necessary to use two couple RC cells, see Fig. 4.3.

84

Parameter Call

+
(Ze; 1F —! 'T 1
N —— e - v
I P

. (a)
D

O

+

Up ¢ 7’0(19)’UD ¢ 1 (19)1)0_]1 e ¢ Tﬁ(ﬂ)vcﬁ

O

Figure 5.1: Realization of the parameter-dependent admittance block D(s,) [21]: (a)
elementary RC circuit that synthesizes the (real) basis pole g,; (b) external interface
circuit. (©2018 IEEE

We are going to expose in Chapter 6 different synthesis strategies to realize each auxiliary
current jp, using appropriate circuit elements.

In this case, a Voltage-Controlled Current Source (VCCS) is used for this purpose: the
parameter-dependency is obtain through its trans-conductance r,(¢). Such circuit ele-
ments, commonly avaible in the most used circuit solvers, allow to compute the overall
current ip of (5.1) as superposition of all these currents jp ., as showed in Fig. 5.1(b).

5.2 Parameter Call

Now we consider the problem of providing the parameter value to the model sub-circuit.
This directly affects the GSK model interface netlist but with a slight modification of the
parameter-dependent elements, as we will see in Chapter 6.

To achieve this purpose, we can follow three different strategies:

1. realize a global parameter call, defining a global variable in the simulation netlist
which directly affects the parameter-dependent circuit elements in the admittance
sub-blocks; as in Figure 5.2;

2. realize an independent parameter call, defining a variable in the simulation
netlist and providing it as input to the macromodel sub-circuit; some local variables
are defined in the wrapper netlist to provide the parameter as additional input to
the two admittance sub-blocks, which contain the parameter-dependent elements;
Figure 5.3 shows the parameter flow which allows for several variables;

3. realize a Control Pin call, providing the parameter values as voltage drop (or cur-
rent flow) on an additional (control) input pin of the model sub-circuit; all the model

85

Parameter Call

sub-blocks are instantiated with an additional pin and a cascade of connections en-
ables the parameter-dependent elements to read the actual parameter value; Figure
5.4 shows a scheme of this strategy.

The first two methods require to create user-defined variables, that in LTSpice environ-
ment correspond to the .param directive. This way, sub-circuits can be parametrized and
abstract circuits can be saved.

The parameters are passed to the sub-circuit by relations and expressions: using LTSpice,
curly brackets are necessary to invoke parameter substitution and to evaluate an expres-
sion. The enclosed formulation is, in fact, reduced to a floating point numeric value,
through the available relations, only when curly brackets are encountered (see LTSpice
help for details [1]).

MODEL FILE (PAR_GSKmodel.cir) |

SIMULATION FILE (USER DEFINED) ‘ ** GLOBAL VARIABLES DEFINITION #*
* Parameter n.1 *
* AC Validation netlist (LTSpice) * ** MODEL DEFINED in the FOLLOWING PARAMETER RANGE *x*

.par parMaxl = 2.0000000000000000e+02
.par parMinl = 3.0000000000000000e+02

* Port terminations ** Parameter normalization

RI_1 NS NR_.1 5.0000000000000000e+01 .par yl = -1+2%(pari-parMinl)/(parMaxi-parMin1)
VI1 NR110 * Polynomial Terms Evaluation*

.param y10 = 1.0
RI_2 0 NR_2 5.0000000000000000e+01 .param yii = y1
VI.2 NR2 2 0 .param yl12 = 2xyl*yll-y10

* Parameter n.2 *
* AC Source *% MODEL DEFINED in the FOLLOWING PARAMETER RANGE #*
Vsource NS 0 AC 1.4142135623730951e+01 -par parlfax2 = 7.0000000000000000e+01

.par parMin2 = 8.0000000000000000e+01

** Parameter normalization *x*

* External Macromodel .par y2 = -1+2%(par2-parMin2)/(parMax2-parMin2)

.inc "PAR_GSKmodel.cir" * Polynomial Terms Evaluation#
xMODcir -param y20 = 1.0
.param y21 = y2
+120 .param y22 = 2%y2%y21-y20
+ PAR_GSKmodel
a Model sub-circuit (PAR_GSKmodel) ‘
o— H(s, 91, 9s)
by - -
o—| |Numerator File (PAR,GSKmodelJlum.cu‘)‘
* Analysis setup ref N for sub-circuit (subckt) |
#% Parameter n.1 a umerator sub-circuit (subc
o—
.param parl = 2.5000000000000000e+02 ref N(s, 9)(s, 91, J2)
** Parameter n.2 o— o
.param par2 = 7.5000000000000000e+01 GC_11 a1 ref value={
+v(NS_1,0)*(+y10*y20*coeffl +---)}
* Frequency setup
.ac list
* [List of frequency points] Denominator File (PAR_-GSKmodel den.cir) |
-end --- [Same scheme of the Numerator]---

Figure 5.2: SPICE equivalent synthesis scheme of 2-port parametrized GSK-model adopt-
ing a global parameter call option. Boxes indicate either files (black) or sub-circuits (red).
On the left, simulation file created by a user. On the right, model files generated by the
automatic synthesis. Parameter flow is showed through colours.

86

Parameter Call

MODEL FILE (PAR_GSKmodel.cir) |
Model sub-circuit (PAR_GSKmodel) ‘

ay

SIMULATION FILE (USER DEFINED) ‘ o—ro H(s, V1, 92)
b
* AC Validation netlist LT Spice * c>—l :*Pisgiitgl{:\]ffs DEFINTTION xx

ref *% MODEL DEFINED in the FOLLOWING PARAMETER RANGE *x*
* Port terminations © .par parMaxl = 2.0000000000000000e+02

RI_1 NS NR_1 5.0000000000000000e+01 .par parMinl = 3.0000000000000000e+02

pari={Jj} ** Parameter normalization **

e par zl 1+2*(pari-parMin1)/(parMax1-parMinl)
al - zl =~ parl- 1 x1- i
RI.2 0 NR2 5.0000000000000000e+01 par2={1)2} * Polynomial Terms Evaluation*
VI2 NR2 20 .param =1.0
.param =zl
* AC Source .param = Oxzlkz11-

Vsource NS 0 AC 1.4142135623730951e+01 * Parameter n.2 *

#% MODEL DEFINED in the FOLLOWING PARAMETER RANGE x*x*
.par parMax2 = 7.0000000000000000e+01

.par parMin2 = 8.0000000000000000e+01

** Parameter normalization **

* External Macromodel
.inc "PAR_GSKmodel.cir"

xMODcir .par z2 = -1+2%(par2-parMin2)/(parMax2-parMin2)
+120 * Polynomial Terms Evaluation*
+ PAR_GSKmodel -param 220 = 1.0

- .param = z2
+ parl = {parameter 1} [¥}] .param = D%z2%201-
*+ par2 = {parameterj} (03] Numerator File (PAR,GSKmodeLnum.cir)‘
* Analysis setup a Numerator sub-circuit (subckt)‘
** Parameter n.1 o
.param parameter_1 = 2.5000000000000000e+02 ref N(s,9)(s, 91, 02)
*% Parameter n.2 o—
.param parameter_2 = 3.0000000000000000e+02 v10={z10H " 4611 at ref values{

: +v(NS_1,0)*(+y10*y20*coeffl +---)}

* Frequency setup y22={z22}
.ac list
* [List of frequency points] Denominator File (PAR,GSKmodeLden.cir)‘
.end --- [Same scheme of the Numerator]---

Figure 5.3: SPICE equivalent synthesis scheme of 2-port parametrized GSK-model adopt-
ing an independent parameter call option. Boxes indicate either files (black) or sub-
circuits (red). On the left, simulation file created by a user. On the right, model files
generated by the automatic synthesis. Parameter flow is showed through colours.

We present now some common characteristics of the three strategies, that enable us
to detail them in the next sections.

5.2.1 Parameter Normalization

For the synthesis of a multivariate macromodel, we used a particular class of orthonormal
parameter-dependent basis known as Chebychev polynomials (see Section 2.1.1). To
improve the numerical conditioning of fitting algorithms, as well as SPICE simulations,
the range of the parameter variable is used to normalize the polynomial argument within
[—1,1]. In particular, we compute the normalized parameter value J as

U — ﬁmzn

ﬂmam - ﬁm'm

where ¥ € © with ©; € [9¢ . i

min’ Y max
external design parameters).

| is i-th parameter range, for i = 1,..., p (number of

87

Parameter Call

SIMULATION FILE (USER DEFINED) | MODEL FILE (PAR_GSKmodel.cir) |
. . .] a Model sub-circuit (PAR_GSKmodel) ‘
* AC Validation netlist LT Spice * o | H(s, 0r.01)
* Port terminations bol_ Ctr1Pin 1| Normalization subckt Parameter n.1 |
RI_1 NS NR_1 5.0000000000000000e+01 ref th
VI1 NR11O0 o— O’_ [Normalization sub-circuit]
RI2 0 NR_2 5.0000000000000000e+01 CtrlPin 1 e [Connected to Numerator and Denomitor]
VI2 NR2 2 0 o | o—
ctripin2| *12
* AC Source o— o

Vsource NS O AC 1.4142135623730951e+01

ctr1Pin 2| Normalization subckt Parameter n.2|

* External Macromodel o—j

.inc "PAR._GSKmodel.cir" w20 [Normalization sub-circuit]

xMODcir O

+120 ;’_ [Connected to Numerator and Denomitor]

+ ParCtrl 1 [¥7] £2.2

+ ParCtrl 2 [¥3] O—

+ PAR_GSKmodel Numerator File (PAR,GSKmodeLnum.cir)‘

* Analysis setup (;1_ Numerator sub-circuit (subckt)‘

** Parameter n.1 ref

Vpl ParCtrl 1 = 2.5000000000000000e+02 o— N(s, 9)(s, 0, 02)

*% Parameter n.2 tlo’o_

Vpl ParCtrl 2 = 3.0000000000000000e+02) GC11 a1 ref value={+v(NS_1,0)(
: +v(v10,0)*v(y20,0)*coeffl +---)}

* Frequency setup t2652—

.ac list

* [List of frequency points] Denominator File (PAR,GSKmochdcn.cir)‘

-end --- [Same scheme of the Numerator]---

Figure 5.4: SPICE equivalent synthesis scheme of 2-port parametrized GSK-model adopt-
ing a control pin option. Boxes indicate either files (black) or sub-circuits (red). On the
left, simulation file created by a user. On the right, model files generated by the automatic
synthesis. Parameter flow is showed through colours.

In order to synthesize (5.3) in an equivalent expression to be parsed in a common
circuit solver, we can follow two independent strategies:

1. realizing the operation directly as in the equation (5.3), defining user-defined vari-
ables compatible with the SPICE environment, through the LTSpice directive . param;

2. realize an equivalent normalization sub-circuit, which synthesizes an output voltage
(or current) variable that matches the normalized parameter value.

The two strategies lead to the same identical results, taking to account possible trunca-
tion errors (see Chapter 4) of the element definitions, that may affect both variables or
circuit components, in the normalized parameter computation.

Moreover, the above procedure must be repeated p times, one for each design parameter.
The second case may lead to a loss of macromodel performances in numerical simula-
tions, due to the increasing amount of circuit elements (usually controlled sources) with
the number of design parameters.

88

Parameter Call

5.2.2 Partial Evaluation of Parameter-Dependent Basis Functions

We report here a very important characteristic of the SPICE extraction procedure. The
following observations are in fact crucial to an extension of the entire procedure for a
generic parameter-dependent basis.

The parameter-dependent basis terms & can be computed ’outside’ the numerator or
denominator admittances sub-blocks, where they are actually needed for the computa-
tion of the parameter-dependent circuit elements gain (i.e. the trans-conductance 7, (1)
of Fig. 5.1). In this case, they are provided to these sub-circuits as ’'input’ parameters.

This strategy presents three main advantages:

1. the specific choice of the parameter-dependent basis does not affect the admittance
circuit elements, which preserve their parameter-dependency but now receive only
the & components as input;

2. the number of operations performed inside each sub-block is reduced;

3. the clarity of the netlist definition is increased even if the numerator and denom-
inator parameter-dependent bases present different orders; this may reveal useful
depending on the selected parameter call option.

We report now an example for the particular case of Chebychev polynomials: we will
recall the following expressions for all the parameter calls in the next Sections.
Using the Three Term Recursive property (particular case of (2.14)), we can compute
each term of &, as

=Tv=1 (5.4)
=T =19 (5.5)
fg = Tg =29- Tg_l — Tg_g for /¢ > 2. (56)

We omit the i-th index on ¢ in order to simplify the notation: in a multivariate case, the
above procedure must be repeated p times, one for each design parameter.

Note that, when the number of parameters increases, so does the overall amount of
circuit components, and this may be lead to a slow-down of model performances in a
numerical simulation.

However, the important advantages obtained by ’splitting’ the parameter-dependent ba-
sis contributions overcome this hindrance and lead to realizing a flexible and performing
netlist structure, also for a Control Pin call option and for a multivariate macromodel case.

In the next Sections, we will detail the three main parameter calls, providing examples.

89

Global Parameter

5.3 Global Parameter

With this parameter-call choice, the parameter value is assigned directly to the trans-
conductances inside admittance sub-blocks. All the input parameter definitions into the
sub-circuits instances are omitted.

Choosing the proper variable name, a parameter value is automatically assigned to the
circuit elements inside the admittance sub-circuits. We associated to the i-th parameter
the netlist variable par_i , with ¢ = 1,..., p (p number of additional parameters).

This is the most restrictive and dangerous case: two models with an identical param-
eterization cannot be instantiated together in a simulation, sharing the same parameter
name and imposing two different values for this variable. The assignment difficulty grows
in a multi-variate case: each variable must be identified with a unique name during the
SPICE synthesis, and this can be done in the proper way only if the models which are
going to be tested have a parameterization known a priori.

Even if this strategy for the parameter call allows to obtain the fastest simulations results,
for the reason reported above it is affected by a loss of generality in more complex cases,
resulting practically useless for an industrial environment.

Nevertheless, we will report this strategy because it will be the starting point for the
other two implementations, providing basic but crucial concepts (and strategies) to reach
the goal of a complete parametrized synthesis.

5.3.1 Parameter in Wrapper and Admittance Sub-circuits

Contrary to what one would expect, nothing changes during the synthesis of the PSK-
model wrapper netlist with a global parameter call: this strategy modifies directly the
circuit elements definitions inside each admittance sub-block (see example Section 5.1),
maintaining their instances invariant.

Assigning the desired parameter value to a variable in the simulation netlist, this is
automatically cast to each circuital component, without the necessity of specifying any
kind of relationship with the parametrized-macromodel sub-block.

The only adjustments required by selecting this option are related to

1. the parameter normalization
We realize the first procedure described in Section 5.2.1 as?:

xx Parameter normalization *x

.param parMax_i = thetaMax_i
.param parMin_i = thetaMin_i
.param y_i = —1+42«(par_i—parMin_i)/(parMax_i—parMin_i)

where par_i and y_i correspond respectively to ¥ € ©; and ¥ of (5.3). Both of
them are user-defined variables in the LTSpice environment, as well as parMax_i and

2 thetaMax_i and thetaMin_i should be substituted with their numerical values, corresponding to

[0 ins Oinaz] = i, where i = 1, ..., p. Moreover, the same index i should substitute the 'netlist index’ *_i.

90

Global Parameter

parMin_i. We recall that, in a multivariate model case, this code fragment must be
repeated for all the design parameters, substituting the index *_i in the netlist with
a number, according to the index of ¥*.

2. the evaluation of the paramereter-dependent basis terms &y (1)
Recalling to Sec. 5.2.2 and following again the procedure that requires user-defined
variables, we define a SPICE equivalent of (5.4) as

**% Polynomial Terms Evaluation xx
.param y-i0 = 1.0

.param y_il = y_i

.param y_i2 = 2xy_ixy_il—y_i0

which is the realization of the first three terms of the parametric-dependent ba-
sis(y-i0, y-il and y_i2 respectively), for the particular case of the Chebychev
polynomial. The extension of this procedure to any general basis is straightfor-
ward. Moreover, the multivariate case follows the same rules denoted above for the
parameter normalization.

Both these procedures must be performed in the GSK-model file: this is a key point for
this SPICE equivalent realization.

It is crucial, for this strategy, that these two points are realized outside the wrapper sub-
circuit definition. Otherwise, the parameter-dependent variables defined in the wrapper
netlist will not be read by the internal sub-circuits, which in this case are exactly the
numerator and denominator admittance sub-blocks (see Figure 5.2).

5.3.2 An Example

Now we are going to provide an example of the global parameter call: the following initial
set-up will be reused for the other two strategies, quoted in Section 5, to stress the dif-
ferences between the three parameter calls options available. In order to achieve this, we
will synthesize each model for each different procedure, omitting all the netlist parts that
are not relevant at this realization level. In particular, we will explore the admittance
sub-blocks synthesis in the Chapter 6.

To guarantee a complete overview of the parameter flow inside the model equivalent, we
realized a unique netlist merging together the GSK-model and the simulation file: the
change of source code in the examples is detailed with a comment (*[File]).

For this purpose we used a P = 2 ports model, with only one external parameter
(p = 1) and a parameter-dependent basis cardinality for the numerator of ¢/ = 4 and
for the denominator of /p = 3. The frequency basis order is omitted. The parameter is
defined as ¥ € [2,18]. The parameter basis terms are evaluated only once and passed to
the admittance sub-blocks, as discussed in Section 5.3.1.

We recall now the global parameter call key points, which can be observed in the
example reported below.
In this case, no specification related to the parametric nature of the model is presented

91

Global Parameter

in any sub-circuit call or definition.
A variable, necessary to store the parameter value, must be defined in the simulation
circuit only. The name of this variable and the one chosen during the global variable syn-
thesis must match. No curly brackets invocation is required at this level: the parameter-
dependent circuit elements of the admittance sub-blocks directly receive the parameter
value. Moreover, the parameter-dependent basis terms are computed in a global environ-
ment only once, just before the GSK-model sub-circuit definition.

Here follows the SPICE netlist?.

ok kR R Kk R R O Kk R R S kR R R KR R R Ok Rk Rk
%% [SIMULATION FILE (Sim.cir)]*x

ok kR R O KRR R O Kk R R S KR R R KR R R O KRk
* AC Validation netlist (LTSpice) *
ok ok kR KKK R R KRR R Kk

* Port terminations

[...Chosen Simulation Set Up...]

ok ok kR R KRR R KRR O Kk
* Parameters setup (User defined)
ok ok kR R KRR R KRR R Kk

* Parameter n.1
.param parl = 2.0000000000000000e400

sk sk ok ok ok skok K ok skok ok sk skok ok sk sk ok ok sk sk ok ok
* External Macromodel
sk sk sk ok ok sk K ok skok ok sk skok ok sk sk ok ok sk sk ok ok

.inc "PAR_GSKmodel. cir ’
xMODcir

+ 120

+ PAR_GSKmodel

ok kR R O Kk R R O Kk R R S kR R R KR R R o Rk Rk
% [GSK-MODEL FILE (Model. cir)]x*x

>k >k >k >k >k ok sk sk ok ok sk sk ok sk 3k sk sk sk skosk sk sk skosk sk sk sk sk ok ok sk sk okook okook ok ok ok ok

K3k >k >k >k >k >k >k ok >k ok sk >k ok sk sk ok ok >k sk ok 3k 3k sk sk sk sk ok sk sk ok ok

**% GLOBAL VARIABLES DEFINITION s

«% MODEL DEFINED in the FOLLOWING PARAMETER RANGE
.par parMaxl = 1.8000000000000000e-+01
.par parMinl = 2.0000000000000000e+00

sk sk sk ok ok sk ok ok skok ok sk skok ok sk sk ok ok sk ok ok ok
xx Parameter normalization xx

3 Text inserted inside the script as [Text] it should be substituted with the specified subject, in a
LTSpice compatible form.

92

Global Parameter

S o K Kk oK o KKK oK K KK K R K KK
.par yl = —1+42«(parl—parMinl) /(parMaxl—parMinl)

ok K K ok KoK KK KKK KR KKK R R KoK K
x*x Polynomial Terms Evaluation xx
ok KK ok KoK KK KKK KR KKK R R KoK K

.param yl1l0 = 1.0

.param yll = yl

.param yl12 = 2xylxyll—yl0
.param yl13 = 2xyxyl2—yll

.param yl4 = 2xyxyl3—yl2

Sk ok ok ok R KK KK K KK K K K R K K K K K
% end of GLOBAL VARIABLES DEFINITION s

ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk sk ok sk sk ok ok ok ok ok ok ok ok ok

.INCLUDE PAR_GSKmodel num. cir
.INCLUDE PAR_GSKmodel den. cir

3k 3k 3k 3k sk >k sk sk sk sk sk sk sk sk sk sk ok Sk ok sk ok ko k
xx% BEGIN: parameterized macromodel
3k 3k 3k >k sko>k sk sk sk sk sk koK sk ok sk sk ok sk ok sk ok ko k

.subckt PAR_GSKmodel

x* Macromodel Ports Definition *x
+ a_l a_2 ref

kK ok >k >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

* NOTE:
* a_i —> input node associated to the port i
* ref —> reference node, common for all input ports

>k ok ok >k ok

o ko Kk Kk R K K R K KR R K o K
* External/output ports of the network
o ko Kk Kk R K K R K KR R K o K

[...Chosen Representation...]

>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok skok ok kok

* Numerator network (Cn)

>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok skok ok kok

[...Chosen Representation...]

XNN.1 ¢.n_1 ¢.n_2 0 PAR_GSKmodel num

>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok skok ok kok

* Denominator network (Dn)
>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok skok ok kok
*Port: 1

93

Global Parameter

Vtmp.n_1 1

F.d.1 0 c_d_1
c_.d_1 0 PAR_GSKmodel_den

c
XDD_1 d_

*Port: 2
F_d.2 0 c.d-
c_.d_2

c Vtmp.n_ 2 1
XDD2 c_d._

2
0 PAR_GSKmodel_den
.ends * END parameterized macromodel

ok ok ok ok K K ok ok ok ok ok ok K K K K R o ok ok ok ok ok ok K K K Kk o ok ok
%% [SIMULATION FILE (Sim. cir)]#*x

ok ok ok ok K K ok ok ok ok ok ok K K K K R o ok ok ok ok ok ok K K K Kk o ok ok
ok ok ok ok kK o ok ok ok ok KoK K K K K K

x Frequency Analysis setup

ok ok ok ok kK KR o ok ok ok ok Kok oK K K K K

.ac list

[...Frequency Points...]

.end * END simulation

94

Independent Parameter

5.4 Independent Parameter

The parameters are defined as additional input variables of each sub-circuit. This char-
acteristic enables a direct control on the parameter name definition by the user, which
corresponds to a better synthesis strategy flexibility.

With this call option, the user can provide the chosen parameter value trough the
input variable denoted as par_i, with ¢ = 1,...;p. Such netlist variables are embedded
in the wrapper sub-circuit definition and are initialized to 1 (default value).

The main difference with the global parameter call from a user point-of-view is exactly
the necessity to provide the parameter value as additional input to the macromodel
instance, using curly bracket invocation and the proper variable name.

To clarify this point, we provide an example for a multivariate model with two external
parameters, according to the LTSpice environment?:

.subckt Parametric_.GSKmodel
+ a_l a_2 ref

+ params: parl =1

+ params: par2 =1

[... Circuit Definition ...]
.ends Parametric_.GSKmodel

The previous script requires to call a variable exactly as par_i (with ¢ = 1,2) in the
sub-circuit invocation line, using curly brackets to assign a value to the i-th parameter.
If we want to fix their quantities to 91 = 3 and 92 = 7, the following lines must be used:

.include ’Parametric.GSKmodel. cir”’

xModelCir

+ Pinl Pin2 ref

+ Parametric_.GSKmodel
+ parl = {3}

+ par2 = {7}

The information flow, required to satisfy this sub-block definition, implies a slight loss
of model performances with respect to the global parameter call strategy, which we
verified that does not compromise the overall simulation results. On the other hand,
this second strategy allows to overcome all the drawbacks presented by the first one (see
Section 5.3).

We now detail the parameter role inside the wrapper and admittance sub-blocks and
the modifications required to realize these two sub-circuits compatible with this parameter
call strategy.

4Text inserted inside the script as [Text] should be substituted with the specified subject, in a SPICE
compatible form.

95

Independent Parameter

5.4.1 Parameter in Wrapper and Admittance Sub-circuits

We previously described how the parameters are provided to the wrapper sub-block: in
this case, the Independent parameter call modifies also the instance of this element, as
well as the admittance sub-circuits definitions.

Another important characteristic of this procedure is the definition of ’local’ variables
inside the GSK-model sub-block, which are responsible for the parameter normalization
and for the partial evaluation of the parameter-dependent basis. These internal variables
are provided as additional input to the admittance sub-blocks, following the same proce-
dure reported for the GSK-model interface sub-circuit.

We now extend the details of the same two key points of Section 5.3.1 concerning the
global parameter option, with the modifications required for this case.

1. parameter normalization.
Changing the name of the variable associated to the i-th normalized parameter 9
(previously called y_i), the same procedure reported for the global parameter call
is realized as®:

xx Parameter normalization *x

.param parMax_i = thetaMax_i
.param parMin_i = thetaMin_i
.param z_i = —1+42«(par_i—parMin_i)/(parMax_i—parMin_i)

where par_i and z_i correspond respectively to ¥ € ©; and ¥ of (5.3).

2. evaluation of the paramereter-dependent basis terms &;(1J) .
Also in this case, the variables names must be changed accordingly to point 1 but
the procedure is the same of Section 5.3.1

**x Polynomial Terms Evaluation xx

.param z_-i0 = 1.0
.param z_il = z_i
.param z_i2 = 2xz_ixz_il—z_i0

where the first three terms of the Chebychev polynomial basis are realized for the
i-th parameter. The same observations made for the global parameter call still hold.

These modifications are necessary because, during the SPICE equivalent synthesis,
we associated y_il to the variable which ’lives’ inside the parameter-dependent cir-
cuit elements (i.e. it contributes to the definition of the parameteric-dependent trans-
conductances), as it can be seen in Fig.5.3.

These local variables are than provided as additional input to the admittance sub-blocks
as in the following netlist example:

XNum 1 2 0 PAR_GSKmodel num
+ yi0 = {z_.i0} y_il = {z_il} y.i2 = {z_.i2}

5 thetaMax_i and thetaMin_i should be substituted with their numerical values, corresponding to

[0 ins Oinaz] = i, where i = 1, ..., p. Moreover, the same index i should substitute the 'netlist index’ *_i.

96

Independent Parameter

where PAR_GSKmodel num is the numerator sub-model of a 2 x 2 ports system (with com-
mon reference node imposed during its synthesis, see Chapter 4) and the y_il variables
are the one reported before.

We recall that, with this parameter call strategy, the two points above must be realized
p times (with p external parameters) inside the wrapper sub-circuit definition. Figure 5.3
shows a schematic of this procedure.

5.4.2 An Example

We now provide an example of a model synthesis through an independent parameter call,
using the same set-up of Section 5.3.2.
In this case, parameter definition and invocation are unambiguous. The variable associ-
ated with the parameter must be provided as input of the macromodel by inserting inside
curly brackets the appropriate parameter name, as specified in the section NOTE of the
interface sub-circuit netlist reported below.

Here follows an example netlist®.

sk ok sk sk ok ok sk ok ok ok sk ok ok ok sk ok ok sk sk ok ok Sk sk ok ok sk k sk ok ok K
*% [SIMULATION FILE (Sim.cir)]sx

sk ok sk sk ok ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok sk sk ok ok sk sk ok ok K
x AC Validation netlist (LTSpice) *
s sk o sk sk ok ok ok ok sk sk ok Ok sk ok ok ok Sk ok ok ok ok

* Port terminations

[...Chosen Simulation Set Up...]

sk KKK KRR R R Sk ok oK K KKK KK K
x Parameters setup (User defined)
sk KKK KRR R R Sk ok oK K KKK KK K

*x Parameter n. 1
.param parameterl = 2.0000000000000000e+00

sk sk sk sk ok sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk ok ok sk sk sk ok sk sk ok sk sk sk ok ok sk sk ok ok
* External Macromodel
sk sk sk sk ok sk sk sk ok sk sk sk sk ok sk sk sk ok sk sk sk ok ok sk ok sk ok sk sk ok sk sk sk ok ok sk ok ok ok

.inc 'PAR_GSKmodel. cir ’
xMODcir

4+ 120

+ PAR_GSKmodel

+ parl = {parameterl}

>k >k ok ok ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

S Parts inserted inside the script as [Text] should be substituted with the specified subject, in a
LTSpice compatible form.

97

Independent Parameter

#%[GSK-MODEL FILE (Model. cir)]xx

>k ok ok ok ok ok sk sk ok ok sk sk ok ok sk ok ok sk sk ok

.INCLUDE PAR_GSKmodel num. cir
.INCLUDE PAR_GSKmodel_den. cir

3k 3k sk 3k sk >k sk sk sk sk sk koK sk sk sk sk ok sk ok sk ok ok sk
xx% BEGIN: parameterized macromodel
3k 3k 3k 3k sko>k sk sk sk kR koK sk sk sk sk ok sk >k sk ok ok sk

.subckt PAR_GSKmodel
x* Macromodel Ports/Parameters Definition xx
+ a1l a_2 ref

+ params: parl =1

k ok ok >k ok

*+ NOTE:
* a_i —> input node associated to the port i
* ref —> reference node, common for all input ports

* par_i —> i—th parameter value in input to the netlist
3k 3k 3k 3k sk >k sk sk sk sk sk sk sk sk sk sk ok Sk ok sk ok ko k

ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok ok sk sk sk ok sk sk ok ok ok ok ok ok ok ok ok

% LOCAL VARIABLES DEFINITION sx

#*% MODEL DEFINED in the FOLLOWING PARAMETER RANGE s
.par parMaxl = 1.8000000000000000e+-01
.par parMinl = 2.0000000000000000e+00

sk sk 3k >k sk sk sk sk skosk sk sk sk skosk sk sk sk sk sk sk ok kok
x*x Parameter normalization *x
Sk sk 3k >k sk skosk sk skosk sk sk sk skosk sk sk sk sk sk sk ok kok

.par z1 = —1+42«(parl—parMinl) /(parMaxl—parMinl)

S kKKK KR K KK R R oK K K K KKK K KO K
x*x Polynomial Terms Evaluation xx
S kKKK KR KK K K R o oK oK oK K KKK K KO K

.param z10 = 1.0
.param zll = zl
.param zl12 = 2xzlx%xz11—210
.param z13 = 2xzlxz12—z11
.param zl14 2%71%713—2z12

Sk ok ok ok R KK S KK K KKK K K K R K K R K K
% end of LOCAL VARIABLES DEFINITION xx

ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok

>k ok ok >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok ok

98

Independent Parameter

* External/output ports of the network
ko o Kk Kk ok K K R K KR R K K o K
[...Chosen Representation ...]

>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok sk ok ok ok k
* Numerator network (Cn)
>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok sk ok ok ok k
[...Chosen Representation ...]

XNN.1 c¢.n_1 c¢c_.n_2 0 PAR_GSKmodel_ num

+ y10 = {z10} yl11 = {z11} y12 = {z12} y13 = {213} yl4 =

>k 3k 3k >k 3k sk ok ok skok ok ok skok ok sk sk ok ok skok ok ok sk
* Denominator network (Dn)
>k 3k 3k >k 3k sk ok ok skok ok ok skok ok sk sk ok ok skok ok ok k

*Port: 1

F.d1 0 c.d.1 Vtmpn.1 1

XDD.1 ¢_.d_-1 0 PAR_GSKmodel_den

+ y10 = {z10} yl1l1 = {z11} y12 = {z12} yl13 = {z13}
*Port: 2

F.d2 0 c.d.2 Vtmp.n_2 1

XDD2 ¢_.d_-2 0 PAR_GSKmodel_den

+ y10 = {z10} yl1l1 = {z11} y12 = {z12} yl13 = {z13}

.ends * END parameterized macromodel

ok ok ok ok KK K ok ok ok ok ok ok K K K Kk o ok ok ok ok ok ok K K K Kk o ok ok
*% [SIMULATION FILE (Sim. cir)]sx

ok ok ok ok K K ok ok ok ok ok ok K K K Kk o ok ok ok ok ok ok K K K K o ok
ok ok ok ok KR K KR o ok ok ok ok KoKk K K K K

x Frequency Analysis setup

ok ok ok ok KK KR o ok ok ok ok Kok oK K K K K

.ac list

[...Frequency Points...]

.end * END simulation

99

{z14}

Control Pin

5.5 Control Pin

If a control pin interface is adopted, then an additional pin is added to the parametrized
GSK-model sub-circuit definition. Here follows an example for a 2 ports model with two
external parameters ¥ = (¥, 92) :

.subckt Parametric_.GSKmodel
+ a_.l a_2 ref

+ CtrlPin_1

+ CtrlPin_2

[... Circuit Definition ...]
.ends Parametric_.GSKmodel

By connecting a voltage source to the control pins, defined as Ctr1Pin_1 and CtrlPin_2,
in the caller netlist, the requested parameter values are correctly provided to the model
circuit. Using the same example presented for the independent parameter call case (see
Section 5.4), the resulting netlist is:

)

.include ’'Parametric_.GSKmodel. cir
xModelCir

+ Pinl Pin2 ref

+ ParCtrl_1

+ ParCtrl_2

+ Parametric_.GSKmodel

Vparl ParCtrl.1 0 3

Vpar2 ParCtrl.2 0 7

where Vparl and Vpar2 are standard voltage sources that provide the parameters values
as voltage drops on the corresponding model (control) input pins.

We now detail, as we have done for the other strategies, the parameter role in the
wrapper and admittance sub-blocks: a new procedure must be used, which avoids user-
defined variables.

5.5.1 Parameter in Wrapper and Admittance Sub-circuits

As for the independent parameter case (Sec. 5.4.1), also when a control pin is adopted all
the model sub-circuits instances must be modified according to the procedure reported
above: this still holds for the wrapper and for the admittance sub-blocks.

The main characteristic that distinguishes this choice from other strategies is the fol-
lowing.
When an additional pin is used to control the parameter evaluation, a user-defined vari-
able cannot be used to store the input value. For this reason, the code presented for the
other two procedures (Sec. 5.3.1 and Sec. 5.4.1) is replaced with specific sub-circuits that
perform the same computations.
The critical points are again related to the

1. parameter normalization.

100

Control Pin

In LTSpice, a controlled source can be used to read the voltage drop on the input
control pin and at the same time to perform the computation seen in (5.3). We can

define a 'normalization’ sub-circuit (ParNormalization) as’:

.subckt ParNormalization CtrlPin_i T_i_1

RCtrlP_i CtrlPin_i 0 1e9

ET.i.1 T.i-1 0 value={-142%(v(CtrlPin_i ,0)—thetaMin_i)/
+ (thetaMax_i—thetaMin_i)}

RT.i.1 T_.i_1 0 1e9

.ends ParNormalization

The actual i-th parameter value is provided as input voltage drop on the control
pin (CtrlPin i).

Therefore, a Voltage Controlled Voltage Source (VCVS) is used to impose the nor-
malized parameter value as the voltage drop on the output pin (T_-i-1), which is
connected to the two admittance sub-blocks. The VCVS gain corresponds exactly
to the value stored in the variable z_i used in the Section 5.4.1: the two procedures
are completely equivalent.

Two grounded resistors, wired to the sub-circuit interface pins, are necessary because
some spice implementations may not allow floating nodes. Resistances values are
set to 1 GS2 to reduce the absorbed power from the Control Pin.

2. evaluation of the paramereter-dependent basis terms &y(J) .

In order to simplify the notation of the netlist example, in the following, we will
consider only one external parameter (p = 1). We can extend the procedure to a
multivariate case adding the index *_i , as in the normalization circuit above.

A number of 2 - £ circuit elements must be added to the normalization sub-circuit,
where ¢ is the maximum parameter basis cardinality between the numerator and
denominator sub-models.

The new 'normalization’ circuit presents now £ + 1 pins: the first must be wired to
the model Control Pin, while the others are internally connected to the parameter-
basis terms sources and return the corresponding basis function values. Each one of
these is computed using a VCCS element, directly connected to the corresponding
output pin and to the ground.

A number (¢ + 1) of grounded resistors are necessary because some SPICE imple-
mentations may not allow floating nodes.

Here we present an example, creating a sub-circuit to compute the first four terms
of the Chebychev polynomial basis (¢ = 4):

.subckt cheb CtrlPin T.0 T_.1 T2 T_.3

RCtrP CtrlPin 0 1e9
VIO T.0 0 1

7 thetaMax_i and thetaMin_i should be substituted with their numerical values, corresponding to

[0 ins Oinaz] = i, where i = 1, ..., p. Moreover, the same index i should substitute the 'netlist index’ *_i.

101

Control Pin

RTO T 0 0 1e9
ET1 T_.1 0 value={—1+42%(v(CtrlPin ,0)—thetaMin)/
+ (thetaMax—thetaMin)}
RT1 T_1 0 1e9
ET2 T_2 0 value={2#v(T_1,0)v(T.1,0)—v(T_0,0)}
RT2 T2 0 1e9
ET3 T_3 0 value={2+v(T_1,0)v(T.2,0)—v(T_1,0)}
RT3 T3 0 1e9

.ends ParNormalization

where the parameter normalization is performed by the second polynomial term
realization, through the definition of ET1.

A constant voltage source is used to compute the first Chebychev element in order to
reduce the overall number of controlled components, according to the observations
of Chapter 4.

CtrlPin T Ty T, Ty

+

¥ <Rgna §RGnd <t) $o §chd i & §RGnd i & §chd i &3

Figure 5.5: Synthesis of the normalization sub-circuit cheb necessary to evaluate and
return each term of the Chebychev basis as output voltage drop on the corresponding
pin. The grounded resistors Rgnq, set to 1 G2, are necessary because some SPICE
implementations may not allow floating nodes. Only one parameter is considered.

In the GSK-model netlist, the sub-circuit presented (cheb) must be created only once
(for each i-th parameter) and will be connected to the numerator and denominator sub-
blocks though the same out pins.

Figure 5.4 shows a general scheme of the above procedure for a multivariate model, with
two external parameters.

5.5.2 An Example

Recalling to the same set-up used for the other two procedures (Section 5.3.2), we now
provide a numerical example adopting a control pin strategy.

No variable definition is required for this synthesis. The parameter normalization is
performed through the cheb-type sub-circuit defined above, using a proper indexing as
required for a multivariate model case.

102

Control Pin

Here follows the SPICE netlist, which is self-explaining®?°.

3k 3k sk >k sk sk sk sk >k sk sk sk sk >k sk sk sk sk >k sk sk sk sk R sk sk >k sk >k sk sk >k sk sk ok sk ok sk kok
*% [SIMULATION FILE (Sim. cir)]s*x

3k 3k sk >k sk sk sk sk >k sk sk sk sk >k sk sk sk sk >k sk sk sk sk R sk sk >k sk sk sk sk >k sk sk ko sk ok sk kok
x AC Validation netlist (LTSpice) *
3k 3k 3k 3k sk >k sk sk sk sk ok sk ok sk ok sk Sk ok Sk ok sk ok ok k

* Port terminations

[...Chosen Simulation Set Up...]

3k 3k 3k 3k sk >k sk sk sk sk ok sk ok sk ok sk Sk K Sk ok sk ok ok k
*+ Parameters setup
3k 3k 3k 3k sk >k sk sk sk skok koK sk ok sk Sk ok Sk ok sk ok ok k

*x Parameter n. 1
Vparameter ParCtrl_.1 0 2.0000000000000000e+00

Sk sk 3k >k sk skosk sk skosk sk sk sk skosk sk sk sk sk sk ok ok kok
* External Macromodel
Sk sk 3k >k sk osk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk ok kok

.inc 'PAR_GSKmodel. cir’
xMODcir

+ 120

+ ParCtrl_1

+ PAR_GSKmodel

st sk sk sk sk sk sk ok sk ok sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok ok ok sk ok sk ok ok
*% [GSK-MODEL FILE (Model. cir)]#*x

>k ok ok ok ok ok sk ok ok sk sk sk ok ok sk sk sk sk sk ok

.INCLUDE PAR_GSKmodel num. cir
.INCLUDE PAR_GSKmodel_den. cir

3k 3k 3k 3k skok sk sk sk skok sk ok sk sk sk sk ok Sk ok sk ok ok k
xx% BEGIN: parameterized macromodel
3k 3k 3k 3k sk >k sk sk sk sk sk sk ok koK sk sk K Sk ok sk ok ok k

.subckt PAR_GSKmodel

% Macromodel Ports/CtrlPins Definition sx
+ a.l a.2 ref
+ CtrlPin_1

kK ok >k ok

* NOTE:

8 Parts inserted inside the script as [Text] should be substituted with the specified subject, in a
LTSpice compatible form.

9 The VCCS element ET1 must be instantiated in the same line. Otherwise, the definition line should be
broken and a + should be added on top of the first element of the new line. See examples of Section 5.5.1.

103

Control Pin

a_i —> input node associated to the port i
ref —> reference node, common for all input ports
CtrlPin_1 —> parameter control pins (voltage controlled) associated
to parameter 1
* t_1_i —> input node associated to the chebychev term i of the
parameter 1
3k 3k sk 3k sk >k sk sk sk sk sk koK sk sk sk sk ok sk ok sk ok ok sk

st sk ok ok ok ok ok sk ok ok ok sk ok K ok sk ok sk ok sk ok ok ok
x* Parameter Normalization sub—circuit definition xx
st sk K ok ok skok sk ok ok sk ok K ok ok sk ok ok ok ok K

.subckt cheb CtrlPin_1

+ T1.0 T1.1 T1.2 T1.3 T1.4

xx Connect Control Pin to ground xx
RCtrP1 CtrlPin_1 0 1e9

#*% MODEL DEFINED in the FOLLOWING PARAMETER RANGE s
* parMax = 1.8000000000000000e+-01
* parMin = 2.0000000000000000e+-00

ook ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o ok ok K ok ok
x*x Polynomial Terms Evaluation xx

ook ok ok ok ok ok ok ok ok ok ok o oKk ok ok o ok ok K ok ok

* Parameter normalization realized with first term x

VIO T1.0 0 1

RTO T1.0 0 1e9

ET1 T1.1 0 value={—1+2%(v(CtrlPin_1,0) —2.0000000000000000e+00)
/(1.8000000000000000e+01—2.0000000000000000e+-00) }

RT1 T1.1 0 1e9

ET2 T1.2 0 value={2xv(T1.1,0)*v(T1.1,0)—v(T1.0,0)}
RT2 T1.2 0 1e9

ET3 T1.3 0 value={2xv(T1.1,0)*v(T1.2,0)—v(T1.1,0)}
RT3 T1.3 0 1e9

ET4 T1.4 0 value={2xv(T1.1,0)*v(T1.3,0)—v(T1.2,0)}
RT4 T1.4 0 1e9

.ends cheb

+* END of Parameter Normalization sub—circuit
sk sk 3k >k o3k sk skosk skosk sk sk sk sk skosk sk sk sk sk sk sk ok kok ok

sk sk 3k >k sk sk sk sk skosk sk sk sk skosk sk sk sk sk sk sk ok kok

+ Parameter normalization sbckt connection to CtrlPin x
sk sk >k >k sk skosk sk skosk sk sk sk sk sk sk sk sk sk sk sk ok kok

XP CtrlPin_1

4+ t.1.0 t_1.1 t_.1_2 t_.1_3 t_1_4

+ cheb

104

Control Pin

ko o Kk Kk ok K K R K KR R K K o K
* External/output ports of the network
ko o Kk Kk ok K K R K KR R K K o K

[...Chosen Representation ...]

>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok sk ok ok ok k
* Numerator network (Cn)
>k 3k 3k >k 3k sk ok ok skok ok ok skok ok sk sk ok ok skook ok ok k
[...Chosen Representation ...]

XNN_1 n

c.n_.l ¢c.n_2 0
+ t.1.0 t_1_1 t_.1_2

t_.1.3 t_-1_4 PAR_GSKmodel num

>k 3k 3k >k 3k sk ok ok skok ok ok skok ok sk sk ok ok skok ok ok k
* Denominator network (Dn)
>k 3k 3k >k 3k sk ok ok skok ok sk skok ok sk sk ok ok skok ok kok

x*Port: 1

F.d1 0 c.d.1 Vtmpn.1 1

XDD.1 c¢.d_.1 0

4+ t.1.0 t_1.1 t_-1_2 t_-1_.3 PAR_GSKmodel_den
x*Port: 2

F.d2 0 c.d.2 Vtmp.n_2 1

XDD2 c¢.d_.2 0

4+ t.1.0 t_1.1 t_-1_2 t_-1_.3 PAR_GSKmodel_den

.ends * END parameterized macromodel

ok ok ok ok K K ok ok ok ok ok ok K K K Kk o ok ok ok ok ok ok K K K K K o ok ok
*% [SIMULATION FILE (Sim. cir)]#x

ok ok ok ok K K ok ok ok ok ok ok K K K Kk o ok ok ok ok ok ok K K K K K o ok ok
ok ok ok ok K KK K o ok ok ok ok KoK K K K K K

x Frequency Analysis setup

ok ok ok ok K K K o ok ok ok ok KoK K K K K K

.ac list

[...Frequency Points...]

.end * END simulation

105

Function Calls

5.6 Function Calls

In this part we document all the functions necessary to produce the examples synthesis
of this chapter.
In particular we will see the following:

e GSK_Model2Cir_Par, driver to the other functions;

o MakeGSKWrapper_PARtype, realizes a wrapper sub-circuit for the admittance sub-
blocks, as described in Sec. 5.3, Sec. 5.4 and Sec. 5.5.

PARtype is a string depending by the parameter call type required.

5.6.1 GSK_Model2Cir Parametric

This function generates a SPICE sub-circuit that realizes a model in parametrized Gen-

eralized Sanathanan-Koerner form.

The input model must be a ratio between numerator and denominator series objects,

which must be defined through the ’partialfractions’ and 'chebychev’ bases.

The Options fields enables a customization of the SPICE synthesis, as detailed below.
Here follows the function call.

function [NumSS,DenSS,om, Href] = GSK_Model2Cir_Par (Model , pathname , name
, Options)

The inputs are:

Model is the model in the gsk form;

pathname is the path where the output files will be located;

name SPICE sub-circuit name in the output file ‘name.cir’ (Do not include
the extension in the input string);

Options is an (optional) input parameter that includes the fields

— Options.GroundReferences [default = 0]
determines how the reference nodes for all ports are generated. If it is set to
0, each port in the synthesized equivalent circuit will have a ‘private‘ (floating)
reference node. If it is set to 1, all ports will share a common reference node
(useful for grounded multiports).

— Options.ResistorType [default = 1]
controls the synthesis of resistors in the equivalent circuit. These resistors are
not ’true’ resistors, but are just dummy components that are used to translate
the model equations into a SPICE netlist. Therefore, these resistors might lead
to wrong results when employed in a ‘noise’ analysis. Four different types of
synthesis are available, according to the value of Options.ResistorType:

1. synthesis as standard resistor (default)
2. synthesis as a resistor with appended keyword 'noise=0’ (available only for

HSPICE)

synthesis as current-controlled voltage source

4. synthesis as voltage-controlled current-source

106

@

Function Calls

— Options.mustOptimizeCap [default = 1]
optimization of the capacitance value based on the location of the model poles
(for GHz-range models, typical values are 1nF or 1pF). If false, all capacitances
are set to 1F.

— Options.debug [default = 0]
if true, the function computes a validation of model response from individual
numerator and denominator response and return the reference model response
and angular frequency samples on output. Otherwise no validation is performed
and both om and Href are empty.

— Options.parametrized [default = 0]
(optional) if true, a parametrized synthesis is performed. An automatic check
on the model bases sets its value to 1 if the model is parametric, with ’chebychev’
basis.

— Options.ParCall [default = 1]
controls the parameter call type in the wrapper and admittances sub-circuits
synthesis. Three different kind of parameter calls are available, according to
the value of Options.ParCall:

1. independent parameter call. The user can select a value to the i-th pa-
rameter 1J; through the variable par_i, where ¢ = 1, ..., p is an index which
indicates the ”actual” parameter, adopting curly brackets invocations in
the macromodel sub-circuit call in the simulation circuit. (default)

2. control pin definition. Parameter values must be provided by the user as
voltage drops on specific pins. All the control pins are defined as last pins
of the macromodel sub-circuit.

3. global parameter call. Users must define a (global) variable, called par;, in
the simulation circuit to select a parameter value 9; for the macromodel.
No curly bracket invocation is required during the model sub-circuit call.
This global variable directly affects the admittance sub-circuits elements
definition.

On output, the function returns:

e NumsSS, DenSS state-space realizations of numerator and denominator of input
Model. If a parametric synthesis is required, then NumSS and DenSS return the
state-space realization obtained evaluating the parameterized model at the first
parameter value available in the parameter domain.

e om, Href angular and frequency response. If parametric synthesis required,
these variables are empty.

5.6.2 makeGSKWrapper Parametric

Constructs the main interface of the parameterized model, consisting in a wrapper that
connects the individual numerator and denominator netlists.

Three functions were developed, depending by the parameter call type. In particular, we
have:

o MakeGSKWrapper_GlobalPar, for a global parameter call;
107

Function Calls

o MakeGSKWrapper_IndPar, for a independent parameter call;
o MakeGSKWrapper_CtrlPin, for a control pin definition.

All of them share the same input definitions.
Here follows the function calls

function = makeGSKWrapper_GlobalPar (R0,P,N_name,D_name, pathname,
cktname ,CommonGND, parameterized , parValues ,NparNum, NparDen)

function = makeGSKWrapper_IndPar (R0,P,N_name,D_name, pathname , cktname ,
CommonGND, parameterized , parValues ,NparNum, NparDen)

function = makeGSKWrapper_CtrlPin (RO,P,N_name,D_name, pathname , cktname ,
CommonGND, parameterized , parValues ,NparNum, NparDen)

The inputs, common for all of them, are:

e RO is the reference port resistance and allows to select the model represen-
tation (0 admittance case ; Inf impedance case ; 0<RO<Inf scattering case)

o P is the model ports number

e N_name, D_name are the names of numerator and denominator sub-circuits,
which are supposed to be available in individual files with same name and extension
ok cir’

e pathname is the path where wrapper netlist will be located

e cktname is the name of main sub-circuit and corresponding netlist file in the form
‘name.cir’. (Do not include the extension in the input string)

e CommonGND is the type of interface port referencing scheme. If set to 0,
each port in the synthesized circuit will have a ‘private’ (floating) reference node. If
it is set to 1, all ports will share a common reference node.

e parameterized if ’true’, sets the parametric environment. In this case the
parameter value (imposed as user-defined variable or by control Pin voltage) is
normalized, using the parameter range of definition of the model. If necessary, the
sub-circuit call is modified, adding parameter initialization or control pin definition.

e parValues is a cell array of vectors containing all the parameter values, necessary
for the normalization.

e NparNum, NparDen Chebychev polynomial order of numerator and denominator
bases. Necessary to define the number of parameter bases terms.

108

Chapter 6

SPICE Synthesis of Parametric
Components

We discussed in Chapter 5 the strategies available to provide the parameter 9 to the ad-
mittance sub-blocks, which contain the parameter-dependent circuit elements necessary
for an equivalent SPICE synthesis. In particular, we provided not only a way to pass the
parameter, but we also proposed a procedure to reduce the number of computations in
the components of the circuit.

In fact, we suggested a method to perform the partial evaluation of the parameter-
dependent basis function, in order to evaluate each term of &(¥) and provide them to
the admittance sub-blocks.

In this Chapter we justify the above procedure, focusing on the problem of synthesiz-
ing the parameter-dependent basis (). We investigate several strategies to construct
the (parameter-dependent) model coefficients of (2.8), looking for the most efficient and
flexible approach.

Moreover, we report the effects of this procedure on the parameter-dependent circuit
elements choice in a complete admittance sub-circuit synthesis, seeking for the best one
(with LTSpice as working environment).

We support the proposed procedures with numerical examples: in the last section of
the chapter the functions calls to reproduce these examples are reported.

6.1 Parameter-Dependent Basis Synthesis

Since the objective of this Chapter is the admittance sub-block components synthesis,
starting from the PSK model structure of (2.6), we now refer only to the denominator
(scalar) sub-model defined as

D(S,'l9) - Zrn(ﬁ> QOn(S)7 (6'1)
n=0

109

Parameter-Dependent Basis Synthesis

where
2
ra(0) = rae&(9) (6.2)
(=1
are denominator model coefficients, with 7, , € R. B
We denoted with n the frequency basis order and with ¢ the cardinality of the parameter-
dependent basis function.
From Section 5.1, we can denote

ip=D(s,9)vp =Y jpn (6.3)
n=0

where jp o = ro(¢) vp and
Jpn =1n(¥)vey, with ve, = (s— qn)_l vp (6.4)

In the following we will consider only one external parameter, imposing p = 1 and
simplifying the notation accordingly. Nevertheless, the proposed procedure is general and
the extension to either multi-port or multivariate (or both) cases is straightforward.
Moreover, we will refer only to a particular class of orthonormal parameter-dependent
basis: the Chebychev polynomials (see Sec 2.1.1 and Sec. 5.2). The strategies we are
about to suggest are, however, general enough to be extended to other bases. Focusing
on the Chebychev polynomial is just a matter of easier comprehension and explanation.

Starting with the above set-up, we can now investigate the three main alternatives to
synthesize the parameter-dependent basis functions and consequently the model coeffi-
cients 7, (1¢).

(a) For each parameter-dependent element, a proper sub-circuit, which receives as input
the normalized parameter 19, is realized. The real-valued 7, o model coefficients can
be either provided as input or defined as a number during the sub-circuits synthe-
sis. The Chebychev polynomial elements are re-computed internally each of this
component, through the realization of (6.2). We provide a general example in the
following netlist.

* Residue of the matrix C n.l1

.subckt PAR_GSKmodel.denC_1_1 a_1_1 b_1_1

* Generate Chebychev polynomials

.param yl1l0 = 1.0

.param yll = yl

.param yl12 = 2xylxyll—yl0

x% Polynomial coefficients specification sxx

RC.1.1 a_1_1 b_1_1 {(ylO0*xcoeff0 +yllxcoeffl +yl2xcoeff2)}
.ends

The parameter-dependent component is defined in the netlist above as a resistor and
takes advantage of a global parameter call to receive the normalized parameter value

110

Parameter-Dependent Basis Synthesis

through the variable y1 (see Section 5.3). We assumed the three model coefficients
coeff0,coeffl and coeff2 fixed: they should be substituted with their numerical
values in the netlist example.

The parameter-dependent polynomial terms of &;(1J) are computed only once in
the main PSK-model file (see parameter call options of Chapter 5). They are pro-
vided one at the time, with their corresponding model coefficient r,, o, as input to
a component. This element could be either a proper circuit element or a dedicated
sub-circuit. Appropriate adder circuits are created in order to realize the expression
of (6.2), by ’linking’ these components.

We provide an example of three sub-circuits defined to compute the first three
parameter-dependent basis terms in the following netlist.

* Generate Chebychev term n. 0

.subckt cheb_ 0 a_.0 b.0 ¢c.0 d_.0 params: x0=1
GP0O a_.0 b0 ¢_.0 d_.0 { coeffxx0 }

.ends

* Generate Chebychev term n. 1

.subckt cheb_1 a_1 b_.1 c¢c.1 d_.1 params: xl=1
GP1 a_1 b_.1 c¢_.1 d_1 { coeffxxl }

.ends

* Generate Chebychev term n. 1

.subckt cheb_2 a2 b.2 ¢c.2 d_.2 params: x2=1
GP2 a2 b2 ¢.2 d.2 { coeffxx2 }

.ends

where x0,x1 and x2 are the first three values of the parameter-dependent basis and
coeff is a model coefficient. We can call the second component using the netlist
below

XP a_-1 0 b_1 0 cheb_.1 x1={yl} coeff= 10

where the model coefficient 7, is provided as input (coeff) and the parameter
value is received through an independent parameter call, using the variable y1 (see
Section 5.4).

An alternative to the above sub-circuit example is to realize an equivalent VCCS
component, which can be directly inserted in the admittance sub-block, as

GPl a_.1 0 b_1 0 { coeffsxl }

that allows avoiding the creation of ¢ sub-circuits.

We recall that the above parameter-dependent components, characterized as two
VCCS, are synthesized inside the admittance sub-circuit. Their gain is defined as
the voltage drop between the b_1 pin and the ’'local’ ground 0 and allows providing
directly the n-th term contribution of frequency-dependent basis ¢, (s), denoted as
ve,n (or vp if n=0) (6.3). Indeed, we can directly realized the product

Gain = vey, - ne6e(0) = ©n(s) - ee(V) (6.5)
inside each of the above-defined components.

111

Parameter-Dependent Circuit Elements

(c) The parameter-dependent polynomial terms of £,(1}) are computed only once in the
main PSK-model file, as in (b), but they are then provided all together as inputs to
a proper parameter-dependent component, which realizes 7, (¢) (6.2). This element
can be defined either as a dedicated sub-circuit or as a proper circuit component.
As in (b), the coefficients can be provided as input or they can be ’fixed’ during the
synthesis.
In the following we provide an example

* Residue of the matrix C n.l

.subckt PAR_GSKmodel . denC_1.1 a_1_1 b_1_1

* Generate Chebychev polynomials

x+% Polynomial coefficients specification xx

RC_1.1 a_1.1 b_1.1 {(ylOxcoeff0 +yllxcoeffl +yl2xcoeff2)}
.ends

where a sub-circuit is used to define a parameter-dependent resistor. In such case,
the parameter-dependent basis terms (y10, y11 and y12) are provided through a
global parameter call, while the model coefficients are assumed fixed, as in the (a)
example, and should be substituted with their numerical values.

In the examples presented for the several strategies we showed the effects of the pa-
rameter call choice on the admittance sub-blocks elements instantiation and definition.
We will dedicate a specific Section for the Control Pin call when we will analyze the
synthesis of parametric VCCS-elements.

Moreover, in order to apply the strategy (a), which requires to recompute each parameter-
dependent basis term, and at the same time to allow a control pin call, a massive number
of voltage sources must be added in the overall circuit (see Section 5.5.1). The combina-
tion of the two procedures is practically impossible to implement due to the very large
runtime required in a simulation.

To conclude, recalling to the examples of Chapter 5, we can now observe that in
those netlists we always set an environment compatible with the procedures (b) and (c).
To extend those examples to the (a) strategy we should move the Polynomial Term
Evaluation' routine inside each parameter-dependent component, exactly as we did in
the first two examples above, and change the admittances instantiations consistently.

6.2 Parameter-Dependent Circuit Elements

We now focus on the parameter-dependent components choice for the admittance sub-
block synthesis, investigating several strategies to obtain an equivalent realization of (6.3).
Moreover, we recall that the model representation (scattering, admittance or impedance)
does not affect the synthesis at this level: only the PSK-model interface circuit is changed
according to the selected parameter call option.

In the following we will analyse a scalar case only, referring to the denominator admittance
sub-block: the (multiport) numerator realization is straightforward.

! See netlists of Chapter 5 for more details, e.g. Example 5.4.2.
112

Parameter-Dependent Circuit Elements

6.2.1 Resistors

ip
— > 0
+ +

Up gl/ro(ﬂ) \l, Jpi - l‘ Jpn JIDm ’T‘ L-ven grn(ﬁ)

o

(a) (b)

Figure 6.1: Synthesis of a parametrized admittance sub-block for a scalar denominator,
using parameter-dependent resistor elements. At least one resistor is realized in the main
interface circuit (a). The sub-circuit (b) synthesizes each auxiliary current jp, and
should be repeated n times (with n =1, ..., 7).

The first and simplest sub-circuit for the admittance sub-block components synthesis

is a parametric-dependent resistor.
The alternatives (a) and (c) reported in Section 6.1 can be both applied during the
synthesis of this component, as it can be seen in their examples. In any case, we recall
that the n-th parameter-dependent resistance corresponds exactly to the model coefficient
rn (1), necessary to synthesize the auxiliary variable jp , (6.3).

Nevertheless, the integration of these components into a complete admittance sub-
block extraction requires to create some additional sub-circuits with respect to the netlist
realized for a non-parametric GSK-model synthesis.

Indeed, the interface circuit of the admittance sub-block can be kept unchanged but each
gain of the VCCS elements is computed in a dedicate sub-circuit. This is implemented
synthesizing the variable jp , as the voltage drop on top of the parameter-dependent re-
sistor, when the current value through it is exactly the voltage ve,,, of (6.3). This current
is realized by using another VCCS element, which closes the additional sub-circuit.
Figure 6.1 shows this kind of realization: we refer to Section 4.1.1 for the model poles
synthesis, which is not affected by the parameterization.

A previous version of this synthesis was attempted, avoiding the resistor in the main
interface circuit: however, a DC path to ground was not guaranteed in the resulting
overall circuit. This is the reason why a parameter-dependent resistor is inserted in
Fig 6.1(a): its resistance is defined as in the inverse of the model coefficient ro(9), tak-
ing advantage of the fact that this variable is related to the constant term ¢g(s) of the
frequency-dependent partial fraction basis ¢, (s) (see Sec. 1.2.1). In a multiport case,
this procedure must be repeated for all the diagonal entries of the numerator state space
realization matrix D1 (¢) (see Sec. 2.1.2 for details).

The synthesis of the parameter-dependent components as resistors presents several
drawbacks.
First, this technique requires a massive number of additional circuit components with

113

Parameter-Dependent Circuit Elements

respect to the non-parametric GSK-model synthesis, which corresponds to a loss of per-
formances during numerical simulations.

Moreover, the strategy (b), reported in Section 6.1, to compute the Chebychev polyno-
mial is not compatible with this sort of element: most of the SPICE engines, in fact, do
not admit a null resistance value (in our case, LTSpice does not). Indeed, there is no
guarantee that either all the model coefficients or at least the term 7, (1) will be different
from zero. This is a strong assumption for a general synthesis strategy, which may lead
to a simulation fail for such particular conditions.

Lastly, this kind of circuit element is not compatible with the use of a control pin: with
LTSpice, it is not possible to read a voltage drop from a specific pin in a resistance value
definition.

For these reasons, we will investigate the parameter-dependent component synthesis
through another kind of circuit element in Section 6.2.2.

An example

We now consider a two port capacitor (Case 2 of Appendix A) with known scattering
responses (k = 191 frequency samples). This corresponds to the same example reported
in Chapter 4 with a main difference: now the capacitor sidelength is no more fixed. A set
of eight equally spaced parameter samples ¥ is obtained making it vary between 254 um
and 609.6 pm.

A good validation of the final model vs raw data is obtained using 17 = 4 poles for
numerator and denominator sub-models, imposing a relaxed normalization. Chebychev
polynomial is used as parameter-dependent basis function, imposing the same cardinality
both for the numerator and denominator sub-models ¢y = {p = £ = 1.

We are going to focus our attention on the admittance SPICE synthesis, and in par-
ticular, on the parameter-dependent resistor components providing numerical results.
We will report a scalar case only, using the denominator model sub-block previously
presented: the multiport strategy realization (for the numerator sub-model) is straight-
forward, starting from Sec.4.2.2, and we will omit it.

For this realization, we use an independent parameter call procedure, evaluating all
the Chebychev polynomial terms inside each parameter-dependent sub-circuit: the nor-
malized parameter is provided as input. This procedure corresponds to the (a) strategy
of Sec. 6.1.

These sub-circuits are realized in a dedicated file, that is reported in the following?.

Sk ok ok Kk ok Kk ok Kk Sk Kk ok KK K Kk Sk Kk ok K K Sk Kk ok Ok K Ok K Rk K
x SPICE subcircuit REALIZATION *
x This file is automatically generated =
K ok ok Kk ok Kk ok Kk Sk Kk ok KK K Kk Sk Kk ok Kk ok Kk K KOk ok Ok K Ok K
x Created by cheb2CIR

ok ok ok Kk ok Kk ok Kk ok Kk ok Kk ok K R kKR ok K R K R R K Rk K
sxxkxxkx Subcircuit definition sskxx

2 Each line break of an element definition should be corrected, following the netlist rules (adding a +
before the first element of a new line)

114

Parameter-Dependent Circuit Elements

3k 3k sk K sk sk sk sk >k skosk sk sk ok skosk sk sk R sk sk sk sk >k skosk sk sk R sk sk ok sk ok ok

xx Port : 1

3k 3k sk >k sk sk 3k sk sk sk sk skosk sk kR sk sk sk sk sk sk sk >k sk sk sk sk 3k skosk sk sk >k sk sk >k sk sk sk sk R sk sk sk sk R sk sk sk sk ok ok sk ok sk ok

* xx Subcircuit showing Chebychev polynomial T_n(x) xx

3k 3k sk >k sk sk >k sk sk sk sk ok skosk sk sk ok sk sk sk sk sk sk sk >k sk sk sk sk >k sk sk sk sk >k sk sk >k sk sk sk sk R sksk sk sk R sk sk sk sk ok ok sk ok sk ok

* Residue of the matrix D n.1

.subckt PAR_GSKmodel.denD_1_.1 ¢_1_.1 d_1_1 params: x=1

* Generate Chebychev polynomials

.param x0 = 1.0

.param x1 = x

x*% Polynomial coefficients specification sxx

RD_1.1 ¢-1-1 d-1-1 {1/(x0%2.6238563418856629e+00 + x1
%x2.3120136453818994e+00)}

.ends

>k 3k 3k 3k sk sk ok sk sk sk ko sk ok sk ok sk ok

* End of subcircuit

>k 3k 3k 3k sk sk ok skok sk ko sk ok sk ok sk ok

3k 3k sk >k sk sk >k sk sk sk skok skosk sk sk >k sk sk sk sk sk sk sk >k sk sk sk sk >k sk sk sk sk >k sk sk >k sk sk sk sk R sk sk sk sk R sk sk sk sk ok ok sk ok sk ok

* xx Subcircuit showing Chebychev polynomial T_n(x) =x

3k 3k sk 3k sk sk 3k skosk sk skok skosk sk sk >k sk sk sk sk sk sk sk >k sk sk sk sk >k sk sk sk sk >k sk sk sk sk sk sk sk R sk sk sk sk R sk sk sk sk ok ok sk ok sk ok

* Residue of the pole n. 1

.subckt PAR_GSKmodel denC_1.1 a_1_1 b_1_.1 params: x=1

* Generate Chebychev polynomials

.param x0 = 1.0

.param x1 = x

x*% Polynomial coefficients specification xx

RC.1.1 a_1_1 b_1_1 {(x0%1.0580700651906305e—02 + x1
*—2.4733358979610849e¢—03)}

.ends

>k 3k 3k 3k sk sk >k sk sk sk skok sk ok sk ok sk ok

* End of subcircuit

>k 3k 3k 3k sk sk >k skok sk koK sk ok sk ok sk ok

3k 3k sk >k sk sk >k sk sk sk skok skosk sk sk ok sk sk sk sk sk sk osk >k sk sk sk sk >k sk sk sk sk >k sk sk sk sk sk sk sk R sk sk sk sk R sk sk sk sk ok ok sk ok sk ok

* xx Subcircuit showing Chebychev polynomial T_n(x) xx

3k 3k sk >k sk sk 3k skosk sk sk ok skosk sk sk >k sk sk sk sk sk sk sk 3k sk sk sk sk >k sk sk sk sk >k sk sk >k sk sk sk sk >k sksk sk sk R skosk sk sk sk ok sk ok sk ok

* Residue of the pole n. 2

.subckt PAR_GSKmodel denC_1.2 a_1_2 b_1_.2 params: x=1

* Generate Chebychev polynomials

.param x0 = 1.0

.param x1 = x

x*% Polynomial coefficients specification xx

RC.1.2 a_1.2 b_1_2 {(x0%x—3.3818898267224790e—03 + x1
*—6.2718275245796451e—03)}

.ends

3k 3k 3k 3k sk sk ok sk sk sk sk sk ok sk ok sk ok

* End of subcircuit

3k 3k 3k 3k sk sk ok sk sk sk sk sk ok sk ok sk ok

115

Parameter-Dependent Circuit Elements

>k 3k 3k ok 3k ok skosk ok sk sk ok sk sk sk sk sk sk ok skok sk skosk ok skok ok sk sk ok sk sk sk ok sk sk sk skok ok skosk >k sk sk sk sk sk ok ok ko ok skok ok

* xx Subcircuit showing Chebychev polynomial T_n(x) xx

>k 3k ok ok 3k ok skosk ok sk sk ok sk sk sk sk sk sk ok skok sk sk sk ok skok sk sk sk sk sk sk sk ok skok sk skok ok skosk >k skosk ok sk sk ok ok ko ok skok ok

* Residue of the pole n. 3

.subckt PAR_GSKmodel denC_1.3 a_1_3 b_1_.3 params: x=1

* Generate Chebychev polynomials

.param x0 = 1.0

.param x1 = x

x*x Polynomial coefficients specification x*x

RC.1.3 a_1.3 b_1.3 {(x0%7.3335707177552789e—01 + x1%4.4161854263110789
e—01)}

.ends

>k 3k 3k >k ok 3k sk ok sk skok ok skosk ok ok skok ok

* End of subcircuit

>k 3k 3k >k ok 3k sk ok sk skok ok skosk ok ok skok ok

>k 3k 3k ok 3k sk ok skosk ok sk sk ok sk sk sk sk sk sk ok skok ok sk ok skok sk sk sk ok sk sk sk ok sk sk sk skok ok skosk >k sk sk sk sk sk ok ok ok ok skok ok

* xx Subcircuit showing Chebychev polynomial T_n(x) =x

>k 3k ok ok 3k sk ok skosk ok sk sk ok sk sk sk sk sk sk ok skok sk sk ok skok sk skosk ok sk sk sk ok skok sk skok ok skosk >k sk sk sk sk sk ok ok ko ok skok ok

* Residue of the pole n. 4

.subckt PAR_GSKmodel denC_.1.4 a_1_4 b_1_4 params: x=1

* Generate Chebychev polynomials

.param x0 = 1.0

.param x1 = x

x*x Polynomial coefficients specification x*x

RC.1.4 a_1.4 b_1.4 {(x0%3.7342955666744743e—01 + x1%4.6801569811022586
e—01)}

.ends

>k 3k 3k >k ok 3k sk ok sk sk ok skosk ok ok skok ok

* End of subcircuit

>k 3k 3k >k 3k 3k sk >k sk sk ok skosk ok ok skok ok

These components are then integrated in a complete admittance sub-block synthesis as
detailed in Section 6.2.1, including the file previously created. We provide a netlist
example in the following.

i i I I I IIIINITTI™Y

x SPICE subcircuit REALIZATION *

x This file is automatically generated =

K koK K K KK kK KK K K K KK K K R kK KK K R kK Rk K Rk K Rk K

x Created by SS2Cir__par_R

K koK K K KK kK K KK K K K KK K K R kK KKK R KK R KK Rk K Rk K

K kKK kK KK K KK KK KKK K KK R KK KK KKK R KK R KK R KK R KK K KK R Kk R Rk ok

x NOTE:
* a_i —> input node associated to the port i
x ref —> reference node, common for all input ports

* y —> parameter value in input to the netlist (normalized)
S kKK KRR R R K R K KKK K KRR K K oK oK R KKK K KRR R K sk R KKK K KK R Kk ok ok ok ok

xx Include the chebychev file xx
116

Parameter-Dependent Circuit Elements

.INCLUDE PAR_GSKmodel_den_cheb. cir

3k 3k sk K sk sk sk sk R skosk sk sk skosk sk sk R sksk sk sk >k skosk sk sk R sk sk ok sk kosk

x Interface (ports specification) x

Sk 3k sk >k sk sk sk sk ok skosk sk sk 3k skosk sk sk >k skosk sk sk >k skosk sk sk ok sk sk ok sk ok ok
.subckt PAR_GSKmodel_den

+ a_l ref

+ params: x = 1

Sk 3k sk K sk sk sk sk ok skosk sk sk >k skosk sk sk R sksk sk sk R skosk sk sk ok sk sk ok sk ok ok

3k 3k sk >k sk sk sk sk ok skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sksk sk sk R sk sk sk sk ok sk skok sk ok
* Main circuit connected to output nodes x
3k 3k sk >k sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk R skosk sk sk ok sk skok sk ok

* Port 1

GC_1_.1 a_1 ref NPC.1.1 0 1
GC_.1.2 a_1 ref NPC.1.2 0 1
GC_1.3 a_1 ref NPC.1.3 0 1
GC_.14 a_1 ref NPC_.14 0 1

XPD_1.1 a_1 ref PAR_.GSKmodel.denD_1_1 x={y}
*

3k 3k sk >k sk sk sk sk ok sk sk sk sk sk sk sk sk sksk sk sk sk sk sk sk sk >k sk sk sk sk R sk sk sk sk ok sk skok sk ok
Sk 3k sk >k sk sk sk skok sk sk sk sk ok sk sk sk sk >k sk sk sk sk >k skosk sk sk ok sk sk sk sk ok ok sk ok sk ok

* Synthesis of real and complex poles x

Sk 3k sk >k sk sk sk skok skosk sk kR sk sk sk sk R sk sk sk sk >k sk sk sk sk ok sk sk sk sk ok ok sk ok sk ok

* Real pole n. 1

CS_1 NS_.1 0 9.9999999999999998e—13

RS_.1 NS_.1 0 1.0072196180861735e+03

GS_1.1 0 NS_1 a_1 ref 1.0000000000000000e+00
*

* Real pole n. 2

CS_2 NS_2 0 9.9999999999999998e—13

RS2 NS2 0 1.9664657708131386e+01

GS_2.1 0 NS_2 a_1 ref 1.0000000000000000e+00
*

x Complex pair n. 3/4

CS_3 NS_.3 0 9.9999999999999998e—13

CS_4 NS4 0 9.9999999999999998e—13

RS_.3 NS.3 0 2.7138694198861572e+01

RS.4 NS4 0 2.7138694198861572e+01

GL3 0 NS.3 NS4 0 3.8108614844969030e—01
GL4 0 NS4 NS3 0 —3.8108614844969030e—01
GS_.3.1 0 NS_.3 a_1 ref 2.0000000000000000e+00
*

Sk 3k sk >k sk sk sk sk skosk sk sk ok skosk sk sk R skosk sk sk >k sk sk sk sk sk sk sk sk sk ok ok sk ok sk ok

* Synthesis of the parametric polynomials =
Sk 3k sk >k sk sk sk sk >k skosk sk skok skosk sk sk ok skosk sk sk >k sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok

*C Elements
*Port n. 1

117

Parameter-Dependent Circuit Elements

XPC.1.1 NPC.1.1 0 PAR_GSKmodel.denC_1_1 x={y}
GPC1 0 NPC_.1.1 NS1 01

XPC.1.2 NPC_1.2 0 PAR_GSKmodel.denC_1-2 x={y}
GPC2 0 NPC.1.2 NS2 0 1

XPC.1.3 NPC_.1.3 0 PAR_GSKmodel.denC_1_3 x={y}
GPC3 0 NPC.1.3 NS3 0 1

XPC.1.4 NPC_.1.4 0 PAR_GSKmodel.denC_1_4 x={y}
GPC4 0 NPC.1.4 NS4 0 1

+*D Elements

*Port n. 1
K ok oK ok ok ok ok ok ok
.ends

Sk 3k >k >k sk osk sk sk sk sk sk sk >k sk ok sk sk sk ok
* End of subcircuit
sk 3k >k >k sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok

Since the denominator is scalar, the part of the netlist related to the D(¢¥) matrix
elements is empty. We recall that the diagonal entries are, in fact, inserted in the main
interface circuits of the admittance sub-block: in this case, this procedure corresponds to
insert the only resistor in the interface circuit on top of the netlist example.

6.2.2 Controlled Sources

In this section we will expose a different approach to the problem of synthesizing a
parameter-dependent component, using Controlled Sources elements. These components,
commonly available in any circuit solver, reveal several favourable characteristics for the
extraction of a PSK-model, in an LTSpice environment.

In particular, we realize two synthesis procedures based on Voltage Controlled Current
Sources (VCCS): the same strategies could be equally realized using Current Controlled
Current Sources (CCCS).

Even if this component is compatible with all the alternatives proposed in Section 6.1 for
the Chebychev polynomial synthesis, we implement an admittance sub-block extraction
following only the last two (denoted as (b) and (c)), due to the expectation of better
model performances.

We now report these two different approaches.

(i) Strategy

A major modification of the admittance sub-block interface circuit (with respect to the
non-parametrized synthesis) is necessary if each term of the Chebychev polynomial must
be provided to a single component ((b) strategy), which in this case is a proper sub-
circuit. Indeed, the VCCSs elements must be replaced with CCCSs components. The
Jpn auxiliary currents of (6.3) are realized as the sum of the currents obtained from the
parallel connection of ¢ parameter-dependent VCCS components, whose gain is defined

118

Parameter-Dependent Circuit Elements

as (6.5). This corresponds to an equivalent SPICE realization of the single sum term of
(6.3), as it is shown in Figure 6.2.
In the following we provide a netlist example, using the parameter-dependent compo-

ip
— > 0
+
UpD ¢ jD,O(l(}) e »L jDﬁ(ﬁ)
o
(a)
JDn A i‘ Ve - Tno &o(V) - - - l‘ Ve Ty &o(U)

(b)

Figure 6.2: Synthesis of a parametrized admittance sub-block for a scalar denominator,
using parameter-dependent VCCS elements. Main interface circuit reported in (a). The
'sum’ sub-circuit (b) synthesizes each auxiliary current jp, as the sum of currents pro-
vided by the parameter-dependent components. Each one of these elements is related to
a parameter-dependent basis term &;.

nents defined in Sec. 6.1(b), as

GPC_1.2.0 NPC_1.2 0 NS.2 0 {y0*[coeff0]}
GPC_1.2.1 NPC_.1.2 0 NS.2 0 {yl*[coeffl]}
VPC_12 0 NPC_1.2 0

where yO and y1 are user defined variables storing the first two chebychev polynomial
terms, while coeff0 and coeff1 are the model coefficients numerical value.
In the above netlist, the current that flows through the short circuit denoted as VPC_1_2,
and defined between the node NPC_1_2 and the ’local’ ground (0), is equivalent to the
expression
‘
jD,n = Z Ve - Tn,ﬁfﬂ(ﬁ) = SDn(S) : Tn(ﬁ) (6'6)
=0

where vc, is the voltage drop between the pin NS_2 and the ground (0)3. For the above

3 We refer to the netlist example for the synthesis of a scalar admittance of Section 4.2.1.

119

Parameter-Dependent Circuit Elements

example we referred to the second model pole (n = 2) and to a parameter-basis cardinal-
ity £ = 1.

The main drawback of this approach is the massive growth of the model components
number, which scales linearly with the definition of the parameter-dependent basis order
as O(fnP?). This drastically affects the equivalent PSK-model performances and lead us
to develop the second strategy.

We now provide an example of the first strategy described above.

An Example of (i) Strategy

We now synthesize the same example of Section 6.2.1, adopting a parameter-dependent
VCCS component and the above strategy (Sec 6.2.2). In particular, we use a proper
dependent source definition, combined with an independent parameter call, to synthesize
the admittance sub-block of the model denominator.

We can see the resulting netlist in the following.

i i I I I I ITTI™Y

* SPICE subcircuit REALIZATION *

x This file is automatically generated =

i i I I I I ITTI™YS

x Created by SS2Cir_par_VCCSi

i I I I I IITIIIIIIIINITTIY

K koK K KK R KK K KK KKK KK R KK R KK SR KK K Kk K K K ok K R kK K ok K R K R kK R K R R K Rk K K
* NOTE:

* a_i —> input node associated to the port i

x ref —> reference node, common for all input ports

* y —> parameter value in input to the netlist (normalized)
K koK K KK R KK K KK R KK KK SR KK R KK SR KK K Kk R KK K ok K R kK K kK R kR kK K R K R KK Rk K K
ok ok ok K ok ok ok ok ok K R kK K kK K ok K R KK R KK KKK R K K Rk K

x Interface (ports specification) x

ok ok ok K ok ok ok ok ok K R kK K kK K ok K R KK R KK KKK R K K Rk K

.subckt PAR_GSKmodel_den

+ a_l ref

+y0=1yl=1

ok ok ok ok ok ok ok kK K K R kK K ok K K KK R KK KKK R K K Rk K

K koK K kK KK R KK K KK R KK KKK R KK R KK KK R KK KKK R K Kk

% Main circuit connected to output nodes x

K koK K kK KK R KK K KK R KK KKK R KK R KK KKK R KK R K R K Kk

* Port 1

FC_.1_.1 a_1 ref VPC.1_1 1
FC_.1.2 a_1 ref VPC.12 1
FC_.1.3 a_1 ref VPC.1.3 1
FC_.1.4 a_1 ref VPC.14 1
FD_1_.1 a_1 ref VPD_.1.1 1
*

R i i i e I I I TIIIIIIII I
* Synthesis of real and complex poles x
R i i I I I I TIIIIIIII I
* Real pole n. 1

120

Parameter-Dependent Circuit Elements

9.9999999999999998e—13
1.0072196180861735e+403
21 a_1l ref 1.0000000000000000e+00

* Real pole n. 2
CS_2 NS_2 0 9.9999999999999998e—13

RS2 NS2 0 1.9664657708131386e+01

GS_2.1 0 NS_2 a_1 ref 1.0000000000000000e+00
*

x Complex pair n. 3/4

CS_3 NS_.3 0 9.9999999999999998e—13

CS_4 NS4 0 9.9999999999999998e—13

RS.3 NS3 0 2.7138694198861572e+01

RS 4 NS4 0 2.7138694198861572e+01

GL3 0 NS.3 NS4 0 3.8108614844969030e—01
GL4 0 NS4 NS3 0 —3.8108614844969030e—01
GS_.3.1 0 NS.3 a_1 ref 2.0000000000000000e+00
*

3k 3k sk K sk sk sk kR skosk sk sk ok sk sk sk sk R skosk sk sk >k sk sk sk sk ok sk sk ok sk ok ok sk ok sk ok

* Synthesis of the parametric polynomials =
3k 3k sk K sk sk sk sk ok skosk sk skok sk sk sk sk R sk sk sk sk >k sk sk sk sk ok sk sk ok sk ok ok sk ok sk ok

*C Elements

*Port n. 1
GPC_1.1.0 NPC_1_1
GPC_1_.1_.1 NPC_1.1
VPC_.1.1 0 NPC_.1_1 0

O

NS_1 0 {y0%1.0580700651906305e—02}
NS_1 0 {y1%—2.4733358979610849e—03}

O

NPC_.1.2 0 NS_2

e

{y0%—3.3818898267224790e—03}

C 0
GPC.1.2.1 NPC_.1.2 0 NS_2 0 {yl*x—6.2718275245796451e—03}
VPC.1.2 0 NPC_1.2 0
GPC.1.3.0 NPC_.1.3 0 NS3 0 {y0%7.3335707177552789e—01}
GPC.1.3.1 NPC_.1.3 0 NS 3 0 {y1%4.4161854263110789e—01}
VPC.1.3 0 NPC_.1.3 0
GPC.1.4.0 NPC_.1.4 0 NS4 0 {y0%3.7342955666744743e—01}
GPC.1.4.1 NPC_.1.4 0 NS4 0 {y1%4.6801569811022586e—01}
VPC.1.4 0 NPC_14 0

+xD Elements
*Port n. 1
GPD_1.1.0 NPD_1_1
GPD_1_.1_1 NPD_1_1
VPD_1.1 0 NPD_1_1 0

e

a_1 ref {y0%2.6238563418856629e+00}
a_1 ref {y1%2.3120136453818994¢e+00}

e

sk sk sk 3k >k skosk sk skoskoskosk sk sk sk sk sk skeoske sk sk sk sk sk sk k skosk ok ok
.ends

sk 3k >k >k sk osk sk sk sk sk sk sk sk sk ok ok sk sk ok

* End of subcircuit

sk 3k >k >k sk osk sk sk sk sk sk sk sk sk ok ok sk sk ok

121

Parameter-Dependent Circuit Elements

(ii) Strategy

A proper circuit element can be defined to receive as inputs all the Chebychev polynomial
terms and to internally compute the model coefficient 7, () of (6.2), which corresponds
to the strategy (c) of Sec. 6.1. In such case, no modification to the non-parametric
admittance sub-block synthesis structure is required: this technique is similar to the one
reported in Chapter 5.1 and showed in Fig. 5.1, with an adjustment on the interface
circuit.

Indeed, this procedure takes advantage of a new definition of the element gain as

Gxxx n+ n— value={<expression>}

This is the expression of Arbitrary Behavioral Voltage (or Current) Source (ABVS) in an
LTSpice compatible form [1], which can also be defined as BVxx, according to the LTSpice
manual. With this representation, we are now able to directly realize jp , of (6.6) in a
single component.

This technique can be easily combined with the several parameter call option available
(and detailed in Chapter 5). We provide the same example of the first strategy (Sec. 6.2.2),
which is now compatible both for an Independent Parameter or a Global Parameter
call, as:

GC_1.2 a_1 ref value={v(NS_2,0)*(+y0*[coeff0] +ylx[coeffl])}

where yO and y1 are defined variables, storing the first two Chebychev polynomial terms
values, while [coeff0] and [coeff1] should be substituted with the model residues nu-
merical values 7,; , with n = 2 and ¢ = 1,2 respectively. We recall that a_1 and ref are
the admittance sub-circuit interface pins.

As we described in Section 4.2, also in this case a resistor must be forced in the main
interface circuit in order to avoid a netlist that could lead, in particular conditions, to a
circuit configuration that does not present a DC path to ground.

For this reason, we create a unitary ’dummy’ resistor and we compensate its effect adding
a’-1’ term in the trans-conductance definition related to the model coefficient r¢(«}) which,
in a multiport case, corresponds to modify each VCCS element associated to a diagonal
entry of the model state space matrix D(?) (see Sec.2.1.2). The resulting circuit is showed
in Figure 6.3

We provide an example of this modification in the netlist reported below.

GD_1.1 a_1 ref value={v(a_l,ref)*(—1 4+y0x[coeff0] +ylx[coeffl])}
RD_1.1 a_1 ref 1

All the assumptions made in the example reported above, about both variables and pins,
still hold. This technique presents the main advantage of leaving the number of circuit
elements unchanged with respect to a non-parametric GSK-model extraction, with a very
slight impact on simulations performances.
Moreover, the same syntax still holds if a CCCS must be defined as the parameter-
dependent circuit component, due to the generality of the ABVS component. Neverthe-
less, we did not develop such synthesis yet.

This second technique, in fact, not only solves the problem of the increasing number
of parameter-dependent components but most importantly has allowed us to

122

Parameter-Dependent Circuit Elements

Up § 10 \l, (=14 79(9)) - vp \l, ri(Nvey - \l, ra(0)ven

(b)

Figure 6.3: Synthesis of a parametrized admittance sub-block of a (scalar) denominator,
using parameter-dependent VCCS elements directly inserted in the main interface circuit
(a). Unitary resistor forced in the circuit in order to guarantee a DC path to ground.

e extend the automatic extraction to a generic multivariate model in a simple and
straightforward way;
e realize a SPICE synthesis adopting a Control Pin.

We will detail this two key points in the following sections, providing examples for the
above strategy implementation.

Extention to Multivariate Model Synthesis

From now on we will refer only to the second strategy of Sec. 6.2.2, exposing some im-
portant improvements that were developed only for this case.

We now focus on the extension of the proposed strategy for the synthesis of a parameter-
dependent circuit element in the case of a multivariate PSK-model.

Starting from the VCCS element definition of Sec. 6.2.2(ii), we can modify it using the
proper indexing, as described in Chapter 5, in order to internally compute 7, () for a
multivariate model representation.

Considering two external parameters (p = 2), we can extend (6.2) to

VA
D) = 373 vy €0 (0Y) &, (99) (6.7)

l1=14,=1

where ¢; and /5 are the cardinalities of the parameter-dependent bases.

We can now modify the definition of the controlled elements reported in Sec. 6.2.2(ii)
presenting the same example, extended to two parameters, as

GC_12 a_1 ref value={v(NS_2,0) *(
+y10%y20«[coeff00] +yllxy20%[coeffl0] +yl12+y20x[coeff20
+y10xy21x[coeff0l] +yllxy2lx[coeffll] +yl2xy2l«[coeff21])}

where the variables y1_11 and y2_12 are associated to the parameter-dependent basis
terms of &, (9(M) and &, (9?)), respectively.

123

Parameter-Dependent Circuit Elements

Imposing #; = 2,05 = 1 and replacing the elements coeff_11_12% with their correspond-
ing model coefficients 7, 4, ¢, (with n = 2), we obtain an equivalent expression of (6.7).
We recall that the code fragment above is compatible with both an independent pa-
rameter or a global parameter call.

Its extension for more than two parameters (p > 2) is straightforward. The above
procedure does not modify the overall admittance sub-circuit, which remains the one of
Figure 6.3.

An Example of (ii) Strategy

We provide here an example of a multivariate indexing synthesis. Otherwise, we ex-
tract the same scalar denominator sub-model used in Sec.6.2.1 and Sec.6.2.2, which is
dependent by only one external parameter: this choice allows us to obtain a comparison
between all the parameter-dependent synthesis strategies. The extension of this synthesis
procedure to a ’proper’ multivariate case (with p > 1) is straightforward and does not
require any additional observation to the ones reported above.

We adopt an independent parameter call and we provide each Chebychev polynomial
term to the parameter-dependent components of the admittance sub-block (strategy(c)).

Here follows the denominator sub-block netlist.

Sk ok ok K ok ok Kk ok Kk Sk Kk ok KOk ok Kk ok Kk ok KOk Sk Kk ok KOk ok Ok K Ok K
x SPICE subcircuit REALIZATION *

x This file is automatically generated =

Sk ok ok K ok ok Kk ok Kk Sk Kk ok KOk ok Kk ok Kk ok Kk Sk Kk ok KOk ok Kk K Ok K

x Created by SS2Cir_par_IndPar

Sk ok ok oKk ok Kk ok Kk Sk Kk ok Kk ok Kk Sk Kk ok KOk Sk Kk ok KOk ok Ok K Ok K

K ok ok Kk oK koK K KK K KK K KK R KK KK KK R K K R KK R KK R R K R K K R R K R ok K Rk ok

x NOTE:

* a_i —> input node associated to the port i

x ref —> reference node, common for all input ports

* yl —> parameter value in input to the netlist (normalized),

associated to parameter 1
K ok ok Kk oK koK K KK kK K KK KK KK R KK R K K R KK R KK R K R kK R R Kk ok K Rk ok
ok ok ok Kk ok Kk ok Kk ok Kk ok Kk ok K R ok Kk ok K R K K R R K Rk K
* Interface (ports specification) x
ok ok ok Kk ok Kk ok Kk ok Kk ok Kk ok K R ok Kk ok K R K K R R K Rk K
.subckt PAR_GSKmodel_IndPar_den
+ a_l ref
+ yl0 =1 yl11 =1
ok ok ok Kk ok Kk ok Kk ok Kk ok Kk ok K R ok Kk ok K R R K R R K Rk K
R I I ™™
* Main circuit connected to output nodes x
K ok ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kk ok Kok

* Port 1

4 The indexes ¢; and f> should substitute the netlist indexes’ *_.11 and *_12 respectively.

124

Parameter-Dependent Circuit Elements

GC_.1.1 a_1 ref value={v(NS_1,0) %(
+y10%1.0580700651906305e—02 +y11%—2.4733358979610849¢—03)}

GC_.12 a_1 ref value={v(NS_2,0) %(
+y10%—3.3818898267224790e—03 +yll%—6.2718275245796451e—03)}

GC_.1.3 a_1 ref value={v(NS_.3,0) x(
+y10%7.3335707177552789e—01 +y11%4.4161854263110789e¢—01)}

GC_.14 a_1 ref value={v(NS_4,0) %(
+y10%3.7342955666744743e—01 +y11%4.6801569811022586e¢—01)}

RD_1.1 a_1 ref 1

GD_1.1 a_1 ref value={v(a_-1,ref)x(

+ —1 +y10%2.6238563418856629e¢+00 +y11%2.3120136453818994e+00)}
*

3k 3k sk >k sk sk sk sk ok sk sk sk sk sk sk sk sk sksk sk sk sk skosk sk sk >k sk sk sk sk R sk sk sk sk ok sk skok sk ok

3k 3k sk >k sk sk sk skok skosk sk sk ok sk sk sk sk R skosk sk sk >k sk osk sk sk ok sk sk ok sk ok ok sk ok sk ok

* Synthesis of real and complex poles x

3k 3k sk >k sk sk sk sk ok skosk sk sk ok skosk sk sk >k sk sk sk sk ok sk sk sk sk ok sk sk ok sk ok sk sk ok sk ok

* Real pole n. 1

CS_1 NS_1 0 9.9999999999999998e—13

RS_1 NS_.1 0 1.0072196180861735e+03

GS_1_1 0 NS_.1 a_1 ref 1.0000000000000000e+00
*

* Real pole n. 2

CS_2 NS_2 0 9.9999999999999998e—13

RS2 NS2 0 1.9664657708131386e+01

GS_2.1 0 NS_.2 a_1 ref 1.0000000000000000e+00
*

x Complex pair n. 3/4

CS_3 NS.3 0 9.9999999999999998e—13

CS_4 NS4 0 9.9999999999999998e—13

RS.3 NS.3 0 2.7138694198861572e+01

RS 4 NS4 0 2.7138694198861572e+01

GL.3 0 NS.3 NS4 0 3.8108614844969030e—01
GL4 0 NS4 NS3 0 —3.8108614844969030e—01
GS_3.1 0 NS.3 a_1 ref 2.0000000000000000e+00
*

3k 3k sk 3k sk skosk sk ok skosk sk sk >k sk sk sk sk sk sk ok sk sk sk sk ok sk sk ok k

.ends

>k 3k 3k 3k sk sk >k sk sk sk koK sk ok sk ok sk ok

* End of subcircuit

>k 3k 3k 3k sk sk >k sk sk sk koK sk ok sk ok sk ok

125

Synthesis with the Control Pin Interface

6.3 Synthesis with the Control Pin Interface

Another important advantage given by the last parameter-dependent element definition
of Sec. 6.2.2 is its directly compatibility with a Control Pin interface.

Indeed, the overall admittance sub-circuit does not change with respect to the one
reported in Figure 6.3. We recall that the only synthesis modification must be performed
in the wrapper netlist, adding a sub-circuit to normalize the parameter, to evaluate and
to return the parameter-dependent basis components, as detailed in Section 5.5.1.

In the following, we use the same example reported in Section 6.2.2 for the second
strategy (ii), with the proper indexing adjustments for a multivariate case (even if we
consider only one external parameter).

The resulting netlist is:

GC_.1.1 a_1 ref value={v(NS_1,0) %(
+v(y1l0,0) *[coeff0] +v(yll,0)*[coeffl])}

where y10 and y11 are actually control input pins of the admittance sub-blocks (see
Sec.5.5.1) and 0 is the 'local’ ground. The parameter-dependent basis terms &y()) and
&1(9), previously evaluated, are provided as voltage drops on top of these pins. We recall
that [coeff0] and [coeffl] are the model coefficients r,, and should be substituted
with their numerical values.

The above example is completely equivalent to the one of Sec. 6.2.2(ii), reported in

Figure 6.3, and produces the same results in terms of model accuracy. Its extension to a
multivariate case is straightforward, following the appropriate indexing rules, which are
specified in Section 6.2.2.
For what concerns the performances of the equivalent netlists, the control pin case shows
a (slight) loss of speed during simulations. This change can be associated either with
the increased number of overall components or to the new elements definitions: further
investigations should be performed in this direction, stressing the procedure with other
circuit solvers.

6.3.1 Topological Issues

Also using a Control Pin interface, a ’dummy’ resistor must be added to the main in-
terface circuit of the admittance sub-block. This is necessary to avoid particular circuit
configurations that do not present a DC path to ground.

As for the second strategy of Sec. 6.2.2 we compensate the effect of such resistors adding a
-1’ term in the definition of the parameter-dependent VCCS elements. This corresponds
to the following code fragment:

GD_1.1 a_1 ref value={v(a_-1,ref)x(
+v(y10,0) *x[coeff0] +v(yll,0)«[coeffl] —1)}
RD_1.1 a_1 ref 1

126

Synthesis with the Control Pin Interface

where all the assumptions made for the example of Sec. 6.2.2(ii) still hold.
But a complete model synthesis with the above procedure generates the following warning
in the log file:

Singular matrix: Check node modcir:c_d_1

Iteration No. 1

Direct Newton iteration failed to find .op point. (Use ”.option
noopiter” to skip.)

Starting Gmin stepping

Gmin = 10

Gmin = 1.07374

Gmin = 0.115292
Gmin = 0.0123794
Gmin = 0.00132923
Gmin = 0.000142725
Gmin = 1.5325e—-005
Gmin = 1.6455e—006
Gmin = 1.76685e¢—007
Gmin = 1.89714e¢—-008
Gmin = 2.03704e¢—-009
Gmin = 2.18725e—-010
Gmin = 2.34854e—-011
Gmin = 2.52173e—012
Gmin = 2.70769e¢—013
Gmin = 0

Gmin stepping succeeded in finding the operating point.

From what it can be seen, LTSpice detects a singularity in the overall circuit that
corrupts and lead to a failure of the standard procedure (Direct Newton Method) used
to find the operating point (Op) of the circuit.

Indeed, most of the circuit solvers, if an AC analysis is required, automatically perform
a pre-processing DC solution of the circuit under investigation: this procedure presents
several numerical advantages which increase the simulation performances of the solver.
LTSpice uses, at first, a successive linear approximation to find the Op of a circuit through
standard Newton-Raphson iteration (”Direct Newton Iteration”): if this fails, the solver
tries several other methods (see LTSpice manual [1]). In our case, an ”Adaptive Gmin
Stepping” procedure reaches the goal of finding the operative point.

The failure to find the Op point leads to a significant slow-down of the model perfor-
mances, increasing the time required for a simulation.

Several attempts were tried in order to bypass the issue reported before, since the
overall circuit is not singular. The only apprach that was successful is detailed next.

By removing one of the parameter-dependent basis terms from the definition of the
parametric VCCS element associated to the model coefficient r¢(¢#), which includes the
-1’ term (as discussed above), we discovered that the op point computation succeeded
without any error or warning.

Moreover, we verified that this behaviour holds for all the parameter-dependent basis
terms randomly chosen (in the same element described above).
Starting from the above observations and using the Chebychev polynomial recurrence

127

Synthesis with the Control Pin Interface

property (5.4), we eliminated from the definition of the VCCS element described above
the first parameter-dependent basis terms y_i10, which in this particular case are always
unitary: we repeated this procedure for all the parameters and for all the diagonal entries
of the state space matrix D(¢#). The result is presented, using the same example reported
above, in the following code fragment:

GD_1.1 a_1 ref value={v(a_1,ref)x(
+[coeff0] +v(yl11,0) x[coeffl] —1)}
RD_1.1 a_1 ref 1

A note of attention is placed here.
By integrating this procedure in the overall PSK-model synthesis with a Control Pin
interface, we solved the problem related to the Op computation in LTSpice, but we lost
the generality of the automatic tool developed, which is now strictly connected to the
Chebychev basis.
Moreover, this procedure may lead to possible simulations failure using other solvers:
further investigations must be performed.

Nevertheless, this strategy was successful in all the stress-tests used in LTSpice to
verify the efficiency of the synthesis with a Control Pin interface.

6.3.2 An Example

We provide now the same example reported for the multivariate strategy of Sec. 6.2.2,
adopting a control pin interface. The same assumptions made above still hold.

The example netlist, quite similar to the one presented for the multivariate synthesis,
is provided in the following.

i I I I I ITTI™Y

x* SPICE subcircuit REALIZATION *

x This file is automatically generated =

i i I I I I ITTIY

x Created by SS2Cir_par_CtrlPin

S i i I I TN ITTI™YS

K kKK KK KK K KK R KK KKK R KK R KK KK KKK KK R KK R KK R KK K KK R Kk R Rk ok

* NOTE:

* a_i —> input node associated to the port i

x ref —> reference node, common for all input ports

* yi —> input node associated to the i chebychev polynomial term (

normalized)
ok ko ok ok ok o ko ok ok ok K ok ok ok Kk Kok Kk oKk ok ok ok o ok ok ok o ok ok Kk Kok Kok ok ok ok ok ok o ok o ok Kk
ok ko ok ok ok ok o ok Kk K ok Kok Kok ok ok ok ok ok o ok o ok ok Kok Kok %
x Interface (ports specification) x
ok ko ok ok ok ok o ok Kk K ok Kok Kok ok ok ok ok ok o ok o ok Kk Kok Kok %
.subckt PAR_GSKmodel CtrIPin_den
+ a_l ref
+ y10 yl11
ok ok ok ok ok o ok o ok Kk K ok Kok Kok ok ok o ok o ok ok ok Kok KO0k %
ok ok ok ok ok ok ok ok o ok ok K ok Kk Kok Kok ok ok ok ok ok o ok o ok ok Kk Kok Kok Kok Kok
% Main circuit connected to output nodes x
ok ok ok ok ok ok ok ok o ok ok K ok Kk Kok Kok ok ok ok ok ok o ok o ok ok Kk Kok Kok Kok Kok

128

Synthesis with the Control Pin Interface

* Port 1
GC_.1.1 a_1 ref value={v(NS_1,0) %(
+v(y10,0)*1.0580700651906305e—02 +v(y11l,0)*—2.4733358979610849¢—03)}

GC_.12 a_1 ref value={v(NS_2,0) %(
+v(y10,0)*—3.3818898267224790e—03 +v(y1l1l,0)*—6.2718275245796451e—03)}

GC_.1.3 a_1 ref value={v(NS_.3,0) x(
+v(y10,0)*7.3335707177552789e—01 +v(y11,0)%4.4161854263110789e¢—01)}

GC.14 a_1 ref value={v(NS_4,0) %(
+v(y10,0)*3.7342955666744743e—01 +v(y11,0)*4.6801569811022586¢e¢—01)}

GD_1.1 a_1 ref value={v(a_-1,ref)x(

+2.6238563418856629e+00 +v(yll,0)*2.3120136453818994e+00 —1)}
RD_1.1 a_1 ref 1

*

3k 3k sk >k sk sk sk sk ok sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk R sk sk sk sk ok sk skok sk ok

3k 3k sk K sk sk sk sk ok skosk sk sk >k sk sk sk sk R skosk sk sk >k sk sk sk sk ok sk sk ok sk ok ok sk ok sk ok

* Synthesis of real and complex poles x

3k 3k sk >k sk sk sk sk >k skosk sk sk ok sk sk sk sk ok skosk sk sk >k sk sk sk sk ok sk sk sk sk ok ok sk ok sk ok

* Real pole n. 1

CS_1 NS_.1 0 9.9999999999999998e—13

RS_1 NS_.1 0 1.0072196180861735e+03

GS_1_1 0 NS_.1 a_1 ref 1.0000000000000000e+00
*

* Real pole n. 2

CS_2 NS_2 0 9.9999999999999998e—13

RS2 NS2 0 1.9664657708131386e+01

GS_2.1 0 NS_.2 a_1 ref 1.0000000000000000e+00
*

x Complex pair n. 3/4

CS_3 NS_.3 0 9.9999999999999998e—13

CS_4 NS4 0 9.9999999999999998e—13

RS.3 NS.3 0 2.7138694198861572e+01

RS 4 NS4 0 2.7138694198861572e+01

GL.3 0 NS.3 NS4 0 3.8108614844969030e—01
GL4 0 NS4 NS3 0 —3.8108614844969030e—01
GS_3.1 0 NS.3 a_1 ref 2.0000000000000000e+00
*

3k 3k sk >k sk skosk sk ok skosk sk sk >k sk sk sk sk sk sk ok sk sk sk sk ok sk sk ok ke

.ends

>k 3k 3k 3k sk sk sk sk sk sk koK sk ok sk ok sk ok

* End of subcircuit

3k 3k 3k 3k sk koK sk sk sk koK sk ok sk ok sk ok

129

Function Calls

6.4 Function Calls

In this part, we document all the functions necessary to produce the examples of this
chapter. Moreover, we also provide the functions that are implemented to realize the
combinations of strategies, which are not supported with netlist examples but are the
objectives of the investigations above. We will use all of them in Chapter 7 to compare
the final results.

In particular, we will follow the chapter organization, dividing the functions presentation
according to the parameter-dependent component used.

We will see the following:

1. Resistor synthesis, which can be realized for the (a) and (b) strategies, with an
independent parameter call, as in the example of Sec. 6.2.1;

2. VCCS synthesis, that can be realized for the (a) strategy and for the procedure (b),
as a sub-circuit component or as a proper circuit element (see Sec.6.2.2);

3. Multivariate synthesis, which is the final version of the above functions and imply
a VCCS component. This can be realized for all the parameter call procedures,
including the Control Pin interface.

While the last set of functions can be used with the drivers documented in Chapter 5,
the first two sets ’live’ in their own environment: proper driver functions allow realizing
a complete model synthesis. We will avoid to detail also these drivers since their call is
just a matter of nomenclature.

6.4.1 Resistor Synthesis Functions

We now analyse the functions necessary to synthesize an admittance sub-block using a
parameter-dependent resistor.
In particular we will see the following:

e cheb2CIR_RStrategyPARType, realizes the parameter-dependent components sub-
circuits, according to both the parameter call and the synthesis of the designated

&o(0) basis;

e SS2Cir_par_RStrategyPARType, realizes a parameter-dependent sparse synthesis
according to the function above.

Strategy is a string depending on the procedure used to synthesize the parameter-dependent
polynomial. Recalling to Sec. 6.1, we can summarized them as:

e a , the normalized parameter is provided as an input of a dedicated sub-circuit,
which evaluates each parameter-dependent basis term and recomputes the model
coefficient r, (¥);

e b , a proper sub-circuit is defined in order to get as input only one parameter-
dependent basis term;

e ¢, each parameter-dependent basis term is provided as an input of either a dedicated
sub-circuit or a proper circuit component, which computes the model coefficient

rn(19).
130

Function Calls

PARtype is a string depending on the parameter call type required, and in particular
could be set to

e GP, if a compatible realization to the global parameter call is created (see Sec. 5.3);

e [P, if an independent parameter call synthesis is realized (see Sec. 5.4);

cheb2CIR

This class of functions defines the parameter-dependent sub-circuits, which compute the
model coefficient r¢(1), in a dedicated additional file. The element instantiation is realized
according to the chosen parameter call and to the selected synthesis for the parameter-
dependent basis.

The input model must be a ratio between numerator and denominator series objects,
which must be defined through the ’partialfractions’ and ’chebychev’ bases: the denomi-
nator must be a single factor equal to 1.

The Options fields enables a customization of the SPICE synthesis, as detailed below.
Here follows the functions calls.

function cheb2CIR_RalP (Model, pathname ,name, Options ,Cap)
function cheb2CIR_RcIP (Model, pathname ,name, Options ,Cap)

All of them share the same input definitions.
The inputs are:

e Model is the model in the psk form;

e pathname is the path where the output files will be located;

e name SPICE sub-circuit name in the output file ‘name_cheb.cir’;

e Options is used to realized a sub-circuit consistent with the main admittance
sub-block and includes the following fields

— Options.Normalized [default = 1]
if it is set to 1, the model coefficients are normalized using the normconstant
value from the numerator basis;

— Options.mustOptimizeCap [default = 1]
if set to 1 enables the optimization of the model coefficients based on the capac-
itance value Cap, that is received as input and is used during the admittance
sub-circuit synthesis. If false, Cap is set to 1.

— Options.debug [default = 1]
if set to 1, enables the realization of a debug file, that is saved as ‘test_name_cheb’
in the same directory specified by pathname .

e Cap capacitance value, necessary to optimize the model coefficients. If Op-
tions.mustOptimizeCap = 1 and this variable is not provided as input, an error is
generated. [default = 1]

SS2Cir_par

This function enables to synthesize a parameter-dependent SPICE netlist of a sub-block,
starting from the non-parametric state space realization of a PSK-model, which is eval-
uated in the first parameter value available. The parameter-dependent components are

131

Function Calls

added to the synthesis as external sub-circuits, which are generated by a specific function.
All the sub-blocks are synthesized following an independent parameter call strategy.
The only dynamic elements included in the synthesis are identical capacitances. The
capacitance value can be provided via field Cap of MOD. If this field is not present, a
unitary value is used.

Here follows the function call

SS2Cir_par_RalP (MOD, pathname ,name, Options)
SS2Cir_par_RcIP (MOD, pathname ,name, Options , Npar)

All of them share the same input definitions.
The inputs are:

e MOD variable that defines the state-space equations by fields MOD.A, MOD.B,
MOD.C and MOD.D. The number of ports can be deduced by rows of C,D or
columns of B,D. The field MOD.RO is used to distinguish between admittance
(MOD.RO == 0) and scattering representation. In this second case the reference
resistance used for all ports must be the same and it is also stored in MOD.RO.
The capacitance value can be provided via field MOD.Cap. If this is not present, a
unitary valued is used.

e pathname the path where the output files will be located

e name SPICE sub-circuit name in the output file ‘name.cir’ (Do not include
the extension in the input string)

e Options is an (optional) input parameter that includes the fields

— Options.GroundReferences [default = 0]
is an additional option that determines how the reference nodes for all ports
are generated. If it is set to 0, each port in the synthesized equivalent circuit
will have a ‘private’ (floating) reference node. If it is set to 1, all ports will
share a common reference node (useful for grounded multiports).

— Options.ResistorType [default = 1]
controls the synthesis of resistors in the equivalent circuit. These resistors are
not ‘true’ resistors, but are just dummy components that are used to translate
the model equations into a SPICE netlist. Therefore, these resistors might lead
to wrong results when employed in a ‘noise’ analysis. Four different types of
synthesis are available, according to the value of Options.ResistorType:

1. synthesis as standard resistor (default)

2. synthesis as a resistor with appended keyword ‘noise=0’ (available only for
HSPICE)

3. synthesis as current-controlled voltage source

4. synthesis as voltage-controlled current-source

— Options.parameterized [default = 0]
if set to 1, enables a parametric SPICE equivalent synthesis. Otherwise, a
non-parametric sparse synthesis of the sub-block is realized.

e Npar (only for (c) strategy)
is the cardinality of parameter-dependent basis function £. It is necessary to provide

the parameter-dependent basis terms as inputs to the parameter-dependent sub-
circuits.

132

Function Calls

6.4.2 VCCS Synthesis Functions

We now analyse the functions necessary to synthesize an admittance sub-block using
a Voltage Controlled Voltage Source (VCCS) for each parameter-dependent basis term.
This set of functions enables to reproduce the (i) strategy of Section 6.2.2.

In particular we will see the following:

e chebSPICE_VCCSStrategyPARType, realizes the parameter-dependent components
sub-circuits, according to both the parameter call and the synthesis of the designated
&e(0) basis; moreover, it provides the reshaped model coefficients as output;

e SS2Cir_par_VCCSStrategyPARType, realizes a parameter-dependent sparse synthe-
sis.

where Strategy and PARType are the same strings defined above for the parameter-
dependent resistor synthesis.

chebSPICE

This set of functions could generate a dedicated SPICE sub-circuit for each Chebychev
polynomial term, which is stored in an additional file. In this case, a single model coef-
ficient is an input argument of the VCCS sub-circuit: it must be provided through the
input variable coeff (see Sec. 6.2.2(i)).

The number of Chebychev terms that is used for the synthesis is the maximum between
the numerator and denominator parameter-dependent bases.

The input model must be a ratio between numerator and denominator series objects,
which must be defined through the 'partialfractions’ and ’chebychev’ bases.

This function reshapes the model coefficients and provides them as output.

Here follows the function call:

function [chebNumCoeff,chebDenCoeff] = chebSPICE_VCCSalIP (Model,
pathname ,name, Options , Cap)

function [chebNumCoeff,chebDenCoeff] = chebSPICE_VCCSDbIP (Model,
pathname ,name, Options ,Cap, mustExportSPICE)

All of them share the same input definitions.
The inputs are:

Model is the model in the psk form;

pathname is the path where the output files will be located;

name SPICE sub-circuit name in the output file ‘name_cheb.cir’;

Options is used to realized a sub-circuit consistent with the main admittance
sub-block and includes the following fields

— Options.Normalized [default = 1]

if it is set to 1, the model coefficients are normalized using the normconstant
value from the numerator basis;

133

Function Calls

— Options.mustOptimizeCap [default = 1]
if set to 1 enables the optimization of the model coefficients based on the capac-
itance value Cap, provided as input and used during the admittance sub-circuit
synthesis. If false, Cap is set to 1.

— Options.debug [default = 1]

if set to 1, enables the realization of a debug file, that is saved as ‘test_name_cheb’
in the same directory specified by pathname .

e Cap is the capacitance value, necessary to optimize the model coefficients. If
Options.mustOptimizeCap = 1 and this variable is not provided as input, an error
is generated. [default = 1]

e mustExportSPICE (only for (b) strategy)
if set to 1 enables the generation of an output file that comprehends the instantia-
tions of the VCCS parameter-dependent sub-circuits. [default =
0]

On output, the function returns:

e chebNumCoeff, chebDenCoeff
are the numerator and denominator model coefficients reshaped in a matrix A, ; €
R™*¢: each row is related to a frequency’s basis term ¢, while each column is related
to a Chebychev polynomial term &;.

SS2Cir_par

This function enables to synthesize a parameter-dependent SPICE netlist of a sub-block,
starting from the non-parametric state space realization of a PSK-model, which is eval-
uated in the first parameter value available.
The parameter-dependent components are added to the synthesis either as external sub-
circuits (which are generated by the chebSPICE function) or as proper VCCS elements,
that are defined as in Sec 6.2.2. All the sub-blocks are synthesized following an indepen-
dent parameter call strategy.
The only dynamic elements included in the synthesis are identical capacitances. The
capacitance value can be provided via field Cap of MOD. If this field is not present, a
unitary value is used.

Here follows the functions calls.

function SS2Cir_par_VCCSalIP (MOD, chebCoeff , pathname ,name, Options)
function SS2Cir_par_VCCSbIP (MOD, chebCoeff , pathname ,name, Options)

All of them share the same input definitions.
The inputs are the same of the similar function defined (above) for the synthesis with
a parameter-dependent resistor (see Sec. 6.4.1), with the exception of the following input

e chebCoeff stores the (scalar) sub-model coefficients reshaped in a matrix A, , €

Rﬁxz, which become a tensor for multiport sub-block case; considering a scalar
example, each row is related to a frequency’s basis term ¢, while each column is
related to a Chebychev polynomial term &;

134

Function Calls

6.4.3 Multivariate Case Synthesis Functions

We now analyse the functions necessary to synthesize an admittance sub-block using
a Voltage Controlled Voltage Source (VCCS) as parameter-dependent component for a
multivariate case. This set of functions enables to reproduce the second strategy of
Sec. 6.2.2 for a multivariate case (Section 6.2.2) and it is compatible with all the parameter
call strategies available (see Chapter 5).
In particular we will see in the following;:

e chebSPICE_MultiPar_Tables, reshapes the model coefficients and provides a map-
ping table of them;

e SS2Cir_par PARType_Multi, realizes a parameter-dependent sparse synthesis ac-
cording to parameter call strategy selected.

where PARType is a string depending on the parameter call type required.

chebSPICE_MultiPar_Tables

This function reshapes the model coefficients and provides a mapping table of them. This
is necessary to synthesize a multivariate model with a number of external parameters that
are not known ’a priori’ in the most efficient way: the mapping table, in fact, allows to
reduce the number of operations of an entire equivalent SPICE synthesis. We provide
an example of the model coefficients matrix, which in the (multiport) numerator case is
a tensor, for the (scalar) denominator in Table 6.1: the corresponding mapping table is
reported in Table 6.2.

An optimization of the model coefficients using the input capacitance value Cap is per-
fomed (if required). A normalization of the coefficients is realized using the 'normconst’
value extracted from the parameter bases.

Here follows the function call

function [chebNumCoeff,chebDenCoeff] = chebSPICE_MultiPar_Tables(Model
, pathname ,name , Options , Cap, mustExportSPICE)

The inputs are:

Model is the model in the psk form;

pathname is the path where the output files will be located;

name SPICE sub-circuit name in the output file ‘name_cheb.cir’;

Options is used to realized a sub-circuit consistent with the main admittance
sub-block and includes the following fields

— Options.Normalized [default = 1]
if it is set to 1, the model coefficients are normalized using the normconstant
value from numerator basis;

— Options.mustOptimizeCap [default = 1]

if set to 1 enables the optimization of the model coefficients based on the capac-
itance value Cap, provided as input and used during the admittance sub-circuit
synthesis. If false, Cap is set to 1.

135

Function Calls

— Options.debug [default = 1]

if set to 1, enables the realization of a debug file, that is saved as ‘test_name_cheb’
in the same directory specified by pathname .

Cap is the capacitance value, necessary to optimize the model coefficients. If
Options.mustOptimizeCap = 1 and this variable is not provided as input, an error
is generated. [default = 1]
mustExportSPICE NO MORE USED
if set to 1 enables the generation of an output file, which comprehends the instan-
tiations of the VCCS parameter-dependent sub-circuits. [default =
0]

On output, the function returns:
e chebNumCoeff, chebDenCoeff are two cell arrays of three elements which contain

1. the model coefficients reshaped in a matrix A, , € R®** denoting with ¢ the
product of the cardinality of all the parameter-dependent basis and with 7 the
number of model poles. Each matrix entries is related to a model coefficient
Tne- We denote as £ = 1, ..., the column index, while the rows are related to
frequency’s basis terms ¢, (s);

2. the matrix B;, € RP*¢ | where i = 1,...,p (p number of external parameters)
and ¢ = 1, ..., £. This matrix corresponds to the mapping table of the Chebychev
basis function coefficients for each external parameters. The /-th column stores
the parameter-dependent basis term order (of the i-th parameter) corresponding
to the coefficient 7, ¢, which is stored in the matrix of the first output array

component.

3. the vector ¢ = ({1, ...,£,), which stores the Chebychev basis functions cardinal-
ities of the external parameters.

20 21

Yo Y1 Yo Y1
Z0 T o) o T 1) Zo T x9 o x1 1)

q0 | 0,1 | "0,2 | 0,3 | 04 | T05 | TO6 | T0o,7 | T0,8 | T0,9 | To,10 | T0,11 | 70,12

Q1 | 7T11 | T2 | 1,3 | T4 | "5 | T16 | TL7 | 71,8 | TL9 | 71,10 | T1,11 | T112

Qo | 791 | 792 | 79,3 | To4 | 95 | To6 | 797 | T9.8 | T9,9 | 79,10 | 79,11 | T9,12

)

Table 6.1: First element of the output array chebDenCoeff, which is the above matrix
denoted as A, ¢ € R™*¢ | We indicate with ¢ the (denominator) model coefficients. In
the example above, we define three external parameters, denoted as z, y and z respec-
tively. The overall parameter-dependent cardinality is £ = 3 -2 -2 = 12. We indicate
with ¢, the model poles, where n = 1,...,n and n = 9. Each matrix row corresponds to a
frequency-dependent basis term, while the columns depend by the external parameters.
The extension to the (multiport) numerator case is a tensor.

136

Function Calls

20 <1
Yo U Yo Y
i) I i) i) T X9 i) I i) i) T X9
z| 0 1 210 1 210 1 210 1 2
y| 0] 0] 0 1 1 1 0| 0] 0 1 1 1
z| 0]0]0|0]0]O0 1 1 1 1 1 1

Table 6.2: Second element of the output array chebDenCoeff, which is the above mapping
table denoted as B;, € RP*¢ where i = 1,...,p (p number of external parameters) and

=1,....,0, with £ = 3-2-2 = 12. For this example, we define three external parameters,
denoted as z, y and z respectively. Each matrix row corresponds to a different parameter
and associates its term with the corresponding model coefficient of Table 6.1. To define
each parameter-dependent component during the SPICE synthesis, a loop on the rows of
this matrix is sufficient to provide the right i-th parameter term with a minimum number
of operations. The equivalent result for the (multiport) numerator is still a matrix.

SS2Cir_Par

This function enables to synthesize a parameter-dependent SPICE netlist of a sub-block,
starting from the non-parametric state space realization of a PSK-model, which is eval-
uated in the first parameter value available.
The parameter-dependent components are proper VCCS elements, that are defined as
in Sec 6.2.2 (or Sec. 6.3 for the control pin interface). All the strategies to receive the
parameter detailed in Chapter 4 are available.
The only dynamic elements included in the synthesis are identical capacitances. The
capacitance value can be provided via field Cap of MOD. If this field is not present, a
unitary value is used.

Here follows the functions calls

function SS2Cir_par_IndPar_Multi (MOD, pathname ,name, Options ,chebCoeff)
function SS2Cir_par_CtrlPin_Multi (MOD, pathname ,name, Options ,chebCoeff)
function SS2Cir_par_GlobalPar (MOD, pathname ,name, Options , chebCoeff)

All of them share the same input definitions.
The inputs are:

e MOD variable that defines the state-space equations by fields MOD.A, MOD.B,
MOD.C and MOD.D. The number of ports can be deduced by rows of C,D or
columns of B,D. The field MOD.RO is used to distinguish between admittance
(MOD.RO == 0) and scattering representation. In this second case the reference
resistance used for all ports must be the same and it is also stored in MOD.RO.
The capacitance value can be provided via field MOD.Cap. If this is not present, a
unitary valued is used.

e pathname the path where the output files will be located

e name SPICE sub-circuit name in the output file ‘name.cir’ (Do not include
the extension in the input string)

e Options is an (optional) input parameter that includes the fields

137

Function Calls

— Options.GroundReferences [default = 0]
is an additional option that determines how the reference nodes for all ports
are generated. If it is set to 0, each port in the synthesized equivalent circuit
will have a ‘private’ (floating) reference node. If it is set to 1, all ports will
share a common reference node (useful for grounded multiports).

— Options.ResistorType [default = 1]
controls the synthesis of resistors in the equivalent circuit. These resistors are
not ‘true’ resistors, but are just dummy components that are used to translate
the model equations into a SPICE netlist. Therefore, these resistors might lead
to wrong results when employed in a ‘noise’ analysis. Four different types of
synthesis are available, according to the value of Options.ResistorType:

1. synthesis as standard resistor (default)

2. synthesis as a resistor with appended keyword ‘noise=0’ (available only for
HSPICE)

3. synthesis as current-controlled voltage source

4. synthesis as voltage-controlled current-source

— Options.parameterized [default = 0]
if set to 1, enables a parametric SPICE equivalent synthesis. Otherwise, a
non-parametric sparse synthesis of the sub-block is realized.

o chebCoeff cell array (output of the function chebSPICE_MultiPar_Tables) which
stores:

1. the matrix (tensor) related to the reshaped model coefficients;
2. the parameter-dependent basis terms mapping matrix;

3. the vector of parameter-dependent basis cardinalities.

138

Chapter 7

SPICE Results and
Bias-Dependent Components

This Chapter is intended to both summarize the previous results concerning a parame-
terized model SPICE synthesis, and to apply the achieved methodology for active analog
blocks of widespread interest in modern mobile SoC architectures design, namely bias-
dependent components, provided by an industrial partner (Intel).

Indeed, by documenting the numerical results of the circuit simulation on selected
stress cases, we provide in the following a comparison between all the strategies available,
which are detailed in Chapter 5 and Chapter 6. This enables us to select a synthesis
method aware of the proper characteristics of each one of them, by pointing out the best
available choice both for the free parameter call and the parameter-dependent components
realization.

The second part of this Chapter is dedicated to the practical application of the stabil-
ity enforcement method proposed in Chapter 3. The mentioned strategy will be applied,
in particular, to non-linear circuit blocks, whose complexity may impair systematic sig-
nal and power integrity co-simulations at the system level. A parameterization of these
elements with respect to their bias-conditions enables to realize small-signal linearized
behavioural macromodels: by combining these results with the above parametric SPICE
extraction procedure, powerful applications can be achieved in terms of circuit simula-
tions.

7.1 AC Validation Circuits

First, we are going to provide the AC simulation circuit set-up that we used to validate
the automatically generated netlists with respect to the raw data. In a parameterized
SPICE extraction, this environment should change according to the parameter call strat-
egy selected: for details on the modifications required in the three cases we refer to the
examples of Chapter 5.

We now focus on the main aspects that the two validation circuits have in common, both
for a parameter-dependent macromodel and a standard GSK-model. In order to validate
the response of a single port, each case requires creating a new file (one for every single

139

AC Validation Circuits

parameter value): the resulting netlist depends on the model representation. Indeed, all
the model external ports are:

e liked to a short circuit, in the admittance case;

e left open, in the impedance case;

e connected to a reference resistor Ry, in the scattering case;

e if not excited, connected to ground except the impedance representation that is still

left open.

Moreover, the AC source connected to the pin under test must be compliant with the
above statements, and in particular:

e is a unitary voltage source, in the admittance case;

e coincides with a grounded current source in the impedance case;

e corresponds to a grounded voltage source with a value defined as 2v/Rg, where Rg

is the reference port resistance used for the scattering representation.

The model equivalent circuit is then included in the simulation, whit the appropriate
modifications for the parameter call in the case of a netlist generated from a parame-
terized macromodel. The list of frequency points ﬁonltherawrdatasetfiQQij,Qm)is
inserted at the end of the simulation, just above the specification of the variables that
must be probed, which are chosen depending on the model representation.
We now report an example of the parameter-invariant circuit used to validate the (scat-
tering) GSK-model extracted in Chapter 4!.

st sk ok sk sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok sk sk ok sk ok ok ok ok sk ok ok ok ok ok
* AC Validation netlist (LTSpice) *
x This file is automatically generated =
st sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok
x Created by LTSpiceModel2DUM

st sk ok ok sk ok sk K ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok sk ok ok sk ok ok ok ok ok
* Port terminations

st sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok
RI_.1 NS NR.1 5.0000000000000000e+01

VI.1 NR1 10

RI_2 0 NR-2 5.0000000000000000e+01
VI.2 NR2 2 0

st sk ok sk sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok
x AC Source

st sk ok sk sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok
Vsource NS 0 AC 1.4142135623730951e+01
st sk ok sk sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok sk sk ok sk ok ok sk ok Sk ok ok R ok ok ok
*+ External Macromodel

sk sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok sk ok ok sk sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok ok ok ok
.inc 7GSKmodel. cir”

xMODcir

+ 120

4+ GSKmodel

>k >k >k >k >k ok sk sk ok ok ok 3k ok sk 3k 3k sk sk skosk sk sk skosko sk sk sk sk sk ok sk sk sk ok okook ok ok ok ok

! [List of frequency points] should be substituted with the numerical values from the raw data
set H(j27 fi, Om).

140

AC Validation Circuits

* Analysis setup

3k 3k sk >k sk sk sk sk >k sk sk sk sk ok skosk sk sk >k skosk sk sk >k sk sk sk sk sk sk sk >k sk sk ok sk ok sk kok
.ac list

4+ 4.9999999999999994 ¢+08

x [List of frequency points |

4+ 1.0000000000000000e+10

.probe

+ V(1) I(VI.1)

+ V(2) I(VI.2)

.end

We now report the simulation circuit necessary to validate the parameter-dependent
equivalent SPICE circuit that was generated from the PSK-model used as example in
Chapter 6. The resulting netlist is not affected by the parameter-dependent component
chosen for the synthesis, but only by the parameter call option selected. In the following,
we provide a netlist example by using Independent Parameter Call.

i I I I I ITTI Y
x AC Validation netlist (LTSpice) *
x This file is automatically generated =
i i I I I I IIITIIIIIIIINITTI™Y
x Created by LTSpiceModel2DUM _Par
i i I I I I ITTI Y
i i s I I IIIITIIIIIIIINITTIY
* Port terminations

i i I I I IIIITIIIIIIIINITITIYS
RI_1 NS NR_.1 5.0000000000000000e+01

VI.1 NR1 10

RI.2 0 NR-2 5.0000000000000000e+01

VI.2 NR2 2 0

i i I I I I ITTI™Y
x AC Source

S i i I I TN ITTI™YS
Vsource NS 0 AC 1.4142135623730951e+01

S i i I I TN ITTI™YS
* External Macromodel

i I I TN ITTIY
.inc "PAR_GSKmodel_IndPar. cir”

xMODcir

+ 120

+ PAR_GSKmodel IndPar

+ parl = {parameter_1}

K koK K K KK kK K KK K K K KK K K R kK KKK R KK R KK Rk K Rk K
* Analysis setup

K koK K K KK kK K KK K K K KK K K R kK KKK R KK R KK Rk K Rk K
x+x Parameter n.1 : value n.l1

.param parameter_-1 = 6.0960000000000002e+4-02
.ac list

+ 4.9999999999999994 408

x [List of frequency points |

+ 1.0000000000000000e+10

141

SPICE Extractions Comparison

.probe

+ V(1) I(VI.1)
+ V(2) I(VI.2)
.end

By imposing parameter_1 = 6.0960000000000002e+02 we actually realized the same
validation netlist of the previous example, which was created starting from a GSK-model.

A note of attention is placed here. In order to compare the elapsed time of simulation
for a GSK-model equivalent netlist and the parameter-dependent one generated from a
PSK-model, we created a specific netlist for all the ports and for each parameter value.
This operation can be avoided by making the parameter value varying, according to the
LTSpice manual [1], as

.step parameter_1l parMinl parMaxl nSteps
or using a list as
.step param parameter_1 list [list of value]

where parMinl and parMaxl should be substituted with their numerical values, corre-
sponding to [ﬁfnm,b‘fnw] with ¢ = 1, as well as nSteps, which is the number of steps
required in the parameter sweep. Nevertheless, the results obtained from this sort of
simulations were no more compatible with a standard GSK-model validation and the

comparison of next section could not be realizable.

7.2 SPICE Extractions Comparison

We now provide the numerical results of the test cases that were used to stress the pro-
posed procedure for a parametric dependent SPICE extraction. We refer to Appendix A
for the physical structures under investigation and for the model characteristics, such as
the frequency and parameter bases orders, and the maximum errors for all the parameter
values and ports responses evaluated in MATLAB.

In order to show a comprehensive comparison of the numerical results, Table 7.1 and
Table 7.2 are presented in the following. We will analyse both of them starting from the
one related to the parameter call, and by proceeding to the results of synthesis which are
characterised by the parameter-dependent component: we will provide thus a complete
overview of the automatic synthesis extraction results.

7.2.1 Parameter Call Results

We now investigate the results of the parameter call strategies of Chapter 5, which are
all implemented with a parameter-dependent VCCS. Table 7.1 provides a criterion for
comparison between all the three procedures available to provide the parameter. The
results below present some test cases with a general increasing complexity trend both in
terms of model bases orders and the number of ports.

This is reflected on the circuit matrix dimension, which is actually not an accurate indi-
cator of the circuital model speed: the overall simulation time is, besides, affected by the
strategy chosen to manage the parameter. As expected, a general slow-down of the model

142

SPICE Extractions Comparison

performances with the growth of the parameter-dependent bases order can be noticed.
The above two assumptions are verified by the numerical results: the first column of
Table 7.1 provides a parameter-free SPICE realization, which is actually slightly faster
than a parameterized netlist.

Nevertheless, it is proved in the following that this slow-down is actually not so relevant.
By interpreting the data, in fact, it must be considered that:

e a roundoff error usually occurs in ’small’ test cases for a parameter-free netlist,
due to their high speed, such that the ’elapsed time’ field in the log file (generated
by SPICE) presents a null value; this condition does not happen with the same
frequency in the 'big’ examples, where the time gap between the synthesis is always
under the 50% of the overall elapsed time for the non-parameterized netlist; the
control pin represents an exception that we will investigate further in the following;

e a slight speed-up of the parameterized macromodel can be provided realizing the
modification of the parameter instantiation for the simulation netlist discussed at
the end of Section 7.1; we recall that this procedure was not implemented here in
order to provide a common criterion for comparison of the presented cases.

Moreover, by analysing the results it can be noticed that the accuracy of the extracted
models does not change with respect to the non-parameterized equivalent realizations.
This statement is supported through the maximum relative error e,.;, which is a basis for
comparison between the circuit simulation and the MATLAB results: this value always
presents the same order of magnitude both for the parameterized and parameter-free
netlists, which demonstrates that the proposed SPICE synthesis procedure does not affect
the overall accuracy.

To conclude, the control pin case presents, as expected, a growth of the time required
for simulations and a slight increase of the matrix dimension. This is related to the
normalization circuit (see Sec. 5.5.1 for details), which must insert some additional com-
ponents providing the parameter-dependent basis terms to the admittance sub-circuits.
Indeed, by looking at the worst cases (bottom of Table 7.1), actually these effects are
increased and the time required is almost doubled with respect to the parameter-free syn-
thesis. These examples actually represent some very critical cases, with a high number of
poles (7 = 30) and parameter-dependent basis order ({p = £y = 4): unfortunately, the
circuit generated suffers in terms of speed. Nevertheless, the accuracy of the resulting
netlist for all the test cases is more than satisfying: the numerical results are actually
better than the one obtained from all the others synthesis.

143

SPICE Extractions Comparison

‘ NoPar ‘GlobalPar‘ IndPar ‘ CtrlPin

Time (s) 0,518 0,642 0,665 0,731
Case 1 €rel 1,03E-13 | 1,31E-13 | 1,31E-13 | 3,61E-14
Matrix 66 66 66 74
Time (s) 0,132 0,236 0,23 0,216
Case 2 €rel 2,70E-14 | 2,07E-14 | 2,07E-14 | 1,78E-14
Matrix 42 42 42 48
Time (s) 0,21 0,266 0,343 0,407
Case 3 Crel 4,45E-13 | 4,38E-13 | 4,38E-13 | 2,03E-13
Matrix 90 90 90 102
Time (s) 0,401 0,563 0,61 0,686
Case 4 Crel 1,77E-13 | 1,82E-13 | 1,82E-13 | 1,56E-13
Matrix 78 78 78 88
Time (s) 0,238 0,41 0,342 0,422
Case 5 €rel 8,74E-14 | 8,28E-14 | 8,28E-14 | 8,34E-14
Matrix 58 58 58 68
Time (s) 0,155 0,347 0,341 0,408
Case 6 Erel 4,65E-14 | 2,93E-14 | 2,93E-14 | 2,47E-14
Matrix 50 50 50 60
Time (s) 0,188 0,343 0,36 0,391
Case 7 €rel 3,70E-14 | 241E-14 | 2,41E-14 | 1,96E-14
Matrix 50 50 50 60
Time (s) 0,53 0,702 0,657 0,796
Case 8 Crel 2,b0E-13 | 3,69E-13 | 3,69E-13 | 3,35E-13
Matrix 98 98 98 104
Time (s) 0,561 0,721 0,689 0,768
Case 9 Crel 1,11E-13 | 1,36E-13 | 1,36E-13 | 1,32E-13
Matrix 98 98 98 104
Time (s) 0,593 0,689 0,687 0,797
Case 10 €rel 3,06E-13 | 3,08E-13 | 2,60E-13 | 1,14E-13
Matrix 98 98 98 104
Time (s) 0,513 0,671 0,657 0,766
Case 11 Erel 3,08E-13 | 3,41E-13 | 3,41E-13 | 3,36E-13
Matrix 98 98 98 104
Time (s) 1,128 1,561 1,498 2,125
Case 12 €rel 7,43E-13 | 7,57TE-13 | 7,57E-13 | 6,92E-13
Matrix 170 170 170 186
Time (s) 1,047 1,313 1,345 1,702
Case 13 Crel 1,28E-13 | 1,68E-13 | 1,68E-13 | 1,68E-13
Matrix 146 146 146 162

144

SPICE Extractions Comparison

‘ NoPar ‘GlobalPar‘ IndPar ‘ CtrlPin

Time (s) | 1,014 1,317 1,248 1,61
Case 14 e, | 6,02E-12 | 8,14E-12 | 8,14E-12 | 8,00E-12
Matrix 142 142 142 154
Time (s) | 1,942 2,563 2,483 3,658
Case 15 e 1,44E-12 | 1,64E-12 | 1,52E-12 | 1,09E-12
Matrix 162 162 162 186
Time (s) | 0,468 0,782 0,796 0,984
Case 16 epq | 2,67E-13 | 2,76E-13 | 2,76E-13 | 2,72E-13
Matrix 202 202 202 212
Time (s) | 0,528 0,767 0,797 0,938
Case 17 el 5,84E-13 | 3,67E-13 | 3,67E-13 | 2,16E-13
Matrix 202 202 202 210
Time (s) | 1,971 3,298 3,221 4,56
Case 18 epq | 3,52E-12 | 1,21E-11 | 1,21E-11 | 2,44E-12
Matrix 290 290 290 302
Time (s) | 5,373 9,131 8,97 13,249
Case 19 epa 1,02E-12 | 2,24E-12 | 2,24E-12 | 5,63E-14
Matrix 434 434 434 446
Time (s) | 11,923 18,505 18,636 | 28,334
Case 20 e 1,07E-12 | 3,64E-12 | 3,64E-12 | 4,95E-14
Matrix 578 578 578 590
Time (s) | 21,467 34,574 34,802 | 54,185
Case 21 epu 1,30E-12 | 1,64E-11 | 1,64E-11 | 4,57E-14
Matrix 722 722 722 734

Table 7.1: Comparison of validation circuit simulations for the Test Cases of Appendix A:
synthesis results with the parameter call strategies of Chapter 5. For each example we
report: the overall elapsed time (Time) required to simulate all the ports for all parameter
values available from the raw data, its value is obtained by adding all the ’elapsed time’
fields from the log file generated by SPICE; the maximum relative error (e,¢) on all
the available points, for all the parameter values and port responses, which is estimated
by comparing the responses of the Matlab model and the SPICE simulations results;
maximum matrix dimension of the circuit (Matrix), acquired by reading the 'matrix’
field from the log file generated by SPICE.

145

SPICE Extractions Comparison

7.2.2 Parametric Components Synthesis Results

We now compare the results of the synthesis of Chapter 6 based on several parameter-
dependent components. Table 7.2 shows the results of the AC simulations to validate
all the resistors-based syntheses (Section 6.2.1) and the VCCS-based syntheses (Sec-
tion 6.2.2), by using an Independent Parameter Call strategy.

We recall that the results of Table 7.1 were obtained using a parameter-dependent VCCS
component, which receives each parameter-dependent basis term as input and recomputes
internally the Chebychev polynomial: the justifications of this choice are in the following.

We start analysing the implementations based on parameter-dependent resistors.
The two approaches lead almost to the same results in terms of simulations accuracy: this
assumption holds also for the simulation time required. Nevertheless, they both present a
drastic growth of the matrix dimension, which is directly related to the increasing number
of components both for the parameter-dependent basis order and for the number of model
poles. By comparing the first two columns of Table 7.2 with the last one, indeed, the
major improvement provided by the parameterized VCCS elements is evident.

Some observations on the VCCS strategies can be formulated by reading data from
the table. In terms of model resulting speed, the implementations of strategies (a) and
(b) with a VCCS compromise the parameter-dependent netlists efficiency, also for a very
small test case. Furthermore, we were not able to validate the last examples of Table 7.1
due to the massive time required by these two synthesis approaches. Moreover, the
strategies (a) and (b) suffer both from a significant increment of the matrix dimension
and from a considerable degradation of accuracy too.

For these reasons, we abandoned the first four strategies of Table 7.2, and we further
developed only the last one, by extending it to a multivariate case and to the Control
Pin call.

| Resistor (a) | Resistor (c) | VCCS (a) | VCCS (b) | VCCS (c)

Time (s) 0,83 0,785 2,502 2,236 0,665
Case 1 erel 2,73E-13 2,66E-13 | 2,24E-12 | 2,24E-12 | 1,31E-13
Matrix 128 128 198 198 66
Time (s) 0,207 0,219 0,252 0,252 0,23
Case 2 erel 3,10E-13 3,10E-13 | 5,03E-13 | 5,03E-13 | 2,07E-14
Matrix 68 68 102 102 42
Time (s) 0,421 0,425 1,844 1,58 0,343
Case 3 Erel 1,20E-12 1,20E-12 | 4,75E-12 | 4,75E-12 | 4,38E-13
Matrix 188 188 294 294 90
Time (s) 0,781 0,74 7,504 7,314 0,61
Case 4 erel 6,52E-13 6,52E-13 | 9,75E-13 | 9,87E-13 | 1,82E-13
Matrix 158 158 246 246 78
Time (s) 0,449 0,372 1,56 1,436 0,342
Case 5 erel 6,30E-13 6,46E-13 | 6,16E-13 | 6,11E-13 | 8,28E-14
Matrix 108 108 166 166 58
Time (s) | 0,363 | 0354 | 0999 | 0861 | 0341

146

SPICE Extractions Comparison

| Resistor (a) | Resistor (c) | VCCS (a) | VCCS (b) | VCCS (c)

Case 6 erel 1,66E-13 1,66E-13 | 2,43BE-12 | 243E-12 | 2,93E-14
Matrix 88 88 134 134 50
Time (s) 0,344 0,379 0,969 0,888 0,36
Case 7 erel 1,25E-13 1,24E-13 | 2,05B-12 | 1,90E-12 | 2,41E-14
Matrix 88 88 134 134 50
Time (s) 0,986 0,906 14,219 14,065 0,657
Case 8 erel 6,63E-13 6,63E-13 | 4,87E-12 | 4.87E-12 | 3,69E-13
Matrix 208 208 326 326 98
Time (s) 0,924 0,977 13,895 13,434 0,689
Case 9 erel 5,13E-13 513E-13 | 4,49E-12 | 4,49E-12 | 1,36E-13
Matrix 208 208 326 326 98
Time (s) 0,875 0,874 14,266 14,346 0,687
Case 10 e 4,20E-13 4,20E-13 | 7,70E-12 | 7,70E-12 | 2,60E-13
Matrix 208 208 326 326 98
Time (s) 0,925 0,953 13,684 13,687 0,657
Case 11 ey 9,07E-13 9,07E-13 | 1,80E-11 | 1,80E-11 | 3,41E-13
Matrix 208 208 326 326 98
Time (s) 1,232 1,139 90,01 89,407 0,796
Case 12 e 7,87E-13 787E-13 | 4,21E-11 | 4,21E-11 | 2,76E-13
Matrix 468 468 742 742 202
Time (s) 1,176 1,141 83,267 82,249 0,797
Case 13 e 7,67E-13 7.67E-13 | 5.47E-11 | 547E-11 | 3,67E-13
Matrix 468 468 742 742 202
Time (s) 6,97 7,204 1482,333 | 1448,505 3,221
Case 14 e 1,52E-11 1,52E-11 | 3,27B-11 | 3,27E-11 | 1,21E-11
Matrix 902 902 1530 1530 290

Table 7.2: Comparison of validation circuit simulations for the Test Cases of Appendix A
for all synthesis types with parametric components detailed in Chapter 6. For each
example we report: the overall elapsed time (Time) for the validation circuit simulations;
the maximum relative error (e,¢) for all the port responses and parameter values; the
maximum circuit matrix dimension (Matrix). See Table 7.1 for details of these fields.

147

Bias-Dependent Components

7.3 Bias-Dependent Components

We now apply the proposed procedures to commonly used Circuit Blocks (CB) that are
specifically designed to operate as linearly as possible around a given operating point.
Such components, that are usually non-linear elements, can be tuned by changing bias
conditions: therefore, a small-signal response can be obtained through full transistor-level
circuit simulations or direct measurements, for model extraction purposes.
The dynamic behaviour of these components can be approximated as linear state-space
systems, whose state space matrix depend on an external parameter, which in this case
is the nominal bias voltage. Thus, the proposed macromodeling approach can be applied
and model stability can be guaranteed. Furthermore, we are now able to realize an
equivalent SPICE circuit that can receive the bias condition as a direct input.

The test cases that we are going to document are provided by an industrial partner
(Intel). Some of these structures were originally proposed in [29].
Next sections present the numerical results concerning a single NMOS transistor, a two-
stage buffer and more complex active analog blocks, in particular an Operational Am-
plifier (OA) and a Low Drop-Out Voltage Regulator (LDO). Due to their simplicity, the
first two examples are inserted as a proof of the effectiveness of the proposed procedure,
while the last two tests represent some more interesting cases: their possible applications
in SI/PI simulations may have a direct impact on SoC architectures design.

7.3.1 NMOS Transistor

We now investigate a single NMOS transistor, originally presented in [29]. This test case
structure is depicted in Figure 7.1: port one is the drain, port two the gate, and port three
the bulk. The NMOS free parameter is the source-drain bias voltage Vs € [0.8,1.2] V:
whereby a linear region of the component characteristic is explored and a linearized

macromodel of it can be generated.
D
G | B
S

Figure 7.1: Single NMOS transistor schematic

The available dataset is composed of 41 sets of scattering responses, with k = 239 fre-
quency samples spanning the band [1 Hz, 0.1 THz]. The unrealistic frequency range, which
is obtained through transistor-level simulations, enables to enforce the DC-point with a
sufficient accuracy, necessary for a proper system linearization.

The model has been fitted with half of the datasets, while the others were used for val-
idations, by imposing a dynamic order » = 4. About the parameter-dependent basis,
we selected a Chebychev polynomial order of /5y = 5 and fp = 4 for numerator and
denominator, respectively.

148

Bias-Dependent Components

1 L L L L 1 L L L L 1 L
10° 10° 100 10" 00
Frequency [Hz]

i <1012 Unstable model poles
. T T T

0.5F b

05 >

Re(p)/27 [Hz]

0 0.5 1 15 2 25 3 35 4
Im(p)/2m [Hz] x10"

-1.5

Figure 7.2: Single NMOS transistor: unstable model extracted with a standard FPSK.
Top panel shows the real part of the model denominator, computed over a fine sweep of
the parameter value. Bottom panel presents the unstable model poles.

Figure 7.2 presents the results from a standard FPSK procedure, for which a no-PR de-
nominator (top panel) corresponds actually to an unstable model (bottom panel) poles.
By starting from the same dataset, a new extraction has been realized in order to guar-
antee, through the proposed fitting procedure, the uniform model stability. Figure 7.3
shows the effectiveness of the the robust method for the model generation presented in
Chapter 3. Indeed, a standard passivity enforcement on the model denominator it is
not able to converge to a stable solution in a finite number of iterations: the top panels
of Fig. 7.3 show that, after 20 enforcement iterations, the resulting denominator it is
not yet positive-real (left panel) and that some unstable (complex) model poles are still
present (right panel). By imposing a maximum number of predictive iterations v = 3, a

149

Bias-Dependent Components

s %108 Standard Enforcement (20-th iteration) 2 %1012 Unstable model poles (20-th iteration)
T T T T T T T
6 15§ -
41 i 1
T osF —
g2 S o
[+ S UFE=== S T T T T T T s T T s T s s s E s E T
@0 C
& 05} R
2F L]
“4r 154 —
6 S T R 2 I
100 105 1010 ‘ 0 1 2 3 4 5 6 7
Frequency [Hz] Im(p)/2m [Hz] x10"
35 Robust Enforcement (=3) x10%2 Stable model poles
T T T T
O = e e e e e e e e e e e e e = =]
30 E
05T T~ 1

Re(p)/2r [Hz]
N

. L
10° 10° 1010 1015 00 0 05 1 1.5 2 25 3
Frequency [Hz] Im(p)/2m [Hz] %102

2 $(3,1) Magnitude (dB) $(3,1) Phase

100

-40

-60
60
-80

40
-100

-120

-140 0 L
10° 102 10* 10° 10° 10" 10° 10? 10 106 108 1010
Fequency (Hz) Fequency (Hz)

Figure 7.3: Single NMOS transistor: guaranteed stable model extraction.

Top Panels show the results from a FPSK fitting procedure with (standard) PR en-
forcement: (left) real part of the model denominator, computed over a fine sweep of
the parameter value; (right) unstable model poles after the 20-th iteration of stability
enforcement. Middle Panels report the results from a FPSK identification with a ro-
bust implementation of the final stability enforcement. In the last case, a stable model
is obtained after 3 predictive iterations: since Re {D(jw,?)} > 0 (see left panel), it is
guaranteed that the model poles (right panel) are stable over ¥ € ©. Bottom panels,
small-signal parameterized model responses for the port S(3,1) comparing to the corre-
sponding real system responses, for different value of the free parameter Vs € [0.8,1.2] V.
These responses are obtained from a guaranteed stable resulting model.

stable resulting model is generated with only one passivity enforcement iteration p (for
details see Section 3.4), as it is demonstrated in the middle panels of Fig. 7.3. The pa-
rameterized small-signal model responses are reported in the remaining bottom panels of

150

Bias-Dependent Components

the same Figure. The last model extraction has required only 10.2 seconds, against the
34.5 seconds spent for the generation of a non-PR model with a standard enforcement.
To conclude, this last example confirms the efficiency of a predictive approach, whose
benefits in terms of algorithm speed-up and final accuracy are evident.

7.3.2 Two-Stage Buffer

We now consider a two-stage buffer, originally presented in [29] and depicted in the
scheme of Figure 7.4. The three ports structure depends on two free parameters: the
supply voltage Vg € [0.5,1.5] V, which is used to the component linearization, and the
ambient temperature T’ € [20,40] °C.

Figure 7.4: Two-Stage Buffer internal structure

The number of points along the two parameters composed the available scattering datasets:
11 sets of frequency responses are obtained along V4 and 21 along T'. Each one of them
includes k = 293 frequency samples in the band [0, 100] THz. The unrealistic extended
frequency range is strictly related to the use of the resulting macromodel for transistor-
level simulations, while the DC point is necessary to impose the correct bias-conditions.
The model has been fitted with partial fraction basis of order n = 6 and Chebychev
polynomials with equal orders for denominator and numerator in both the parameter-
dependent basis cases, read as Z1,D = Z1,N =2 and EQ,D = ZQ,N = 3.

The interesting result obtained in this case is that a guaranteed stable model is extracted
also with a standard fitting procedure. Indeed, a standard Fast-PSK-iteration generates
a model for which the denominator is positive real and, since Re {D(jw, V4q,T)} > 0, it
is guaranteed that the model poles are stable over the two free parameters domains.
Even if the constrained fitting procedure proposed is not applied, this result can be
achieved only with a proper check of the immittance denominator passivity, which was
developed for the enforcement procedure (for details see Section. 3.1.1): its general effec-
tiveness enables to verify (and guarantee) the stability of any case, independently by the
procedure adopted for the model extraction. The results are reported in Figure 7.5.

151

Bias-Dependent Components

x10" Stable model poles
| !

—
e+ m—"

7 . \ ,
0 0.5 1 15 2 25
Frequency [Hz] Im(p)/27 [Hz] %10

$(2,3) Magnitude (dB)

S$(3,1) Magnitude (dB)

50l 50 T=30C
—8(3,1) data

100 -100

-150 : -150 : .
10° 10° 1010 10™ 100 10° 1010 10"
Fequency (Hz) Fequency (Hz)

$(2,3) Magnitude (dB) $(3,1) Magnitude (dB)

-150 ‘ ‘ 12
10° 10° 1010 10™ 100 10° 1010 10"
Fequency (Hz) Fequency (Hz)

Figure 7.5: Parameterized (bivariate) model of a two-stage buffer, extracted with a stan-
dard FPSK procedure. The novel contribution provided by the (immittance) denominator
passivity check enables to guarantee the model stability.

Top Panels: (left) real part of the denominator model response, which is computed
through a fine sweep of both parameters values. Since Re{D(jw,Vyy,T)} > 0, it is
guaranteed that the model poles (right) are stable over the two free-parameters domains.
Middle and Bottom Panels: small-signal parameterized model responses for the ports
S(2,3) and S(3,1) compared to the corresponding real system responses, by fixing one
parameter (7' = 30°C in the middle and Vg = 1V in the bottom) and by validating the
model along the other one.

152

Bias-Dependent Components

7.3.3 Operational Amplifier

The structure of this case is an Operational Amplifier (OA), part of a based-band receiver
chain originally presented in [29]. The two free-parameters that parameterized the OA
are its bias voltage ¥ € [1.1, 1.3] V and its (programmable) gain ¥ € [1.01,2].

The available dataset is composed of the scattering responses for 5 points along the first
parameter and 11 along the second one. For a fixed combination of the parameters, we
have k = 831 frequency samples that span the band [2Hz,20 THz]. This widespread (and
unfeasible) frequency range is necessary for full transistors level simulations, and it is
provided by a direct transistor-level simulation.

A stable and accurate model of the OA has been fitted, by imposing a partial fraction
basis order of n = 14. About the parameter-dependent bases, Chebychev polynomials
have been used for numerator and denominator, of orders 1717 N = 2 and Zl, p = 1 for the
first parameter, and l727 N = 3 and ZZ p = 2 for the second one.

Therefore, in this case, to enforce the denominator passivity during the FPSK-iteration
is a necessary condition to obtain a guarantee of the model stability along the parameters
domains. Figure 7.6 illustrates the above mentioned results.

7.3.4 Low Drop-Out Voltage Regulator

The last bias-dependent structure that we investigate in this work is a Low Drop-Out
(LDO) Voltage Regulator, originally presented in [29]. The main purpose of this compo-
nent, which is taken from a mobile platform design, is to reduce the power supply noise.
Indeed, through a filter mechanism, that includes the OA described in the previous sec-
tion, and a feedback circuit the (output) power supply signal is ’purified’ (as much as
possible) of the noise inserted by the global power distribution network.

The structure is depicted in the high-level scheme of Figure 7.7: port 1 is the ’noisy’
power supply port, pot 2 is the reference voltage, and port 3 is where the 'noise free’
supply voltage is provided.

The LDO is parameterized through its supply voltage V; € [1.2, 1.6] V. The available

datasets are composed of 41 sets of scattering responses, including k = 802 frequency
samples spanning the band [0Hz, 0.1 THz]. An extended (and unfeasible) frequency
range is directly related to the purpose of comparing the macromodel behaviour with a
full-transistors level simulations.
To generate a stable an accurate model, 21 of the available sets have been used for the
fitting while the others have been left for validation purposes. By setting a dynamic order
of 7 = 22 and Chebychev polynomial orders of /5 = 3 and /p = 6 for the numerator and
denominator, respectively, the results of Figure 7.8 have been achieved. In particular,
enforcing the denominator passivity during the fitting process is a necessary condition to
obtain a final guaranteed stable model.

The resulting linearized behavioural macromodel is then passed through the auto-
mated SPICE extraction process, proposed during this work. The resulting parameterized
netlist will be used, with the appropriate DC corrections, for transistor level simulations,
by substituting the non-linear circuit component in SI/PI simulations.

153

Bias-Dependent Components

Unstable model poles

Re(p)/2r [Hz]

L L
6.04 6.06 6.08

.
6.1 6.12
Im(p)/2r [Hz]

L L
6.14 6.16

20000
15000

a
= 10000

Rea

5000

1010
Frequency [Hz]

1015

$(3,2) Magnitude

0.01 T
S(3,2) data
0.008 - = = '§(3,2) model|
191 =11V

0.006 -
0.004
0.002 -

0 . .

10° 102 10* 10° 108

Fequency (Hz)

Figure 7.6: Operational Amplifier.
Top Panels: (left) unstable model poles from a standard FPSK extraction; (right) stable
model poles, obtained using the proposed generation procedure. Middle Panels, real part
of the model denominator evaluated through a fine sweep along the parameters: (left)
model obtained through a standard FSPK-iteration; (right) model extracted by imposing
the denominator passivity. Since the curve never crosses the zero baseline, the denomi-
nator is defined positive real and all the model poles are guaranteed stable.

Bottom panels: small-signal parameterized model responses compared to the correspond-
ing real system responses, fixing one parameter at a time, for different values of the bias
voltage ¥1 € [1.1, 1.3] (right panel) and by making vary the gain 95 € [1.01,2] (left panel).

%108 Stable model poles
)
~
= 5k 1
N
L ? \
& N
a-10f 1
T
['4
15 1
I -20F . | I]
6.18 0 05 1 15 2 25 3 35 4 45
<108 Im(p)/2r [Hz] x10°
300 .
250
200 -
a
150
Q
4
100
50 1
0 ' . n
0 10° 10° 100 10" o0
Frequency [Hz]
S(3,2) Magnitude
0.01 \() 9 T
5(3,2) data
0.008 - S(3,2) model 7
0.006 1
0.004 1
0.002 i
0
100 10° 102 10* 108 108 100

Fequency (Hz)

154

Bias-Dependent Components

Re(p)/2r [Hz]

1

1

1

.6

4

2F

P2, Vref

Control
Circuit
P3, Vout

Feedback
Circuit

!

Figure 7.7: High level scheme of a Low Drop-Out Voltage Regulator.

%10° Unstable model poles
. . :

3 1 | . .
0 1 2 3 4 5 6 10° 10° 10" 10'° o0

Im(p)/27 [Hz] %108 Frequency [Hz]

$(1,1) Magnitude $(3,1) Magnitude

—§(1,1) data
= = +§(1,1) model

1 o

08F 3
10 ——S5(3,1) data
06 = = 'S(3,1) model
04+t 10
0.2 : : : : s 1078 ‘ ‘ ‘
10° 102 10* 108 108 100 10° 102 10* 108 108 10'°

Fequency (Hz) Fequency (Hz)

Figure 7.8: Low Drop-Out Voltage Regulator.

Top Panels: (left) unstable model poles from a standard FPSK extraction; (right) real
part of the model denominator evaluated through a fine sweep along the parameters. In
this case, the model is extracted by imposing the denominator passivity. Since the right
result never crosses the zero baseline, the denominator is defined positive real and all the
model poles are guaranteed stable.

Bottom panels: small-signal parameterized model responses compared to the correspond-
ing real system responses, for different value of the free parameter V; € [1.2, 1.6] V.

155

Function Calls

7.4 Function Calls

In this section, we document all the functions necessary to create the validation circuits
and the SPICE model extractions, which provides the numerical results of this chapter.
Depending on the synthesis procedure chosen, we will see the following:

1. LTSpiceModel2DUM _noPAR. , realizes a parameter-free SPICE extraction of a stan-
dard GSK-model (see Chapter 4) and validates it on all the available points from
the raw data-set, for all the port responses, with proper AC circuits.

2. LTSpiceModel2DUM _Par , realizes the equivalent SPICE netlist of a PSK-model,
by using during the synthesis a parameter-dependent VCCS component. Proper
AC circuits enable to validate the netlist over all the parameters values and port
responses. The parameter call strategy can be selected with the specific option field
(see Chapter 5).

3. LTSpiceModel2DUM _par_CompStrategy , is a set of functions that realizes the PSK-
model extractions of Chapter 6 and validates them with proper AC circuits.

Where

e Comp is a string depending on the parameter-dependent component type required
during the SPICE realization, and in particular, could be set to

— R, if a parameter-dependent resistor is created during the model synthesis (see
Sec. 6.2.1);

— VCCS, if parameter-dependent VCCS is used for the SPICE netlist generation
(see Sec. 6.2.2);

e Strategy is a string depending on the procedure used to synthesize the parameter-
dependent polynomial. Recalling to Sec. 6.1, we can summarize the available ones
as:

— a , the normalized parameter is provided as an input of a dedicated sub-
circuit, which evaluates each parameter-dependent basis term and recomputes
the model coefficient 7, (9);

— b, a proper sub-circuit is defined in order to get as input only one parameter-
dependent basis term;

In the following sections, we will document each of them, starting from the parameter-
free realization. The other two points, related to the parameterized SPICE generations
of Chapter 5 and Chapter 6, will be documented together due to their similarity.

7.4.1 GSK-model Synthesis Validation

This function validates a model in GSK-form with respect to the true system response
H(jw, ¥) using LTSpice as the general framework.

This is a driver for all the functions necessary to the SPICE model extraction, which are
detailed in Chapter 4: the input variables must be compliant with this statement.

The input model must be a ratio between numerator and denominator series objects,

156

Function Calls

which must be defined through the single-factor *partialfraction’ basis. The input dataset
is stored in a tabulated frequency data structure that must be non-parameterized.
Options field enables a customization of the SPICE synthesis, as detailed below.

The output files are saved in a folder named testGSKModel_spice, which is created in
the current working folder.

A note of attention is placed here. This function is compatible only with both the MAC
OS X and Windows version of LT'Spicel V: the computer operating system is automatically
selected. In the last case, the user must properly insert in the variable LTSPICE, inside
this function, a string with the path of the LTSpice execution file 'scad3.exe’. We provide
an example in the following.

% LTSpice command location and runtime parameters

if ismac

LTSPICE = ’'/Applications/LTspice.app/Contents/MacOS/LTspice —b ’;
else

LTSPICE = ’'C:\ Users\marco\Desktop \LTC\LTspicelV\scad3.exe —b ’;
end

LTSPICEOPT = ° —run ’;

% Set this to 1 to run LTSPICE manually. Program will pause.
OFFLINE = 0;

The above procedure enables to automatically run a SPICE simulation in ’batch mode’.
Here follows the function call.

function [DUMSpice,DUM, TotTime , MaxMatrixSize] = LTSpiceModel2DUM_noPAR
(Model ,Data, Options)

Where the inputs are:

e Model is the model in the GSK-form;

e Data is the structure that stores all the frequency samples;

e Options is an (optional) input parameter that includes the fields of the function
of Section 4.4.1 GSK_Model2Cir.

The function returns as output:

e DUMSpice is a structure which stores the Spice model port responses.

e DUM is a structure which stores the same frequency samples of Data in
a DUM format.

e TotTime is the overall elapsed time to validate the model for all the port

responses: its value is obtained as the sum of the same field from the log files
generated by SPICE.

e MaxMatrixSize is the maximum size of the circuit matrix, obtained from the
SPICE log files.

7.4.2 PSK-model Synthesis Validation

These functions validate a model in PSK-form with respect to the true system response
H(jw, ¥) using LTSpice as working environment.
This is a driver for all the functions necessary to the parameterized SPICE model ex-

tractions, which are detailed in Chapter 5 and Chapter 6: the input variables must be

157

Function Calls

compliant with this statement.

In particular, the input model must be a ratio between numerator and denominator series
objects, which must be defined through the 'partialfractions’ and 'chebychev’ bases. The
input parametric dataset is stored in a tabulated frequency data structure. The Options
field enables a customization of the SPICE synthesis, as detailed in Section 5.6.1.

The output files are saved, for the second function, in a folder named
cktname_PARtype, which is created in the current working folder. PARtype is a string
depending on the parameter call type required. The set of functions output folder name
is selected according to the synthesis strategy used as
testGSKModel_spice_.PAR_CompStrategy: we refer to the introduction of this section for
details.

A note of attention is placed here. This function is compatible only with both the
MAC OS X and Windows version of LTSpicelV: we refer to Section 7.4.1 for details.
Here follows the functions call

function [DUMSpiceList , DUMList, TotTime , MaxMatrixSize| =
LTSpiceModel2DUM _Par (Model , Data , Options , cktname)

function [DUMSpiceList , DUMList, TotTime , MaxMatrixSize| =
LTSpiceModel2DUM _par_Ra (Model , Data, Options)

function [DUMSpiceList ,DUMList, TotTime , MaxMatrixSize| =
LTSpiceModel2DUM _par_Rc (Model , Data, Options)

function [DUMSpiceList ,DUMList, TotTime , MaxMatrixSize| =
LTSpiceModel2DUM _par_VCCSa(Model , Data, Options)

function [DUMSpiceList ,DUMList, TotTime , MaxMatrixSize| =
LTSpiceModel2DUM _par_VCCSb (Model , Data, Options)

The inputs are:

e Model is the model in the PSK-form;

e Data is the structure that stores all the frequency and parameters samples;

e Options is an (optional) input parameter that includes the fields of the function
of Section 5.6.1 GSK_Model2Cir_Par.

e cktname is an (optional) input which stores the SPICE sub-circuit name in the
output file ‘name.cir’ (Do not include the extension in the input string). This is
also the first part of the output folder name, which is created as cktname_PARtype.
If this input is not provided, the variable is initialized as 'PAR_GSKmodel’.

The function returns as output:

e DUMSpice is an array of structures that store the Spice model port responses
for all the parameter values.

e DUM is an array of structures structure which stores the same frequency
samples of Data in a DUM format for each parameter value.

e TotTime is the overall elapsed time to validate the model for all the pa-
rameter value and port responses: its value is obtained as the sum of the same field
from the log files generated by SPICE.

e MaxMatrixSize is the maximum size of the circuit matrix, obtained from the

SPICE log files.

158

Chapter 8

Conclusions and Further
Improvements

This dissertation work proposed a behavioural macromodeling approach to create surro-
gate parameterized models that are guaranteed stable through the constrained identifica-
tion process, which is presented in Chapter 3. By enforcing the (immittance) denominator
passivity at each iteration of the fitting procedure, we are able to realize a positive-real
denominator, which is a sufficient condition to guarantee that all model poles are stable
in the parameter domain. A second important result has enabled to automatically syn-
thesize a parameterized SPICE surrogate of the model previously extracted (we refer to
Chapter 5 and Chapter 6), in order to take advantage of the order reduction procedure
during system-level verification of signal and power integrity (SPI). Indeed, the generated
equivalent SPICE networks can be applied to the design process, by varying the design
parameters through numerical simulations. The above procedures have been applied to
a particular class non-linear systems, designed to work in a (linear) characteristic re-
gion that depends on the given operating point. These bias-dependent components (such
as NMOS transistors, I/O buffers, low-noise Operational Amplifiers and Low Drop-Out
Voltage Regulators) have been parameterized by their nominal bias-voltage and corre-
sponding stable macromodels have been generated and validated. These results fulfilled
the initial thesis goals, even if further improvements could strengthen the proposed work.

Reduced Set of Constraints for the Stability Enforcement

About the stability enforcement, the strategy based on a positive-real denominator shows
a general effectiveness for the model extraction, both in terms of required time-consuming
and resulting accuracy with respect to the true response. Nevertheless, the algorithm
performance can be enhanced by modifying the construction of the feasibility set, which is
realized at each iteration of the fitting process. Indeed, up to now the problem constraints
are formulated starting from all available points of the raw dataset and adding to them
the passivity violations points (for details see Chapter 3): this approach results in large
and memory-demanding matrix constraints.

A first improvement of the algorithm requires optimizing the set of constraints, in order
to approximate the optimization problem feasibility region with a minimum number of

159

8 — Conclusions and Further Improvements

constraints. By creating a reduced equivalent set of constraints at each iteration of the
identification routine, a general speed-up of the entire process is expected without any
impact on the resulting model.

Fully Automated Model Extraction

Another improvement that can be realized to strengthen the proposed model generation
is to reduce the user impact on the extraction, by realizing a fully automated procedure.
At the present day, the resulting model accuracy is strongly affected by the choice of bases
functions orders, both for the frequency and parameter: this selection must be performed
by the user, which has to manually change the several starting options to realize a model
that satisfies the requirements. This strategy, which is based on a visual inspection of
the validation results, does not assure that the final model will be the best one among
the set of possible configurations. Thus, several attempts are performed by the user in
order to obtain a ”good enough” resulting model: this tedious procedure (set the options,
extract a model and validate it) reveals an intrinsic time-consuming nature, which cannot
be reduced despite the experience that the user has accumulated performing this work.
A solution to this issue is not straightforward, and some advanced approaches are
required. In particular, one possible strategy is to implement an automatic extraction
based on a neural network. This can be created in order to ’guess’ an optimum starting
configuration of the model by analysing the raw dataset, both along the frequency and the
parameters directions. How to train the neural network or how to realize a widespread
(and sufficient) set of test cases are still open issues that are left for further investigations.

SPICE Synthesis Applications

About the parametric SPICE equivalent synthesis, few more 'improvements’ can be re-
alized to this work. Indeed, the automatic tool for the netlists extraction has been
tested only with LTSpice. A possible extension of it to any commonly used circuit solver
(PSpice, HSpice, Spectre) is suggested to improve the tool applicability to an industrial
environment.

Moreover, an interesting but unexplored application for a parameter-dependent netlist
is strictly related to the use of a Control Pin (for details see Sec. 5.5). Indeed, a self-
parametrized SPICE model of a bias-dependent component could be realized by creating
a proper filtering circuit. This could provide the constant part of the input signal as the
external parameter on the proper model pin, while the circuit block behaviour can be
studied when a variable noisy signal is provided as input. Nevertheless, this application
requires adapting the parameter-dependent DC correction, originally presented in [29],
which must be applied to the parameterized model. This procedure is not yet available
but could be the subject of a future investigation.

160

Appendix A

Test cases

We detail in the following all the test cases used throughout the proposed work as numer-
ical examples. In particular, for each one of them, we introduce the physical structure
under test and the fitting algorithm settings necessary to generate the presented results.
We focus in particular both on the basis functions orders and the datasets selected, due
to their impact on model extraction.

The fitting procedure used as a standard in the below examples is the one proposed in
Chapter 3 and the stability enforcement is embedded at each fitting iteration: when this
statement is not true, it is specified in the test case description.

Case 1

Microstrip Filter with Double Folded Stub

A microstrip band-stop filter with double folded stubs is the first test case considered
during the proposed work. This physical structure, depicted in Figure A.1, was presented
in [10] and [38].

Port 1 Port 2

' A
Figure A.1: Microstrip Filter with Double Folded Stub

The above structure is parameterized by the length of the folded stubs A\ € [2.08, 2.28]
mm. The behaviour of the filter is characterized by 21 datasets of scattering responses,
including k& = 300 frequency samples over the band [5, 20] GHz. Only 11 of the available
sets were used to fit the model: the remaining 10 are used to validate it.

A guaranteed stable model is extracted by imposing a partial fractions basis order n = 10

161

A — Test cases

and by using Chebychev polynomials as parameter basis, with the common order ¢ = 2
both for the numerator and denominator. The maximum errors among the model and
validation data is 4.47 - 1073.

Case 2

This test case is a commonly used PCB integrated capacitor, which physical structure
characteristics (such as the dielectric material, the number of layers or its geometry) are
not provided. The free parameter selected for this case is the side length of the component
that varies in the range [254,609.6] pum. The available true response dataset is composed
of 8 sets, one for each parameter value, containing 191 frequency samples that span the
band [0.5,10] GHz.

In this case, a guaranteed stable model has been fitted with frequency-dependent basis
function order 7 = 4 and with Chebychev polynomial as the parameter-dependent basis,
both for numerator and denominator, of order £y = fp = £ = 1. The maximum relative
error between the obtained model and validation data is 1.16 - 1072,

Case 3

Link on printed circuit board

This test case is an S-shaped link on a printed circuit board realized on an FR4 epoxy
board (thickness 0.76 mm, dielectric constant 4.4 , loss tangent 0.02). The structure,
300 pum wide, was originally presented in [39] and it is represented in Figure A.2: the
middle-section length represents the free parameter L € [2, 18] mm, while the other
two segments are fixed at 2 cm. The structure behaviour is captured through 9 sets of
scattering responses, which span the band [0.1, 10] GHz including & = 100 frequency
samples each.

Figure A.2: Link on printed circuit board

The model to which we refer has been fitted with partial fractions basis order n = 16,
by imposing the denominator passivity during each fitting iteration. About parameter
basis functions, we adopted Chebychev polynomial with numerator and denominator
orders equal respectively to £y = 4 and £p = 3. This last choice does not leave any data
to validate our final result, indeed all the available dataset are used to fit the final (stable)

162

A — Test cases

model. However, the maximum relative error for all the ports and for all the available
parameter values is 2.69 - 1071,

Case 4

Via with Residual Stub

This structure, depicted in Figure A.3, is a via connecting a microstrip line and a stripline
in a multi-layer PCB, originally presented in [35]. This component is parameterized
through the stub height h, vary in the range [0, 716]um: indeed, a backdrilling procedure
enables to change the stub, which is a residual of the metallization process that realizes
the via and that may cause SI (signal integrity) issues.

MICROSTRIP —>

(port 1)

% GND
VIA HOLE\ % T GND

T o GND

<— STRIPLINE

stus (port2)
HEIGHT <= GND

i I GND

E

Figure A.3: Via with residual stub
(©)2008 IEEE

The dataset is composed of 10 set of scattering responses, including k& = 1001 frequency
samples spanning the band [0, 40] GHz. We fitted the model with partial fractions basis
order n = 13 and with Chebychev polynomials as parameter basis functions, with orders
/Ny = 3 and ¢p = 3 for numerator and denominator, respectively. We selected 8 of the
available datasets for the fitting, while the other 2 are used to validate the guaranteed
stable model.

The maximum relative error between the obtained model and validation data is 2.75-1072.

Case 5

Multi- Layer integrated Inductor

The structure under test is a spiral integrated inductor with 1.5 turns, placed on a
multilayer substrate (courtesy of Prof. M. Swaminathan, Georgia Institute of Technology,
Atlanta, GA, USA). The inductor, which presents a square outline, has a variable side-
length in a range of [1.02, 1.52] mm, which is assumed as the design parameter.

The test case behaviour is captured in a set of 11 frequency responses: 7 of them are used
to fit the model, while the others are used as validation data-sets. The model is fitted
with a partial fraction basis order n = 8. About the parameter-dependent basis, we used

163

A — Test cases

Chebychev polynomials of order /5 = 3 and ¢p = 2 for numerator and denominator,
respectively. To guarantee a stable resulting model, after the constrained fitting process,
1 final passivity enforcement iteration on the denominator was required. The worst case
relative error among all the available samples is 8.37 - 1072,

Case 6-7

Integrated Inductor

In this case, the physical structure is a PCB integrated inductor, whose number of turns
(1.5 or 2) originates two different datasets. However, the 11 sets of frequency responses
depend on the same free parameter, which is the side-length of the square outline of the
inductor. Its value span the range of [1.02, 1.52] mm. These two test cases are presented
in the following.

Case 6

Integrated Inductor with 1.5 Turns

For this example, each set of data is composed of k = 477 frequency samples span the
band [0.1,12] GHz. Of the overall 11 sets of samples available, 7 of them are selected to
realize the model while the others are used for validation.

A guaranteed stable model is fitted with partial fractions basis order 7 = 6 and Chebychev
polynomial as parameter basis functions with orders £y = 3, fp = 2. To obtain a
positive real denominator, one iteration of the final passivity enforcement is required. The
maximum relative error between the resulting model and validation data is 2.18 - 1073,

Case 7

Integrated Inductor with 2 Turns

In this case, the 11 sets responses span the bandwidth [0.1, 19.75] GHz through k = 476
frequency samples. In order to fit a guaranteed stable and accurate result, only 4 sets of
available data are used for validation.

The model has been obtained with a frequency-dependent basis order 77 = 6. About the
parameter-dependent basis, a Chebychev polynomial for numerator and denominator has
been selected, with orders equal respectively to £y = 3 and /p = 2.

The fitted model, which is guaranteed stable without requiring a final passivity enforce-
ment on the denominator, presents a maximum relative error with respect to the valida-
tion data of 3.12 - 1073,

Case 8-11

Transmission Line Network with Embedded Discontinuity

This structure is a transmission line with an embedded discontinuity, modelled through
an RLC circuit. This case was originally presented in [21], and is depicted in Figure A.4.
The capacitance C' and inductance L, are the model free parameters: their combinations

164

A — Test cases

Ly Ry Ry Ly
o— — 09000990 — —
Zx, TD] =—C Zom TD2
o— —0

Figure A.4: Transmission Line With Embedded Discontinuity

generate the datasets detailed below. However, the others components are kept fixed to
the following values

e Lines characteristic impedance Z,, = 40€;

e Propagation times Tp; = 100 ps, Tphs = 230 ps;

e Discontinuity resistance Ry = Ry = 14);

e Discontinuity inductance Ly = 10 nH.
The several structure behaviours are obtained through (SPICE) circuit simulations and
present common characteristic: each one of them is composed of 11 sets of frequency
responses, including k¥ = 1000 samples in the band [10 - 1073, 10] GHz. Moreover, we
selected only 6 sets of each sub-dataset to fit the several stable models, while the others
were used for validation purpose. Furthermore, no one of these cases has required a final
passivity enforcement on the denominator to guarantee the model stability. We detail
the available sub-cases in the following.

Case 8

The free parameter of this sub-case is the capacitance value C' € [0.1,10] pF, while the
inductance Lq is fixed to 10 nH.

The (stable) model has been fitted with a partial fraction order of n = 18 and with
Chebychev polynomials (for the parameter-dependent basis) of order /y = fp = 1. The
maximum relative error between the resulting model and validation data is 3.20 - 1073,

Case 9

For this structure, the capacitance C' is selected as the free parameter but now in the
range C' € [1,10] pF, while the inductance L; is still fixed to 10 nH. The same statements
made for the Case 8, about validation datasets and bases functions orders, still hold. The
maximum relative error between the resulting model and validation data is 7.40 - 1074,

Case 10

In this case, the capacitance value varies in a range of C' € [0.1,1] pF, while the inductance
Ly is fixed to 10 nH. We did the same statements made for the Case 8 and Case 9,
but now the maximum relative error between the resulting model and validation data is
2.33-1073.

165

A — Test cases

Case 11

The free parameter for this test case is the inductance value L; € [0.01,1] nH, while the
capacitance value is fixed to C' = 1 pF. Also for this last sub-case the same statements
of the above ones, about validation datasets and bases functions orders, still hold. The
maximum relative error between the resulting model and validation data is 2.33 - 1073.

Case 12-15

PCB Interconnect Over a Slotted Reference Plane

This structure is a PSB microstrip on a dielectric reference surface with a rectangular
discontinuity of length L and distance d from the center of the reference plane, which
breaks the current return path [21]. A scheme of the physical structure is reported in
Figure A.5.

Figure A.5: PCB Interconnect Over a Slotted Reference Plane

The fixed geometrical parameters are the following

e g = 100 mm; e w=0.12 mm; o ¢, =4.7.
e b =100 mm; e h =0.3 mm;
e { =0.035 mm; e [=25 mm;

The structure free parameters are the slot offset from the plane center d € [0, 25]
mm and its length L € [1,25] mm. Through full-wave simulations, reference scattering
datasets were obtained combining the values of this two parameters. Each one of these
sets is composed of k = 1858 frequency samples over the band [0, 10] GHz. We are going
to detail the resulting sub-cases in the following.

Case 12

In this case, the slot length is fixed L to 25 mm, while the slit offset from the plane
center d is selected as the free parameter: the resulting dataset is composed of 9 sets
of frequency samples. The model is fitted with partial fractions basis order n = 36.
Chebychev polynomials are used as parameter basis functions, with orders £y = 10 and
¢p = 3 for numerator and denominator, respectively. All the available sets are used to

166

A — Test cases

generate the final model, which is not guaranteed stable by the fitting procedure. Indeed,
this case is used to stress the equivalent SPICE extraction of a model with high bases
functions order, both for the frequency and parameter: the stability is not required for
such purpose. However, the maximum relative error between the resulting model and
validation data is 2.45 - 1073,

Case 13

The structure has a fixed discontinuity offset d = 0 mm and a variable slot length L that
results in a dataset of 9 elements. All the available sets are used to fit a model, which
is not guaranteed stable. However, we select this case to stress the SPICE extraction
procedure due to high order for both the frequency and parameter dependent bases, and
we do not consider this as an issue. In particular, the bases orders are fixed to n = 30
for the partial fractions basis, to /5 = 10 and £p = 3 for the numerator and denominator
Chebychev polynomials. The maximum relative error between the resulting model and
validation data is 9.30 - 1073.

Case 14

In this case, the free parameter of the considered structure is the slot length Ls, while
the lit offset d is fixed to 25 mm. All the 9 sets of frequency samples data are used
to fit an accurate model, which is not guaranteed stable but that is used to stress the
equivalent netlist generation procedures. Indeed, an accurate model is fitter with the
partial fractions basis order n = 29 and parameter-dependent basis order common for
numerator and denominator of 5 = ¢p = 4. The maximum relative error between the
resulting model and validation data is 7.26 - 1073.

Case 15

The free parameter for this case is the discontinuity offset d € [0,25] mm, while the slot
length is fixed at L = 25 mm. To fit an accurate model we used all the 9 available sets,
thus no data is used to validate the final results. To generate a model, we set the partial
fractions basis order to n = 34. About the parameter-dependent basis, a Chebychev
polynomial was used both for the numerator /5 = 10 and for the denominator /p = 3.
The maximum relative error between the resulting model and validation data is 1.10-1072.

Case 16-17

Printed Circuit Board Interconnect

This test case is a high-speed PCB signal link with two PCB’s, attached by a connector,
that enables the signal path through a stripline rounder in their inner layer. For details
see [31] [16], [21] (Courtesy of Prof. Christian Schuster and Dr. Jan Preibisch, Technische
Universitat Hamburg-Harburg, Hamburg, Germany). The pad a € [100,300] ym and anti-
pad b € [400,600] pum radii are the two free parameters. The true system responses are
obtained through full-wave simulations and compose a dataset of 81 scattering responses
with 9 elements for each parameter value. The k& = 1000 frequency samples span the

167

A — Test cases

band [1 Hz, 20 GHz] for each set of data.
Several sub-cases are realized combining the available free parameters. We detail them
in the following.

Case 16

In this case, anti-pad radii is fixed at b = 400um while the free parameter is the pad radii
a € [100,300] pum. On the 9 sets available, only two (the fourth and sixth) are used for
validation purpose, while the others are necessary for the fitting. The model is extracted
with a partial fractions basis function of order n = 44 and with Chebychev polynomials
of orders fy = 3 and /p = 2, respectively for the numerator and denominator. The
maximum relative error between the guaranteed stable model and validation data is
3.51-1072.

Case 17

The free parameter for this test case is the anti-pad radii b € [400,600] pm, indeed the pad
radii is fixed to ¢ = 100um. The same statement about datasets of Case 16 still holds.
A guaranteed stable model has been extracted imposing an order of n = 44 for the partial
fractions basis functions, while the Chebychev polynomial order was kept equal for the
numerator and denominator to £y = {p = 2. The maximum relative error between the
resulting model and validation data is 3.28 - 1073.

Case 18-21

Coupled Transmission Lines
These test cases consider a set of N differential pairs of two parallel wires, placed nearby
as depicted in Figure A.6 and presented in [16].

Figure A.6: Coupled Transmission Lines

The general structure characteristics are
e wires length=10cm; e relative permittivity e, = 4.2;

e conductors radius r,, = 0.5 mm; e center wires distance D = 1.61 mm.
e dielectric radius rg = 0.8 mm;

168

A — Test cases

The free parameter of this structure is the coupling length L. € [20,40] mm, while

each pair can be considered decoupled over a length L — L.. This situation results in
a 2N multi-conductor line. The scattering responses, which contain k& = 500 frequency
samples, are obtained through full-wave solver for 11 parameter values.
By adding a pair or coupled wires N we construct the sequential sub-cases: their models
are extracted by imposing the same fitting options. Indeed, we used these sub-cases to
stress the SPICE extractions with an increasing number of model poles and a fixed order
for the bases functions. For the same reason, the stability of this model was not enforced
and all the available data were used for the fitting. Nevertheless, except Case 18 all
the others models present a PR denominator through the external parameter space, thus
are guaranteed stable. In particular, we fit the models with a partial fractions basis
of order n = 30 and with a common Chebychev polynomial order for numerator and
denominator of /y = p = 4. The maximum relative errors between the resulting models
and validation data are shown in TableA.1, which details also the number of wires of each
sub-cases and the corresponding number of model ports.

Table A.1: Case 18 to 21: (left) maximum relative errors among resulting models and

validation data for all the parameter values and ports; (center) number of coupled wires
N; (right) number of model ports P = 2N.

‘ maz(eper)

Case 18 | 1.13- 1072

Case 19 | 9.83-1073
Case 20 | 2.12-102
Case 21 | 2.06 - 102

T w2
= o |

169

Bibliography

[1] LTSPICE IV, Linear Technology, available online: www.linear.com.

[2] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publications, 1968.

[3] R. Achar and M. S. Nakhla. Simulation of high-speed interconnects. Proceedings of
the IEEE, 89(5):693-728, May 2001.

[4] B. Anderson and S. Vongpanitlerd. Network analysis and synthesis: A modern
systems theory approach, eaglewood cli s, 1973.

[5] J. P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

[6] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for computing the
h norm of a transfer matrix and related problems. Mathematics of Control, Signals
and Systems, 2(3):207-219, 1989.

[7] T. Bradde. Fast data-driven algorithms for parameterized macromodeling of multi-
port systems. Master’s thesis, Politecnico di Torino, 2018.

[8] T. Chihara. An introduction to orthogonal polynomials (gordon and breach science
publishers, new york, ny). Technical report, ISBN 0-677-04150-0, 1978.

[9] M. De Stefano, S. Grivet-Talocia, T. Bradde, and A. Zanco. A framework for the
generation of guaranteed stable small-signal bias-dependent behavioral models. In
Microwave Conference (EuMC), 2018 European. IEEE, 2018.

[10] F. Ferranti, L. Knockaert, and T. Dhaene. Parameterized s-parameter based macro-
modeling with guaranteed passivity. IEEE Microwave and Wireless Components
Letters, 19(10):608-610, 2009.

[11] F. Ferranti, L. Knockaert, and T. Dhaene. Guaranteed passive parameterized
admittance-based macromodeling. I[IEFE Transactions on Advanced Packaging,
33(3):623-629, 2010.

[12] F. Ferranti, L. Knockaert, and T. Dhaene. Passivity-preserving parametric macro-
modeling by means of scaled and shifted state-space systems. IEEE Transactions on
Microwave Theory and Techniques, 59(10):2394-2403, 2011.

[13] A. Gil, J. Segura, and N. M. Temme. Numerical methods for special functions,
volume 99. Siam, 2007.

[14] G. H. Golub and C. F. Van Loan. Matriz computations, volume 3. Johns Hopkins
Univ Pr, 1996.

[15] S. Grivet-Talocia. Passivity enforcement via perturbation of hamiltonian matrices.
IEEE Transactions on Circuits and Systems I: Regular Papers, 51(9):1755-1769,
2004.

[16] S. Grivet-Talocia. A perturbation scheme for passivity verification and enforcement

170

Bibliography

of parameterized macromodels. IEFEE Transactions on Components, Packaging and
Manufacturing Technology, 7(11):1869-1881, 2017.

[17] S. Grivet-Talocia, T. Bradde, M. De Stefano, and A. Zanco. A scalable reduced-order
modeling algorithm for the construction of parameterized interconnect macromodels
from scattering responses. In IEEE Symposium on Electromagnetic Compatibility,
Signal and Power Integrity. IEEE, 2018.

[18] S. Grivet-Talocia and E. Fevola. Compact parameterized black-box modeling via
fourier-rational approximations. IEEFE Transactions on Electromagnetic Compatibil-
ity, 59(4):1133-1142, 2017.

[19] S. Grivet-Talocia and B. Gustavsen. Passive macromodeling: Theory and applica-
tions, volume 239. John Wiley & Sons, 2015.

[20] S. Grivet-Talocia, G. Signorini, S. B. Olivadese, C. Siviero, and P. Brenner. Thermal
noise compliant synthesis of linear lumped macromodels. Components, Packaging
and Manufacturing Technology, IEEE Transactions on, 5(1):75-85, Jan 2015.

[21] S. Grivet-Talocia and R. Trinchero. Behavioral, parameterized, and broadband mod-
eling of wired interconnects with internal discontinuities. IEEFE Transactions on
Electromagnetic Compatibility, 60(1):77-85, 2018.

[22] N. J. Higham. Accuracy and stability of numerical algorithms. STAM, Philadelphia,
PA, 1996.

[23] T. Kailath. Linear systems. Prentice-Hall Englewood Cliffs, N.J, 1980.

[24] R. Kalman. On a new characterization of linear passive systems. 1964.

[25] A. C. S. Lima, B. Gustavsen, and A. B. Fernandes. Inaccuracies in network real-
ization of rational models due to finite precision of RLC branches. In International
Conference on power System Transients (IPST), pages 1-5, 2007.

[26] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.

[27] D. G. Luenberger. Optimization by vector space methods. Wiley-Interscience, 1997.

[28] A. F. Nikiforov, V. B. Uvarov, and R. P. Boas. Special functions of mathematical
physics. Birkhauser, 1988.

[29] S. B. Olivadese, G. Signorini, S. Grivet-Talocia, and P. Brenner. Parameterized and
dc-compliant small-signal macromodels of rf circuit blocks. IEEE Transactions on
Components, Packaging and Manufacturing Technology, 5(4):508-522, 2015.

[30] A. V. Oppenheim and A. S. Willsky. Signals and systems. Prentice Hall, Englewood
Cliffs, NJ: Prentice Hall, 1983.

[31] J. Preibisch, T. Reuschel, K. Scharff, J. Balachandran, B. Sen, and C. Schuster. Ex-
ploring efficient variability-aware analysis method for high-speed digital link design
using pce. DesignCon, Jan.

[32] C. Sanathanan and J. Koerner. Transfer function synthesis as a ratio of two complex
polynomials. Automatic Control, IEEE Transactions on, 8(1):56-58, jan 1963.

[33] C. Sanathanan and J. Koerner. Transfer function synthesis as a ratio of two complex
polynomials. IEEE transactions on automatic control, 8(1):56-58, 1963.

[34] C. Scherer and S. Weiland. Linear matrix inequalities in control. Lecture Notes,
Dutch Institute for Systems and Control, Delft, The Netherlands, 3, 2000.

[35] P. Triverio, S. Grivet-Talocia, and M. Nakhla. An improved fitting algorithm for
parametric macromodeling from tabulated data. In Signal Propagation on Intercon-
nects, 2008. SPI 2008. 12th IEEE Workshop on, pages 1-4. IEEE, 2008.

171

Bibliography

[36] P. Triverio, S. Grivet-Talocia, and M. S. Nakhla. A parameterized macromodeling
strategy with uniform stability test. IEEE Transactions on Advanced Packaging,
32(1):205-215, 2009.

[37] P. Triverio, M. Nakhla, and S. Grivet-Talocia. Parametric macromodeling of multi-
port networks from tabulated data. In FElectrical Performance of Electronic Packag-
ing, 2007 IEEE, pages 51-54. IEEE, 2007.

[38] P. Triverio, M. Nakhla, and S. Grivet-Talocia. Extraction of parametric circuit mod-
els from scattering parameters of passive rf components. In Microwave Conference
(EuMC), 2010 European, pages 1635-1638. IEEE, 2010.

[39] P. Triverio, M. Nakhla, and S. Grivet-Talocia. Passive parametric macromodeling
from sampled frequency data. In Signal Propagation on Interconnects (SPI), 2010
IEEE 14th Workshop on, pages 117-120. IEEE, 2010.

[40] C. F. Van Loan. Matrix computations (johns hopkins studies in mathematical sci-
ences), 1996.

[41] M. Wohlers and E. Beltrami. Distribution theory as the basis of generalized passive-
network analysis. IEEE Transactions on Circuit Theory, 12(2):164-170, 1965.

[42] M. R. Wohlers, N. Declaris, and H. G. Booker. Lumped and distributed passive
networks: a generalized and advanced viewpoint. 1969.

[43] D. Youla, L. Castriota, and H. Carlin. Bounded real scattering matrices and the
foundations of linear passive network theory. IRE Transactions on Circuit Theory,
6(1):102-124, 1959.

[44] A. Zanco. Adaptive algorithms for passivity verification and enforcement of multi-
parametric behavioral macromodels. Master’s thesis, Politecnico di Torino, 2018.

[45] A. Zanco, S. Grivet-Talocia, T. Bradde, and M. De Stefano. Multivariate macromod-
eling with stability and passivity constraints. In Signal Propagation on Interconnects,
2018. SPI 2018. 22th IEEE Workshop on. IEEE, 2018.

172

	General Framework and Motivations
	Data Driven Modeling
	Macromodels: Construction Flow and Advantages
	Macromodel Requirements for Simulations
	Rational Fitting Algorithms

	Rational Fitting with Fixed Poles
	Partial Fractions
	Least Squares Formulation of the Fitting Problem

	General Rational Fitting
	Generalized Sanathanan Koerner Iteration

	Multiport (MIMO) Model Formulations
	Transfer Function Formulation
	State Space and Descriptor Form

	Stability
	Passivity
	The Dissipation Inequality
	Passivity Characterization

	Multivariate Macromodels
	Parametric Model Formulation
	Parameter-Dependent Basis Functions
	State Space and Descriptor Forms

	Stability Enforcement
	Uniform Stability and PR Denominator
	Sampling Process For Constraints Realization

	Implementation of PR Strategy
	Numerical Results

	Final Stability Enforcement on Denominator
	Numerical Results

	Robust Enforcement Implementation
	Numerical Results

	Equivalent circuit synthesis
	Direct state-space synthesis
	Sparse synthesis

	An example
	Scalar Case
	Multiport Case

	GSK Model Synthesis
	An example

	Function Calls
	GSK_Model2Cir
	SS2Cir
	MakeGSKWrapper

	Parametric SPICE synthesis
	Parametrized GSK Model Synthesis
	Parameter Call
	Parameter Normalization
	Partial Evaluation of Parameter-Dependent Basis Functions

	Global Parameter
	Parameter in Wrapper and Admittance Sub-circuits
	An Example

	Independent Parameter
	Parameter in Wrapper and Admittance Sub-circuits
	An Example

	Control Pin
	Parameter in Wrapper and Admittance Sub-circuits
	An Example

	Function Calls
	GSK_Model2Cir Parametric
	makeGSKWrapper Parametric

	SPICE Synthesis of Parametric Components
	Parameter-Dependent Basis Synthesis
	Parameter-Dependent Circuit Elements
	Resistors
	Controlled Sources

	Synthesis with the Control Pin Interface
	Topological Issues
	An Example

	Function Calls
	Resistor Synthesis Functions
	VCCS Synthesis Functions
	Multivariate Case Synthesis Functions

	SPICE Results and Bias-Dependent Components
	AC Validation Circuits
	SPICE Extractions Comparison
	Parameter Call Results
	Parametric Components Synthesis Results

	Bias-Dependent Components
	NMOS Transistor
	Two-Stage Buffer
	Operational Amplifier
	Low Drop-Out Voltage Regulator

	Function Calls
	GSK-model Synthesis Validation
	PSK-model Synthesis Validation

	Conclusions and Further Improvements
	Test cases
	Bibliography

		Politecnico di Torino
	2018-03-30T17:41:50+0000
	Politecnico di Torino
	Stefano Grivet Talocia
	S

