
POLITECNICO DI TORINO 

Master Degree Course in 

Biomedical Engineering 

Master Degree Thesis 

Automatic microtubule tracking in 

fluorescence images of cells doped with 

increasing concentrations of taxol and 

nocodazole 

Supervisor 

Prof. Gabriella OLMO 

Candidate 

Marilena VARRECCHIA 

April 2018 



i 
 

Acknowledgements 

Over these years, I have learned and grown up a lot, from both an academic and 

personal standpoint. In these few lines I would like to thank the people who have mostly 

contributed to this growth and made this work possible. 

Foremost, I would like to thank my supervisor, Prof. Gabriella Olmo, for her guidance, 

great willingness, persistent support and patience demonstrated in the countless 

meetings over these months. I am extremely grateful for having had the opportunity to 

work with her at this project. 

I would also like to thank Dr. Marta Gai, Prof. Marco Grangetto, Prof. Ferdinando di 

Cunto, and Joshua for their availability and the valuable discussions on the topic. 

I wish to express my sincere gratitude to my whole family, especially to my parents for 

the support and wise advice, to my brother (and messy roommate) for having constantly 

endured my stress, and to my uncles and cousins for constantly having believed in me. 

My gratitude also goes to all my fellows and friends that have been a part of this 

journey. In particular, thanks to: Francesca for all the dinners and great company, 

especially over these months, my lifecoach Giorgia for all her helpful hints, and, above 

all, for her patience; Ilaria, for good (and bad) times spent on our wonderful projects; 

Domenico, for having shared his food experiments; Michele, for all the laughter 

throughout our classes; and Francesca and Cristina for morally helping me in times of 

need. 

And last but not least, I am grateful to Ester and Stefania, because no matter how far we 

are or how much time elapses, I can always rely on them. 



ii 

 

Abstract 

This work aims to design a tool to automatically analyze astral microtubule behavior in 

confocal images. 

Microtubules are polymers involved in several cell functions; specifically, the astral 

ones (i.e. a microtubule specific category) are involved in mitotic spindle assembly 

during mitosis. Indeed, when the mitotic spindle is not correctly oriented, abnormal 

chromosome segregation can occur, and pathological conditions, related to specific gene 

mutations, can arise. 

Nowadays, image processing is applied in a wide range of areas, such as remote sensing 

(e.g. video surveillance), human-machine interface, biology, medicine. Nevertheless, 

focusing on biological applications, it is worth pointing out that molecules make up 

complex and dynamic systems, generating a big amount of data. This is the reason why 

data post-processing and mathematical models of molecular structures are necessary in 

order to understand cell dynamics. 

Over the years, a lot of software-based imaging techniques have been developed to 

support the biologists in their experiments. These approaches take into account the 

extreme problem complexity, that is related to both equipment (i.e. microscopy) and cell 

culture, and compromises the global image quality. The main issues are the limited 

instrument resolution and the different noise processes that are present in movies (e.g. 

photon shot noise, background noise, dark current, photobleaching).  
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Due to the scenario high variability, at present, a standard protocol does not exist for the 

analysis of such images; hence, biologists still manually review samples. It is clearly a 

huge, time-consuming and hardly reproducible task. 

This is the reason why the project has been developed to provide a support to 

researchers. 

Our algorithm evaluates microtubule dynamic instability (i.e. a characteristic polymer 

behavior) thanks to a detection and a tracking procedure, both based on traditional 

image processing techniques. 

In order to assess the algorithm performance, nocodazole and taxol-doped cells have 

been taken into account, as they have known effects on cell cultures. 

Moreover, given the lack of a ground truth, the feature extracted with our algorithm are 

compared to those of another algorithm, developed at University of Turin, and to some 

manually computed data; in both cases; the comparisons refer to the same dataset. 

Finally, the work is compared with other approaches that can be found in literature, with 

good results. 

It is worth pointing out that the proposed approach has been developed as standalone 

software and it is currently being used by biologists of Department of Molecular 

Biotechnology and Health Sciences of Turin. 
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Chapter 1 

Introduction  

The detection and tracking of objects in digital images has become over the years an 

important application allowing to save time and to achieve reliability in the analysis 

process. Nowadays, image processing techniques are powerful tools applied in a wide 

range of areas, such as remote sensing (e.g. video surveillance), human-machine 

interface, biology, medicine.  

In the biomedical field, image processing is employed for both diagnostic and 

therapeutic purposes, supporting physicians in their diagnosis and reducing issues 

related to intra and inter-subject variability. 

This work is focused on the analysis of molecular biology images. In this area, image 

processing has led to significant progress in the early detection, monitoring, and 

diagnosis accuracy, thanks to the possibility of visualizing and measuring in vivo the 

cellular and molecular behaviors.  

However, molecules make up complex and dynamic systems generating a big amount of 

data that require post-processing for their interpretation [1]. Moreover, to tackle this 

complicated issue, mathematical models of the molecular structures are necessary. 
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Over the years, many image processing tools have been developed to support the 

biologists in their research, but the limited resolution of microscopes and the high 

dynamicity of the particles of interest impact the software accuracy and precision.  

Nowadays, fluorescence microscopy is the main imaging tool used to carry out in vivo 

studies of biologic processes in cells [1], allowing to follow the behaviors of single 

molecules. A major step forward in the light microscopy is related to the discovery of a 

naturally fluorescent protein in living organisms, the GFP (green fluorescent protein) 

[1]. Since then, other markers, with different spectral properties, have been engineered 

for labelling various types of proteins and cellular structures. This allows biologists to 

detect specific kinds of genes, to evaluate their kinetic parameters, and to evaluate in a 

quantitative fashion the interactions among molecules [2]. 

In the biomedical field, it is significant the investigation of a cytoskeleton polymer, the 

microtubule. These highly dynamic particles are involved in various cellular functions, 

such as movements of the inner cell organelles and intracellular transport. Moreover, 

they play a crucial role in cellular division. Modifications in microtubule functions, 

related to specific gene mutations, are responsible of some pathologies, as autosomal 

dominant microcephaly [3]. 

The analysis of the dynamic behavior of microtubules in fluorescence microscopy 

images is a challenging problem, because the particle dimension is below the 

instruments resolution, that is approximately 100 nm [2], while the microtubules 

dimension is about 20 nm. 

Other challenges are related to the different types of noise and other impairments that 

corrupt the images (e.g. photon shot noise, background noise, dark current, 

photobleaching) [1]. 

Although in the last years several image analysis tools have been proposed for 

microtubule tracking, due to the complexity of this issue and the lack of a reliable 
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ground truth, the biologists still review the samples manually. It is clear that this 

manual work is time-consuming, hardly reproducible, not so accurate because it is 

strongly affected by the inter and intra-subject variability. For these reasons automatic 

analysis is deemed very useful by specialists [2]. 

In the following sections a brief description of microtubules, their functions and the 

technique that allow to acquire the images is provided. 

1.1 Microtubules 

Microtubules (MTs) are one of the three main building blocks of the cytoskeleton, the 

cellular scaffold that has both functional and structural properties. The cytoskeleton is 

involved in several processes, such as spatial organization of the cellular organelles, 

communication with the ECM (Extracellular Matrix), coordination of the signals that 

aim making the cell move and changing its shape [4]. 

The cytoskeleton is composed of three kinds of polymers (Fig.1.1): 

• Actin filaments; 

• Microtubules; 

• Intermediate filaments. 

 

Figure 1.1: The three cytoskeleton building blocks in a neural cell. In details, 

from the left: microtubules, intermediate filaments, actin filaments. From [4] 
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These three components build up a network, whose structure is regulated by different 

regulatory proteins. 

In this work we focus on the microtubules, because of their crucial role in eukaryotic 

cells, especially for maintaining the genome integrity during the mitosis. 

1.2 Microtubule structure 

The structural elements of the microtubules are dimers of a globular protein, named 

tubulin. The dimer is composed of two kinds of polypeptides, α-tubulin and β-tubulin. 

These dimers polymerize into linear protofilaments; 13 of them, arranged around a 

hollow core into head-to-tail arrays, make up the microtubule (Fig. 1.2). 

Because of their structure, the microtubules are polarized elements and it is possible to 

recognize two different poles (ends): 

• Plus end; 

• Minus end. 

The first one is characterized by a fast speed of growth, the latter by a slower one. This 

velocity difference impacts on the number of free dimers that bound at the two ends, 

making the growth happen mainly at the plus-end. 

Figure 1.2: α/β dimers arranged 

around the hollow core. From [5] 
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The microtubule minus-end is linked to the cell centrosome, located close to the nucleus 

in interphase cells, while the plus-ends extend toward the cell cortex. In Fig. 1.3 it is 

shown how the MTs are arranged in the cell during the interphase. 

 

 

The dimers can be subject to cycles of assembly (polymerization or growing) and 

disassembly (depolymerization or shrinking) regulated by the GTP (Guanosine-5'-

triphosphate) hydrolysis. Moreover, the polymerization phase is controlled by a third 

kind of tubulin, the γ-tubulin [5]. 

A characteristic microtubule behavior is known as dynamic instability, and consists in 

rapidly alternating phases of growth and shrinkage. The transition from growth to 

shrinkage is called catastrophe, the opposite is called rescue. There is a third state in 

which a microtubule may be present, the pause. It means that the microtubule stops 

growing but does not depolymerize; unfortunately, the factors that regulate this state are 

still not fully clear.  

This dynamic behavior can be altered by a class of protein selective for the 

microtubules, the MAPs (microtubule-associated proteins). These can have deeply 

different effects on the microtubule behavior. Some of them are stabilizers because of 

the capping of the ends, and others act as destabilizers, promoting the depolymerization 

[5]. In the first case, the MAPs make the polymer mass increase, in the second case they 

Figure 1.3: Microtubules orientation in 

interphase cell. From [5] 
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reduce it [3]. A third class of MAPs can be employed as plus-end tracking. These 

molecules are selective for that pole, therefore they allow to visually check the growing 

of the MTs. Because of their features, these MAPs are known as +TIPs (Microtubule 

plus-end tracking proteins).  

Nowadays, +TIPs are largely used to evaluate the parameters of interest in living cells, 

and have been employed also in this work for MT tracking. 

1.3 Microtubule function 

The microtubules are involved in the movement of the inner cell organelles and the 

intracellular transport, as well as in the cell division, i.e. in the mitosis process. 

The microtubule nucleation has a strong impact on the mitotic spindle assembly. This 

latter is a macromolecule that plays the role of guaranteeing the correct chromosome 

segregation to two daughter cells during the mitosis [3]. 

The MTs dynamic instability, during the interphase, causes the cytoskeleton remodeling 

in order to properly prepare the cell to the division and ensure the genome integrity. 

During this phase, the microtubules move in the surrounding cellular space for a few 

micrometers. 

Three types of microtubules contribute to the mitotic spindle assembling [3]: 

• Kinetochore MTs (K-MTs): they link to the chromosomes thanks to a particular 

protein, called kinetochore; 

 

• Astral MTs (A-MTs): they are involved in the spindle orientation and they 

interact with the cellular cortex; 

 

• Non-kinetochore MTs (nK-MTs): they provide stability to the spindle. 
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These three intracellular molecules give rise to an antiparallel and polarized structure, 

since the MTs linking centrosomes are arranged in an array fashion, and the ones 

outside the spindle are arranged radially, with the minus-ends directed toward the 

centrosome and the plus-ends toward the cellular cortex (Fig. 1.4). 

The effectiveness of the spindle assembly is known to be related to the frequency of 

catastrophe events and to the growth rate of the microtubules, which, on the other hand, 

is linked to the concentration of free tubulin dimers [3]. 

When the mitotic spindle is not correctly oriented, due to some gene mutations, 

abnormal chromosome segregation can occur, and this leads to possibly pathological 

situations. Focusing on the neural cells, it is significant to mention the MCPH (human 

primary microcephaly), a disorder in which the patients exhibit a reduced head 

circumference and different degrees of intellectual disability. 

1.4 Microtubules detection 

The subcellular components and their dynamic behavior can be analyzed in vivo using 

confocal microscopy, a particular kind of microscope based on the fluorescence 

phenomenon. 

Figure 1.4: Overview of the mitotic spindle. It is shown how the different 

types of MTs are arranged into the antiparallel array. From [5] 
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Since the cells and their molecules are transparent in normal conditions, in order to 

detect a specific particle, markers having the property to emit light are used. These 

molecules are selective for the proteins to detect and are called fluorophores [1]. 

The fluorescence microscopy, although being a powerful tool allowing in vivo imaging 

of molecular structures, is affected by limitations due both the instrumentation and 

samples [1]. As consequence, noisy images are generated, whose analysis is very 

challenging. 

More details on main issues related to molecular imaging are provided in the next 

chapters. In the following paragraphs the basic physic concepts of a confocal 

microscope are briefly explained, and the fluorophores employed to detect microtubules 

are described. 

1.4.1 Fluorescence 

The phenomenon of fluorescence is the capacity of a molecule to release the received 

radiation. Usually, the excitation and the emission wavelengths are not equal, and their 

difference is known as Stoke shift. 

When the radiation is supplied, molecules change their energetic state, which mainly 

depends on electron configuration, moving from the ground state to a higher-energy 

condition. Fluorescence occurs when the sample comes back to its steady-state, 

releasing the received energy in form of photons (quantum of energy) [1]. 

The wavelength of the radiation and the energy are connected by the Planck’s law: 

� = ℎ ∙ � = ℎ ∙ ��	 

where: 

• E is the photon energy; 
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• h is the Plank’s constant; 

 

• v is the light frequency related to the light speed (c) and the wavelength of 

radiation (λ). 

Because of heat dissipation, not all the excitation energy is emitted in form of photons; 

this explains the existence of the Stoke shift and the reason why the wavelength of 

emission is larger than the excitation one. 

1.4.2 Confocal microscope 

The energy source used for the scanning is a laser. The beam is focused on the sample 

through a pinhole that limits the quantity of light generated from the source. The 

diameter of this component is a critical parameter, since it impacts directly on the image 

resolution. A trade-off must be taken into account, because small pinhole size means 

better resolution but also less light collected and therefore noisy images [1]. 

The spatial resolution is expressed by means of the point spread function (PSF), which 

can be considered as the impulse response of the image. In a confocal instrument with a 

pinhole aperture, PSF is given by [2]: 

	
��
, �� = 	 �� 2����
�� exp�−2������ ���
 
�

�
�
 

where: 

• 
 = !"� +	$�	 is the radial distance from the optical axis; 

 

• �� is the Bessel function of zeroth order; 

 

• α and γ are two parameters depending on the microscope lens numerical 

aperture (NA) and on the emission light wavelength (λ) as follow:  

� = 2%&'
� 			()�			� = %&'�

2�  
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The PSF in most cases can be approximated with a normal distribution. 

To improve the resolution of the system, an immersion layer (e.g. oil) between the lens 

and the sample is used; in this way, a higher refractive index, and therefore a better 

resolution, is obtained [1]. 

The limited resolution (about 100 nm) is not the only factor affecting the image quality. 

Other phenomena that degrade images are related to both instrumentation and samples, 

and are: limited SNR (signal-to-noise ratio), variability of the biological samples, 

photobleaching, autofluorescence and phototoxicity that limit the frequency of 

excitation in cell imaging in vivo. 

As a result, the images appear very noisy, and a huge processing is required in order to 

achieve more reliability in the analysis. Fig. 1.5 shows a typical image acquired with a 

confocal microscope. 

1.4.3 Fluorophores 

An important step forward into the microscopy field is linked to discovery of a naturally 

fluorescent protein in living organisms, the GFP. Over the years, different fluorophores 

Figure 1.5: A cell in mitotic phase acquired with a confocal 

microscope with microtubules labelled. Scale bar 10 µm. 
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have been created by inducing GFP mutations. In this way, different genes of interest 

can be marked, and their behavior can be analyzed, also in a quantitative way [2]. 

The main feature of the targeting molecules is that they must not affect the cellular 

functions in any way [1]. 

By focusing on microtubules, the dynamic is usually studied in time-lapse images (2D 

images over the time) employing tracers build up with tubulin linked covalently to a 

fluorophore. Only the MTs growth phase can be monitored using the mentioned above 

tracers, as, because of their structure, they are selective for the plus ends. This is the 

reason why these are called fluorescently-tagged End Binding Proteins (EB-EGFP). In 

the experiments involving MTs mainly two types of proteins are employed, the type 1 

and type 3, called EB1-EGFP and EB3-EGFP respectively. 

Since the available number of binding sites for free tubulin decreases exponentially 

along the microtubule and it is larger at plus end, the polymers fluorescence profile 

appears in the images as a comet (Fig. 1.6) when the microtubule starts the 

polymerization [6]. 

 

It is worth noticing that the EB-EGFP markers allow to visualize in time-lapse image 

sequences only the growing MTs, because they bind to plus-ends in the assembling 

phase. Other phenomena such as shrinkages and pauses cannot be directly observed. 

Figure 1.6: Some comets marked in the 

fluorescence images. Scale bar 2 µm. 
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The cell cultures employed in this work are treated with EB3-tdTomato, a protein 

belonging to the +TIPs class and therefore selective for the MTs plus-ends. 

The comet detection is the starting point for the microtubules analysis software and it is 

followed by a tracking step. The approaches applied in the currently available tools are 

the subject of the next chapter. 
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Chapter 2 

Microtubules detection and 

tracking: state of the art 

The detection and tracking of particles in time-lapse fluorescence images have been 

addressed by many studies, since a quantitative analysis of the reconstructed trajectories 

yields significant information about functions in living cells [7]. 

Nowadays, these studies are performed by hand, tracking for each particle its trajectory 

along the frame stacks. It is clear that this is a challenging and time-consuming job, 

especially if the number of particles to track is considerably large as in the microtubule 

case. 

In order to support biologists to carry out quantitative and reproducible investigations 

on time-lapse images, some software tools have been developed. 

The purpose of this chapter is to provide an overview of the available approaches for 

detection and tracking of microtubules. It is worth noticing that nowadays there is no 

standard protocol to follow because of the extreme variability of the biological process 

and the equipment used to acquire the sequences of images. 

Most algorithms are divided into four main steps [2]: 
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1) Data preprocessing to reduce noise levels; 

 

2) Segmentation, that consist in recognizing and sealing off the objects of interest 

(signals) from the background; 

 

3) Particle linkage for tracking the previously identified objects frame by frame; 

 

4) Results analysis for providing quantitative information about microtubules 

dynamic. 

An important factor to take into account is that the fluorescent markers have a size 

under the optical resolution of the microscopes, which is about 100 nm [7]. 

Moreover, a parameter that impairs the algorithm performance in terms of accuracy, 

robustness and precision is the extremely low signal-to-noise ratio (SNR) (further 

information is provided in chapter 3. Different researches have independently identified 

for SNR, specifically in this type of images, a critical value of 4dB. Under this 

threshold, the reliability of virtually any algorithm quickly impairs [7]. This is the 

reason why the SNR enhancement is crucial; to this purpose, denoising techniques 

provide a valid support. Since the predominant noise that corrupts images is not 

additive, nonlinear filters are used in most of cases [2]. 

Other problems to tackle are the low contrast of the images due to the limited number of 

fluorescent markers that bind to the plus-ends, the autofluorescent background [8], and 

the fact that microtubules might go out from the focal plane during the experiments. 

Depending on their features, the existing approaches can be classified into three main 

classes: 

• Probabilistic; 

• Deterministic; 

• Supervised (i.e. based on machine learning). 
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In the next sections, for each class, the main features of the algorithms developed for 

detecting and tracking microtubules are summarized. 

2.1 Probabilistic approach 

These tracking approaches are based on the implementation of a filter which is based on 

two types of models, the dynamic and the measurement model. The first one provides 

modelling of the spatial-temporal behavior of the MTs (and more in general, of the 

particles of interest), and the second one includes some measurements in the first model. 

The purpose of this filter is to predict the particle positions from a series of 

measurements. 

The filtering previously described is often applied through the Kalman filter [8]. It is an 

estimator of the state of a linear system corrupted by noise, and works in optimal 

conditions if the noise and the error that affects the models are two variables normally 

distributed with mean zero and not statistically correlated. However, surprisingly good 

results can be obtained even if the ideal working conditions are not respected. 

The Kalman filter is a recursive filter based on two steps: prediction and measurement 

update. Every time a new measure is detected, its reliability is evaluated by comparing 

the measured value with the prediction yielded by the system model. Through some 

matrix operations, a weight is assigned to the measure, and the models of the filter are 

corrected in order to achieve a better estimation in the next epoch. 

It is worth pointing out that, to ensure the filter functioning, it is essential to properly 

establish the particle motion regime (e.g. linear, Brownian or mixed), which represents 

the evolution of the molecule [8]. 

A more complex application of the Kalman filter is in the Interacting Multiple Model 

(IMM) filter. It is based on the implementation of a set of Kalman filters to provide a 
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recursive estimation of the model. In this way, more information is retrieved from the 

“history” model [9]. 

The third filter that is worth mentioning is the particle filter. It is obtained by the 

implementation of the Monte Carlo method (a class of computational algorithms). This 

approach is ideal when the models are neither Gaussian nor linear, and ensures a high 

degree of robustness also when the images are difficult to analyze [8]. 

A detailed description of the above mentioned filters is out of the scope of this thesis, 

details can be found e.g. in [8] or [9]. 

An application of the probabilistic approaches is embedded in the algorithm proposed 

by P. Roudot et al. [9]. Their aim is to recover the particle trajectories in environments 

with a high density of molecules and subject to rapid motion changes. This scenario 

leads to an increase in the number of false positives, namely objects that have the 

characteristics to be considered as particles of interest but actually are not. The authors 

tackle the issue following two strategies [9]: 

• Stochastic smoothing; 

• Piecewise-stationary motion modeling (PMM). 

Their combination is the basis of the piecewise-stationary motion model smoother 

(PMMS) algorithm. What makes this technique innovative is the analysis of both 

temporal directions in the time-lapse images, so collecting the maximum amount of 

available information. 

The first step plans to detect the particles of interest; therefore, for each pixel, a 

Gaussian distribution of the PSF is estimated with a fitting procedure, and a threshold of 

significance is computed from fitting residuals. 

In order to estimate the positions of the object centroids, a Gaussian particle intensity 

model is used. In particular, the coordinates of the pixel previously labeled as 
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significant and those of a local maximum are fit. The searching of the maxima is carried 

out in an image filtered with a Laplacian-of-Gaussian filter [9]. As for the fitting 

procedure, a region of interest (ROI) around the significant pixel is considered. 

Once the particles have been detected, the next step provides for the tracking and 

therefore the recovery of the trajectories. 

The approach proposed by the authors is an update of an existing multiple-particle 

tracking software made available in Matlab environment, namely u-track [9]. This is 

done because, if one takes into account only the past information, some motion 

transitions cannot be predicted (e.g. a rapid switch from Brownian to directed motion). 

Focusing on the microtubules scenario, it can be said that the polymers mainly show a 

linear motion, rarely a Brownian one. 

Moreover, an adaptive searching radius for linking particles frame-by-frame is 

implemented by exploiting both past and future measurements in order to tackle sudden 

changes. 

Once the tracks have been identified, they are optimized in a second step which 

provides for gap closing. This means that the fragmented tracks are properly connected. 

This process depends on the definition of two parameters: the maximum gap time and 

the minimum tracks length to take into account. 

The PMMS algorithm exploits sets of Kalman filters, each of which is associated to a 

specific motion regime; the iterations are carried out without mixing the types of 

motion. The model updating is made in real-time, comparing the new measurement with 

the other available ones. 

If a new motion regime is detected, all Kalman filters are reinitialized with the results of 

the previous filtering cycle. Since the most recent data on the motion regime are used 

for the initialization, this represents a suboptimal choice, particularly in the case of rapid 

changes [9]. 
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The solution proposed by P. Roudot et al. exhibits robustness even when the samples 

present jerky movements and the frames are acquired with a reduced frame rate, choice 

that allows to reduce the phototoxicity effects and track poorly labeled molecules. This 

is the reason why the PMMS estimator is a good decision when the objects to detect are 

characterized by heterogeneous motions. 

2.2 Deterministic approach 

This category of algorithms follows a procedure that can be divided into two macro 

steps: the localization of particles through enhancing techniques, and the reconstruction 

of trajectories based on a nearest-neighbor criterion [8]. Generally, the concept of near 

should not be regarded only referred to space, but also to pixel intensity, shape, 

direction and other relevant aspects. 

The majority of approaches implement a search strategy which exploits the intensity of 

the pixels; in particular, the positions of the molecules correspond to those of the peak 

intensity. 

Thresholding techniques to detect particle positions are applied by I.F. Sbalzarini and 

P. Koumoutsakos in [10]. In contrast with other algorithms that can be found in 

literature, the approach proposed in [10] foresees few a priori knowledges, and no 

assumptions on the shape of trajectories are required. Nevertheless, the technique is 

characterized by accuracy and precision comparable with trickier algorithms, and has 

benefits also from a computational standpoint [10], even if this feature is not really 

relevant to the purpose of this work. 

In the initialization phase, all pixels of the sequence are normalized with the min-max 

scaling; maximum and minimum values of intensity are referred to the entire stack. 

Then, image enhancing is performed in order to reduce two noise sources: the long-

wavelength modulations of background intensity, and the discretization noise that 
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affects the digital images (i.e. photon shot noise) [10]. To this end, two low pass filters 

(LPF) are used, an average filter to remove the background and a Gaussian filter to limit 

the discretization noise. The first one is based on the assumption that the objects of 

interest have limited variations compared with the background, therefore a box-car 

average in a square ROI is implemented. As for the second filter, a normal distribution 

is assumed for camera noise. 

The filtered images are the starting point for particle identification. For each of them, 

the local maximum is evaluated in order to estimate the object positions. 

This approach has two main limitations [10]: 

1. It does not exclude noise; 

2. It can include false positive particles. 

For reducing these problems, a refinement of the positions and the removal of spurious 

identifications are required. 

To this aim, the authors fix the particles location, making the assumption that the local 

maxima detected should be not so far from the real geometric center of the object. An 

offset is the value that allows to correct the particles coordinates, and it is represented 

by the distance to the brightness-weighted centroid in the image. 

The false detections are rejected by assigning a score depending on the intensity 

profiles. 

Once the particles positions are estimated in all frames, they are linked frame-by-frame 

to build up the trajectories. To this purpose, a nearest-neighbor criterion is employed. 

The linking of two particles p and q through two consecutive frames i and j, is based on 

the minimization of a cost functional, defined as a linear combination of the particle 

positions, the intensity moments of zeroth (m0) and second order (m2) [10]: 
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This approach provides good results and is very efficient from a computational point of 

view [8]. This is the reason why it has been taken as reference in several works over the 

years, such as the one developed by Sironi et al. and also in this thesis. However, the 

performance impairs when the images exhibit low quality, and in display environments 

with a high density of particles, that is the situation addressed in this work. 

2.2.1 Combined approach 

In some cases, it is possible to mix both the above mentioned approaches. For example, 

it is worth mentioning the solution proposed by B. Mahemuti et al., which investigate 

the microtubules dynamic using morphological information for detection and a 

probabilistic data association (PDA) filter for tracking. 

The algorithm reported in [11] starts with the binarization of the images belonging to 

the movie to analyze, and the removal of all the objects shorter than a threshold 

depending on the minimum length of microtubules to detect. This parameter impacts the 

tracking accuracy. 

Then, the elements identified undergo thinning procedure in order to have microtubules 

1 pixel wide [11]. 

The next step provides for the plus-ends identifications in the binarized images and is 

based on the assumption that the body of MTs follows the path of head (i.e. plus-end). 

Taking into account this hypothesis, two consecutive frames will be different just for 

the positions of the growing ends, and therefore the result of subtracting the two frames 

is an image containing only the heads of the microtubules. 

Moreover, since some tracks might cross during the polymer growth, a procedure of 

objects decomposition is performed in order to isolate single particles forming 
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compound structure. To this purpose, information related to the plus-end positions, the 

crossing points, and the pixels are exploited. 

Once the microtubules positions are estimated, the tracks are created with a probabilistic 

approach considering that the objects could change their shape and topology in different 

frames of the same video, or that some MTs can suddenly appear or go out from the 

focal plane. The authors consider the elements into consecutive frames as belonging to 

the same microtubule if the measured and estimated positions are similar in direction 

and movement. The PDA filter is based on the Kalman filter, and follows two steps: 

data association and track updating. 

The described technique is characterized by acceptable accuracy in environments with 

low density of particles; however the performance impairs in high density video, that is 

the most realistic situation. 

2.3 Approach based on machine learning 

Machine learning is a powerful tool that allows building up specialized algorithms 

taking into account the morphology and physic of phenomenon without any a priori 

knowledge of the particles to analyze. 

This is possible because the algorithm learns from a collection of data, termed training 

set. It means that each track in an image is considered as an observation instance and, 

from the observation of different tracks, it is possible to build a behavior pattern. 

Once the training procedure is over, the algorithm can evaluate the dynamic of the 

particles in the movies of interest. 

However, in the biological field, machine learning is not the most appropriate choice 

because of the nature of the objects behavior. Indeed, it is a random process, as in the 

microtubules case, that leads to the lack of a ground truth to use for the training of the 
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algorithm. To build an appropriate dataset for the learning procedure, a very 

comprehensive study of the motion model of the microtubules would be needed. 

To create such simulator for generating the training set, costs comparable with those of 

a manual analysis are required. 

This explains why, even though the huge potential of the machine learning, at present 

traditional approaches remain the best choice for molecular images evaluation. 

In conclusion, it is worth pointing out that regarding the particle detection and tracking, 

at present, there is not the best algorithm, because the performance of any method is 

linked to the experimental dataset. For this reason, the approach to implement should be 

chosen according to the available dataset. 
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Chapter 3 

Dataset description 

The purpose of this thesis is to provide an algorithm for detecting and tracking astral 

MTs in a fully automated way and supply a summary of their dynamic behavior in order 

to support biologists in research. For the algorithm testing, a dataset of stacks (i.e. time-

lapse image sequences), acquired with a confocal microscope, has been supplied by the 

Department of Molecular Biotechnology and Health Sciences of Turin. 

Moreover, cells have been treated with two different drugs, nocodazole and taxol, in 

order to theoretically control their behavior. However, in practice, because of the 

several factors that affect cell functions, alterations are not so easy to interpret. 

The used drugs have opposite effects on MTs dynamic, since nocodazole promotes the 

MTs disassembly, while taxol the assembly. This is the reason why nocodazole is 

referred to as “MTs destabilizer” and taxol as “MTs stabilizer”. Both agents can be 

helpful in the treatment of different kinds of cancer, because, at specific concentrations, 

they block the mitosis, thereby limiting tumor proliferation [12]. 

It is worth noticing that the alterations of MTs dynamic are dose-dependent; this is the 

reason why the cells were doped with different drug concentrations. 
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Moreover, control stacks have been regarded as reference since, in those movies, MTs 

dynamic is not affected by drugs. 

This chapter aims to describe the data from a biological and technical standpoint. 

3.1  Cell culture 

HeLa-K (HeLa Kyoto) cell line, expressing EB3-td Tomato, was chosen to carry out the 

experiments and acquire movies. HeLa is a particular cell line often used in scientific 

research, and is the first human cancer cell line immortalized in tissue culture. They 

were named “HeLa” after Henrietta Lacks, a woman that was affected by 

adenocarcinoma of the cervix, from which cells were extracted with a biopsy [13]. 

Cell culture was maintained in DMEM-GlutaMAX (Invitrogen) medium supplemented 

with 10% fetal bovine serum (FBS), 100 U ml
−1

 penicillin, 100 µg ml
−1

 streptomycin, 

200 µg ml
−1

 Geneticin (Sigma) and 0.5 µg ml
−1 

puromycin. 

Interphase cells were treated with nocodazole and taxol drugs, and, after 1 h, videos of 

astral MTs have been acquired. In detail, imaging process was performed using a Leica 

TCS SP5-AOBS 5-channel confocal system equipped with a 561 nm DPSS laser. 

During the acquisition, cells were stored in the microscope incubator at 37°C with 5% 

of CO2. Videos were recorded with a sampling period of 0.5 s for 2 minutes. 

3.2 General information and parameters 

The experimental dataset can be divided into two groups: the first one includes all 

stacks treated with nocodazole, and the other one cells doped with taxol. For both drug 

types, four increasing drug concentrations have been taken into account. 
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In the nocodazole case, the tested concentrations were: 

• 0 nM (control stack); 

• 1 nM; 

• 10 nM; 

• 100 nM. 

The taxol stacks were treated with the same doses of the nocodazole, except that, 

instead of 1 nM, a concentration of 0.1 nM was considered. 

For each dosage, in both cases, five stacks have been acquired and saved in TIFF 

format. The only exception is the number of stacks related to taxol at 0.1 nM; they are 

six instead of five. 

From a technical standpoint, all movies share the same features: 

• Frame size: 256x256 pixels; 

• Number of frames for each stack: 120; 

• Frame rate: 2 fps (frames per second); 

• Pixel resolution: 64 nm; 

• Bit depth: 8; 

• Color type: grayscale; 

• Display range: 0-255. 
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3.3 Noise description  

In this section the main phenomena degrading the quality of confocal images are 

described. Noise, in this scenario, is mainly due to two sources. On one side, the 

equipment induces errors in measurements and in data quantization; on the other side, 

the sample itself affects image quality [1]. 

One of the main types of noise that impairs images is known as photon shot noise or 

Poisson noise. It is due to the random emission of photons [1]. As it comes out from its 

name, the impact of photons on the detector follows a Poisson distribution. 

This is an electronic noise that becomes relevant when the number of photons is so 

small that the uncertainty related to the Poisson distribution cannot be longer neglected 

[14]. 

Noise intensity is proportional to the square root of the average number of events N (i.e. 

light intensity). Signal-to-noise ratio, in an image corrupted by shot noise, is [14]: 

��� = 	 �√� = √� 

In the previous formula the denominator represents the noise standard deviation.  

It is clear that, in a Poisson-distributed function, SNR matches with the square root of 

the number of events. Moreover, noise levels are stronger when the light source has a 

reduced intensity and decrease when N is very large [14]. 

However, the source cannot have a high intensity because of photobleaching; it means 

that the markers lose their capability to fluoresce if they are intensively stimulated. The 

problem is related to the light intensity, and also to the experiment duration. In order to 

limit the effects of this phenomenon, the exposure time and the light intensity should be 

maintained at low levels [1]. 
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It is worth mentioning also the presence of speckle noise; it is a multiplicative noise that 

degrades images, making them look visually grainy. It becomes relevant when coherent 

imaging systems are employed, such as laser in confocal microscopy. Noise, in this 

case, is caused by random interferences between the coherent returns. The effect on 

grayscale images is an increase of mean intensity in a local area [14]. 

Another noise source, related to samples, is the autofluorescence; it is due to fact that 

some molecules naturally fluoresce at wavelengths in the range of visible spectrum. 

This emission overlaps with the fluorophore one, and makes the detection challenging. 

To make matters worse, the experiments are carried out with a low intensity of 

excitation [1] because of the reasons previously explained (e.g. photobleaching). 

There are other interference sources that degrade confocal images, such as background 

noise, caused by the ambient radiations; dark current, due to the thermal agitation of 

particles at high temperatures inside the detector, which leads to spontaneous emissions; 

quantization noise of the digital output; scattering of light, which occurs when the 

object dimensions are comparable with wavelength size [1]. 

All the above mentioned interferences lead to a decrease in the overall image contrast 

and resolution. Fig. 3.1 shows noise effects in a confocal image. 
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All stacks used to test the algorithm are made up of frames similar to that displayed in 

Fig 3.1. 

As it is clear from Fig. 3.1, it is difficult to isolate microtubules from the surrounding 

environment since signal levels are comparable with the background ones. 

It is worth pointing out that particle positions can be detected with an accuracy related 

to the pinhole detector as follows [2]: 

� = �
√� 

Where: 

• σ is the standard deviation of the PSF approximated as Gaussian; 

• N is the number of photons detected in the exposure time. 

The interference sources could be limited by choosing a small pinhole diameter 

detector, even if this limits signal intensity. On the other hand, a large diameter will 

prevent from obtaining the optical confocal effects and other noise sources will be 

Figure 3.1: Noise effects on confocal image. 

Scale bar 5µm. 
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introduced into the videos. Hence, the tradeoff is to set an optimum aperture for the 

pinhole detector in order to allow signal detection and, at the same time, reject the main 

noise sources. 

To improve stack quality and reduce noise levels, all movies have to be managed with 

image processing techniques. 

3.4 Statistical analysis 

3.4.1 Signal-to-noise ratio 

SNR is a parameter strictly related to the algorithm performance. The most common 

definition employed in the biomedical field is a differential one, i.e. the difference 

between the mean intensity of the object and background divided by the background 

standard deviation: 

���	 = 	 
�̅
����	 − 	

̅��������	�
��������	  

As already mentioned, it is recognized that, if the SNR defined in the previous formula, 

is below the value of 4 dB, the performance of any algorithm is seriously impaired [7]. 

In table 3.1 the SNR values related to the stacks employed in this work are summarized. 
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Table 3.1: SNRd (dB) values of the stack belonging to dataset. 

From the results, it is clear that a trend cannot be identified; hence the dataset shows an 

extreme variability in noise levels. All stacks are affected by noise, but, considering 

only SNRd values, cells treated with taxol at 100 nM seems to be more affected. Since 

most original frames are characterized by values below the critical threshold (or just 

above it), denoising is required in order to increase the SNRd, thereby improving the 

algorithm reliability. 

NOCODAZOLE 

Dose Stack ID SNRd 

0 nM 

Ctrl 003 4.47 

Ctrl 005 3.80 

Ctrl 011 6.90 

Ctrl 013 6.23 

Ctrl 015 4.31 

1 nM 

Series 002 1.14 

Series 005 3.52 

Series 007 5.31 

Series 012 4.76 

Series 015 4.76 

10 nM 

Series 003 5.31 

Series 005 4.62 

Series 008 1.55 

Series 011 3.22 

Series 014 1.96 

100 nM 

Series 002 2.58 

Series 004 4.01 

Series 006 3.96 

Series 009 2.01 

Series 011 5.31 
 

TAXOL 

Dose Stack ID SNRd 

0 nM 

Resonant 2.46 

Ctrl 018 3.58 

Ctrl 024 3.52 

Ctrl 028 3.94 

Ctrl 031 3.36 

0.1 nM 

Series 003 2.28 

Series 006 4.07 

Series 010 3.58 

Series 015 5.29 

Series 018 6.48 

Series 025 4.03 

10 nM 

Series 006 6.47 

Series 009 1.67 

Series 012 3.16 

Series 015 3.60 

Series 018 1.37 

100 nM 

Series 002 2.30 

Series 008 1.88 

Series 011 3.01 

Series 016 1.24 

Series 019 0.49 
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3.5 Spectral analysis  

Analysis in the frequency domain allows one to understand what kind of noise corrupts 

images. The image spectrum is helpful in order to plan the denoising process. 

3.5.1 Two-dimensional Fourier Transform 

One-dimensional Fourier Transform concepts can be extended to the 2D case. Taking 

into account a digital image x(m,n) with dimension M×N, the analysis and synthesis 

equations can be respectively written as: 

��μ, �� = 	 � �  �!, "�#$�%&�'()*��
+$,

�-.

/$,

(-.
										μ ∈ ℝ, � ∈ ℝ 

 �!, "� = 2 2 ��μ, ��
,%
$,%

,%
$,%

#�%&�'()*��3μ	3�						! = 0,… ,6 − 1, " = 0, … , � − 1	 

The parameters µ  and ν are spatial frequencies in vertical and horizontal directions, 

respectively, and ��μ, �� is the 2D spectrum of image  �!, "�. 
Frequency is related to intensity variations; low frequencies match regions which 

exhibit slow variations (e.g. background), while high frequencies are associated to 

regions characterized by a significant variability (e.g. edges and discontinuities). 

The spectrum ��μ, �� is periodic with unitary period for both variables µ  and ν, so it is 

enough to consider one period to display the spectrum. 

The range − ,
% ≤ µ, ν < 

,
% is usually set in order to have low frequencies located around 

the origin of axis. 
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Moreover, an enhancement of dynamic is required with a view to better displaying the 

amplitude spectrum. This operation is carried out with a logarithmic operator using the 

formula below: 

|��μ, ��|�� = 10 · log,. = |��μ, ��|
max	�|��μ, ��|�A 

By applying the above mentioned procedure to an image belonging to the available 

dataset, the spectrum appears as in Fig 3.2a. 

 

(a) 
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From Fig 3.2a, it can be noticed that the signal exhibits a low-pass behavior since its 

distribution is centered around the origin of the axis, namely low frequencies. 

Moreover, it is worth noticing that signal is surrounded by noise whose spectrum is 

basically constant. This is the reason why the noise process can be approximated by 

white noise and as such it will be treated in order to improve images quality. 

Figure 3.2: Amplitude spectrum of nocodazole stack ctrl 013. 

(a): 2D FFT module. (b): cross-section of the same spectrum. 

(b) 
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Chapter 4 

Algorithm implementation 

The algorithm was developed, as standalone software, in Matlab R2017a and belongs to 

the deterministic approach category, already described in chapter 2. Hence, the whole 

pipeline can be divided into two steps: detection and tracking of MTs. In addition, a 

denoising procedure was implemented in order to reduce noise levels. This phase 

precedes the real stack analysis, so it is placed at the beginning of the algorithm. 

In the next sections, each step, underlying the developed program, is described in detail. 

4.1 Algorithm calibration  

The algorithm encompasses a preparatory phase of calibration, whose aim is to compute 

a threshold depending on image intensity. This parameter enables true particles to be 

recognized. This step is necessary because of the high variability of image intensity 

among different acquisitions. 

For this purpose, a control stack is chosen by the user in order to analyze samples 

belonging to the same experiment. This choice was made because, in those stacks, cell 

functions are not altered by drugs and so they can be considered as reference. 
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Calibration is made by identifying the maximum intensity value throughout the stack 

selected by the user. Once this value is detected, the final threshold is computed as p 

percent of that global maximum. 

The percentage was set to 35% after a tuning procedure. The algorithm has proven 

robustness to different percentages, so a value allowing detection of a significant 

number of tracks was chosen (a hundred tracks in control stacks). 

This parameter is used in the next phase of microtubule detection. 

4.2 Denoising  

As already discussed, SNRd values are lower than the critical threshold in many 

samples. This is the reason why the denoising procedure has been designed to improve 

that parameter, making more reliable the subsequent steps. To this purpose, given the 

statistic of noise process, a LOG-Wiener Transform has been implemented. 

4.2.1 Wiener filter 

This is a linear filter often used for image denoising, and it is based on two main 

assumptions: 

• Noise and signal are not correlated; 

• Noise is an additive random process. 

According to the second hypothesis, an image corrupted by noise can be modelled as 

follows [15]: 

���, �� = ���, �� + 
��, �� 

 

 



36 

 

where: 

• ���, �� is the observed blurred image; 

• ���, �� is the original image (uncorrupted); 

• 
��, �� is the additive noise (white noise in ideal conditions). 

The purpose of Wiener filter is to estimate the original image ���, �� adopting a 

Bayesian approach. The procedure is carried out by minimizing the mean square error 

between the uncorrupted and the estimated image (���, �� and �̂��, �� respectively), 

defined as [15]: 

�
 = 1
� × � � � �����, �� −	 �̂��, ���
�

���

���

���

 ��
 

In order to describe the filtering process and simplify notation, the one-dimensional case 

is treated. However, concepts can be easily extended to the two-dimensional case. 

Assuming that we consider a linear system, with unit sampling response ℎ�"�, the 

output to the input signal ��"� = ��"� + 
�"�, can be modelled as [15]: 

#�"� = �̂�"� = ��"� ∗ ℎ�"� = %��"� + 
�"�& ∗ ℎ�"�	 

As it follows from the previous formula, the ideal result #�"� is approximated to the 

estimate signal �̂�"� after the filtering process. 

Moreover, it is worth pointing out that the filter works in optimal conditions if noise and 

signal have spectra that do not overlap in frequency. However, acceptable results can be 

obtained even if this condition is not satisfied. 
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4.2.2 LOG-Wiener Transform 

It is not effective to directly apply Wiener filter on the images belonging to our dataset, 

since the underlying hypotheses are not satisfied. 

The first problem is that the Poisson noise is correlated to the signal and the speckle 

noise is multiplicative. In order to limit these issues, a LOG-Wiener Transform was 

implemented. 

It consists of three steps to apply to the image: 

1. Logarithmic transformation (base 10 was chosen); 

2. Application of Wiener filter; 

3. Inverse logarithmic transform (with the same base chosen in the step 1). 

The idea underlying the proposed technique is that, by applying a logarithmic operator, 

multiplicative noise will be processed into an additive one. However, noise process is 

additive but not necessarily Gaussian. 

Table 4.1 summarizes how SNRd values changed once stacks were processed with 

LOG-Wiener Transform. 
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Table 4.1: SNRd (dB) values comparison before and after the LOG-Wiener Transform. 

 

The LOG-Wiener Transform has different effects on samples. This is because, given the 

complexity of noise process, this operation is not always the most appropriate choice. 

Indeed, because of different types of noise that corrupt images, the working 

assumptions on Wiener filter are not always fully satisfied. 

NOCODAZOLE 

Dose Stack ID SNRd SNRdLW 

0 nM 

Ctrl 003 4.47 7.16 

Ctrl 005 3.80 4.91 

Ctrl 011 6.90 8.13 

Ctrl 013 6.23 7.92 

Ctrl 015 4.31 6.53 

1 nM 

Series 002 1.14 6.02 

Series 005 3.52 5.77 

Series 007 5.31 5.88 

Series 012 4.76 8.75 

Series 015 4.76 6.33 

10 nM 

Series 003 5.31 6.90 

Series 005 4.62 9.82 

Series 008 1.55 2.70 

Series 011 3.22 10.79 

Series 014 1.96 2.07 

100 nM 

Series 002 2.58 4.62 

Series 004 4.01 7.60 

Series 006 3.96 5.71 

Series 009 2.01 10.79 

Series 011 5.31 5.68 
 

TAXOL 

Dose Stack ID SNRd SNRdLW 

0 nM 

Resonant 2.46 5.07 

Ctrl 018 3.58 4.79 

Ctrl 024 3.52 5.26 

Ctrl 028 3.94 6.81 

Ctrl 031 3.36 7.92 

0.1 nM 

Series 003 2.28 3.18 

Series 006 4.07 5.73 

Series 010 3.58 6.87 

Series 015 5.29 6.52 

Series 018 6.48 7.06 

Series 025 4.03 4.77 

10 nM 

Series 006 6.47 8.09 

Series 009 1.67 4.28 

Series 012 3.16 3.67 

Series 015 3.60 6.72 

Series 018 1.37 3.80 

100 nM 

Series 002 2.30 3.96 

Series 008 1.88 5.67 

Series 011 3.01 4.77 

Series 016 1.24 2.04 

Series 019 0.49 3.67 
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The filtering effect on some samples is proof of this; e.g. series 016 of taxol at 100 nM, 

where SNRd value stays below the critical threshold of 4 dB, even though the filtering 

process. Another aspect to note is the effect of filter on series 009 of nocodazole at 100 

nM; in this stack a significant increase of SNRd can be observed. 

Unfortunately, a significant improvement in SNRd does not always mean a 

correspondent improvement from an algorithmic standpoint. 

However, it is worth noticing that an enhancement of SNRd can be found in all cases, 

even if the parameter does not increase equally among the different samples. 

Fig 4.1 displays how a frame looks like once LOG-Wiener Transform was applied. 

 

Fig 4.1b exhibits an overall intensity reduction, but background appears smoothed, if 

compared to Fig. 4.1a. The uniformity will facilitate the following comet identification. 

Figure 4.1: Effect of LOG-Wiener Transform on nocodazole 

control stack 005. (a): Original frame. (b): Filtered frame. 

(a) (b) 
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4.3 Particle detection 

Once noise levels have been reduced, the particles can be detected over the frames. In 

order to limit the false positive rate, an object is recognized as a comet if and only if it 

exceeds a threshold depending on the intensity of each stack under consideration. 

The identified particles are linked over the frames in order to build up the final 

trajectories, enabling MTs dynamic evaluation. 

This paragraph is focused on the implementation of MTs detection procedure in the 

developed software.  

4.3.1 Comet detection threshold  

The detection step begins with the evaluation of a threshold that enables comets to be 

recognized over the frames. In order to avoid false positives, this parameter has to be 

sufficiently selective, but, at the same time, false negative rate has to be limited. 

In detail, the threshold was computed as x times the standard deviation of a frame 

(x=100). This is because standard deviation is a parameter that suggests the global noise 

level of the image. 

Moreover, noise level is checked in order to recognize stacks below the critical SNRd 

value. 

If this condition is detected, the algorithm stops working on that stack and a message 

arises to notify the user. 

4.3.2 Local maxima searching 

In each frame, comet positions are associated to the peak intensity of those regions that 

are regarded as microtubules. 

Due to the extreme variability of the intensity profile, the search is carried out locally, 

namely analyzing some ROI with a fixed size. The procedure is performed through a 
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squared sliding window (size 7x7 pixels was set [16]) applied to the filtered image, and 

covering each frame of the stack. Within each window, the local absolute maximum is 

detected and considered as a plus-end if its intensity exceeds n times the standard 

deviation of the current frame (n is the threshold computed as described in paragraph 

4.3.1). 

Comet positions are refined by centering the squared window on the local maxima 

previously detected, and recalculating the peak intensity exploiting the selected 

neighbor. This step limits the problem of recognizing as split two particles belonging to 

the same microtubule. 

Indeed, window size is related to the minimum distance at which two particles can be 

detected. Since stack pixel resolution is 64 nm, in stacks belonging to the dataset, it 

means that minimum peak displacement is 448 nm. 

Finally, each peak intensity is compared with the threshold computed in the calibration 

phase (see paragraph 4.1) and the position is kept if it is above that value, otherwise the 

maxima coordinates are removed. 

Fig 4.2 shows an example of microtubule plus-ends detected after the described process. 

Figure 4.2: Comets detected in frame 6 of 

nocodazole 005 control stack. 
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The selected parameters allow to recognize, for each frame, a number of particles of a 

few dozens, a value established after a discussion with expert biologists which carry out 

manual detection. This value prevents false positive objects to be detected, even if some 

real MTs are lost. However, this does not significantly affect the final stage of MTs 

dynamicity evaluation. 

4.4 Microtubule plus-end tracking 

Once the particles are identified, they are tracked; it means that object position is 

monitored over the frames and its coordinates are linked in order to build up a 

trajectory. All constructed tracks enable the evaluation of features related to MTs 

dynamic (e.g. velocity, track length, lifetime). 

The tracking stage can be divided in two phases, as proposed also in [16]: 

1. Partial tracks identification; 

2. Final tracks recovery. 

4.4.1 Partial tracks 

The partial trajectory detection process is based on the a priori assumption that 

microtubules show a rectilinear motion regime. Moreover, movements in the forward 

direction are taken into account, since the backward ones cannot be directly observed. 

The linking algorithm applies a nearest-neighbor criterion. Therefore, plus-end 

coordinates are connected frame-by-frame minimizing a cost functional based on that 

proposed in [10] and simplified in [16] as indicated below: 

' � =	 �() −	()*�	��
 +	�+) −	+)*�	��
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where: 

• ()  (+) ) is the x coordinate (y respectively) of the i-th particle in the t-th frame; 

• ()*�	� (+)*�	�) is the x (y) coordinate of the object j in the frame t+1. 

This functional, defined as a linear combination of the particle positions, is related to 

the global Energy (ϕ) of two molecules, i and j, belonging to two consecutive frames 

[16]. 

Moreover, in order to connect particles, another condition must be satisfied. Between 

consecutive frames, plus-ends can have a maximum displacement of 7 pixels (448 nm). 

This critical parameter enables to recognize and link particles belonging to the same 

trajectory. Algorithm performance is closely related to this parameter, therefore it must 

be chosen carefully. 

As an example, Table 4.2 shows how MTs velocity changes varying the critical 

distance. The maximum displacement was set on the basis of control stacks, since cell 

behavior was not altered by drugs. Moreover, only speed values have been reported 

since this parameter is the most meaningful for microtubule dynamic considerations. 

 

NOCODAZOLE Ctrl 

Distance  

(pixel) 

velocity  

(µm/min) 
σ velocity 

7 14.99 7.88 

6 13.95 7.09 

5 13.00 6.55 

4 11.15 5.35 

Table 4.2: Comparison of mean velocity values of nocodazole control stacks at different distances. 

 



44 

 

Table 4.2 summarizes the mean values, and their standard deviations, of nocodazole 

control stacks (the same trend can be found in the taxol case). It can be noticed that both 

standard deviation and speed go down when distance decreases. Since extremely low 

velocity values are not common in non-doped cells, a distance equal to 7 was set in the 

algorithm. Moreover, these values are expected in control cell samples, and are 

consistent with those reported in literature, e.g. in [16]. 

Fig. 4.3 exhibits how partial tracks are built up over the frames. 

(a) (b) 

(c) (d) 

Figure 4.3: Tracking process on nocodazole control stack 015 at different 

time points. (a): frame 2. (b): frame 6. (c): frame 10. (d): frame 14. 



45 

 

Once partial trajectories have been identified, in the subsequent step some of them are 

linked in order to construct the final tracks. 

4.4.2 Final tracks reconstitution 

This final step was implemented in order to take into account those particles that 

disappear and then appear again a few frames ahead. This avoids considering as 

different trajectories actually belonging to the same comet because of pause events, 

which are typical of MTs behavior. 

Two trajectories are connected if only two conditions are satisfied: 

• The end of the first track and the beginning of the second one lie within a radius 

equal to the critical distance (described in paragraph 4.4.1); 

 

• The maximum time lapse between two partial tracks is 5 frames (2.5 s) [16]. 

Once partial tracks have been linked, their coordinates were fitted with a second-degree 

polynomial. Fitting procedure aims to smooth trajectories, thus limiting rapid changes in 

the comet shape, that are incompatible with the motion model assumed. 

The tracks built up in this way are considered during the evaluation of microtubule 

dynamic. 

4.5 Microtubule dynamic analysis 

This phase determines, in a quantitative fashion, all the required information on 

microtubule behavior. 

It is worth pointing out that not all the identified trajectories are taken into account for 

the parameter calculation. This is the reason why a track screening procedure precedes 

the actual dynamic evaluation. 
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4.5.1 Tracks screening 

In this stage all tracks shorter than 2.5 s (i.e. 5 time points) are removed. This threshold 

was chosen in order to avoid considering comets which exhibit Brownian motion. These 

trajectories are not relevant for considerations on microtubule behavior. 

In order to properly remove tracks, the number of time points was set after a tuning 

procedure. In particular, three values were tested: 3, 4 and 5. The obtained results, for 

nocodazole stacks, are summarized in table 4.3. 

NOCODAZOLE 

Dose TimePoints v σv λ σλ τ στ 

0 nM 

5 15.000 7.885 1.299 0.762 4.915 2.220 

4 14.972 8.070 1.148 0.700 4.279 2.071 

3 15.054 8.023 0.914 0.602 3.419 1.738 

1 nM 

5 14.699 6.994 1.057 0.415 4.312 1.343 

4 14.340 6.817 0.757 0.355 3.291 1.037 

3 14.830 6.678 0.720 0.332 2.702 0.866 

10 nM 

5 17.371 7.666 1.175 0.621 4.283 1.364 

4 16.912 7.916 1.013 0.588 3.906 1.365 

3 16.584 7.494 0.712 0.413 3.017 1.221 

100 nM 

5 12.820 7.455 1.068 0.570 4.613 1.545 

4 11.060 3.534 0.653 0.213 3.250 0.719 

3 10.230 2.534 0.461 0.156 2.612 0.496 

Table 4.3: Comparison of parameters related to microtubule dynamic varying the number of time points. 

v is the velocity (µm/min); λ is the track length (µm); τ is the track lifetime (s). All values indicate the 

average among the stacks treated with the same drug dose. 

It can be seen that speed is little biased by the minimum duration of a track. This can be 

explained by the fact that, when time points decrease, most of newly detected particles 

are characterized by Brownian motion. This is the reason why, failing to respect the 

motion model assumed, they are discarded anyway. 
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Instead, both length and lifetime decrease reducing the minimum number of consecutive 

frames in which an object must be detected. This happens because the new particles are 

shorter and last less. 

This feedback was possible because velocity, length and lifetime were computed 

independently. 

In view of the above, the time point number was set to 5 (since it can be inferred that all 

the removed particles fluctuate for a little while). 

Finally, it is worth pointing out that, in this phase, spurious particles, which can be 

considered as false positive objects, are automatically removed since no trajectory can 

be identified for them, because they are too short to be evaluated. 

4.5.2 Parameter calculation 

Once final tracks are available, all parameters, that enable to understand microtubule 

behavior, can be computed. The algorithm was designed in order to provide mean 

values of velocity, length and lifetime and their standard deviations. 

The instantaneous velocity (in µm/min), namely velocity between two consecutive 

frames, was computed as: 

, = - ∙ /0
-1 · 3  

where: 

• - is the distance covered by a particle (pixel); 

• /0 is the pixel resolution (nm); 

• -1 is the sampling period (s); 

• 3 is a conversion factor (in order to express velocity in µm/min). 

The global track speed is given by the mean of all the instantaneous velocity values. 
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Track length (in µm) is calculated as: 

4 = -̅ · /0 ∙ 6/
3  

where: 

• -̅ is the average of all instantaneous displacements (pixel); 

• /0 is the pixel resolution (nm); 

• 6/ is the number of time points the microtubule lives; 

• 3 is a conversion factor (in order to express λ in µm, it was set to 1000). 

The last parameter, namely lifetime (in s) has been evaluated as: 

7 = 6/ ∙ -1 

where: 

• 6/ is the number of time points the microtubule lives; 

• -1 is the sampling period (s). 
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4.6 Graphical user interface  

The software was designed to be used by a staff unfamiliar with Matlab environment. 

Therefore, a graphical user interface (GUI) was built up in order to make the algorithm 

user-friendly. 

In the shell (Fig. 4.4), it is asked to the user to insert the two parameter that can vary 

among different experiments, namely the pixel resolution and the sampling period. 

Moreover, the software is suited to work in batch mode and stores results properly 

organized in an excel file, in order to ease interpretation and subsequent analysis. 

Figure 4.4: Screenshot of the graphical interface. 
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Chapter 5 

Results 

The developed software aims to automatically analyze microtubule dynamic in 

fluorescence images. All information on cell behavior is extracted through some 

features: velocity, track length, lifetime and number of tracks detected. In detail, the 

first three parameters are expressed in terms of median, average and standard deviation; 

while regarding the number of tracks, only the mean value is displayed. All values are 

listed in tables properly organized to highlight the different drug effects. Indeed, even if 

at high concentrations the effects of both drugs are well-known, since they inhibits MTs 

growth, it is interesting to evaluate what happens to cells when intermediate doses are 

taken into account. Since the agents can be used in cancer treatment, understanding the 

effects at different concentrations can lead to more effective therapies. 

Moreover, given the lack of a ground truth, in order to assess the algorithm 

performance, the obtained results are compared with those computed by another 

approach, tested on the same dataset of this work (details in [17]), and those evaluated 

by hand by a researcher of Department of Molecular Biotechnology and Health 

Sciences of Turin. 

Finally, the same results are compared with other works available in literature. 
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5.1 General remarks 

The parameter obtained through calibration, allows one to recognize about a hundred 

tracks in control stacks. This number is a tradeoff between selectiveness and 

computational time, and it was chosen as an optimal value after a debate with biologists. 

Indeed, if threshold is decreased (see paragraph 4.1 for further details), more tracks are 

recognized; therefore, false positive rate is likely to increase. Nevertheless, these 

trajectories are discarded downstream of the algorithm anyway, because they do not 

meet the rectilinear motion model. 

In view of the above, as for the number of identified trajectories in the movies where 

cells have been doped, since both nocodazole and taxol inhibit MTs growth, one can 

suppose that the number of tracks should decrease by increasing drug concentration. In 

Tables 5.1 and 5.2, it can be seen that this hypothesis is generally confirmed, except in a 

few isolated cases. This is the reason why the proposed approach has proven to be 

conservative. 

Another aspect to notice is that mean and median values exhibit little difference. It 

means that outliers have not a significant impact on the algorithm performance. 

The last consideration is related to standard deviation values. From Tables 5.1 and 5.2, 

it can be seen that standard deviation levels are significant. This depends on the 

complexity of the problem, from both a biological and technical standpoint. This 

scenario is well-known to biologists and is also reported in literature. 

In the next sections the detailed results are presented and discussed for both nocodazole 

and taxol doped cells. 
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5.2 Nocodazole results 

Nocodazole is a “MTs destabilizer”, meaning that this drug promotes microtubule 

disassembly, and decreases their mass [3]. In Table 5.1 the whole results are listed for 

all the four increasing concentrations of nocodazole. 

NOCODAZOLE 

Dose Series �md �̅ σv λmd λ� σλ τmd τ� στ #MTs 

0 nM 

003 10.78 12.24 6.18 1.09 1.25 0.70 5.00 5.71 2.59 139 

005 14.95 15.36 7.75 0.87 1.02 0.69 3.50 4.33 2.00 113 

011 14.00 15.84 8.91 0.95 1.03 0.57 3.50 4.03 1.14 94 

013 14.95 14.98 6.80 1.14 1.33 0.74 4.00 5.09 2.62 200 

015 15.14 16.58 9.77 1.53 1.87 1.11 4.50 5.43 2.76 258 

Mean 13.96 15.00 7.88 1.11 1.30 0.76 4.10 4.91 2.22 160 

1 nM 

002 13.34 13.34 0.35 1.17 1.17 0.05 5.25 5.25 0.35 2 

005 12.83 14.00 8.04 1.05 1.25 0.59 4.00 4.57 2.01 134 

007 16.14 16.92 9.12 1.17 1.21 0.55 3.50 3.96 1.88 85 

012 16.37 17.26 8.74 0.94 1.01 0.42 3.50 4.03 1.65 48 

015 9.92 11.97 8.73 0.53 0.65 0.46 3.75 3.75 0.82 6 

Mean 13.72 14.70 6.99 0.97 1.06 0.41 4.00 4.31 1.34 55 

10 nM 

003 18.39 18.65 8.18 1.23 1.47 0.79 4.00 4.76 2.09 190 

005 0 0 0 0 0 0 0 0 0 0 

008 17.65 17.87 7.30 0.93 0.96 0.39 4.00 4.22 0.91 44 

011 0 0 0 0 0 0 0 0 0 0 

014 16.43 15.59 7.52 1.20 1.10 0.68 3.50 3.88 1.09 16 

Mean 17.49 17.37 7.67 1.12 1.17 0.62 3.83 4.28 1.36 83 

100 

nM 

002 0 0 0 0 0 0 0 0 0 0 

004 0 0 0 0 0 0 0 0 0 0 

006 0 0 0 0 0 0 0 0 0 0 

009 0 0 0 0 0 0 0 0 0 0 

011 12.14 12.82 7.46 0.98 1.07 0.57 4.50 4.61 1.54 137 

Mean 12.14 12.82 7.46 0.98 1.07 0.57 4.50 4.61 1.54 137 

Table 5.1: Nocodazole results. v is the velocity (µm/min); λ is the track length (µm); τ is the track lifetime 

(s); #MTs is the number of tracks detected. The subscript md denotes median values. 
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In the table, zero rows mean that the stacks have not been evaluated. This occurs if at 

least one of the following conditions is fulfilled: 

• Noise levels are excessively high; 

• No track can be identified because of drug effects. 

From Table 5.1 it is clear that, increasing drug concentration, fewer stacks are 

evaluated; in fact, in nocodazole at 100 nM, information can be extracted only from 

single movie. 

Mean velocity trend is displayed in Fig. 5.1 (through boxplot, in order to have a more 

effective view). 

It can be seen that speed remains basically constant until 1 nM concentration. At 10 nM 

concentration a peak is shown, and then the parameter decreases at 100 nM, reaching a 

value lower than the starting one. Moreover, comparing global median and mean values, 

it is clear that they are basically the same. The only exception can be found in control 

stack, but this difference is due to a single sample (series 003). 

Figure 5.1: Velocity boxplot. 
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Instead, mean length already decrease at 1 nM, and does not significantly change 

thereafter. It is worth pointing out that all tracks, on average, are longer than 1 µm, even 

if in some cases shorter tracks can be observed, e.g. series 015 at 1 nM. This depends on 

the choice to discard, before computing parameters, all particles showing Brownian 

motion. 

As regards lifetime, it shows a trend similar to the length one; namely it starts to 

decrease at 1 nM, although a little increase occurs at 100 nM. However, at that dose 

only one stack is taken into account. 

Looking at global median and mean value of both length and lifetime, it is clear that no 

actual difference is shown. 

The number of tracks tends to decrease at high concentrations, because even if at 100 

nM a hundreds tracks are detected, it is worth pointing out that in four out five cases no 

tracks are found. 

By focusing on standard deviation values, it is clear that they are high if compared with 

mean values. From comparisons, length seems to be the most critical parameter, since 

mean and its standard deviation have the slightest difference. This aspect can be 

explained by examining value distributions through histograms (Fig 5.2). As an 

example, only control samples have been taken into account for displaying, but a similar 

trend can also be found for the other concentrations. Moreover, cumulative histograms 

are shown, in order to have a global view. 
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(a) 

(b) 

(c) 

Figure 5.2: Cumulative nocodazole histograms. (a): 

Velocity. (b): Length. (c): Lifetime. 
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From Fig. 5.2a, it can be noticed that speed follows a trend that can be approximated 

with a truncated normal distibution, whereas Fig. 5.2b and 5.2c exhibit an exponential 

decay for both length and lifetime. 

An important aspect to notice is that length distribution exhibits a wider variability 

range, if compared with velocity or lifetime; this explain why that feature can be 

regarded as the most critical. 

5.3 Taxol results 

Taxol belongs to that class of drugs called “MTs stabilizer”, so it leads to increase 

polymer mass, suppressing microtubule dynamics [3]. As result, fewer and shorter MTs 

should be detected, even if the global effects depend on the tested concentration. 

In Table 5.2 all the results extracted from taxol-doped samples are listed. 
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TAXOL 

Dose Series �md �̅ σv λmd λ� σλ τmd τ� στ #MTs 

0 nM 

Res 21.44 21.32 9.05 1.28 1.65 1.06 3.50 4.19 1.39 84 

018 23.50 22.61 10.49 1.35 1.42 0.72 3.50 4.14 1.63 69 

024 17.68 19.01 10.55 1.10 1.24 0.79 4.00 4.32 1.54 125 

028 23.25 21.14 9.07 0.87 1.11 0.71 3.00 3.77 0.96 11 

031 19.03 19.76 11.42 1.31 1.36 0.84 3.25 3.81 1.35 40 

Mean 20.98 20.77 10.12 1.18 1.36 0.82 3.45 4.05 1.37 65 

0.1 nM 

003 14.11 15.42 8.08 1.21 1.47 0.90 4.00 4.54 2.11 312 

006 13.11 13.55 7.30 0.92 1.16 0.66 4.00 4.60 1.83 147 

010 14.32 15.47 9.03 1.16 1.59 1.66 4.00 5.01 3.14 152 

015 14.29 15.71 8.13 1.33 1.48 0.90 4.00 4.35 1.64 283 

018 16.59 17.34 8.64 1.33 1.51 0.73 4.00 4.47 1.68 369 

025 17.26 18.00 8.87 1.14 1.46 0.88 4.00 4.80 2.08 233 

Mean 14.95 15.91 8.34 1.18 1.44 0.96 4.00 4.63 2.08 249 

10 nM 

006 12.14 13.26 5.67 1.06 1.33 0.70 4.50 5.52 2.56 125 

009 11.87 13.27 7.08 0.74 0.86 0.48 4.00 3.75 0.50 4 

012 11.49 12.09 5.77 1.07 1.38 0.81 4.00 5.19 2.83 106 

015 13.19 14.24 6.98 1.38 1.46 0.76 4.50 4.85 1.84 88 

018 13.84 14.43 5.36 0.59 0.68 0.31 3.00 3.67 0.97 9 

Mean 12.51 13.46 6.17 0.97 1.14 0.61 4.00 4.59 1.74 66 

100 

nM 

002 13.10 13.61 5.78 0.82 0.92 0.55 3.50 4.27 1.41 30 

008 15.46 14.44 3.52 1.36 1.54 0.60 6.00 6.31 1.93 8 

011 21.51 21.51 0.00 1.08 1.08 0.00 3.00 3.00 0.00 1 

016 10.20 11.51 6.18 0.85 0.99 0.56 4.00 5.25 2.62 57 

019 7.68 7.68 0.00 0.49 0.38 0.00 3.00 3.00 0.00 1 

Mean 13.59 13.75 3.10 0.92 0.98 0.34 3.90 4.36 1.19 19 

Table 5.2: Taxol results. v is the velocity (µm/min); λ is the track length (µm); τ is the track lifetime (s); 

#MTs is the number of tracks detected. The subscript md denotes median values. 
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The first aspect to notice is MTs behavior in control stacks. Comparing nocodazole and 

taxol mean values at 0 nM, it is clear that in the second scenario molecules are faster, 

even though cells were not doped in either case. This difference suggests the extreme 

variability and complexity of the problem, since cell functions are altered not only by 

drugs, but also by environmental factors (e.g. temperature). 

In contrast to nocodazole case, the algorithm is able to extract information from all the 

available samples. 

To discuss velocity trend, boxplot is displayed in Fig. 5.3. 

Speed mean values show a decreasing trend; a gap is already highlighted at very low 

concentration (between 0 nM and 0.1 nM). In the graph, it can be noticed that there are 

less outliers than in nocodazole case, and they are focused in the distribution associated 

with the concentration of 0.1 nM. 

Moreover, analyzing single stacks behavior, series 011 at 100 nM can be considered as 

outlier, since its value, that strongly biased global mean, is anomalous. 

Figure 5.3: Taxol boxplot. 
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Moreover, mean and median speed values show irrelevant difference. Only the results at 

0.1 nM are different. The gap is due to two stacks, series 015 and series 018; in which 

an extremely high number of tracks is detected; this justifies the greater variability and 

the largest outlier impact. 

The drug effect on the length begins to be apparent at 10 nM, when tracks become 

shorter, whereas at low concentrations (0 and 0.1 nM) no relevant changes occur. 

Finally, lifetime increases already at 0.1 nM; this could be explained by the freezing 

caused by taxol, that slows down growth, without depolymerizing microtubules. 

The last parameter to discuss is the number of tracks. In stacks at 0.1 nM more tracks 

than in control stacks are detected. This could be caused by the overall higher intensity 

of those movies, leading to detect false positive objects. This is the reason why the 

detection thresholds should be readapted, making them more selective in this specific 

case. However, it is worth pointing out that this high number just impacts algorithm 

performance from a computational standpoint, since the shortest tracks are not 

considered for feature evaluation, as already discussed in paragraph 5.1. 

Instead, at 10 and 100 nM the trajectories detected are significantly less numerous. 

Once more, standard deviations are high, and length is the most critical parameter, as in 

nocodazole case. Fig 5.4 shows cumulative histogram at a specific concentration of 0.1 

nM. Since the same reasoning as that applied on Fig 5.2 still holds true in this case, 

refer to paragraph 5.2 for histogram discussion. 
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(a) 

(b) 

(c) 

Figure 5.4: Cumulative taxol histograms. (a): Velocity. (b): 

Length. (c): Lifetime. 
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5.4 Statistical data analysis 

In order to assess data reliability, in this paragraph, the standard error of the mean 

(SEM) is provided for velocity, length and lifetime. 

The SEM is an indicator of the value variability among different experiments, and it is 

defined as: 

��	 =  
�

√

 

It is clear that the standard error is related to the standard deviation of the distribution 

(σv, σλ, στ) and to the sample size (
). 

In order to evaluate this parameter, for each concentration, the average standard 

deviation has been considered; while the sample size has been computed as the sum of 

the number of all tracks detected in each stack. 

Table 5.3 summarizes the SEM for the three features taken into account. 

Table 5.3: SEM of velocity, length and lifetime for both nocodazole and taxol. 

It can be seen that, the extracted parameters, at each concentration, are characterized by 

non-significant differences, since the error exhibits very low values in almost all cases. 

Hence, it can be concluded that velocity, length and lifetime are reasonably well 

estimated. 

NOCODAZOLE 

Dose SEMv SEMλ SEMτ 

0 nM 0.28 0.03 0.08 

1 nM 0.42 0.03 0.08 

10 nM 0.48 0.04 0.09 

100 nM 0.64 0.05 0.13 
 

TAXOL 

Dose SEMv SEMλ SEMτ 

0 nM 0.56 0.05 0.08 

0.1 nM 0.22 0.02 0.05 

10 nM 0.34 0.03 0.10 

100 nM 0.31 0.03 0.12 
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5.5 Feature correlation 

The three features, namely velocity, length and lifetime, were computed independently; 

however, it can be easily understood that their mean values are indeed correlated. To 

this purpose, we suppose to consider two variables as uncorrelated, then we compute the 

third one. Since length is the most critical parameter, as already discussed in paragraph 

5.2, it is regarded as the dependent variable; while speed and lifetime are considered as 

the independent ones. Therefore, length is computed as: 

� =
� · �

�
 

In the equation v represents velocity (in µm/min), τ the lifetime (in s), and c is a 

conversion factor to express λ in µm. 

In the following table (Table 5.4) the obtained length values are compared to the ones 

extracted by the algorithm. 

 

Table 5.4: Length comparison. 

It is clear that length values do not significantly differ; this proves the correlation 

among features and the good algorithm performance and reliability. 

NOCODAZOLE 

Dose λalg λeval 

0 nM 1.30 1.23 

1 nM 1.06 1.06 

10 nM 1.17 1.24 

100 nM 1.07 0.99 
 

TAXOL 

Dose λalg λeval 

0 nM 1.36 1.40 

0.1 nM 1.44 1.23 

10 nM 1.14 1.03 

100 nM 0.98 1.00 
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5.6 Algorithm performance 

As previously discussed in chapter 2, there is no standard protocol to follow for 

microtubule tracking, because of the extreme variability of the underlying biological 

process. Therefore, this leads to the lack of a ground truth to refer to as comparison. 

This is the reason why, in order to evaluate the algorithm performance, the results 

obtained by the approach described in this work (labeled as Algorithm 1), are compared 

with those computed by another algorithm, that we name Algorithm 2 [17]. 

Moreover, the same results are compared with those computed by hand by a biologist; 

we name those ones manual. 

Both mentioned comparisons are significant since all parameters refer to the same 

dataset used to test the approach proposed in this thesis. 

Finally, the results are compared with those available in other two works. The first one 

is called Algorithm 3, and it has been proposed by Applegate et al. [18]; the latter is 

described in [16], and it is named Algorithm 4. 

5.6.1 Comparison with Algorithm 2 

Tables 5.5 and 5.6 summarize the comparison for both nocodazole and taxol data, 

through mean and standard deviation of speed, length and number of tracks identified. 

The results are provided separately for the two drug types. 

This comparison is discussed separately from the other two algorithms, since the same 

dataset of this work has been taken into account; hence, a more detailed analysis is 

possible. 

 

 

 

 



64 

 

Nocodazole results 

NOCODAZOLE 

Dose Algorithm �̅ σv λ� σλ #MTs 

0 nM 
Algorithm 1 15.00 7.88 1.30 0.76 160 

Algorithm 2 16.23 13.43 1.00 1.41 393 

1 nM 
Algorithm 1 14.70 6.99 1.06 0.41 55 

Algorithm 2 NA NA NA NA NA 

10 nM 
Algorithm 1 17.37 7.67 1.17 0.62 83 

Algorithm 2 19.92 15.53 1.12 1.49 461 

100 nM 
Algorithm 1 12.82 7.46 1.07 0.57 137 

Algorithm 2 11.20 10.51 0.34 0.40 180 

Table 5.5: Nocodazole comparison. 

Table 5.5 summarizes nocodazole mean values. It is clear that average values are 

coherent; in fact there are not values that alter the trend of both speed and length. 

As for speed values, velocity found at 10 nM with the Algorithm 1 is lower than the one 

found with the second approach, but this difference can be justified by the largest 

number of tracks detected. 

Another aspect to point out is the length difference at 100 nM. This is due to the 

screening process, implemented in the algorithm proposed in this work, which removes 

all short tracks exhibiting Brownian motion. This procedure also explains why in the 

second algorithm more tracks are detected than in the first one. 

The last aspect to be noticed is the different velocity and length variability range in the 

two mentioned approaches. However, standard deviation difference is sharper for speed 

case than for the length one. 

To better visualize trends, Fig. 5.5 plots results of both the approaches. 
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Fig. 5.5 shows that, the two algorithms yield almost the same trend for both variables. 

The only remarkable difference is the length value at 100 nM. 

Taxol results 

The following table (Table 5.6) shows all taxol comparisons. 

 

(b) 

(a) 

Figure 5.5: Nocodazole trend. (a): Velocity trend. (b): Length trend. 
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TAXOL 

Dose Algorithm �̅ σv λ� σλ #MTS 

0 nM 
Algorithm 1 20.77 10.12 1.36 0.82 65 

Algorithm 2 22.67 17.92 1.20 1.70 428 

0.1 nM 
Algorithm 1 15.91 8.34 1.44 0.96 249 

Algorithm 2 NA NA NA NA NA 

10 nM 
Algorithm 1 13.46 6.17 1.14 0.61 66 

Algorithm 2 11.06 9.34 0.45 0.55 177 

100 nM 
Algorithm 1 13.75 3.10 0.98 0.34 19 

Algorithm 2 8.66 8.86 0.29 0.34 38 

Table 5.6: Taxol comparison. 

Table 5.6 confirms the accordance between the two approaches, already noted with 

nocodazole results, even if mean velocity decreases more in Algorithm 2. However, for 

both the techniques speed shows a steady decline. 

Moreover, length values exhibit a difference at concentration of 10 and 100 nM; this, 

just like the gap between the number of tracks, can be explained again with the 

screening procedure. 

Fig. 5.6 displays taxol speed and length results in the form of trend. 

(a) 
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5.6.2 Comparison with manual 

In this section the results of the developed algorithm are compared with those computed 

by hand. However, since this is a time-consuming work, not all samples have been 

manually evaluated. The available comparisons are listed below in Table 5.7; moreover, 

just mean velocity values have been taken into account. 

 

NOCODAZOLE  

Dose Stack ID Manual Algorithm 1 

0 nM 

003 12.03 12.24 

005 16.86 15.36 

011 16.77 15.00 

1 nM 

002 14.02 13.34 

005 23.53 14.00 

007 16.60 16.92 

Table 5.7: Velocity comparison. 

(b) 

Figure 5.6: Taxol trend. (a): Velocity trend. (b): Length trend. 
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It is worth pointing out that at 1 nM tracks longer than 1 µm are taken into account. The 

comparison with manual work provides encouraging results. All values exhibits non-

significant difference, with the exception of series 005 of nocodazole at 1 nM 

concentration. However, that value can be regarded as an outlier, since it exhibit an 

unusual velocity value which is not found in the other cells doped with the same drug. 

5.6.3 Comparison with Algorithm 3 and Algorithm 4 

In this last paragraph the approach proposed in this thesis is compared with other two 

techniques, called Algorithm 3 [18] and Algorithm 4 [16]. The mean results, when 

available, are listed below. Only speed and length values have been taken into account, 

and their mean and standard deviation is reported. 

It is worth noticing that in [16] nocodazole and taxol-doped cells have been taken into 

account, but a different cell culture has been used. 
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Nocodazole results 

NOCODAZOLE 

Dose Algorithm �̅ σv λ� σλ 

0 nM 

Algorithm 1 15.00 7.88 1.30 0.76 

Algorithm 3 20.57 13.00 0.63 0.52 

Algorithm 4 16.00 0.75 1.45 0.30 

1 nM 

Algorithm 1 14.70 6.99 1.06 0.41 

Algorithm 3 NA NA NA NA 

Algorithm 4 NA NA NA NA 

10 nM 

Algorithm 1 17.37 7.67 1.17 0.62 

Algorithm 3 18.56 10.20 0.61 0.53 

Algorithm 4 NA NA NA NA 

100 nM 

Algorithm 1 12.82 7.46 1.07 0.57 

Algorithm 3 17.33 11.60 0.44 0.32 

Algorithm 4 13.10* 2.25* 1.00* 0.24* 

Table 5.8: Nocodazole comparison. * concentration of 80 nM. 

From the previous table (Table 5.8) it can be seen that Algorithm 3 generally shows 

higher mean velocity and standard deviation values than 1; whereas, Algorithm 1 and 

Algorithm 4 exhibit similar values in controls and at 100 nM. Moreover, it is worth 

noticing that Algorithm 4 is characterized by a very low standard deviation, due to an 

algorithmic choice that suppresses variability to a large extent. 

As for length, both Algorithm 1 and Algorithm 4 yields nearly the same average values; 

instead, Algorithm 3 detect much shorter tracks. This difference can be justified by the 

removal of the shorter tracks carried out by both Algorithm 1 and Algorithm 4, but not 

by Algorithm 3. 

Moreover, the three algorithms show a comparable length standard deviation, without 

remarkable differences. 
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To understand the general behavior of the mentioned three algorithms, the following 

figure display their trend for both features. 

 

(a) 

(b) 

Figure 5.7: Comparison among algorithms for nocodazole. (a): Velocity trend.  

(b): Length trend. 
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In Figure 5.7 it can be observed that the compared algorithms provide results with the 

same order of magnitude, when the drug concentration changes. 

The most interesting aspect to notice is that the Algorithm 1, at intermediate 

concentrations (i.e. 10 nM), shows an increase of MTs dynamicity in terms of velocity 

(see Fig. 5.7a); the same behavior was actually shown also by Algorithm 2 (see Fig. 

5.5a). Instead, velocity has a monotonic trend in the other two approaches. 

This finding is significant from a biological standpoint, since it was hypothesized but 

rarely verified in practice, and might help to better dose nocodazole in 

chemotherapeutic treatments. 

Taxol results 

TAXOL 

Dose Algorithm �̅ σv λ� σλ 

0 nM 

Algorithm 1 20.77 10.12 1.36 0.82 

Algorithm 3 20.44 11.10 0.67 0.58 

Algorithm 4 15.50 1.40 1.60 0.23 

0.1 nM 

Algorithm 1 15.91 8.34 1.44 0.96 

Algorithm 3 NA NA NA NA 

Algorithm 4 NA NA NA NA 

10 nM 

Algorithm 1 13.46 6.17 1.14 0.61 

Algorithm 3 15.25 11.60 0.40 0.32 

Algorithm 4 9.00* 1.40* 0.95* 0.15* 

100 nM 

Algorithm 1 13.75 3.10 0.98 0.34 

Algorithm 3 NA NA NA NA 

Algorithm 4 7.00 1.00 0.40 0.15 

Table 5.9: Taxol comparison. * concentration of 20 nM 

Table 5.9 confirms the general remarks already discussed for nocodazole. However, 

focusing on mean velocity, Algorithm 1 and Algorithm 3 exhibit a similar behavior. 
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Finally, the three algorithms are compared through graphics (Fig. 5.8). 

(b) 

Figure 5.8: Comparison among algorithms for taxol. (a): Velocity trend.  

(b): Length trend. 

(a) 
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Chapter 6 

Conclusion and future directions 

This work aims to supply an automatic tool for tracking and analyzing astral 

microtubule behavior in fluorescence images. 

Despite the lack of a generally accepted ground truth, the validation process has 

provided encouraging results, which are also well-substantiated by the expected drug 

effects that can be found in literature. 

An important matter to highlight is the benefit in terms of computational time; indeed 

the time spent on analyzing samples through the proposed algorithm, are considerably 

less, if compared to the manual labor (we are talking about several hours compared to 

few minutes). 

Moreover, since this is an automatic software, it is not affected by human errors, due to 

tiredness or attention deficit, that unavoidably arise from such challenging work. 

Indeed, it is not uncommon that errors are committed when the analysis results are 

transcribed, as the gap found between manual and automatic evaluation (i.e. series 005 

of nocodazole at 1 nM) could demonstrate. This is the reason why the developed 

algorithm can provide a support for manual experiments, without completely replacing 

it. 
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It is worth pointing out that, with this in mind, the proposed software is currently being 

tested by the biologists of the Department of Molecular Biotechnology and Health 

Sciences of University of Turin; in this way other samples, different from those 

employed in this thesis, can be evaluated. 

As regards future work, the algorithm might be improved with a better management of 

the denoising stage; moreover, in order to improve performance, detection thresholds 

should be adapted to each stack. Thus, problems related to the false positive rate could 

be further limited. 

Finally, to ensure a better portability, it is planned to leave the MathWorks environment 

developing an ImageJ plug-in. 
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