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Abstract 

This work analyzes the behaviour of a continuous bridge isolated with Double 

Concave Friction Pendulum (DCFP) under seismic excitation. The main purpose 

is to understand how the bridge behaviour is affected by the isolation parameters, 

and to find optimal solutions for isolation. The investigation technique is based on 

non-linear time-history analyses, from which response parameters are post-

processed to serve the objective of this study. 

Chapter 1 focus on the reason why it is necessary to protect bridges from 

earthquakes, explaining the main risks for bridges in seismic zones. 

Chapter 2 focus on the state of the art of seismic design of building and bridges, 

especially of isolation devices.  

Chapter 3 focus on the mathematical basis of the seismic isolation, particularly for 

the FPS (Friction Pendulum System) and the DCFP. 

Chapter 4 describe the MATLAB model used for the analyses and the choices made 

to achieve it. Particularly, the comparison between the MATLAB model and 

another one, developed with another software, is of vital importance to attest the 

validity of the study and of its results.  

Chapter 5 focus on the performed analyses and on the results. The analyses take 

into account a wide range of variability for the dynamic characteristics of the 

structure and the seismic uncertainty, performing a high number of non-linear 

time-history analyses. Results are finally given in non-dimensional form, in order 

to carry out a parametrical analysis of peak responses of the system, finding 

optimal values of friction coefficient and performing regression analyses to obtain 

closed-form expressions useful to design DCFP isolators. 

Chapter 6 discusses the results of the analyses, the possible future developments 

of the research and provides an example of application of the results. 
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1 Seismic risk 

Seismic hazard (H) is the probability that an earthquake will occur in a 

geographical area within a given window of time, and with ground motion 

intensity, expressed in term of magnitude M or PGA (peak ground acceleration), 

exceeding a given threshold. 

Seismic consequences depend also by building resistance to earthquake effects. 

The potential damage that a building may suffer is called Vulnerability (V). The 

more a building is vulnerable, the worse the consequences that may affect it 

would be, and this is determined by the structural typology, a possible 

inadequate design, the possible use of poor materials, construction methods or 

lack of maintenance. 

At last, the number of economic activity exposed to the risk, the possibility of 

damage in economic term, from either the historical or the architectural point of 

view or in sense of human losses is called Exposition (E). This loss is quantified 

in term of costs that have to be sustained to bring the system back to the previous 

state. 

Combining the three terms introduced above, the seismic Risk is defined as the 

damage expected in a given window of time, for a certain type of earthquake, a 

given building resistance and from the quality and quantity of activity exposed to 

possible damages. 

(NTC, 2008) 

 𝑅 = 𝐻 ∙ 𝑉 ∙ 𝐸 (1.1) 

 

Leaving aside the Exposition, the Seismic Risk is defined as the failure 

probability of a building in a given window of time. The limit state function Z is 

negative if the limit state condition is reached or exceeded. The probability of 

having a negative Z is then called failure probability Pf. In earthquake 

engineering, this limit state function may be expressed comparing two variables: 

seismic demand (D), understood as the performance required to the structure 
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during the earthquake, and the structural capacity (C), understood as the 

dynamic response of the structure. The failure probability may be then expressed 

as: 

 𝑃𝑓 = 𝑃[𝑍 ≤ 0] = 𝑃[𝐶 ≤ 𝐷] (1.2) 

 

1.1 Vulnerability evaluation 

As previously said, the vulnerability is the sum of the potential damages to people, 

buildings and businesses. Three types of vulnerability are defined: 

 Direct vulnerability, the propensity of a single elements to be damaged by 

effect of an earthquake; 

 Induced vulnerability, the propensity of a structure to suffer a structural 

crisis because of the failure of a single element; 

 Delayed vulnerability, or the effect occurring after earthquakes. 

The first step is define the Intensity Measure (IM) and the damaging level. The 

first may be a peak value of an earthquake, such as the PGA (Peak Ground 

Acceleration) or the PGV (Peak Ground Velocity), or a significant spectral 

acceleration of velocity value. 

Fragility or vulnerability curves estimates the probability to reach or exceed the 

limit states for various type of structures. There are three methods to define them: 

 Empirical methods, based on the available data of historical earthquake 

damages; 

 Methods based on expert judgement; 

 Analytical methods. 

 Empirical methods 

Empirical methods provide information on seismic vulnerability of many 

categories of structures. This approach is based on real data but may show some 

limits: firstly, it is difficult to find an amount of data large enough to create a 

database; secondly, fragility curves must be related to groups of structures and not 

to specific structures, which are the object of these methods. Lastly, these methods 

cannot provide any information about the seismic vulnerability of modern 
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buildings, since it is likely that they are constructed with new techniques and 

material and there are not available data on their seismic damages or failure. 

 Methods based on expert’s evaluations 

These methods are used generally where there are not data available. Experts and 

specialists use their own evaluations to construct fragility curves for many values 

of IM, waiting for a collection of actual data. However, these evaluations do not 

have a true scientific basis, and it is not possible to have reliable data in new or 

unpredictable conditions where not even the experts have experience. In Italy, first 

and second level vulnerability charts are drawn by the GNDT (National Group for 

Earthquakes Defence) of the CNR (National Research Centre). 

 Analytical methods 

Analytical methods may be used to determine fragility curves, when a database of 

earthquake-induced damages is available or when lab experiments are too much 

expensive. Several types of analyses may be used to build the fragility curves: static 

or dynamic, linear o non-linear. Naturally, computational time increases with the 

required accuracy. The most used method is the non-linear dynamic analysis. 
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1.2  Seismic Hazard evaluation 

 

Figure 1.1 - Map of seismic hazard in terms of expected PGA with exceeding probability of 10% in 50 years 

Thanks to the work of the Italian INGV (National Institute of Geophysics and 

Volcanology) and of the Department of Civil Protection, maps of seismic hazard 

are available for the entire Italian territory. This is the result of the S1 project 

(DPC-INGV S1 Project, 2106) 

The project consisted in running probabilistic analyses that resulted in defining a 

grid extended to the entire Italian territory. Points of the grid are spaced with a 
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maximum distance of 5 km (about 0.5° of latitude and longitude). The results of 

this study were integrated in the NTC08.  Maps of seismic hazard are available in 

terms of expected PGA and for hard ground, which means very stiff soils (cat. A 

according to EC8, which means with 𝑣𝑠,30>800 m/s). Data are available for the 

following lists of: 

Exceeding probability in 50 

years [%] 

81 63 50 39 30 22 10 5 2 

Return period [years] 30 50 72 100 140 200 475 975 2475 

Table 1.1 – Relation between exceeding probability in 50 years and return period according to NTC08 

Seismic hazard maps were drawn through acceleration spectra, Spa, for the 

following vibrational periods: 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.5 and 2 s. 

 

Figure 1.2 - Seismic reliability 
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Table 1.2 - Ground types according to NTC08 
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 Seismic hazard abroad 

 

Figure 1.3 - Europe seismic hazard map 
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Figure 1.4 - U.S.A. seismic hazard map 
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 The strongest documented earthquakes 

 Date Location Magnitude 

1 May 22, 1960 Valdivia (Chile) 9.5 

2 March 28, 1964 Prince William Sound (Alaska, USA) 9.2 

3 
December 26, 

2004 
off the west coast of Sumatra (Indonesia) 9.1 

4 
November 4, 

1952 
Kamchatka (URSS, now Russia) 9.0 

5 August 13, 1868 Arica (Peru, now Chile) 9.0 

6 January 26, 1700 
Subduction zone of Cascadia (USA, 

Canada) 
9.0 

7 March 11, 2011 Sendai and Tōhoku (Japan) 8.9 

8 
February 27, 

2010 
Pelluhue (Chile) 8.8 

9 January 31, 1906 Esmeraldas Coast (Ecuador) 8.8 

10 February 4, 1965 Rat Islands (Alaska, USA) 8.7 

Table 1.3 - The strongest documented earthquakes 

1.3 Seismic risk for bridges 

Bridges are a fundamental part of the infrastructure of a nation, since they are 

necessary to cross valleys, rivers, straits, etc. establishing a physical link between 

geographical areas which otherwise would be physically separated. This allows the 

develop of mobility and commerce, and to save money instead of spending for 

alternative path or alternative means of transportation. Bridges are anyway 

exposed to natural disasters such as earthquakes or tsunamis that may damage or 

even destroy them.  
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Nowadays, in an increasing traffic demand context that contrasts with the ageing 

of the infrastructure, it is of vital importance to assess and choose carefully which 

viaduct and bridges needs to be reinforced and which ones not. The evaluation of 

seismic safety is affected by some uncertainties, of which many are related to the 

deterioration of the structures, due to environmental causes, utilization, previous 

seismic events, etc. 

Most of the Italian highway network includes bridges and viaducts constructed 

after World War II, especially between 1960 and 1980, a period remembered in 

history as a true economic boom. During those years, not only most of the current 

knowledge on concrete degradation was still unknown, but also seismic forces 

were not taken into account in design. For those reasons, the oldest bridges and 

viaduct are unable to resist to earthquakes. A proper evaluation of the seismic 

hazard has been conducted only lately, and before the introduction of the new 

building codes, there was no use of the ductility or energy dissipation concepts in 

structural design.  

Structural ductility was introduced only with the NTC08, within a design method 

known as capacity design, which allows the formation of plastic hinges in the 

structures dissipate energy during earthquakes and aim to avoid shear failure 

mechanisms, which are known to be fragile. Energy dissipation reduces seismic 

base shear forces, increasing the safety of the structure. 

These considerations imply that old structures need to be adjusted through 

consolidation, and that new structures must be designed with new criteria. 

Consolidation is usually preferable to demolition and reconstruction, even if the 

results are not the same in terms of seismic performance, because of the reduced 

costs. The consolidation type depends usually by structural scheme, load types and 

structural elements characteristics and materials. 

1.4  Seismic damages in bridges 

Seismic damages and failure for bridges are classified according to the part of the 

bridge that is effectively involved in the failure mechanism (usually a pier, a 

longitudinal beam or a joint). In a wider sense, also failures connected to the 

Serviceability Limit States (SLSs) are meant, such as excessive vertical 

displacement in the deck mid-span or failure of non-structural parts of the 

superstructure (Lapointe, 2004). 
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 Failure for excessive displacements 

 

Figure 1.5 - Viaduct collapse caused by Northridge earthquake, California, 1994. 

Excessive lateral displacements are one of the main reasons of damaging and 

failure for bridges during earthquakes. Underestimate the lateral force and/or 

overestimate the lateral stiffness of the superstructures may lead to an inadequate 

design of seismic resistant bridges. For reinforce concrete bridges, there are two 

typical examples of failure mechanism: loss of support and pounding. 

In addition, excessive displacements in longitudinal direction may lead to the 

collapse through the superstructure disassembly, while in case of presence of 

adjacent structures transversal displacements may lead to repeated collisions that 

may severely damage both the bridge and the adjacent structure. 

 Failure for loss of support 

This type of failure is particularly problematic for simply supported bridges when 

seismic intensity is high in the longitudinal direction of the deck. If in this direction 

the available bearing space is not enough, the entire superstructure may loss 

support and fall down. Typically, this type of failure occurs in bridges with high 

piers and long spans, especially in case of soft soil. 
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Figure 1.6 - Failures for loss of support: Kobe earthquake (Japan, 1995) on the left and Jiji earthquake 

(Taiwan, 1999) on the right 

 Failure for pounding 

Pounding in a bridge is caused by excessive displaments of part of the structure. It 

may take place where the deck is very close to other structures, wheter they are 

part of the bridge or not. The uncostrained movement in these regions may lead to 

repeated collisions that can severely damage the deck. This type of damaging may 

even occur between jointed parts of the deck, or between deck and abutment. 

  

Figure 1.7 - Pounding damages: Kobe earthquake (Japan, 1995) on the left and Sichuan Earthquake 

(China, 2008) on the right 

1.5  Pier failure 

Pier failure during an earthquake is a significant type of failure, since it implies the 

collapse of the entire bridge: this is why the purpose of isolation in bridges is to 

protect the piers from the horizontal action coming from the deck. The 

mechanisms that occurs in pier failure may be a flexural or a shear one. 
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Figure 1.8 - Deck overturning due to piers failure, Kobe earthquake (1995) 

 Flexural failure 

The inadequate flexural resistance of the bridges built during 80s and 90s years is 

generally due to the use of conventional seismic design action of about 4-10% of 

structure’s weight. Nowadays, it is an acquired knowledge that lateral elastic 

response forces may indeed go beyond dead weights.  

Elastic design is based on a linear interaction between M and N, but if plastic 

resources of the materials are taken into account, the interaction diagram become 

a parabola with horizontal axis. The loads acting on a pier generally induce a small 

compressive stress, and at that level it may not be available an adequate flexural 

resistance to dissipate enough energy during high-intensity earthquakes. 

 

Figure 1.9 - Interaction diagram of a pier 
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 Inadequate flexural ductility 

Ductility is a fundamental parameter in seismic design, and it may be defined as 

the ability of a structural element to undergo large plastic deformations without 

collapsing. If a structure is designed to resist earthquakes with Capacity Design, it 

will necessarily need ductility to deform itself as much as needed to dissipate 

seismic energy through the formation of plastic hinges. Low ductility would 

prevent the formation of plastic hinges, making the structure resist to earthquakes 

thanks to its strength only, which is usually impossible. 

 Inadequate dimensioning of anchorage length 

Improper calculation of anchorage and overlapping length of reinforcing bars in 

the columns leads to a premature reaching of steel yielding in anchorage and 

overlap zones, causing the formation of plastic hinges in undesirable position, 

leading to partial or global failure of the structure. 

 Shear failure 

The different shear mechanisms share a complex relationship, for this reason it is 

difficult to outline the characteristics of a shear failure respect to a flexural failure. 

While flexural failure is usually ductile and shows many evidence before occurring, 

shear failure is a fragile mechanism: in a collapse, many failures may combine 

themselves leading to an after-collapse scenario where the main cause of the 

collapse may not be easy to detect. Failure of transversal reinforcement is a 

classical example of shear failure, and it leads to a reduction in concrete 

compressive strength in longitudinal direction; this is why buckling of the 

longitudinal reinforcing bars usually accompanies shear failure. This type of 

failure described is usually called shear-compression failure. Short piers are 

sensible to shear failure since they are subjected to a high shear respect to the 

bending moment (high ratio V/M). 
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Figure 1.10 - Shear failure of the piers, Northridge earthquake (California, USA, 1995) 

1.6  Failure consequences 

Bridges are hardly ever intended to be a stand-alone element, but they are 

practically always a part of a wider infrastructure system, such as roads, highways, 

speedways or railways. Hence, collapse consequences usually hit areas much 

greater than their geographical position, especially for strategic bridges: in this 

case, the performance of the entire infrastructure web of which they form part are 

drastically reduced. 

 Loss of human lives. 

 Bridge replacement cost. 

 Loss of utilities. 

 Loss of elements of architectural merit. 

 Cost of provisional measures. 

 Cost related to web congestion. 

 Social impact costs, incurred by companies and community. These costs 

include journey variation of public transports, longer journeys for 

emergency vehicles and economic impact on local industries and 

companies. 

For example, the Oakland Bay Bridge (San Francisco, CA) has been closed for 30 

days after the Loma Prieta earthquake (1989), forcing 250,000 daily users to 

radically change their habits: many commuters were forced to lengthen 

significantly their daily travel, while others switched to using railways or bus 

transportation. Many retailers and workers of the delivery sector suffered 

reductions of business. If this closure did last years, it would have caused severe 

change in the socio-economic system of San Francisco and beyond. 
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Figure 1.11 - Failure of Oakland Bay Bridge 

The estimation of the losses after a major earthquake is a difficult operation. 

Losses can be grouped in three types: 

 Direct economic losses (bridge damaging, cost of repairs); 

 Indirect economic losses (users delaying, impact on economic growth); 

 Non-economic losses (deaths, injuries, environmental and social damages); 

 Cost of repair 

Once a bridge collapse, it may be reconstructed to let it fulfill its task as a part of 

an infrastructure. While determining the importance of a bridge, it is explicitly 

assumed that this has to be reconstructed (otherwise, it would not have sense to 

evaluate its importance). In the particular case, where the benefits given by the 

bridge are inferior to the cost of reconstruction, this one would not be 

reconstructed usually. 

To estimate the cost of reconstructions of a bridge, it is generally supposed that it 

is reconstructed exactly as it was before. This hypothesis is made to ease the task 

of the engineers that have to estimate the costs before it is constructed. 

Reconstruction costs are usually related to civil engineering works and may be 

estimated in accord to current costs of material and labour, structural geometry e 

geographical position (Imhof, 2004).  
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2 Design strategies and 

isolation 

Since the 70s, traditional design methods for earthquake resistant structures were 

purely elastic, ruling out any chance of controlling ductility resources of structural 

elements and dissipating energy through them. (Priestley, Seible, & Calvi, 1996).  

Ductility, i.e. the ability of a material to deform itself while undergoing constant 

stresses, is nowadays recognized as a crucial resource of a proper seismic design. 

Increasing the strength of the structure and of its elements would mean bear 

higher costs and would imply anyway to accept large acceleration acting on the 

structure during earthquakes: this point is often crucial, since it may cause the 

damaging of non-structural elements and make the entire structure condemned 

for the occupants and the users. Increasing the overall ductility of the structure, 

through a design that aim to create favorable plastic mechanism in the structure 

that can avoid the structure collapse. This strategy, that implements the principle 

of the hierarchy of the resistances, is called Capacity Design. 

2.1  Vibrations control 

Nowadays, the approaches currently used to protect structures from earthquakes 

are derived from a dynamic’s branch, which is called theory of vibrations control. 

According to this theory, vibrations induced by dynamic forces, such as wind or 

earthquakes, are controlled by devices that cannot be considered as structural 

components. 

 

 Passive control consists in a fixed change in the physical parameters of the 

structure. Seismic isolators and supplementary dampers are examples of 

passive control devices. 

 Active control uses some external adjustable, or active, device (actuator) to 

provide control forces. Unlike passive control, active control depends on 

current measurements (feedback or feed-forward/closed-loop).  
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 Hybrid control mixes  

 Semi-active control consists in an adjustable change in the physical 

parameters of the structure, which does not require any addition of energy 

into the system. 

 

Figure 2.1 - Control theory 

In order to protect structures from earthquake damaging and maintain their 

functionality, many strategies have been formulated in the recent years. Leaving 

aside strategies like capacity design, the best one nowadays adopted is the 

installation of isolators and/or dampers. While the firsts allow uncoupling the 



2018, March Roberto Gnisci – Politecnico di TorinoDesign strategies and 
isolation 

19 
Influence of DCFP bearing properties on performance of isolated bridges 

structure from the motion of the ground, drastically reducing the energy and forces 

transmitted during earthquakes, the seconds reduces forces transmitted through 

structural elements by dissipating energy, thanks to viscous or viscoelastic 

hysteresis cycles. In both cases, the non-linearity of the devices usually have to be 

taken into account.  

2.2  Seismic base isolation in structures 

Seismic base isolation consists usually in the interposition of low lateral stiffness 

and high vertical rigidity elements, accompanied by high dissipative ability, 

between the ground and the superstructure, reducing the acceleration perceived 

by the latter during earthquakes. Horizontal ground shaking and structure motion 

result then uncoupled, reducing drastically the energy transmitted from the 

ground to the superstructure. Isolators act like filters, modifying amplitude and 

frequency content of harmonic components of seismic excitations. 

Since seismic excitations have a high energetic content in correspondence of 

frequency typical the short and medium-rise buildings (1-10 Hz), isolators have 

the main scope of filter these frequencies. In addition, a proper design of isolator 

devices must take into account the dynamic characteristics of the structure and of 

the ground, to avoid undesirable and dangerous phenomena, such as resonance. 

 

Figure 2.2 - Fixed base (left) vs. base isolation (right) 

The principle of seismic isolation is to lengthen the main vibrational period of the 

structure from the fixed-base typical period (0.3-1.5 s) to values in the range 2-4 s, 

where the acceleration spectra do not reach high values. On the other hand, 

displacement spectra show in that region large displacements, while they are 

limited in the fixed-base period range. The isolators should then absorb this high 

demand in term of displacements, since they are very deformable in horizontal 

direction. To improve the performance of the isolators, they should be able to 
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dissipate part of the energy transmitted by the earthquake, using mechanism such 

as a friction or viscous damping. 

 

Figure 2.3 - Pseudo-acceleration and displacement spectra 

Consequently, two positive effects, not feasible in fixed-base structures, are 

observed: 

 A significant reduction of the acceleration transmitted to the part of the 

structure above of the isolators (the superstructure); 

 A significant reduction of the inter-story drifts. This is because the isolators 

generate a rigid block-like behaviour in the superstructure, absorbing a vast 

part of the deformations. 

In terms of construction technique, the main advantages are: 

 The structure stays in elastic field, avoiding structural damaging that may 

cause reduction in the vertical bearing capacity; 

 Non-structural elements may result not damaged even after strong 

earthquakes; 

 Buildings and infrastructures are fully operative immediately after the 

earthquake; 

 Buildings are perceived as safe structures, reducing the stress and the panic 

of the occupants during seismic events. 
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It follows that in a well designed base isolated structure, the behaviour of the entire 

system is governed practically only by the first modal shape, which has a period 

very close to the isolation period. 

The efficiency of the isolation depends then on the ratio between the fundamental 

frequency of the sole superstructure ωs and the frequency of the superstructure 

moving rigidly along with the isolators ωis. This ratio is defined Seismic Isolation 

Grade: 

 
𝐼𝑑  =  

𝜔𝑠
𝜔𝑖𝑠
 =  

𝑇𝑖𝑠
𝑇𝑠

 
(2.1) 

The seismic response of the superstructure increases with the increasing Id, and in 

the meantime the displacement of the first storey tends to increase sensibly in 

correspondence of small value of this ratio. 

This work focuses on the isolation of bridges, whose mechanism of isolation are 

different from buildings’. Generally, a bridge superstructure consists in a multi-

span deck supported by piers, which form, together with the foundation, the 

substructure. The isolation system is placed between the piers and the deck. 

In this way, it is possible that deck, piers and abutments remain in elastic field 

even in the Ultimate Limit State (ULS) combinations. Designers are then allowed 

to not apply the capacity design, neither the details for ductility, regardless of the 

materials used in the construction (concrete or steel), allowing a consistent save of 

money and time required by the construction process. 

2.3  Historical notes on seismic isolation 

After Messina’s earthquake in 1908, whose death toll stood at 160,000 people, the 

Italian government set up a technical committee with the purpose to propose 

adequate techniques of protection and reconstruction of the destroyed areas; back 

then the vast majority of the buildings were built in masonry and without any 

particular seismic precaution. The commission brought up two possible solutions: 

the first was to base isolate the rebuilt buildings, through the interposition 

between buildings and ground of sand and rollers right below the bearing columns; 

the second approach philosophy was to limit the height of the buildings. In 

addition, it was proposed for the first time to adopt a basic static seismic analysis, 

introducing lateral forces to simulate the earthquake effect. This second idea was 
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accepted instead of the first one, postponing once again the introduction of 

isolation techniques, even if rudimental. 

In 1929, it was introduced the flexible first storey concept thanks to R. R. Martel. 

This concept consist in introducing flexible columns at the first floor of a building 

to lengthen the main vibrational period of the structure. The following 

developments came with the studies of Green (1935) and Jacobsen (1938), with 

the soft first storey method, introducing the idea of absorbing energy through 

material yielding. The Olive View Hospital of Los Angeles was built applying this 

concept, even if it revealed itself not successful because of the vast damaging 

caused by San Fernando earthquake in 1971, soon after the end of construction of 

the hospital. The structural system was evidently unable to work, but it was 

somehow useful to learn a lesson: it is not possible to absorb seismic energy with 

just a single storey of columns. In 1969, the first pioneering application of the base 

isolation was put in practice with the construction of the elementary school Johan 

Heinrich Pestalozzi in Skopje, Macedonia. The Swiss engineers who designed the 

building used for the first time a system, called Swiss full base isolation 3d, 

consisting in 5 simple non-reinforced rubber bearings, obtained by square rubber 

layers, 70 cm wide and 7 cm thick. 

 

Figure 2.4 - Swiss Full Base Isolation System, Skopje, Macedonia, 1969 

The absence of reinforcing steel in the rubber sheets caused the bearing to have 

not enough vertical rigidity, which was comparable to the lateral rigidity. This 

caused the structure to have not enough resistance to rocking motion, a 

mechanism that occurs during earthquakes and that may cause overturning of the 

entire building. 
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Figure 2.5 - Building isolated with rubber bearings 

During the 70s, the Malaysian Rubber Producers’ Research Association 

(MRPRA) started to produce in England the first elastomeric devices in 

reinforced rubber, throughout a production process base on vulcanization of 

rubber layers with steel plates. 

 

Figure 2.6 - Behaviour of laminated rubber bearing 

A first large-scale application was carried out in France to protect nuclear plants 

from earthquakes with expected PGAs of about 0.2g. The main requisite was to 

leave unaltered the existing structure, and for this purpose, bearing in laminated 

neoprene and steel were used. In high seismicity regions, also sliding devices, with 

a friction coefficient of 20%, were used. 
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Figure 2.7 – Élèctricité-de-France system 

The system was a combination of elastomeric bearing and sliding device: a 

neoprene core reinforced with steel plates and connected to lead-bronze plate, in 

the turn connected to a stainless steel plate. Neoprene has small deformability, 

and when the displacement capacity provided by it was reached, steel plates 

started to slide over lead-bronze plates. Except for the neoprene core, there was 

no re-centering device 

Apart from the elastic contribution of the neoprene during the unloading phase, 

there was no re-centering feature in this type of isolator. Maintenance of the 

devices was then mandatory after every major earthquake. 

During the 80s, the seismic isolator were for the first time diffused and used all 

around the globe, especially in the USA, Japan and New Zealand. 

Isolation systems may also be used for retrofit of existing buildings, especially for 

the ones of historical or architectural merit, where introducing shear walls and/or 

dissipative bracing would be undesirable. The technical difficulties are anyway 

manifold. Base isolation can not be used if the foundation system consists of 

isolated footings, but it must be a rigid concrete slab situated just above the 

isolation plane; otherwise, a new foundation has to be realized. In any case, it is 

necessary to shore up the building during construction of the isolation and 

foundation systems, and installing the isolators may be very complicated, 

depending on the existing structural scheme. 

Another problem is related to the motions that occur during a seismic event once 

the isolators are effective: the structure’s relative displacement respect to the 

ground may be very large, and this could not be compatible with existing utilities 

such as plumbing, electrical, and telephone lines, which may happen to pass 

underground.  
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2.4  Seismic isolation in Italy 

The Somplago viaduct on the Udine-Carnia highway, designed by Eng. Renzo 

Medeot was the first modern example of isolated bridge. From that first 

experience, isolation has been applied again for more than 150 bridges, reaching 

150.000 linear meters of isolated deck in the entire country. By contrast, only a 

small number of buildings takes advantage of the base isolation, because of the 

lack of a national code or rules in the subject. In addition to that, the bureaucratic 

procedures necessary to obtain the approval by the National Council of Public 

Works were long and complex. Nevertheless, the potential owned by Italian 

engineers was, and still is, immense. The Vigili del Fuoco Home Base is the first 

Italian base-isolated building: it was built in the early 1980s, designed by Prof. 

Federico Massimo Mazzolani, of the Engineering School Federico II of Naples. 

 Gervasutta Hospital, Udine 

This is the first medical facility realized In Italy with base isolation. It is a 

reinforced concrete frame building of 2338 m2, where the base isolation purpose 

is to maintain the full functionality of the hospital during, and after, “rare” seismic 

events (PGA = 0.35g). In this way, it has been possible to reduce the deformation 

of the structural parts of the building but also the deformations of the non-

structural parts, such as operating tables, monitoring, diagnostic and resuscitation 

machinery, etc. 

Fifty-two elastomeric isolators have been used, with the following properties: 

 Diameter: 600 ÷ 800 mm 

 Maximum vertical bearing force: 2500 ÷ 4300 kN 

 Maximum lateral displacement: ± 180 mm 

 Equivalent viscous damping: 10% 

The isolation system is placed just below the first floor slab, hardened by a grillage, 

on top of columns and walls. The main period of the isolated structure is about two 

s. Isolators were placed in order to minimize the distance between the mass centre 

and the rigidity centre of the structure, to reduce torsional effects on the structure 

during earthquakes. 
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Figure 2.8 - Gervasutta Hospital piers 

 

Figure 2.9 - Gervasutta Hospital, isolation devices detail 

  Del Mare Hospital, Naples 

Speaking about base isolated hospital, the del Mare Hospital, Naples, is one of the 

largest seismic isolated building in Europe. It has more than 500 beds, 15 

operating rooms and 2 birthing rooms. The building is very irregular both in plant 

and in elevation,  
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Figure 2.10 - Del Mare Hospital, plane-volumetric view 

The structure of the building is a 3D reinforced concrete frame, designed in accord 

to the OPCM 3431. The site characteristics are ag = 0.25g and ground type B, the 

importance coefficient is 1.4, and the structure coefficient q is equal to 1.5 for the 

superstructure. The first three vibrational period of the isolated structure are 

between 2.32 and 2.74 s, close to the target period of 2.5 s. According to the 

estimations, the isolation allowed to save about the 40% of the reinforcing steel 

that would have been used without isolation. 

The isolation system consist of 327 isolators of three different typologies, with 

diameters in the range 600-800 mm, lateral stiffness 1.51-4.89 kN/mm and a 

primary shape factor always bigger than 24. The elastomeric cantilevers used are 

two, both with equivalent viscous damping equal to 15%, G = 0.8 MPa for 600 mm 

diameters isolator, and G = 1.4 MPa for the others. The design maximum 

displacement is 204 mm, including a reliability coefficient of 1.2 required by 

OPCM 3431, by analogy with EC8. 
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Figure 2.11 - Del Mare Hospital, installation of the isolators. 

 C.A.S.E. Project, L’Aquila 

C.A.S.E. project, developed after the L’Aquila earthquake (04/06/2009), consisted 

in the construction of 185 apartments seismically isolated with Friction Pendulum 

System, whose first applications were implemented during the beginning of the 

80s at Berkeley (CA, USA). FPS’s working principle is based on the pendulum 

behaviour, and its purpose is to control the motion of the superstructure under 

horizontal motion. 
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Figure 2.12 - View of the residential complex C.A.S.E. project 

The residences were built by the Italian government, under supervision of Civil 

Protection, over an area of 1700 m2, including distribution and stairs. The 

structural concept is extremely simple: two 500 mm-thick reinforced concrete 

slabs separated by columns with uniform spacing of 6 m in both directions and 

isolators, of which one is supported by the ground and the others support the rest 

of superstructure (the apartments). While the bottom slab acts like a foundation, 

the top slab it the basement on which the entire superstructure is anchored, 

allowing a certain variety of architectural design. 
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Figure 2.13 - Base plate of C.A.S.E. project 

The isolated prototype results to be made up, in short, by three elements: the first 

is the foundation substructure, which has to be rigidly connected to the ground; 

the seconds are the isolation devices, characterized by large lateral deformability 

and vertical rigidity, allowing the structure to behave normally under gravity load 

and to translate rigidly under horizontal loads such as seismic forces; the third is 

the superstructure, free to move in the plane of the structure according to the 

flexibility and the displacement capacity of the isolators.  

Radius of curvature: 4 m 

Equivalent viscous damping: 20% 

Maximum lateral displacement: 260 mm 

Maximum vertical load: 3000 kN 

 

Figure 2.14 - C.A.S.E. Isolators -  

 



2018, March Roberto Gnisci – Politecnico di TorinoDesign strategies and 
isolation 

31 
Influence of DCFP bearing properties on performance of isolated bridges 

 

Figure 2.15 - Installed isolator, C.A.S.E. project 

2.5  Seismic isolation abroad 

 San Francisco City Hall 

 

Figure 2.16 - San Francisco City Hall 

The San Francisco City Hall in San Francisco, California, is a good example of 

retrofit of existing buildings. Constructed in 1915, after a strong earthquake 

destroyed the previous City Hall in 1906, it is listed in the National Register of 

Historic Places, being an outstanding example of classical architecture. The 
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structural scheme is a steel frame and concrete slabs with unreinforced brick 

masonry integral with the granite cladding, hollow clay tile infill walls, and 

limestone or marble panels lining many of the interior spaces. 

During the 1989 Loma Prieta earthquake, centered about 95 km away, the building 

sustained substantial damage. The fixed-base fundamental period of vibration of 

the building was approximately 0.9 s. To improve the earthquake resistance of this 

structure, base isolation was adopted especially because it preserved the historic 

fabric of this building. In addition, the superstructure was strengthened by new 

shear walls within the building. The retrofit project was completed 9 years after, 

in 1998. 

The isolation system consisted of 530 isolators, each a laminated rubber bearing 

with lead plugs, located at the base of each column and of the shear walls. The 53-

cm-high bearings varied from 80 to 90 cm diameter. The column are supported 

on one or more isolators under a cruciform-shaped steel structure; multiple 

isolators were provided only for the heavily loaded columns. Installation of the 

isolators proved to be very complicated and required shoring up and cutting the 

columns while transferring their loads to temporary supports. The plane of 

isolation is just above the existing foundation. The isolation period is 2.5 s. 

 

Figure 2.17 - Rubber bearings at the base of columns and shear walls 

A major problem of this retrofit was to find a way to permit large motion of the 

isolated building: under a design earthquake with PGA of 0.4g, the isolated 

building is estimated to move 45 to 65 cm. A moat was constructed around the 

building to provide a minimum seismic gap of 70 cm. Flexible joints were provided 

for utilities, such as plumbing, electrical and telephone lines, crossing this moat 

space to accommodate movement across the isolation system. 
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 Bolu Viaduct (Turkey) 

 

Figure 2.18 - Bolu Viaduct (Turkey) 

The following example of a retrofit procedure of a viaduct is taken from (Ghasemi, 

2004). 

The Düzce earthquake occurred on November 12, with a moment magnitude of 

7.2, along the secondary Düzce fault, a branch of the North Anatolian Fault (NAF). 

According to seismologists, the rupture on November 12 resulted from the stress 

created by the Kocaeli earthquake, which occurred in the nearby on August 17. The 

epicenter of Düzce earthquake occurred very close to the Bolu Viaduct, a 2.3 km 

long elevated highway structure located on the last segment of Trans-European 

Motorway (TEM) which was under construction. The Bolu Viaduct, which utilized 

a hybrid isolation system, suffered extensive damage due to propagation of a 

surface fault rupture between segments of viaduct piers. At the Düzce station near 

the epicenter, a PGA of 1.0g was recorded before the ground motion 

instrumentation was clipped due to its limitation on recording acceleration above 

1.0g. The instruments at Bolu, located 30 km east of the epicenter, registered a 

PGA of 0.8g. The Bolu Viaduct is located between these two stations, in the town 

of Kaynasli. As part of the retrofit it was necessary to replace both the damaged 

sliding pot-bearings and the damaged Energy Dissipation Units (EDU). 
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Figure 2.19 - Bridge scheme and fault direction 

Seismic isolation of the superstructure from the piers was identified early on as 

essential for the repair/retrofit of the elevated highway. In addition, the use of 

seismic isolation technology assured that the piers of the Bolu Viaduct will remain 

elastic for future major earthquakes. As part of the retrofit design program, the 

original (1992) probabilistic seismic hazard studies for ground shaking and fault 

rupture were updated to include more recent data, particularly the two 1999 

earthquakes. The Italian consultants (G.M. Calvi and Nigel Priestley) carried out 

the design of the repair and retrofit of the damaged elevated highway. 

In consideration of all seismological studies, it was agreed with the Client (Turkish 

Government Karayollari Genel Mudurlugu) that the input ground motion should 

be characterized by the following properties:  

 Design peak ground acceleration (PGA) 0.81g, which corresponds to a 

2000-yr return period 

 Design peak spectral acceleration (PSA) 1.8 – 2.0g at 5% damping  

 Design peak spectral displacement (PSD) 600mm, resulting from a future 

fault rupture at the site  

 Consideration of possible near-field effects  

 

In addition to the demand arising from the ground motion, a permanent ground 

deformation resulting from ground creep and fault slip equal to +/- 250mm was 

considered during the design life of the viaduct. 
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In the final design approach, two isolation bearings will be utilized at the internal 

support between the diaphragm and the pier cap and four isolation bearings at the 

expansion joints. In order to optimize the design and to consider the variation in 

the height of the piers and the crossing of the fault rupture at a specific location, 

three different Friction Pendulum isolation bearings are to be used. These are:  

 Displacement capacity +/- 700mm, large radius (smaller height piers and 

abutments)  

 Displacement capacity +/- 700mm, small radius (tall piers)  

 Displacement capacity +/- 900mm, large radius (piers P40 to P50, where 

the fault rupture crossed during Duzce earthquake)  

 

Figure 2.20 - Retrofit scheme at typical interior pier 



Design strategies and isolationRoberto Gnisci – Politecnico di Torino 2018, March 

36 
Influence of DCFP bearing on performance of isolated bridges 

 

Figure 2.21 - Friction Pendulum Isolation bearing 

 

2.6 Elastomeric seismic devices 

Nowadays, there is a very wide range in terms of details for base isolators, but the 

main principle is always to introduce a layer of low lateral stiffness between the 

superstructure and the foundation (buildings) or between the superstructure and 

the piers (bridges). This procedure modifies permanently the overall stiffness 

matrix: results of modal analysis show the presence of a new main vibrational 

period, which has to be much bigger than the fixed-base natural period. 

Deformation of the structure is then supposed to increase considerably, but the 

isolators will take the most of this displacement, while the structure remains 

practically undeformed. This happens regardless the properties of the system, 

which can be linear or non-linear, damped or undamped. 

Elastomeric isolator are the most common in the isolation technique. They are 

composed of sheets of elastomeric material, of 5-20 mm thickness, alternated to 

steel plates of 2-3 mm thickness. The two different materials are bonded through 

vulcanisation process. These bearings need to be connected to the foundation and 

to the superstructure by mean of a couple of flanges. 

Rubber can be either natural or synthetic: 

 Natural rubber is chemically constituted by regular sequences of isoprene 

(C5H8), forming highly elastic chains. This is due to the few number of 

boundaries between the chains that stretch when subjected to tensile 

stresses, until they reach a failure point. 



2018, March Roberto Gnisci – Politecnico di TorinoDesign strategies and 
isolation 

37 
Influence of DCFP bearing properties on performance of isolated bridges 

 Synthetic rubber are mad of neoprene (C5H8Cl)n. This molecule does not 

differ too much in terms of mechanical properties, but it shows other 

advantages such as fire resistance, gas impermeability and an increased 

durability. 

Damping capabilities of the rubber is anyway small; hence, its damping properties 

need to be increased, when required, by means of chemical processes. 

 Laminated rubber bearing 

 

Figure 2.22 - Laminated rubber bearing (Bridgestone) 

Natural rubber shows low damping parameters (the equivalent damping factor 

may be 2-3%), excellent linearity and stable restoring force characteristic. In the 

design phase, it is possible to choose between several values of the rubber elastic 

modulus and types of separate damping device, which is usually required. Due to 

the small values that the re-centering force assumes, these isolators may suffer for 

instability, as explained in (Kelly & Naeim, Design of Seismic Isolated Structures: 

from Theory to Practice, 1999). 

 High Damping Rubber Bearing (HDRB) 

 

Figure 2.23 - Laminated high damping bearing (Bridgestone) 
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High damping rubbers may be used, so that a separated damping device is not 

required, and this may be very useful whereas small space for installation is usually 

a major constraint in design or in retrofit.  

 Lead Rubber Bearing (LRB) 

 

Figure 2.24 - Lead rubber bearing (Bridgestone) 

Embedding a lead plug at the center of the laminated natural rubber gives to the 

bearing high damping capability. In fact, the lead plug is able to undergo plastic 

deformations and then to recover and recrystallize, showing absence of permanent 

damages. Hence, this type of bearing too does not need a separated damping 

device, and its hysteretic behaviour is similar to an elasto-plastic one (bi-linear). 

It is possible to vary the lead plug diameter in order to fine adjust the equivalent 

damping factor. 

Isolation systems made up with LRB show: 

 Higher initial stiffness, compared to the rubber bearing isolators, thanks to 

the lead plug. The LRB deformation under wind or thermal loads is usually 

negligible; 

 High equivalent damping coefficient (even more than 30%); 

 For the same performance of the rubber bearings, they are less expensive; 

The force-displacement behaviour is still bi-linear, and it is given by the 

combination of the behaviours of the lead and the rubber, which show respectively 

linear elastic and elasto-plastic behaviour. 

2.7 Sliding isolators 

Isolation systems based on pure sliding are the simplest and oldest solution: they 

have been used by Greek, Chinese and Peruvian ancient civilizations. They can be 



2018, March Roberto Gnisci – Politecnico di TorinoDesign strategies and 
isolation 

39 
Influence of DCFP bearing properties on performance of isolated bridges 

mono or multidirectional and are still in use, with new features but always 

following the same principles. 

 Plane sliding isolators: Friction Slider 

They are bearing devices, multidirectional, with low friction sliding surface, 

usually made up by two circular or square plates of different diameters or sides, 

sliding one on the other. The materials used, steel and PTFE, can produce a small 

friction: the dynamic friction coefficient is between 5% and 20%, and if the 

surfaces are lubed it is reduced to 1-2%. In this last case, the forces exerted in 

horizontal direction are practically negligible: for this reason, these isolators are 

not a standalone device. They need, in fact, to be coupled with stiffening elements, 

dampers and centering devices. 

 

Figure 2.25 – Friction Slider (FIP Industriale) 

 Friction Pendulum System (FPS) 

Friction Pendulum Systems are the main topic of this study. For this reason, the 

features of these devices will be defined in as much details as possible later in 

Chapter 3.2. 
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3 Dynamic of isolated systems 

3.1  Linear theory of seismic isolation 

The linear theory of seismic isolation has been theorized for the first time in (Kelly, 

Base Isolation: Linear Theory and Design, Vol. 6, No. 2, 1990), where the dynamic 

behaviour of base isolated structures is deduced by the results of the analysis of a 

simplified 2-dof model, which includes the isolation system and the 

superstructure. 

In such a model, only lumped masses, linear spring and linear viscous damping 

are considered, so that linear modal analysis can be performed in order to identify 

the modifications introduced by the isolation in terms of vibration frequency and 

modal shapes. As explained in (Kelly, Base Isolation: Linear Theory and Design, 

Vol. 6, No. 2, 1990), most of the isolation systems are intrinsically non-linear, 

which implies that modal analysis gives only an approximation of the effective 

behaviour of the structure. Spring and damping parameters need then to be 

linearized, by using many techniques explained in the following. 

 

Figure 3.1 - Model of a single storey isolated structure 

 m: superstructure mass; 

 K, C: rigidity and damping of the superstructure; 
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 mb: foundation plate mass; 

 Kb, Cb: rigidity and damping of the isolation system; 

 u: displacement of the superstructure respect to the ground; 

 ub: displacement of the isolation plane respect to the ground; 

 ug: ground motion, function of time. 

The absolute equations of motion are: 

 𝑚�̈� = −𝑐(�̇� − �̇�𝑏) − 𝑘(𝑢 − 𝑢𝑏) (3.1) 

 𝑚�̈� +𝑚𝑏�̈�𝑏 = −𝑐𝑏(�̇�𝑏 − �̇�𝑔) − 𝑘𝑏(𝑢𝑏 − 𝑢𝑔) (3.2) 

It is convenient to work with relative displacements: 

𝑣𝑠 = 𝑢 − 𝑢𝑏 

𝑣𝑏 = 𝑢𝑏 − 𝑢𝑔 

in terms of which the equations of motion become: 

 𝑚�̈�𝑏 +𝑚�̈�𝑠 + 𝑐�̇�𝑠 + 𝑘𝑣𝑠 = −𝑚�̈�𝑔 (3.3) 

 (𝑚 +𝑚𝑏)�̈�𝑏 +𝑚�̈�𝑠 + 𝑐𝑏�̇�𝑏 + 𝑘𝑏𝑣𝑏 = −(𝑚𝑏 +𝑚)�̈�𝑔 (3.4) 

This 2-dof system of equation can be solved directly or trough modal 

decomposition. A modal analysis provides insight into the response of isolated 

systems and the results will be applicable to models that are more elaborate.  

 
[
𝑀 𝑚
𝑚 𝑚

] {
�̈�𝑏
�̈�𝑠
} + [

𝑐𝑏 0
0 𝑐

] {
�̇�𝑏
�̇�𝑠
} + [

𝑘𝑏 0
0 𝑘

] {
𝑣𝑏
𝑣𝑠
} = [

𝑀 𝑚
𝑚 𝑚

] {
1
0
} �̈�𝑔 

[𝑴]{�̈�} + [𝑪]{�̇�} + [𝑲]{𝒗} = −[𝑴]{𝒓}�̈�𝑔 

(3.5) 

𝜔𝑠 = √
𝑘

𝑚
≫ 𝜔𝑏 = √

𝑘𝑏
𝑀
,      𝜀 = (

𝜔𝑏
𝜔𝑠
)
2

 

Assuming that ε has an order of magnitude of 10-2, the superstructure is much 

more rigid than the isolation system, which usually occurs.  

𝜉𝑠 =
𝑐

2𝑚𝜔𝑠
,     𝜉𝑏 =

𝑐𝑏
2𝑚𝜔𝑏

 

𝛾 =
𝑚

𝑚 +𝑚𝑏
=
𝑚

𝑀
< 1 
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It is possible to rewrite the system in mass-normalized form, dividing the first 

equation for M and the second for m, obtaining: 

 �̈�𝑏 +  𝛾 �̈�𝑠 + 2 𝜉𝑏 𝜔𝑏 �̇�𝑠 + 𝜔𝑏
2 𝑣𝑠 = − �̈�𝑔 (3.6) 

 �̈�𝑏 + �̈�𝑠 + 2 𝜉𝑠 𝜔𝑠 �̇�𝑠 + 𝜔𝑠
2 𝑣𝑠 = − �̈�𝑔 (3.7) 

or, in matrix form: 

[
1 𝛾
1 1

] {
�̈�𝑏
�̈�𝑠
} + [

2 𝜉𝑏 𝜔𝑏 0
0 2 𝜉𝑠 𝜔𝑠

] {
�̇�𝑏
�̇�𝑠
} + [

𝜔𝑏
2 0

0 𝜔𝑠
2] {
𝑣𝑏
𝑣𝑠
} =  − {

1
1
} �̈�𝑔 

 

𝑇𝑏
𝑇𝑠
= Ω =

1

𝜀
 

The characteristic equation for ωn is: 

 (1 −  𝛾)𝜔𝑛
4 − (𝜔𝑏

2 + 𝜔𝑠
2)𝜔𝑛

2 + 𝜔𝑏
2𝜔𝑠

2 = 0 (3.8) 

The exact roots are given by: 

 𝜔2
2  ≡  𝜔𝑠

∗2

𝜔1
2  ≡  𝜔𝑏

∗ 2
=

1

2(1 − 𝛾)
((𝜔𝑠

2 − 𝜔𝑏
2) ± √(𝜔𝑠2 − 𝜔𝑏

2)2 − 4(1 − 𝛾)𝜔𝑠2𝜔𝑏
2) (3.9) 

When we account for the fact that 𝜔𝑏 ≪ 𝜔𝑠 and rewrite the radical in the form 

 
(𝜔𝑠

2 − 𝜔𝑏
2)2 (1 + 4𝛾

𝜔𝑠
2𝜔𝑏

2

𝜔𝑠2 − 𝜔𝑏
2) 

(3.10) 

and expand this by binomial series, we obtain: 

 

𝜔1
2  ≡  𝜔𝑏

∗ 2 = 𝜔𝑏
2(1 − 𝛾𝜀) 

𝜔2
2  ≡  𝜔𝑠

∗2 =
𝜔𝑠
2

1 − 𝛾
(1 + 𝛾𝜀) 

(3.11a,b) 

In many cases, it may be sufficiently accurate to take as approximations for 𝜔𝑏
∗ , 𝜔𝑠

∗ 

the first terms: 

 𝜔𝑏
∗ = 𝜔𝑏 (3.12a,b) 
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𝜔𝑠
∗ =

𝜔𝑏

√1 − 𝛾
 

This indicates that the isolation frequency variation due to structure flexibility is 

practically negligible, while the structural frequency is significantly increased by 

the addition of the base mass. The difference between the isolation period and the 

fixed-base structural period increases once the isolation and the structure are 

combined. 

 

𝜙1
𝑇 = {1, 𝜀} 

𝜙2
𝑇 = {1, − 

1 − (1 − 𝛾)𝜀

𝛾
} 

(3.13a,b) 

The first mode shape is approximately a rigid structure mode, whereas the second 

involves both structural deformation and isolation system deformations. They are 

sketched in FIGURE 

 

Figure 3.2 - Modal shapes 

It is now possible to calculate the displacement of the base and of the 

superstructure by combining linearly the two mode shapes. 

 𝑣𝑏 = 𝑞1𝜙𝑏
1 + 𝑞2𝜙𝑏

2 (3.14a,b) 
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𝑣𝑠 = 𝑞1𝜙𝑠
1 + 𝑞2𝜙𝑠

2 

 

�̈�1 + 2𝜔𝑏
∗𝜉𝑏
∗�̇�1 + 𝜔𝑏

∗ 2𝑞1 = −𝐿1�̈�𝑔 

�̈�2 + 2𝜔𝑠
∗𝜉𝑠
∗�̇�2 + 𝜔𝑠

∗2𝑞2 = −𝐿2�̈�𝑔 

(3.15a,b) 

The mass participation factors are: 

 
𝐿1 = 1 − 𝛾𝜀 

𝐿2 = 𝛾𝜀 
(3.16a,b) 

It is obvious then, that the more the ratio between the isolation period and the 

structural period is large, the less will be the importance of the second mode shape. 

The energy dissipation provided by the isolation system is certainly of primary 

importance, and in the model described so far is exerted by the viscous damping, 

proportional to the viscous coefficients 𝑐𝑏 and 𝑐𝑠 through the velocities �̇�𝑏 and �̇�𝑠. 

By using the FORMULAS it is possible to assess the viscous damping ratios on both 

modal shapes: 

 

𝜉𝑏
∗ = 𝜉𝑏 (1 −

3

2
𝛾𝜀) 

𝜉𝑠
∗ = 

𝜉𝑠

√1 − 𝛾
+
𝛾𝜉𝑏√𝜀

√1 − 𝛾
 

(3.17a,b) 

As it can be observed, the structural damping increases because of the presence of 

damping in the isolation system. This increase is of the order of magnitude of √𝜀. 

The factor 𝜉𝑏√𝜀 may yield to a significant increment of 𝜉𝑠
∗ if 𝜉𝑠 has a small value. In 

this respect, it has to be highlighted that structural damping is usually about 2-3%, 

while isolation system damping is usually between 10-30%. 

It has to be remarked that a linear analysis of base isolated structures does not take 

into account the real behaviour of the isolation devices. Many devices show in fact 

a highly non-linear behaviour, and this implies that if we want to obtain a closed 

form solution, it is necessary to use a linearization technique proposed in 

literature. 

FPS (Friction Pendulum System) is, by all effect, a non-linear isolation devices 

because of the presence of the friction as an energy dissipation mechanism, and, 
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as it will be explained later, the fact that friction coefficient itself depends from the 

relative velocity between the slider and the sliding surface. This assumes even 

more importance in the case of DCFP (Double Concave Friction Pendulum), 

because of the fact that curvature radii and friction coefficient of two FPSs 

combined in series are not necessarily the same. Other reasons of non-linear 

behaviour, such as temperature and compressive tension acting on isolators, will 

be discussed later in the next paragraph. 

3.2  Friction Pendulum System 

The purpose of this paragraph is to show the basic knowledge necessary to 

understand the behaviour of a structure isolated with FPS. To do that, it is 

necessary to remind the physical behaviour of the pendulum in order to 

understand how it lengthen the isolated structure period (Zayas, Low, & Mahin, 

1990). 

FPS is an isolator device that provides an increase of the isolated structure’s 

natural period, which becomes independent of the mass of the superstructure. It 

also offers the possibility to dissipate the energy transmitted through the isolator 

itself thanks to the friction between the articulated sliding surface and the 

composite material on the slider. 

It is constituted by a concave spherical surface, on which a pivot can move when 

the superstructure is subjected to horizontal forces. The curvature of the surface 

provides the restoring force and the friction between the pivot and the surface itself 

dissipates part of the seismic energy transmitted. 

Uncoupling of the structure from the ground motion is possible thanks to an 

articulated slider able to slide on a spherical surface, which can be united to either 

the substructure or the superstructure. 
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Figure 3.3 - Friction Pendulum System behaviour 

The physical behaviour of the FPS depends from the mechanical and geometric 

properties of the slider and of the surface. These properties determines the energy 

dissipation capability through friction, the resistance to horizontal actions and the 

restoring elastic force necessary to bring the structure back to his undeformed 

shape once the lateral action is over. Essentially, the curvature radius of the 

spherical surface and the friction between the articulated slider and the sliding 

surface are sufficient to determine the basic behaviour of the isolator, but it has to 

be remarked that sometimes they might be in contrast. For example, a high friction 

coefficient may cause a permanent deformation of the isolator at the end of a 

seismic action if the curvature radius is not enough small to provide a restoring 

force that can overcome the frictional force and re-centre the slider. 

 

Figure 3.4 - FPS isolator (FIP Industriale) 

At the state of the art, sliding surfaces of FPS are made coupling a metallic surface 

in stainless or chromate steel and a non-lubed plastic material, usually 

Polytetrafluoroethylene (PTFE), a synthetic fluoropolymer, or its composites. This 



Dynamic of isolated systems Roberto Gnisci – Politecnico di Torino 2018, March 

48 
Influence of DCFP bearing on performance of isolated bridges 

results in a friction coefficient between 0.03 and 0.12. The friction between steel 

and PTFE has been subject of several studies during the years by (Mohka, 

Constantinou, & Reinhorn, Teflon Bearings in Base Isolation I: Testing, 1990) 

(Mohka, Constantinou, & Reinhorn, Teflon Bearings in Base Isolation II: Modeling 

, 1990). 

These studied demonstrated that it is incorrect to assume that the steel-PTFE 

friction has a Coulomb friction force-displacement law (which means that friction 

coefficient remain constant during relative sliding between surfaces). 

 Dynamic behaviour 

The motion of the slider on the surface of the FPS can be described by the equation 

of motion for a pendulum, introducing a friction force: 

 

 

Figure 3.5 – Pendulum behaviour 

The symbols in Figure 3.5 represents: 

 W is the vertical load acting on the pendulum; 



2018, March Roberto Gnisci – Politecnico di Torino Dynamic of isolated systems 

49 
Influence of DCFP bearing properties on performance of isolated bridges 

 F is the lateral force acting on the slider; 

 Ff = µW is the friction force, which is always tangential to the spherical 

surface; 

 S is the contact force, which is always normal to the spherical surface; 

 t1 tensile forces, acting along slider surface, are considered included in the 

friction force Ff, and so they do not explicitly appear in the equilibrium 

equation; 

 R is the curvature radius of the spherical surface; 

 d is the horizontal distance of the slider centre from the centre of the 

concave surface; 

 h is the distance between the surface and the pivot of the slider, which is 

usually neglected; it may be important only for construction reasons; 

It is now possible to write the equilibrium equations in both vertical and horizontal 

direction: 

 {
𝑓𝑏 − 𝑆 sin 𝜗 − 𝐹𝑓 cos 𝜗 = 0

𝑊 − 𝑆 cos 𝜗 + 𝐹𝑓 sin 𝜗 = 0
 (3.18) 

Combining the equations, it is possible to isolate the value of the restoring force: 

 𝑓𝑏 = 𝑊 tan𝜗 +
𝐹𝑎
cos 𝜗

 (3.19) 

Under the hypothesis of small displacement, it is possible to assume that: 

sin 𝜗 =
𝑢

𝑅
, cos 𝜗 = 1,          tan 𝜗 =

1

𝑅
 

Substituting the trigonometric terms in Equation (3.19), we obtain: 

 𝐹 =  
𝑊

𝑅
𝑑 + 𝐹𝑓 (3.20a) 

The force-displacement behaviour is then bi-linear, and it is possible to express it 

as it follows: 

 𝐹 =
𝑀𝑔

𝑅
𝑢 +𝑚𝑔𝑓 sgn(�̇�) (3.20b) 
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Figure 3.6 - FPS's bi-linear behaviour. 

The first term of the previous equation is the secondary stiffness K2, and is the 

lateral stiffness that provides the restoring force: 

 𝐾2 =
𝑀𝑔

𝑅
 (3.21) 

The main period of the isolator is, as expected, independent on the superstructure 

mass M: 

 𝑇 = 2𝜋√
𝐾2
𝑀
= 2𝜋√

𝑅

𝑔
 (3.22) 

At first, the systems does not react with the initial stiffness K1, which is ideally 

infinite until the bounds due to friction are overcome, i.e. when the sliding starts. 

This may be simulated numerically by using a very high value of stiffness: for 

example, K1 = 51K2 has been proposed in (Kelly & Naeim, Design of Seismic 

Isolated Structures: from Theory to Practice, 1999). Until the first sliding occurs, 

superstructure and substructure are rigidly connected and the overall behaviour is 

the one of a fixed-base structure. Once the external forces overcome the friction 

force, the motion starts and the actual stiffness become K2. 

In Figure 3.7 is showed the hysteretic behaviour of an FPS isolator. Vertical axis 

indicates the total force, i.e. the sum of the elastic force and friction force, and the 

horizontal axis indicates the lateral deformation of the FPS. During the first phase, 

usually called sticking phase, the system acts as a body rigidly connected to the 

ground. Once the maximum friction force is overcome, the lateral stiffness drops 
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to K2. When there is a motion inversion, the friction coefficient drops immediately 

to zero, and so does the frictional force, to restart the motion in the opposite 

direction once the lateral force reach the maximum frictional force. The length of 

the vertical line segment in correspondence of motion inversion is two time the 

characteristic force Q, which is the maximum value of the frictional force. 

 

Figure 3.7 - Hysteretic behaviour of a FPS. 

It is possible to calculate the domain of the stable equilibrium condition: 

 𝐹𝑓  ≥  𝐹𝑒 → 𝑑 ≤ 𝜇 𝑅 (3.23) 

Which means that for lateral displacements smaller than µR the system will not be 

able to re-center itself. If materials with low friction coefficients such as PTFE are 

used, residual deformation of the isolators are small or negligible. Using materials 

with high friction coefficient would mean to have large and unacceptable residual 

deformation and, in this situation, it is necessary to restore the undeformed 

condition with external forces. 

3.3  Friction  

Friction is a dissipative force due to tangential stresses that two body exchange 

through their areas of contact when external forces attempt to make them slide.  

In this chapter, we will focus on the mechanisms that govern the friction 

behaviour, as results of the experimental analyses conducted on devices with 
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PTFE-steel interfaces. As a general result, the friction coefficient is correlated to 

the relative sliding velocity and the apparent pressure. 

The investigations have been carried out in conditions of both high and low relative 

sliding velocity. 

What follows is based on the studies of (Bowden & Tabor, 1950, 1964, 1973). 

 Adhesion 

 

Figure 3.8 - View of a junction, apparent and true area of contact. 

The adhesion is the tendency of dissimilar surfaces to cling to one another, by 

means of atomic bounds through small contact areas. These areas are called 

junctions, and their sum constitute the true area of contact, which is always 

considerably smaller than the apparent area of contact. Adhesion mechanism is 

dominant for clean and smooth sliding surface interfaces. 

Junctions are characterized by interface forces of adhesion due to the existence of 

steel-carbon chemical bound between steel and PTFE. Friction force is then 

expressed by the product of true area of contact by the shear strength of the 

bounds: 

 𝐹𝑎 =  𝑠 𝐴𝑟 (3.24) 

 Plowing 

Every surface has a certain roughness, which undergoes elastic or plastic 

deformations during relative sliding between surfaces. The dissipation of energy 

due to these deformations is the plowing component of the friction during surface 

relative sliding. This phenomenon may be understood easily considering a 

spherical and hard asperity laying on a soft and plane surface. If an axial load is 

applied on the asperity, this one sticks to the underlying surface and in the 
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meantime creates a junction. If a shear action is then introduces, the asperity 

moves horizontally, dragging with itself part of the softer underlying material and 

creating a furrow along the travelled path. Considering a multitude of asperities, 

the effect that they have on a softer material during dragging (the PTFE for FPS) 

constitutes the plowing component of the friction. 

 Visco-elastic effects 

Most of the polymeric materials used for sliding surface of FPS, such as PTFE, 

show a visco-elastic behaviour. When there is relative sliding between a hard 

material and a visco-elastic one, the latter dissipates energy undergoing cyclic 

deformations.  

 Stick-slip phenomenon 

Stick-slip phenomenon is a succession of block and sliding phases, which usually 

occurs in many ordinary events and responsible of noises such as squeak of the 

doors, screech of the chalk on a blackboard, the sound of a violin, etc. It is typical 

of lubed mechanisms and is due to a couple of causes: 

 the dynamic friction coefficient is lower than the static one; 

 during the static phase, the system can store elastic energy. 

The nature of the phenomenon consists in the sudden release of the energy stored 

when the dynamic phase begin, and this happens because of the tangential stresses 

applied during relative surface sliding. This behaviour is typical of elastic 

mechanical systems containing friction and may take place only in presence of a 

natural variation of the friction coefficient. 

 

Figure 3.9 - Stick-slip phenomenon. 
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It is of vital importance to define the properties of the frictional behaviour while 

relative sliding between surfaces occurs. It is necessary to remark the difference 

between the many possible dynamic friction coefficients: 

 μdin is the coefficient that we have during sliding. It is reached by average 

velocities comparable to the design ones of FPS: they are about 160÷400 

mm/s, considering that typical values of displacements and frequency of an 

isolated structure are respectively 100÷200 mm and 0.4÷0.5 Hz; 

 μs is the coefficient that we have immediately before the beginning of the 

dynamic phase of oscillation; 

 μinv is the coefficient that we have right when the sliding changes its 

direction, and assumes values between the previously cited ones. 

A large series of experimental investigations allowed formulating a series of 

analytical expressions that highlights the dependency of the dynamic friction 

coefficient from the sliding velocity besides temperature and apparent pressure. 

 Modeling of the friction-velocity behavior 

Many investigations were carried out on the effective behaviour of the isolation 

devices to understand how it is affected by the variability of the friction in dynamic 

conditions. 

The dynamic friction coefficient assumes a small value soon after that the sliding 

occurs, fmin, and increases progressively with the sliding velocity. For high sliding 

velocity, it assumes a constant value, fmax. Furthermore, increasing the normal 

load will lead to a reduction of friction coefficient (Mokha et al., 1990), until a 

constant value is reached for a limit value of the load. The rate of reduction is 

practically constant: doubling the contact pressure (from 9.36 to 18.7 MPa) there 

is a variation of the friction coefficient of 25% at -10°C, up to 33.4% at 50°C 

(Constantinou, Whittaker, Kalpakidis, Fenz, & Warn, 2007). 
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Figure 3.10 - Dependency of friction coefficient from sliding velocity and pressure 

The high value of the static friction coefficient, μB, is due to adhesion.  

When the sliding begins, a crystalline and oriented film of PTFE, of the thickness 

of the order of 10-8 m settles on the stainless steel surface, reducing drastically the 

friction coefficient from μB to fmin because of the low shear strength of this material. 

Increasing sliding velocity, friction coefficient increases too until it reaches a 

maximum value of fmax. The difference between maximum and minimum value of 

dynamic friction coefficient is as bigger as the contact pressure is smaller, with 

values next to 12% at a pressure of 9.36 MPa e smaller of 7% at 28.1 MPa. On the 

other hand, temperature has a small influence on this difference. Generally, for a 

fixed value of apparent contact pressure, the sliding friction coefficient depends on 

velocity, as explained by (Mohka, Constantinou, Reinhorn, 1990) and made 

explicit by the following formula: 

 𝑓(�̇�) = 𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑒
−𝛼|�̇�| (3.25) 

where: 

 fmax is the maximum sliding friction coefficient at high sliding velocity 

(200÷800 mm/s); 

 fmin is the minimum sliding friction coefficient at essentially zero sliding 

velocity; 

 �̇� is the sliding velocity; 
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 α is a parameter that controls the variation of sliding velocity coefficient. 

More precisely, it is the inverse of the characteristic sliding velocity, and it 

has typical values of 20-30 m/s for PTFE-steel interfaces.   

Figure 3.11 shows friction-velocity law based on this formula, which describes 

properly experimental results previously cited and …….. A sliding velocity greater 

than 150 mm/s is enough to reach the maximum value of dynamic friction 

coefficient of all the PTFE-base materials at standard temperatures. 

To sum up: 

 Friction coefficient increases quickly with sliding velocity until it reaches a 

value, after which it remains constant. This value is about 150 mm/s, 

regardless of the temperature and of the pressure on the sliding surface. 

 Friction coefficient for devices with PTFE-steel interface reduces with 

increasing normal loads. The reduction rate depends on the sliding velocity 

and on temperature, the maximum variation is of 30% for variation of 

±50% of the contact pressure (for t=20°C, p=18.7 MPa, v≥150 mm/s), 

regardless of lubrication. 

 The difference between the maximum and the minimum value of the 

friction coefficient is as larger as smaller is the acting vertical pressure. 

 

Figure 3.11 – Friction vs sliding velocity diagram 

 Effect of load permanence and travelled path 

It has been observed in (Mohka, Constantinou, & Reinhorn, Teflon Bearings in 

Base Isolation I: Testing, 1990) that static friction coefficient is practically the 
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same regardless of the duration of the application of the load. More specifically, 

there are no significant difference for loads applied for 30 minutes and for 594 

days. Many other tests were conducted e everyone demonstrated that the 

fluctuations in the friction coefficient cannot not be attributed to the duration of 

the load. Instead, it has been observed that surfaces subjected to previous load 

cycles showed a static friction coefficient considerably smaller after a first load 

cycle, confirming the existence of a PTFE film that settles on the steel surfaces after 

a first cycle. 

Generally, the dynamic friction coefficient at high sliding velocity, fmax, diminish 

when the travelled path increases, going rom an initial value of 12.5% to 10% right 

after 40 m of travelled path; once a threshold of about 300 m is reached, it shows 

a new increase. The dynamic friction coefficient at high sliding velocity, fmin, shows 

fluctuations in the range 0-40 m. 

Friction coefficient tends to diminish during load cycle at high velocity, due to 

PTFE visco-elastic properties. This reduction is estimated to be of the order of 25-

30%. 

 Effect of normal load variation over seismic behaviour of 

device 

FPS isolators are intended as vertical bearing devices, and they have only 

compressive strength. This has to be taken into account during the design phase: 

tensile axial loads cannot be bear by the device, which would result damaged at the 

sliding interface; also, the articulation may get off its case. Assuming that the 

device is subjected only to compressive forces is a necessary condition to perform 

an analysis of whichever structure implementing FPS, even more so in case of 

linear analysis. 

While the isolation period T depends only on the curvature radius chosen for the 

spherical surface of the device, where the relative sliding between surfaces takes 

place, the equivalent period and the horizontal force developed by the isolation 

system are function of the axial load N acting on the devices. Equivalent period 

and shear are both subjected to the continuous variation of N, implying that they 

cause irregularity in the force-displacement behaviour of isolators. 
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3.4  Modelling criteria 

There are two different parameters that can describe the period of the isolators, 

depending of which stiffness parameters is considered. If the stiffness considered 

is K2, the period T is the one calculated with the FORMULA. If we refer instead to 

the secant stiffness Keff, defined as the ratio between the maximum lateral force in 

correspondence of the maximum lateral displacement and the maximum lateral 

displacement itself. 

 𝐾𝑒𝑓𝑓 = (
1

𝑅
+
𝜇

𝑑
)𝑊 (3.26) 

With this formula, it is possible to calculate the effective period: 

 𝑇𝑒𝑓𝑓 = 2𝜋√
𝑀

𝐾𝑒𝑓𝑓
=  2𝜋√

𝑀

(
1
𝑅 +

𝜇
𝑑
)𝑀𝑔 

=  2𝜋√
𝑅𝑑

(𝑅 + 𝜇𝑑)𝑔 
 (3.27) 

Each time the system may be described by an equivalent linear model, the effective 

period differs from the tangent period of no more than 14%. This means that the 

deviation from the non-linear model is practically insignificant also in terms of 

dynamic behaviour. In absence of necessary requirements for the use of an 

equivalent linear model, the NTC08 prescribes to use a non-linear analysis to 

evaluate the dynamic response, since it allows identifying the difference of the 

phenomena associated to the transition from states characterized by different 

stiffness.  

Another important parameter that defines the friction isolator behaviour is the 

equivalent viscous damping coefficient, which allows calculating the energy 

dissipated by the friction with the following formula: 

 𝜉𝑒𝑓𝑓 =
ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑐𝑦𝑐𝑙𝑒 𝑎𝑟𝑒𝑎

4𝜋𝐾𝑒𝑓𝑓𝑑2
 (3.28) 

This formula allows linearizing a system that dissipates energy through friction by 

calculating an equivalent viscous damping coefficient that dissipates the same 

amount of energy when the system undergoes the same displacement history. 

Considering that the hysteresis cycle area is equal to 4μWd and the previously 

written formula for Keff, we obtain: 
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 𝜉𝑒𝑓𝑓 = 
4𝜇𝑊𝑑

4 𝜋 (
1
𝑅 +

𝜇
𝑑
)𝑊𝑑2

= 
2𝜇

𝜋 (
𝑑
𝑅 + 𝜇)

 (3.29) 

which clearly shows how the equivalent damping is a function of the friction 

coefficient, of the curvature radius and of the displacement demand; the latter may 

be considered as a design input for the displacement at an arbitrary limit state 

condition. It follows that the equivalent dissipation to be adopted in a linear 

analysis is function on the considered limit state, and assumes different values 

depending on the displacement demand of the system. Generally, the usual value 

is referred to the SLV, used for verification of isolated structure. 

To design devices respect to the system fragility in regard of failure mechanism 

related to the overpassing of the ultimate displacement capacity, it has to be 

considered the displacement demand at collapse conditions (SLC). 

 Linear modelling 

Modelling the isolation system as a linear spring, characterized by a spring rigidity 

and by an equivalent viscous damping, represents an obvious simplification in the 

first steps of the design phase, and, as of that, may be applied only under specifics 

conditions: 

 the equivalent rigidity of the isolation system must be at least the 50% of 

the secant value for cycles with deformation of the 20% of the ideal 

displacement. For pendulum devices, the cited limitation become: 

 
𝑅

𝑑𝑑𝑐
 ≤  

1

3𝜇𝑑𝑖𝑛 
 (3.30) 

where ddc is the rigidity centre of the isolation system at the considered limit 

state, R the curvature radius and 𝜇𝑑𝑖𝑛 the dynamic friction coefficient of the 

device; 

 equivalent linear damping of the isolation system must be smaller than 

30%; 

 force-displacement behaviour of the isolation system must not be subjected 

to variation bigger than 10% due to effect of deforming velocity variation or 

vertical load applied to the devices; 
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 the increase of the force in the isolation system for displacement between 

0.5 ddc and ddc must be at least the 2.5% of the total weight W of the 

superstructure. This request implies the use of a curvature radius of at 

maximum 20 times the design maximum displacement. 

 Non-linear modelling 

Even if the vertical acceleration component is not considered, it must be verified 

that the variation of axial load acting on the isolation devices due to the opposition 

to overturning induced by horizontal seismic forces is less than the 10% of the 

value in quasi-permanent condition. Otherwise, it is mandatory to perform a non-

linear analysis, adopting a proper force-displacement behaviour and proceeding 

with a time-step integration of the motion equations.  

3.5  DCFP 

A DCFP is made up by two spherical sliding surfaces, between which it is 

interposed a slider. This device allows to reduce the in-plane dimensions and the 

eccentricity given by the horizontal displacement of the structure. 

A double concave friction pendulum (DCFP) system consists of two sliding 

surfaces and may be modelled as a couple of friction pendulum systems (FPSs) in 

series. Knowing that the force-displacement behavior of the FPS is bi-linear, the 

DCFP’s may be either bi-linear or tri-linear. While in the first case the DCFP is 

practically equivalent to a single FPS, and so friction coefficients and radii of 

curvature of both the surfaces must be equals, in the tri-linear case several 

combinations of the two parameters may be used to obtain various force-

displacement behaviors. 
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Figure 3.12 - DCFP conceptual sketch 

Owing to the serial nature and neglecting the inertia effect of the small mass of the 

slider, the reaction forces at two FPSs become identical, from which the reaction 

force of the DCFP can readily be obtained (Constantinou M. C., Friction Pendulum 

Double Concave Bearing, 2004) (Constantinou & Fenz, Behaviour of the double 

concave friction pendulum bearing, 2006): 

 𝐹 = 𝐹1 = 𝐹2 =
𝑚𝑔𝑢

𝑅1 + 𝑅2
+
𝑚𝑔(𝑅1𝑓1sgn(�̇�1) + 𝑅2𝑓2sgn(�̇�2))

𝑅1 + 𝑅2
 (3.31) 

The first part of the right hand side of (3.31) is related to the restoring stiffness 

(𝐾𝑐𝑜𝑚𝑏) of the combined DCFP, from which the restoring natural period (𝑇𝑐𝑜𝑚𝑏) of 

the DCFP can be obtained as: 

 𝐾𝑐𝑜𝑚𝑏 =
𝑚𝑔

𝑅1 + 𝑅2
 (3.32) 

 𝑇𝑐𝑜𝑚𝑏 = √𝑇1
2 + 𝑇2

2 = 2𝜋√
𝑅1 + 𝑅2
𝑔

 (3.33) 

On the other hand, the second part of the right hand side of (3.31) represents the 

combined friction force, from which the equivalent friction coefficient of the DCFP 

can be derived as: 

 𝑓𝑒𝑞𝑣 =
𝑓1𝑅1 + 𝑓2𝑅2
𝑅1 + 𝑅2

 (3.34) 

where two FPSs are assumed to move in the same direction. 
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A tri-linear DCFP consisting of two different FPSs shows bi-linear behavior under 

small ground motion, while it shows tri-linear behavior under large ground 

motion, as explained in (Kim & Yun, 2007). This happens because, as it is shown 

in Figure 3.13, small ground motion does not cause forces large enough to activate 

the motion on the surface with the higher friction coefficient; hence, the push-over 

curve does not go beyond the bi-linear part. For bridges instead, it is obvious that 

the intensity of the motion must not be evaluated at the ground level, but at the 

bearing support level, since it may be considerably different from ground motion, 

depending on pier main vibrational period.  

 

Figure 3.13 - Push-over curves for tri-linear and bi-linear DCFPs 

(Kim & Yun, 2007) demonstrated that using a tri-linear DCFP in bridge deck 

isolation leads to: 

1. Reduction of base shear forces on the pier in the range of 15%-40% over a 

bi-linear DCFP, especially for moderate but frequent earthquake events. 

This effect has been found to be more significant as the mass ratio of the 

pier to deck (λp) and the base isolation period of the bridge (Td) increase. 

2. Reduction of reaction forces on the DCFP bearings in the range of 7%-28% 

for moderate earthquakes, and increasing of the same forces for strong and 

extreme earthquakes, in the range of 8%-14%. Both results are given over a 

bi-linear DCFP. 

3. Increase of the bearing deformations, which is judged to be consistent for 

moderate and strong earthquakes but insignificant for extreme ones. 
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3.6  Triple FP bearing 

There also exist the possibility to implement a device that is made up by a DCFP 

placed “inside” a bigger DCFP: such a device is called Triple Friction Pendulum 

bearing. Its behaviour cannot be described as a series of FPS and it may result 

pretty complicated; besides, to fully illustrate how to model it is not a purpose of 

this work.  

 

Figure 3.14 - Cross section of the Triple FP bearing 

Anyway, it has to be said that the modeling difficulties derive from the fact that 

simultaneous sliding cannot occur at both interfaces of the internal slide plates. 

This was observed in experimental testing, and was also predicted analytically and 

is the reason why it is not possible to model Triple FP bearing as four FPS in series. 

An example of modeling of the Triple FP was proposed in (Fenz & Constantinou, 

2008), implemented on SAP2000 by using both FP elements and gap elements. 

The model behaviour was found to be practically equal to the experimental and 

analytical ones, as shown in Figure 3.15. Nowadays, many software have 

implemented the Triple FP bearing, such as SAP2000. 
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Figure 3.15 - Comparison between analytical, experimental and modeled behaviour 
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4 Model 

The objective is to investigate the behaviour of DCFP system in bridge isolation. 

More specifically, the bridge is supposed to be symmetrical, so that it is possible 

and convenient, to analyze the behaviour of just half of it. Since the model is plane, 

it is implicitly assumed that the main direction of seismic excitation is the 

longitudinal; transversal behaviour is not taken into account. 

 

Figure 4.1 - General scheme of an isolated continuous bridge. 

The deck is modeled as a lumped mass md, supported by the DCFPs of the pier and 

the abutment. It is supposed to behave as a rigid body, able to move only in 

longitudinal direction. 

The abutment is modeled as a full restraint of that bears, through a DCFP, half of 

the weight of the deck. 

The pier is modeled as a series of discretized masses, is fully restrained at the 

bottom and bears, through another DCFP, the other half of the weight of the deck. 

Only lateral deformability of the pier is taken into account.  

Finally, the bridge is modeled as an 8-dofm system: 

 5 degrees of freedom are given by the lumped masses of the pier, 

 1 degree of freedom is given by the deck mass, 

 2 degrees of freedom are given by the sliders masses of the two DCFP, 

placed on top of the abutment and the pier. 



Model Roberto Gnisci – Politecnico di Torino 2018, March 

66 
Influence of DCFP bearing on performance of isolated bridges 

 

     

  md 

  ud 

  us,p                                 ud = vd + vp,5 + vp,4 + vp,3 + vp,2 + vp,1 
up,5 = vp,5 + vp,4 + vp,3 + vp,2 + vp,1 

up,4 = vp,4 + vp,3 + vp,2 + vp,1 
up,3 = vp,3 + vp,2 + vp,1 
up,2 = vp,2 + vp,1 

up,1 = vp,1 

  mp 

DCFPa                                   DCFPp 

 

  mp 

  mp 

  mp 

  mp 

  ms   ms 

  up,1 

  up,2 

  up,3 

  up,4 

  up,5 

  us,a 

 

Figure 4.2 - Model scheme 

It is possible to write an equation of motion for each one of the n lumped masses 

that constitute the pier, obtaining the following n equations: 

 𝑚𝑝,1(�̈�𝑝,1 + �̈�𝑔) + 𝑐𝑝,1�̇�𝑝,1 + 𝑘𝑝,1𝑢𝑝,1 − 𝑐𝑝,2(�̇�𝑝,2 − �̇�𝑝,1)

− 𝑘𝑝,2(𝑢𝑝,2 − 𝑢𝑝,1) = 0 

(4.1) 

 𝑚𝑝,1(�̈�𝑝,1 + �̈�𝑔) + 𝑐𝑝,1�̇�𝑝,1 + 𝑘𝑝,1𝑢𝑝,1 − 𝑐𝑝,2(�̇�𝑝,2 − �̇�𝑝,1)

− 𝑘𝑝,2(𝑢𝑝,2 − 𝑢𝑝,1) = 0 

(4.2) 

 𝑚𝑝,𝑖(�̈�𝑝,𝑖 + �̈�𝑔) + 𝑐𝑝,𝑖(�̇�𝑝,𝑖 − �̇�𝑝,𝑖−1) + 𝑘𝑝,𝑖(𝑢𝑝,𝑖 − 𝑢𝑝,𝑖−1)

− 𝑐𝑝,𝑖+1(�̇�𝑝,𝑖+1 − �̇�𝑝,𝑖) − 𝑘𝑝,𝑖+1(𝑢𝑝,𝑖+1 − 𝑢𝑝,𝑖) = 0 

(4.3) 

 𝑚𝑝,𝑛(�̈�𝑝,𝑛 + �̈�𝑔) + 𝑐𝑝,𝑛(�̇�𝑝,𝑛 − �̇�𝑝,𝑛−1) + 𝑘𝑝,𝑛(𝑢𝑝,𝑛 − 𝑢𝑝,𝑛−1)

− 𝐹2,𝑝 = 0 

(4.4) 

 

Determination of pier stiffness: 
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Determining the pier stiffness matrix is relatively simple under the hypothesis of 

kp,i = kp. Once that pier mass matrix [M] and isolated pier main vibrational period 

Tp are both known, it is possible to write the equation of the eigenvalues problem. 

Having considered the pier as isolated, forces coming from the DCFP are not 

considered in this problem, and so applies for the damping matrix [C], which does 

not play any role in the classical eigenvalues problem. Hence, kp happens to be the 

only unknown in the following equation: 

 det([𝑀] − 𝜔𝑝
2[𝐾]) = 0 (4.5) 

 

where 𝜔𝑝
2 =

2𝜋

𝑇𝑝
2. 

If the displacements are referred to the ground, the matrixes [M] and [K] are then 

diagonal and tri-diagonal, respectively, and assumes the following aspect: 

[𝑀] =

[
 
 
 
 
 
𝑚𝑝 0 0 0 0

0 𝑚𝑝 0 0 0

0 0 𝑚𝑝 0 0

0 0 0 𝑚𝑝 0

0 0 0 0 𝑚𝑝]
 
 
 
 
 

;    [𝐾] =

[
 
 
 
 
 
𝑘𝑝 −𝑘𝑝 0 0 0

−𝑘𝑝 2𝑘𝑝 −𝑘𝑝 0 0

0 −𝑘𝑝 2𝑘𝑝 −𝑘𝑝 0

0 0 −𝑘𝑝 2𝑘𝑝 −𝑘𝑝
0 0 0 −𝑘𝑝 2𝑘𝑝 ]

 
 
 
 
 

    

The equation obtained is a fifth order algebraic one in kp, as expected. Its five real 

and positive roots are all possible stiffness for the pier system, since they satisfy 

the eigenvalues problem equation. The correct kp must however be the largest one, 

because one of the other 4 smaller values would imply that the assigned ωp would 

not be the smallest one of the five different that would be found solving the 

equation respect to ωp (and, by consequence, Tp would not be the largest one and 

so the main vibrational period). 

Two equations are given by the equilibrium condition of the DCFPs’ sliders 

masses: 

 𝑚𝑠,𝑝(�̈�𝑠,𝑝 + �̈�𝑔) − 𝐹1,𝑝 + 𝐹2,𝑝 = 0 (4.6) 

 𝑚𝑠,𝑎(�̈�𝑠,𝑎 + �̈�𝑔) − 𝐹1,𝑎 + 𝐹2,𝑎 = 0 (4.7) 

The force equilibrium condition of the deck yield the last equation of motion: 
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 𝑚𝑑(�̈�𝑑 + �̈�𝑔) + 𝐹1,𝑎 + 𝐹1,𝑝 = 0 (4.8) 

 

where: 

ud, us,p, us,a and up,I are the relative displacements of the deck, the slider between 

two sliding surfaces of the pier and the abutment respectively, and the ith lumped 

mass of the pier to the ground motion in horizontal direction,  

The nonlinear reaction forces on two surfaces can be obtained as: 

 
𝐹1,𝑝 = (

𝑢𝑑 − 𝑢𝑠,𝑝

𝑅1,𝑝
+ 𝑓1,𝑝𝑠𝑔𝑛(�̇�𝑑 − �̇�𝑠,𝑝))

𝑚𝑑𝑔

2
 

(4.9) 

 
𝐹2,𝑝 = (

𝑢𝑠,𝑝 − 𝑢𝑝,𝑛

𝑅2,𝑝
+ 𝑓2,𝑝𝑠𝑔𝑛(�̇�𝑠,𝑝 − �̇�𝑝,𝑛)) (

𝑚𝑑
2
+𝑚𝑠,𝑝)𝑔 

(4.10) 

 

where 𝑢𝑑 − 𝑢𝑠,𝑝 represents the deformation of FPS1 and 𝑢𝑠,𝑝 − 𝑢𝑝,𝑛 represents the 

deformation of FPS2. 

In this study, DCFP placed on the abutment and on top of the pier are assumed 

identical, so that: 

𝑚𝑠,𝑝 = 𝑚𝑠,𝑎 = 𝑚𝑠     𝑅1,𝑝 = 𝑅1,𝑎 = 𝑅1     𝑅2,𝑝 = 𝑅2,𝑎 = 𝑅2 

𝑓𝑚𝑎𝑥,1,𝑝 = 𝑓𝑚𝑎𝑥,1,𝑎 = 𝑓𝑚𝑎𝑥,1     𝑓𝑚𝑎𝑥,2,𝑝 = 𝑓𝑚𝑎𝑥,2,𝑎 = 𝑓𝑚𝑎𝑥,2 

𝑓𝑚𝑖𝑛,1,𝑝 = 𝑓𝑚𝑖𝑛,1,𝑎 = 𝑓𝑚𝑖𝑛,1     𝑓𝑚𝑖𝑛,2,𝑝 = 𝑓𝑚𝑖𝑛,2,𝑎 = 𝑓𝑚𝑖𝑛,2 

The equations are then implemented in MATLAB, obtaining a system, which is, in 

matrix form: 

 [𝑀′]({�̈�} + {�̈�𝑔}) + [𝐶
′]{�̇�} + [𝐾′]{𝑢} + {𝜇} = {0} (4.11) 

It we want perform the analysis working with drifts between lumped masses of the 

systems instead of relative displacements respect to the ground, the following 

linear transformation is applied: 



2018, March Roberto Gnisci – Politecnico di Torino Model 

69 
Influence of DCFP bearing properties on performance of isolated bridges 

 {

[𝑀′]{�̈�} = [𝑀′][𝑇]{�̈�}

[𝐶′]{�̇�} = [𝐶′][𝑇]{�̇�}
[𝐾′]{𝑢} = [𝐾′][𝑇]{𝑥}

 (4.12) 

 

where [T] is a linear transformation between variables: 

[𝑇] =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 ]

 
 
 
 
 
 
 

 

After a few manipulations, the equations system that will be implemented in 

MATLAB and Simulink can be written as:  

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} + {𝜇} = −[𝑀′]{�̈�𝑔} (4.13) 

 

[𝑀]

=

[
 
 
 
 
 
 
 
 
𝑚𝑠 0 0 0 0 0 0 0
0 𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑 𝑚𝑑
0 𝑚𝑑 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑠
0 𝑚𝑑 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠
0 𝑚𝑑 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠
0 𝑚𝑑 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 3𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 3𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 3𝑚𝑝 +𝑚𝑠
0 𝑚𝑑 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 3𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 4𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 4𝑚𝑝 +𝑚𝑠
0 𝑚𝑑 𝑚𝑑 +𝑚𝑠 𝑚𝑑 +𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 2𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 3𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 4𝑚𝑝 +𝑚𝑠 𝑚𝑑 + 5𝑚𝑝 +𝑚𝑠]

 
 
 
 
 
 
 
 

 

[𝐶] =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 𝑐𝑝 0 0 0 0

0 0 0 0 𝑐𝑝 0 0 0

0 0 0 0 0 𝑐𝑝 0 0

0 0 0 0 0 0 𝑐𝑝 0

0 0 0 0 0 0 0 𝑐𝑝]
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[𝐾] =

[
 
 
 
 
 
 
 
 
𝑘1 + 𝑘2 −𝑘1 −𝑘1 −𝑘1 −𝑘1 −𝑘1 −𝑘1 −𝑘1
−𝑘1 2𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1
−𝑘1 𝑘1 𝑘1 + 𝑘2 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1
−𝑘1 𝑘1 𝑘1 𝑘1 + 𝑘𝑝 𝑘1 𝑘1 𝑘1 𝑘1
−𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 + 𝑘𝑝 𝑘1 𝑘1 𝑘1
−𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 + 𝑘𝑝 𝑘1 𝑘1
−𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 + 𝑘𝑝 𝑘1
−𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 𝑘1 + 𝑘𝑝]

 
 
 
 
 
 
 
 

 

Normalizing the equations by dividing them by the deck mass md, the following 

ratios are introduced: 

 Mass ratios: 

 

𝜆𝑝 =
𝑚𝑝

𝑚𝑑
 

𝜆𝑠 =
𝑚𝑠
𝑚𝑑

 

(4.14a,b) 

 Damping coefficients: 

 

𝜉𝑑 =
𝑐𝑑

2𝑚𝑑𝜔𝑑
 

𝜉𝑝 =
𝑐𝑝

2𝑚𝑝𝜔𝑝
 

(4.15a,b) 

 Circular frequencies: 

 

𝜔𝑑
2 =

𝑘𝑑
𝑚𝑑

 

𝜔𝑝
2 =

𝑘𝑝

𝑚𝑝
 

(4.16a,b) 
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Figure 4.3 – Simulink Model 

 

Figure 4.4 – Simulink sub-model for instantaneous friction evaluation 

4.1 Validation of the model 

The model implemented in MATLAB & Simulink needs to be validated through a 

comparison of the results of an analysis, with an arbitrary set of parameters, with 

the results obtained carrying out the same analysis with a software. Since it has 

many features that makes it suitable for non-linear dynamics analysis, SAP2000 

has been chosen for this purpose. It is necessary to point out that different software 
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may use different methods, with different accuracy, to solve a system of differential 

equations; nevertheless, results have to be approximately the same to ensure the 

validity of the model, particularly for the peak response values. 

The following graphs show the comparison between the results of two analyses 

performed independently with SAP2000 and MATLAB & Simulink. Analyses have 

been run with the following set of parameters: 

 Td = 2 s 

 Tp = 0.1 s 

 λs = 0.1 

 fmax = 0.03 

The non-scaled seismic external action is the following one: 

 

Figure 4.5 - Test earthquake record 

and the time integration methods used to solve the analysis are: 

 SAP2000: HHT (Hilber-Hughes-Taylor) method, with 𝛼 = 0, 𝛽 = 0.25, 𝛾 =

0.5. 

 Simulink: variable-step ode23tb (stiff/TR-BDF2), with a relative tolerance 

of 1e-2 and an absolute tolerance of 1e-5 

Such a model needs to be validated through a comparison with another one that 

uses equivalent FPSs instead of DCFPs. This equivalence can be imposed as 

follows: 



2018, March Roberto Gnisci – Politecnico di Torino Model 

73 
Influence of DCFP bearing properties on performance of isolated bridges 

 

𝐾𝐹𝑃𝑆 =
𝑚𝑔

𝑅𝑒𝑞𝑣
= 𝐾𝐷𝐶𝐹𝑃 =

𝑚𝑔

𝑅1 + 𝑅2

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑅𝑒𝑞𝑣 = 𝑅1 + 𝑅2 

𝑓𝑒𝑞𝑣 =
𝑓1𝑅1 + 𝑓2𝑅2
𝑅1 + 𝑅2

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓1 = 𝑓2 = 𝑓𝑒𝑞𝑣 

(4.17a,b) 

where two FPSs in series are assumed to move in the same direction. 

The validation is then made up by two steps: 

1. After performing a modal analysis of both models, the main vibration 

periods (Td, Tp) of the global structure have to be identical. Usually, the 

differences between the secondary vibration periods of the pier are 

negligible. 

2. A non-linear dynamic analysis has to be performed then, and the models 

have to give the same results in terms of relative displacement between pier 

and deck and relative displacement of the top of the pier with respect to the 

ground. However, plotting them against time will give slightly different 

results, because the systems that are numerically integrated are not the 

same. Peak values of the displacement time history have anyway to be 

equals, in order to prove that the presence of the slider masses does not 

influence the overall behavior of the structure. In addition, a comparison 

between the force-displacement laws of the two isolation systems has to 

give approximatively the same hysteretic behavior. 

Simulink offers the possibility to choose between several time integration 

methods, which can be variable-step or fixed-step. Although variable-step 

methods are usually more accurate than fixed-step, their use implies a 

considerable increment of the time required for the analysis, up to 50 times the 

fixed-step integration. Given this, both time integration methods have been tested 

on a single seismic event in order, with assigned structural parameters, in order to 

evaluate the approximation errors of the fixed-step and find an acceptable time 

step to perform the analysis. 

More specifically, the comparison has been made on two different time integration 

methods: 

 Fixed-step: ode3 (Bogacki-Shampine) 

 Variable-step: ode23tb (stiff/TR-BDF2), with a relative tolerance of 1e-2 

and an absolute tolerance of 1e-5. 
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Both of them are available on Simulink solver. 

4.2  FPSs model validation 

Ti [s] MATLAB SAP2000 

Tp,5 0.014832 0.01484 

Tp,4 0.016915 0.01692 

Tp,3 0.021725 0.02174 

Tp,2 0.034221 0.03424 

Tis 2.012488 2.01853 

Tp,1 0.098907 0.09896 

Table 4.1 – FPSs model, modal period comparison 

 

Figure 4.6 - Deck displacement comparison (FPS) 
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Figure 4.7 - Pier cap displacement comparison (FPS) 

 

Figure 4.8  - Abutment isolator force-displacement law comparison (FPS) 
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Figure 4.9  - Pier isolator force-displacement law comparison (FPS) 

Deck and top pier’s displacement, both respect to the ground, and the force-

displacement behaviour of abutment and pier’s FPS look very similar although 

time integration method is different for the two software. The models are then 

practically equivalent. 

4.3  DCFPs model validation 

Firstly, it is necessary to evaluate a reasonable value for λs. This evaluation is 

difficult because an excessively low value of md would lead to numerical problems 

in the solution of the system, while a high value is of course unrealistic.  

A series of analysis showed that low values of λs can guarantee a similar behaviour 

between two systems, of which one isolated with FPSs and the other with 

equivalent DCFP systems, in the peak displacement region. Once the earthquake 

motion become small, while the system isolated with FPS tends to stability, the 

other tends to be unstable, and the smaller is λs, the more unstable will be the 

system. This may be due to numerical problems that occur during the integration 

of the equations. Choosing λs = 0.005 is a good compromise solution that allows 

obtaining negligible difference between peak displacements of the two models and 

acceptable instability during the earthquake ending phase. 

The following step is to validate a MATLAB model implemented with equivalent 

DCFPs, verifying that the response is the same to the already tested MATLAB 
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model. Additional periods, coming from the slider’s mass movements, are not 

significant due to the very small masses of the sliders. 

Ti [s] MATLAB SAP2000 

Tp,5 0.014832 0.01484 

Tp,4 0.016914 0.01692 

Tp,3 0.021718 0.02173 

Tp,2 0.034178 0.0342 

Tis 2.015072 2.02112 

Tp,1 0.099937 0.09258 

Tadd,1 0.10714 0.10733 

Tadd,2 0.092412 0.10024 

Table 4.2 - DCFPs model, modal period comparison 

The same comparison is then made to the same structure modeled with two DCFPs 

equivalent to the one modeled with FPSs analyzed before. 
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Figure 4.10 - SAP2000 DCFP model 

 

Figure 4.11 - Deck displacement comparison (DCFP) 
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Figure 4.12 - Pier cap displacement comparison (DCFP) 

 

Figure 4.13  - Force-displacement law comparison (DCFP) 
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5 Parametrical analysis 

5.1  Input parameters of the system 

Tp [s] Td [s] λp [-] 

0.05 2 0.1 

0.1 2.5 0.15 

0.15 3 0.2 

0.2 3.5  

 4  

Table 5.1 – Input parameters 

The main dynamic parameters, used for the analyses, are the ones in Table 5.1. 

They have been collected from typical values of dynamic parameters used in 

literature for isolated bridges. 

 Pier main period Tp 

Four different values of pier main period have been used: 0.05, 0.1, 0.15 and 0.2 s. 

 Isolation period Td 

Five different values of isolation period have been used: 2, 2.5, 3, 3.5 and 4 s. As it 

is easy to see with the (3.31), under the hypothesis that the two DCFP are equals, 

there is a quadratic proportionality between the isolation period and the sum of 

the radii of FPS1 and FPS2. This relation is illustrated graphically and analytically 

in the following figure: 
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Figure 5.1 - Relation between DCFP radii and isolation period 

 Mass ratio of the pier to the deck 

𝛱𝜆 =
𝑚𝑝

𝑚𝑑
= 𝜆𝑝 

Three different values of mass ratio have been used: 0.1, 0.15 and 0.2. 

 Seismic input 

A set of 30 earthquake records, containing the horizontal main component of 19 

different earthquakes, regardless of their distance from the hypocentre, their 

magnitude and their spectrum, has been used. The earthquake records were found 

on (Pacific Earthquake Engineering Research Center (PEER), 2006), (Azienda 

Accelerometrica Italiana (ITACA), 2016) and (Internet Site for European Strong 

Motion Data, 2016). The response spectra of all the earthquake records are plotted 

together with the medium response spectrum in Figure 5.2. 
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Table 5.2 - Earthquakes used and their main characteristics. 

 

Figure 5.2 - Response spectra of the used earthquakes and average spectrum 

 Normalized friction coefficients Πµ 

 𝛱𝜇 =  𝜇(�̇�𝑑)
𝑔

𝑎0
 (5.1a) 

Ninety-five values of friction coefficients have been used. The first 61 normalized 

friction values go from 0 to 0.3, with a regular spacing of 0.005. The remaining 
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values, from 0.3 to 2, are spaced with a distance of 0.05, because optimal values of 

normalized friction are not expected to be in this range. 

This parameter depends on the response of the system through the relative sliding 

velocity of the slider along each sliding surface. It is instead more efficient to use a 

parameter independent on the response, since it would not depend by the seismic 

action, using the maximum friction coefficient instead of the instantaneous 

friction coefficient to calculate the normalized friction coefficient. 

 𝛱𝜇
∗ = 𝑓𝑚𝑎𝑥

𝑔

𝑎0
 (5.1b) 

In this way, 𝛱𝜇
∗ is also equal to the dimensionless damping index introduced in 

(Tubaldi, 2014) for non-linear viscous dampers in case of nil viscous damping 

exponent and constant friction.  

5.2  DCFP parameters 

The two DCFP placed on the pier top and on the abutment have the same 

characteristics.  

In order to simplify the problem by reducing the number of independent 

parameters, it is assumed that for every DCFP internal sliding surface 𝑓𝑚𝑎𝑥 =

3𝑓𝑚𝑖𝑛. This assumption is based on the regression of experimental results 

(Castaldo & Tubaldi, Influence of FPS bearing properties on the seismic 

performance of base-isolated structures, 2015). 

The following two sets of DCFP’s parameters are used: 

 R1/R2 f1,max/f2,max fi,max/fi,min feqv* 

a) 2 4 3 3f2 

b) 2 2 3 (5/3)f2 

*feqv is here calculated under the hypothesis of sliding occurring on both surfaces 

and at the same velocity, with the (3.34). 

As shown in Figure 5.1, any isolation period Td can be obtained regardless the ratio 

R1/R2. This implies that every Td may be obtained with different ratios R1/R2 if R1 

+ R2 is constant. The sum R1 + R2 varies parabolically with Td. 
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Figure 5.3 - Relation between curvature radii when R1/R2 = 2. 

 

Figure 5.4 - Force-displacement behaviour of abutment DCFP under seismic excitation for rf = 4 (red) and 

rf = 2 (blue). 
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2015). To do so, the seismic input �̈�𝑔 is expressed as a product of a scale factor IM 

and a non-dimensional time function 𝛾(𝑡): 

 �̈�𝑔(𝑡) = 𝐼𝑀 ∙ 𝛾(𝑡) = 𝐼𝑀 ∙ 𝑙(𝜏) (5.2) 

𝑙(𝜏) is obtained from the scalar function 𝛾(𝑡) by dividing it by 𝜔𝑑, so that time too 

become dimensionless. 

Scaling of the seismic input is made by scaling the pseudo-acceleration spectra, 

imposing that they have unitary value (a0) at the chosen isolation period Td: by 

keeping the shape of the spectra unchanged, the earthquake records are scaled 

proportionally. This procedure should be done for every acceleration spectrum 

and for every assigned 𝜉𝑑, since it affect the acceleration spectrum; though, 

damping in the deck is assumed to be nil and then the spectra are not affected by 

it. This assumption is always on safety side, due to the fact that there is always 

some damping force acting in the deck, even if small. Then, for each Td a set of 30 

earthquake records is obtained. This procedure is not mandatory to perform a 

non-linear analysis, but as explained in (Iervolino, Cosenza, & Galasso, 2009) it is 

very helpful in reducing the variability of the structural response, allowing to 

obtain accurate results with a lower number of analyses. 

 

Figure 5.5 - Scaled response spectra (unitary value for T = 3 s) 
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Figure 5.6 - Scaled seismic spectra (unitary value for T = 3 s), detail 

 Additional parameters 

 Π𝜔 =
𝜔𝑝

𝜔𝑑
 (5.3) 

This parameter measures the isolation grade of the system, 

𝛱𝜉𝑝 = 𝜉𝑝      𝛱𝜉𝑑 = 𝜉𝑑 

These parameters measure the damping level in the pier and in the deck respectively. 

 
𝜉𝑒𝑞 =

2

𝜋
𝜓𝑢𝑑

Π𝜇,1
∗ 𝑅1 +Π𝜇,2

∗ 𝑅2
+ 1

 
(5.4) 

This parameter measures the damping capability of the abutment isolator. The 

damping capability of the pier isolator may be calculated by substituting 𝜓𝑢𝑑 with 

𝜓𝑥𝑑. 

Once the analyses have been run, it is necessary to work on the output parameters 

in order to obtain dimensionless outputs, since it is the only way to obtain results 

that are independent from the structure dimensions. To fulfill this work’s scope, 

only maximum response parameters in the follow are necessary, for each 

combination of Td, Tp, λp and f. Manipulating the previous equations with the 

dimensionless seismic input, it is possible to obtain the non-dimensional 

displacements introducing a scale factor 
𝜔𝑑
2

𝐼𝑀
. 
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 DCFPs deformations 

 𝜓𝑢,𝑑 =
𝑢𝑑,𝑚𝑎𝑥𝜔𝑑

2

𝑆𝐴(𝑇𝑑)
=
𝑢𝑑,𝑚𝑎𝑥𝜔𝑑

2

𝑎0
 (5.5) 

This parameter is the deck absolute displacement respect to the ground, and since 

the abutment DCFP is fixed to the ground and to the deck bridge, it correspond 

numerically with the abutment DCFP horizontal deformation. 

 𝜓𝑥,𝑑 =
𝑥𝑑,𝑚𝑎𝑥𝜔𝑑

2

𝑆𝐴(𝑇𝑑)
=
𝑥𝑑,𝑚𝑎𝑥𝜔𝑑

2

𝑎0
 (5.6) 

This one is the difference between the deck absolute displacement and the top pier 

absolute displacement, which is numerically equal to the pier DCFP horizontal 

deformation. 

 Single FPSs deformations 

 𝜓𝑥,𝑖 =
𝑥𝑖,𝑚𝑎𝑥𝜔𝑑

2

𝑆𝐴(𝑇𝑑)
=
𝑥𝑖,𝑚𝑎𝑥𝜔𝑑

2

𝑎0
,      𝑖 = 6,7,8,9 (5.7) 

There are two DCFP in the system, and then it is possible to calculate the 

displacement of the slider respect to each surface. Indexes meaning are showed in 

FIGURE. x9 is the only displacement which is not calculated as an independent 

one, but as a linear combination of the others. 

 Pier cap displacement 

 𝜓𝑢,𝑝 =
𝑢𝑝,𝑚𝑎𝑥𝜔𝑑

2

𝑆𝐴(𝑇𝑑)
=
𝑢𝑝,𝑚𝑎𝑥𝜔𝑑

2

𝑎0
 (5.8) 

 DCFP forces 

Two different dimensionless form are proposed for the single FPSs. The 

dimensionless form of the forces of the abutment FPS1 and FPS2 does not take 

into account the pier mass. 

 𝜓𝐹𝑝,𝑖 =
|𝐹𝑝,𝑖|𝑚𝑎𝑥

(𝑚𝑑 + ∑𝑚𝑝,𝑖)𝑆𝐴(𝑇𝑑)
=

|𝐹𝑝,𝑖|𝑚𝑎𝑥
(𝑚𝑑 +𝑚𝑝)𝑎0

,     𝑖 = 1,2 (5.9a,b) 
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𝜓𝐹𝑎,𝑖 =
|𝐹𝑎,𝑖|𝑚𝑎𝑥
𝑚𝑑𝑆𝐴(𝑇𝑑)

=
|𝐹𝑎,𝑖|𝑚𝑎𝑥
𝑚𝑑𝑎0

,     𝑖 = 1,2 

5.4 Statistical hypotheses 

The output parameters obtained for the 30 different seismic input are supposed to 

be distributed log-normally, for every combination of the others system 

parameters. In order to evaluate an optimal normalized friction value, it is useful 

to calculate the geometric mean and the geometric standard deviation of every 

output parameters, so that the optimums can be evaluated at different percentile. 

 

𝐺𝑀(𝐷) = √𝑑1 ∙ … ∙ 𝑑𝑁
𝑁

 

𝛽(𝐷) = 𝜎ln(𝐷) = √
(ln 𝑑1 − ln[𝐺𝑀(𝐷)])2+. . +(ln 𝑑𝑁 − ln[𝐺𝑀(𝐷)])2

𝑁 − 1
 

(5.10a,b) 

Due to the hypothesis of log-normal distribution, the generic response may be 

expressed as: 

 𝑑𝑘 = 𝐺𝑀(𝐷)𝑒
𝑓(𝑘)𝛽(𝐷) (5.11) 

where f(k) is a function of the k argument (the percentile of the log-normal 

distribution) that assume the values f(50) = 0, f(84) = 1 and f(16) = -1 (Ang & Tang, 

2007). 

 

Figure 5.7 - CDF and PDF obtained from analysis results for the 30 seismic events for Td = 2 s, Tp = 0.1 s, 

lp = 0.1, f = 0.3/g, case A 
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5.5  Results 

Results of the analyses are plotted in the following pages in terms of geometric 

mean GM and standard deviation β of the output parameters, for the various 

combination of input parameters. More specifically, each plot has on the 

horizontal axes the normalized friction coefficient and the isolation period. 3 

different 3D surfaces show the result of the analyses, each one calculated for a 

different pier to deck mass ratio. 

 Case A 
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 Case B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

102 
Influence of DCFP bearing on performance of isolated bridges 

Tp [s] 𝜓𝑢𝑝 

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.14 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

103 
Influence of DCFP bearing properties on performance of isolated bridges 

Tp [s] 𝜓𝑥𝑑 

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.15 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

104 
Influence of DCFP bearing on performance of isolated bridges 

Tp [s] 𝜓𝑢𝑑 

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.16 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

105 
Influence of DCFP bearing properties on performance of isolated bridges 

Tp [s] 𝜓𝑥6  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.17 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

106 
Influence of DCFP bearing on performance of isolated bridges 

Tp [s] 𝜓𝑥7  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.18 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

107 
Influence of DCFP bearing properties on performance of isolated bridges 

Tp [s] 𝜓𝑥8  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.19 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

108 
Influence of DCFP bearing on performance of isolated bridges 

Tp [s] 𝜓𝑥9  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.20 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

109 
Influence of DCFP bearing properties on performance of isolated bridges 

Tp [s] 𝜓𝐹𝑝2  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.21 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

110 
Influence of DCFP bearing on performance of isolated bridges 

Tp [s] 𝜓𝐹𝑝1  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.22 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

111 
Influence of DCFP bearing properties on performance of isolated bridges 

Tp [s] 𝜓𝐹𝑎2  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.23 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

112 
Influence of DCFP bearing on performance of isolated bridges 

Tp [s] 𝜓𝐹𝑎1  

0.05 

  

0.1 

  

0.15 

  

0.2 

  

Table 5.24 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 

Πλ 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

113 
Influence of DCFP bearing properties on performance of isolated bridges 

5.6 Optimal friction values 

It must be remarked now that the seismic isolation purpose in bridges is to protect 

the piers from high shear forces coming from the deck: it is obvious then that the 

optimal friction values are the ones that give the minimum pier cap displacement. 

Each one of the following plots represents the optimum value of normalized 

friction as function of the pier main period and the deck-pier mass ratio, for a given 

value of the isolation period. 

Once that the value of the 𝜓𝑢𝑝  distribution parameters for each Π𝜇
∗  are known, it is 

possible to determine Π𝜇,𝑜𝑝𝑡𝑖𝑚𝑢𝑚
∗  for the median value, the 16th and 84th percentile 

of the distribution of 𝜓𝑢𝑝, having assumed that the optimal value is the one for 

which 𝜓𝑢𝑝  is minimum. 

It has to be noted that the 𝜓𝑢𝑝  sometimes does not have a minimum value respect 

to the dimensionless friction, but keeps decreasing slowly, or very slowly, for 

increasing values of Π𝜇
∗ . This occurs generally when the three parameters are the 

largest possible at the same time. This does not necessarily mean that there are no 

minimum values of 𝜓𝑢𝑝  (they could be located beyond Π𝜇
∗ = 2), but the fact in these 

cases the 𝜓𝑢𝑝mesh gradient outside the range Π𝜇
∗ = 0 ÷ 0.5 is very close to 0, it is 

acceptable to search for the minimum only in that range. The difference between 

the actual minimum, if any, and the picked value, is negligible, and by doing so, 

unrealistically large values are excluded, making the optimal values interesting for 

application fields. 
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 Case A 

  

  

 

Table 5.25 - Optimal dimensionless friction: median values (case A) 
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Table 5.26 - Optimal dimensionless friction: 16th and 84th percentiles (case A) 
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 Case B 

  

  

 

Table 5.27 - Optimal dimensionless friction: median values (case B) 
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Table 5.28 - Optimal dimensionless friction: 16th and 84th percentile (case B) 

5.7  Regression analyses 

The optimal values of dimensionless friction found may be used to perform a 

regression analysis. A set of regression coefficients is then obtained, allowing to 

yield a closed-form expression that provides an optimal dimensionless friction 

coefficient for any combination of the main dynamic parameters of a bridge. This 

84th
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84th
 

84th
 

84th
 

16th
 16th
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expression may be used in either design or retrofit of an existing bridge, and its 

reliability is given by the R2 coefficient. 

Regression analysis has been performed in MATLAB with a quadratic regression 

law (10 coefficients); nevertheless, it is possible to adopt simple artifices to 

improve the quality of the regression analysis, such as moving a parameter to the 

denominator, using a square, mixed, exponential or combination of these quantity 

as a parameter. By doing this, the regression laws that are obtained are in practice 

more precise than simple quadratic ones.  

It is even possible to obtain in the same way closed-form expression for the lateral 

deformation of both the DCFP sliders, along either the top or the bottom internal surface. 

This may be useful to estimate the in-plant radii of the isolator surfaces. 
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 Case A  

 

Π𝜇,𝑜𝑝𝑡
∗ , 𝜓𝑢𝑝(50

𝑡ℎ, 84𝑡ℎ)

=  𝑐1 + 𝑐2
𝑇𝑝
𝑇𝑑
+ 𝑐3𝑇𝑝

2 + 𝑐4
𝑇𝑝
Π𝜆
+ 𝑐5

𝑇𝑝
3

𝑇𝑑
+ 𝑐6

𝑇𝑝
𝑇𝑑Π𝜆

+ 𝑐7
𝑇𝑝
3

Π𝜆

+ 𝑐8 (
𝑇𝑝
𝑇𝑑
)
2

+ 𝑐9T𝑝
4 + 𝑐10 (

𝑇𝑝
Π𝜆
)
2

 

Π𝜇,𝑜𝑝𝑡
∗ , 𝜓𝑢𝑝(16

𝑡ℎ)

=  𝑐1 + 𝑐2𝑇𝑑 + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑇𝑑𝑇𝑝 + 𝑐6𝑇𝑑Π𝜆 + 𝑐7𝑇𝑝Π𝜆

+ 𝑐8𝑇𝑑
2 + 𝑐9T𝑝

2 + 𝑐10Π𝜆
2 

(5.12a,b,c) 

 Π𝜇,𝑜𝑝𝑡
∗ (50𝑡ℎ) 𝜓𝑢𝑝(50

𝑡ℎ) Π𝜇,𝑜𝑝𝑡
∗ (84𝑡ℎ) 𝜓𝑢𝑝(84

𝑡ℎ) Π𝜇,𝑜𝑝𝑡
∗ (16𝑡ℎ) 𝜓𝑢𝑝(16

𝑡ℎ) 

R2 0.8301 0.9956 0.6670 0.9865 0.5167 0.9847 

c1 0.3554 0.0020 0.4128 0.0071 -0.0713 0.0198 

c2 -7.1923 -0.2496 2.4285 -0.8336 0.1261 -0.0101 

c3 34.3154 1.2284 16.0888 3.4910 1.4370 0.2009 

c4 -0.2680 -0.0047 -0.2993 -0.0117 -0.3875 -0.1440 

c5 -43.2117 -14.6796 1091.0823 -48.4532 0.0967 -0.0410 

c6 5.8144 0.2656 -7.4519 0.3327 0.3675 0.0274 

c7 -7.2993 -0.2839 7.9592 -0.8464 5.0600 -0.4292 

c8 -19.2474 5.0652 -221.9676 16.2905 -0.0280 0.0013 

c9 -269.0404 13.0834 -1509.0221 46.4419 -8.6000 0.5172 

c10 -0.0071 0.0012 0.1853 0.0060 -2.2500 0.2714 

Table 5.29 - Regression analysis results (friction and pier cap displacement - A) 
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Table 5.30 - Numerical vs regression results: optimal dimensionless friction (left) and pier cap 

displacement (right) for the 50th, 16th and 84th percentiles (case A). 
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𝜓𝑥6(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑑𝑇𝑝 + 𝑐4𝑇𝑝Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑑𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|𝑇𝑝Π𝜆 + 𝑐7𝑇𝑑Π𝜆𝑇𝑝

2 + 𝑐8𝑒
−2|T𝑑−3.5|

+ 𝑐9(𝑇𝑑𝑇𝑝)
2
+ 𝑐10(𝑇𝑝Π𝜆)

2
 

𝜓𝑥6(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

𝑇𝑑
2
+ 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒

𝑇𝑑
2
𝑇𝑝 + 𝑐6𝑒

𝑇𝑑
2
Π𝜆 + 𝑐7𝑇𝑝Π𝜆

+ 𝑐8𝑒
𝑇𝑑
4
+ 𝑐9𝑇𝑝

2 + 𝑐10Π𝜆
2 

(5.13a,b) 

 ψup 50th   ψup 84th 

 ψx6 50th ψx6 84th   ψx6 50th ψx6 84th 

R2 0.8875 0.9532  0.8985 0.9125 

c1 0.1435 0.2414  0.1764 0.2688 

c2 0.1028 3.77E-07  1.99E-07 3.81E-07 

c3 -0.0083 -0.0840  0.0262 -0.5691 

c4 -0.4395 0.0418  -1.0022 -0.0011 

c5 -0.0386 2.73E-08  -3.58E-09 5.49E-08 

c6 0.9590 1.81E-09  1.80E-07 3.34E-08 

c7 0.0956 1.0827  2.9297 2.3360 

c8 -0.0326 -4.22E-14  -2.20E-14 -4.33E-14 

c9 0.0760 0.0547  -0.0309 1.5143 

c10 2.0151 -0.3461  -3.4313 -0.6028 

Table 5.31 - Regression analyses results (x6) 
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ψup 50th 

ψx6 50th ψx6 84th 

    

ψup 84th 

ψx6 50th ψx6 84th 

    

Table 5.32 - Numerical vs regression results (x6) 
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𝜓𝑢𝑝(50
𝑡ℎ) 

𝜓𝑥7(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 ++𝑐8𝑒

2|T𝑑−3.5| + 𝑐9T𝑝
2

+ 𝑐10Π𝜆
2 

𝜓𝑥7(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 ++𝑐8𝑒

−2|T𝑑−3.5| + 𝑐9T𝑝
2

+ 𝑐10Π𝜆
2 

𝜓𝑢𝑝(84
𝑡ℎ) 

𝜓𝑥7(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

T𝑑
2
+ 𝑐3

1

T𝑝
3 + 𝑐4

1

Π𝜆
3 + 𝑐5

𝑒T𝑑
2

T𝑝
3 + 𝑐6

𝑒T𝑑
2

Π𝜆
3 + 𝑐7

1

T𝑝
3Π𝜆

3

+ 𝑐8𝑒
2𝑒T𝑑

2

+ 𝑐9
1

T𝑝
6 + 𝑐10

1

Π𝜆
6 

𝜓𝑥7(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑝
2 + 𝑐4Π𝜆

2 + 𝑐5𝑒
−|T𝑑−3.5|T𝑝

2

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆

2 + 𝑐7T𝑝
2Π𝜆

2 ++𝑐8𝑒
−2|T𝑑−3.5| + 𝑐9T𝑝

4

+ 𝑐10Π𝜆
4 

(5.14a,b,c,d) 

 ψup 50th   ψup 84th 

 ψx7 50th ψx7 84th   ψx7 50th ψx7 84th 

R2 0.6282 0.7477  0.2707 0.3433 

c1 0.5260 0.5073  0.1658 0.4720 

c2 -0.0838 -0.1469  1.40E-07 -0.2664 

c3 -0.8212 -0.7425  6.04E-06 -7.1669 

c4 -1.3596 -0.4856  5.86E-05 0.1094 

c5 0.0852 0.0046  -1.81E-12 2.6138 

c6 0.1795 -0.4674  -1.21E-11 0.3707 

c7 -3.1848 -2.3226  4.93E-09 78.3303 

c8 0.0069 0.2969  -1.39E-14 0.2839 

c9 3.4411 4.1279  -4.41E-10 104.9726 

c10 3.1415 2.4227  -3.99E-08 -32.0527 

Table 5.33 - Regression analysis results (x7 - A) 
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ψup 50th 

ψx7 50th ψx7 84th 

  

ψup 84th 

ψx7 50th ψx7 84th 
 

 

Table 5.34 - Numerical vs regression results (x7 - A) 
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𝜓𝑥8(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑑𝑇𝑝 + 𝑐4𝑇𝑝Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑑𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|𝑇𝑝Π𝜆 + 𝑐7𝑇𝑑Π𝜆𝑇𝑝

2 + 𝑐8𝑒
−2|T𝑑−3.5|

+ 𝑐9(𝑇𝑑𝑇𝑝)
2
+ 𝑐10(𝑇𝑝Π𝜆)

2
 

𝜓𝑥8(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

𝑇𝑑
2
+ 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒

𝑇𝑑
2
𝑇𝑝 + 𝑐6𝑒

𝑇𝑑
2
Π𝜆 + 𝑐7𝑇𝑝Π𝜆

+ 𝑐8𝑒
𝑇𝑑
4
+ 𝑐9𝑇𝑝

2 + 𝑐10Π𝜆
2 

 

(5.15a,b) 

 ψup 50th   ψup 84th 

 ψx8 50th ψx8 84th   ψx8 50th ψx8 84th 

R2 0.8936 0.9676  0.8702 0.9729 

c1 0.1496 0.2446  0.1366 0.2381 

c2 0.0729 3.29E-07  1.24E-01 3.44E-07 

c3 0.0402 0.0106  -0.0222 0.0234 

c4 -0.8274 0.0106  0.5235 0.0387 

c5 -0.0490 7.51E-09  -6.37E-03 -2.44E-09 

c6 0.8223 7.61E-09  -1.17 4.87E-09 

c7 1.2576 0.6435  2.5328 0.3451 

c8 -0.0107 -3.68E-14  -3.37E-02 -3.82E-14 

c9 -0.0009 -0.1880  0.0369 0.2172 

c10 -3.2141 -0.2231  -19.6498 -0.0708 

Table 5.35 - Regression analysis results (x8 - A) 

 

 

 

 

 

 

 

 

 

 

 

 



Parametrical analysis Roberto Gnisci – Politecnico di Torino 2018, March 

126 
Influence of DCFP bearing on performance of isolated bridges 

ψup 50th 

ψx8 50th ψx8 84th 

    

ψup 84th 

ψx8 50th ψx8 84th 

    

Table 5.36 - Numerical vs regression results (x8 - A) 
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𝜓𝑥9(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 + 𝑐8𝑒

2|T𝑑−3.5| + 𝑐9T𝑝
2 + 𝑐10Π𝜆

2 

𝜓𝑥9(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 + 𝑐8𝑒

−|T𝑑−3.5| + 𝑐9𝑇𝑝
2

+ 𝑐10Π𝜆
2 

 

𝜓𝑥9(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

T𝑑
2
+ 𝑐3

1

T𝑝
3 + 𝑐4

1

Π𝜆
3 + 𝑐5

𝑒T𝑑
2

T𝑝
3 + 𝑐6

𝑒T𝑑
2

Π𝜆
3 + 𝑐7

1

T𝑝
3Π𝜆

3

+ 𝑐8𝑒
2𝑒T𝑑

2

+ 𝑐9
1

T𝑝
6 + 𝑐10

1

Π𝜆
6 

𝜓𝑥9(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑝
2 + 𝑐4Π𝜆

2 + 𝑐5𝑒
−|T𝑑−3.5|T𝑝

2

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆

2 + 𝑐7T𝑝
2Π𝜆

2 ++𝑐8𝑒
−2|T𝑑−3.5| + 𝑐9T𝑝

4

+ 𝑐10Π𝜆
4 

 

(5.16a,b,c,d) 

 

 ψup 50th   ψup 84th 

 ψx9 50th ψx9 84th   ψx9 50th ψx9 84th 

R2 0.6695 0.7979  0.2511 0.4108 

c1 0.5257 0.5012  0.1623 0.4915 

c2 -0.0837 -0.1748  1.12E-07 -0.3422 

c3 -0.7969 -0.1106  1.09E-05 -4.6812 

c4 -1.3638 -0.6003  7.76E-05 -0.7852 

c5 0.1294 -0.4043  -1.56E-12 0.7167 

c6 0.1605 -0.3460  -1.12E-11 0.4505 

c7 -3.6389 -3.0737  3.49E-09 48.5384 

c8 0.0069 0.3269  -1.10E-14 0.3537 

c9 3.1554 2.4258  -9.80E-10 70.9599 

c10 3.3661 2.7045  -4.80E-08 -11.8726 

Table 5.37 - Regression analysis results (x9 - A) 
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ψup 50th 

ψx8 50th ψx8 84th 

  

ψup 84th 

ψx8 50th ψx8 84th 

  

Table 5.38 - Numerical vs regression results (x9 - A) 

 

 

 

 

 

 

 

 



2018, March Roberto Gnisci – Politecnico di Torino Parametrical analysis 

129 
Influence of DCFP bearing properties on performance of isolated bridges 

 Case B 

 

Π𝜇,𝑜𝑝𝑡
∗ , 𝜓𝑢𝑝(50

𝑡ℎ, 84𝑡ℎ)

=  𝑐1 + 𝑐2
𝑇𝑝
𝑇𝑑
+ 𝑐3𝑇𝑝

2 + 𝑐4
𝑇𝑝
Π𝜆
+ 𝑐5

𝑇𝑝
3

𝑇𝑑
+ 𝑐6

𝑇𝑝
𝑇𝑑Π𝜆

+ 𝑐7
𝑇𝑝
3

Π𝜆

+ 𝑐8 (
𝑇𝑝

𝑇𝑑
)
2

+ 𝑐9T𝑝
4 + 𝑐10 (

𝑇𝑝

Π𝜆
)
2

 

Π𝜇,𝑜𝑝𝑡
∗ , 𝜓𝑢𝑝(16

𝑡ℎ)

=  𝑐1 + 𝑐2𝑇𝑑 + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑇𝑑𝑇𝑝 + 𝑐6𝑇𝑑Π𝜆 + 𝑐7𝑇𝑝Π𝜆

+ 𝑐8𝑇𝑑
2 + 𝑐9T𝑝

2 + 𝑐10Π𝜆
2 

(5.12a,b,c) 

 

 

 Π𝜇,𝑜𝑝𝑡
∗ (50𝑡ℎ) 𝜓𝑢𝑝(50

𝑡ℎ) Π𝜇,𝑜𝑝𝑡
∗ (84𝑡ℎ) 𝜓𝑢𝑝(84

𝑡ℎ) Π𝜇,𝑜𝑝𝑡
∗ (16𝑡ℎ) 𝜓𝑢𝑝(16

𝑡ℎ) 

R2 0.8679 0.9959 0.9343 0.9878 0.7546 0.9868 

c1 0.2970 0.0015 0.8020 0.0030 0.6540 0.0179 

c2 -3.8311 -0.1854 -36.3781 -0.4745 -0.3485 -0.0091 

c3 23.8690 1.0721 113.6140 2.5302 0.0620 0.1901 

c4 -0.1246 -0.0046 -0.9110 -0.0053 -0.6125 -0.1339 

c5 95.0531 -12.6499 -1662.1089 -26.4703 0.2920 -0.0389 

c6 0.5780 0.2645 13.6590 0.2040 0.4875 0.0252 

c7 1.6006 -0.2837 -43.7227 -0.2384 3.5600 -0.4182 

c8 -29.0111 4.0219 432.9784 10.4017 0.0488 0.0012 

c9 -347.0422 11.9866 1265.6092 17.8517 -4.0000 0.4890 

c10 -0.0444 0.0012 0.3588 0.0014 -2.5000 0.2577 

Table 5.39 - Regression analysis results (friction and pier cap displacement - B) 
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Table 5.40 - Numerical vs regression results: optimal dimensionless friction (left) and top pier 

displacement (right) for the 50th, 16th and 84th percentiles (case B). 
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𝜓𝑥6(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑑𝑇𝑝 + 𝑐4𝑇𝑝Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑑𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|𝑇𝑝Π𝜆 + 𝑐7𝑇𝑑Π𝜆𝑇𝑝

2 + 𝑐8𝑒
−2|T𝑑−3.5|

+ 𝑐9(𝑇𝑑𝑇𝑝)
2
+ 𝑐10(𝑇𝑝Π𝜆)

2
 

𝜓𝑥6(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

𝑇𝑑
2
+ 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒

𝑇𝑑
2
𝑇𝑝 + 𝑐6𝑒

𝑇𝑑
2
Π𝜆 + 𝑐7𝑇𝑝Π𝜆

+ 𝑐8𝑒
𝑇𝑑
4
+ 𝑐9𝑇𝑝

2 + 𝑐10Π𝜆
2 

(5.13a,b) 

 

 ψup 50th   ψup 84th 

 ψx6 50th ψx6 84th  ψx6 50th ψx6 84th 

R2 0.8839 0.8949  0.8578 0.9059 

c1 0.1868 0.2443  0.1741 0.3121 

c2 -0.0366 0.0001  -0.0358 0.0001 

c3 0.0090 -0.3761  0.0415 -1.1314 

c4 -1.0319 -0.2122  -0.4696 -0.7330 

c5 -0.0319 0.0001  -0.0249 0.0002 

c6 0.5124 0.0000  0.1142 0.0002 

c7 3.2297 1.8090  -0.7002 4.9518 

c8 0.0095 0.0000  0.0113 -3.08E-08 

c9 -0.0405 0.5057  0.0073 1.9708 

c10 -22.0727 0.1132  7.5457 0.8264 

Table 5.41 - Regression analysis results (x6 - B) 
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ψup 50th 

ψx6 50th ψx6 84th 

  

ψup 84th 

ψx6 50th ψx6 84th 

  

Table 5.42 - Numerical vs regression results (x6 - B) 
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𝜓𝑢𝑝(50
𝑡ℎ) 

𝜓𝑥7(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 ++𝑐8𝑒

2|T𝑑−3.5| + 𝑐9T𝑝
2

+ 𝑐10Π𝜆
2 

𝜓𝑥7(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 ++𝑐8𝑒

−2|T𝑑−3.5| + 𝑐9T𝑝
2

+ 𝑐10Π𝜆
2 

𝜓𝑢𝑝(84
𝑡ℎ) 

𝜓𝑥7(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

T𝑑
2
+ 𝑐3

1

T𝑝
3 + 𝑐4

1

Π𝜆
3 + 𝑐5

𝑒T𝑑
2

T𝑝
3 + 𝑐6

𝑒T𝑑
2

Π𝜆
3 + 𝑐7

1

T𝑝
3Π𝜆

3

+ 𝑐8𝑒
2𝑒T𝑑

2

+ 𝑐9
1

T𝑝
6 + 𝑐10

1

Π𝜆
6 

𝜓𝑥7(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑝
2 + 𝑐4Π𝜆

2 + 𝑐5𝑒
−|T𝑑−3.5|T𝑝

2

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆

2 + 𝑐7T𝑝
2Π𝜆

2 ++𝑐8𝑒
−2|T𝑑−3.5| + 𝑐9T𝑝

4

+ 𝑐10Π𝜆
4 

 

(5.14a,b,c,d) 

 ψup 50th   ψup 84th 

 ψx7 50th ψx7 84th   ψx7 50th ψx7 84th 

R2 0.8310 0.6942  0.9119 0.8258 

c1 0.0518 0.4221  0.0869 0.2949 

c2 0.1252 0.0002  0.1149 0.0002 

c3 0.9319 0.0802  1.0576 1.2582 

c4 -0.2166 -0.4345  -0.3264 0.4392 

c5 -0.2504 -0.0001  -0.3950 -0.0004 

c6 -0.2219 -0.0001  -0.1870 -0.0002 

c7 -4.0345 -3.2003  -3.8865 -7.5395 

c8 -0.0097 0.0000  -0.0097 0.0000 

c9 -0.5728 0.3283  -0.2859 -2.1791 

c10 2.9996 1.7735  2.4295 -0.0348 

Table 5.43 - Regression analysis results (x7 - B) 
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ψup 50th 

ψx7 50th ψx7 84th 

  

ψup 84th 

ψx7 50th ψx7 84th 

  

Table 5.44 - Numerical vs regression results (x7 - B) 
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𝜓𝑥8(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑑𝑇𝑝 + 𝑐4𝑇𝑝Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑑𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|𝑇𝑝Π𝜆 + 𝑐7𝑇𝑑Π𝜆𝑇𝑝

2 + 𝑐8𝑒
−2|T𝑑−3.5|

+ 𝑐9(𝑇𝑑𝑇𝑝)
2
+ 𝑐10(𝑇𝑝Π𝜆)

2
 

𝜓𝑥8(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

𝑇𝑑
2
+ 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒

𝑇𝑑
2
𝑇𝑝 + 𝑐6𝑒

𝑇𝑑
2
Π𝜆 + 𝑐7𝑇𝑝Π𝜆

+ 𝑐8𝑒
𝑇𝑑
4
+ 𝑐9𝑇𝑝

2 + 𝑐10Π𝜆
2 

 

(5.15a,b) 

 ψup 50th   ψup 84th 
 ψx8 50th ψx8 84th   ψx8 50th ψx8 84th 

R2 0.8735 0.8518  0.8412 0.8936 

c1 0.1870 0.2498  0.1758 0.3066 

c2 -0.0389 0.0001  -0.0382 0.0001 

c3 0.0126 -0.2692  0.0366 -0.9477 

c4 -1.1507 -0.2895  -0.6615 -0.6966 

c5 -0.0096 0.0000  -0.0051 0.0002 

c6 0.3731 0.0000  0.0676 0.0002 

c7 3.0525 1.2568  -0.1259 4.0965 

c8 0.0101 0.0000  0.0116 -2.72E-08 

c9 -0.0492 0.4353  -0.0006 1.7268 

c10 -18.3014 0.4369  4.5647 0.8535 

Table 5.45 - Regression analysis results (x8 - B) 
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ψup 50th 

ψx8 50th ψx8 84th 

    

ψup 84th 

ψx8 50th ψx8 84th 

    

Table 5.46 - Numerical vs regression results (x8 - B) 
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𝜓𝑥9(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 + 𝑐8𝑒

2|T𝑑−3.5| + 𝑐9T𝑝
2 + 𝑐10Π𝜆

2 

𝜓𝑥9(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3𝑇𝑝 + 𝑐4Π𝜆 + 𝑐5𝑒
−|T𝑑−3.5|𝑇𝑝

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆 + 𝑐7𝑇𝑝Π𝜆 + 𝑐8𝑒

−|T𝑑−3.5| + 𝑐9𝑇𝑝
2

+ 𝑐10Π𝜆
2 

 

𝜓𝑥9(50
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

T𝑑
2
+ 𝑐3

1

T𝑝
3 + 𝑐4

1

Π𝜆
3 + 𝑐5

𝑒T𝑑
2

T𝑝
3 + 𝑐6

𝑒T𝑑
2

Π𝜆
3 + 𝑐7

1

T𝑝
3Π𝜆

3

+ 𝑐8𝑒
2𝑒T𝑑

2

+ 𝑐9
1

T𝑝
6 + 𝑐10

1

Π𝜆
6 

𝜓𝑥9(84
𝑡ℎ) =  𝑐1 + 𝑐2𝑒

−|T𝑑−3.5| + 𝑐3T𝑝
2 + 𝑐4Π𝜆

2 + 𝑐5𝑒
−|T𝑑−3.5|T𝑝

2

+ 𝑐6𝑒
−|T𝑑−3.5|Π𝜆

2 + 𝑐7T𝑝
2Π𝜆

2 ++𝑐8𝑒
−2|T𝑑−3.5| + 𝑐9T𝑝

4

+ 𝑐10Π𝜆
4 

 

(5.16a,b,c,d) 

 ψup 50th   ψup 84th 

 ψx9 50th ψx9 84th   ψx9 50th ψx9 84th 

R2 0.8357 0.7073  0.9113 0.8221 

c1 0.0741 0.4272  0.1194 0.3039 

c2 0.1149 0.0001  0.0991 0.0002 

c3 1.1110 0.3136  1.1438 1.3015 

c4 -0.3644 -0.5277  -0.4704 0.3966 

c5 -0.2997 -0.0001  -0.4168 -0.0004 

c6 -0.1795 -0.0001  -0.1477 -0.0002 

c7 -4.3840 -3.6971  -4.3072 -7.7978 

c8 -0.0086 0.0000  -0.0079 0.0000 

c9 -0.4299 -0.4489  0.0305 -2.2513 

c10 3.1085 2.0340  2.5881 0.0120 

Table 5.47 - Regression analysis results (x9 - B) 
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ψup 50th 

ψx9 50th ψx9 84th 

  

ψup 84th 

ψx9 50th ψx9 84th 

  

Table 5.48  - Numerical vs regression results (x9 - B) 
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6 Conclusions 

Numerical investigations have been carried out on 5700 different systems by 

varying the main dynamic parameters and for two different cases. 30 different 

time history seismic input have been used, for a total amount of simulation 

performed is 342.000: performing all of them required about 1000 hours (40 days 

ca.) The analyses led to results sometimes hard to interpret due to both the non-

linearity and the randomness of the seismic input, especially in the regression 

analyses. The results of the analyses are summarized as follows: 

 The GM and the β of the output parameters increase with Πλ. This is 

generally true, excepts for some output parameters which show an opposite 

trend: the 𝜓𝑢𝑝, 𝜓𝑥8, 𝜓𝑥9 and the forces. This means that the displacement of 

the pier’s top, the deformation of the DCFP placed on the abutment (along 

both surfaces) and the forces transmitted by both the DCFP decrease with 

Πλ. 

 GM(𝜓𝑢𝑑) and GM(𝜓𝑥𝑑) increase with Πµ, Tp and, as expected, Td, even if 

they seem to stabilize for high period such as Td = 3.5 or 4 s. β(𝜓𝑢𝑑) and 

β(𝜓𝑥𝑑) decrease with Πµ and Tp, and is trend becomes regular for Πµ slightly 

larger than 0. They are not correlated to Td, since they oscillate with it. 

 GM(𝜓𝑥6) and GM(𝜓𝑥8) show an absolute maximum for Πµ, and then a 

relative minimum and a relative maximum. They also increase with Tp and 

with Td, stabilizing for high values of the latter (3.5 – 4 s). β(𝜓𝑥6) and β(𝜓𝑥8), 

 GM(𝜓𝑥7) and GM(𝜓𝑥9) show an hyperbolical behaviour for Πµ, decreasing 

monotonically with it. They also increase with Tp and with Td, stabilizing for 

high values of the latter (3.5 – 4 s). β(𝜓𝑥7) and β(𝜓𝑥9), increase with Πµ until 

they reach a very high maximum, approximately around Πµ = 1.5. Also, they 

decrease with Tp and increase with Td,  

 All the measured forces show a minimum for Πµ between 0.2 – 0.3, and 

increase slightly with Tp and Td.  
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6.1 Optimal friction values 

The optimal dimensionless friction values, obtained as the ones that gives the 

minimum top pier displacement, depends on the percentile of the displacement 

considered for the pier’s top displacement. 

 16th percentile: the optimal friction is essentially stable, between 0.2 and 

0.3, for small Td (2 s, 2.5 s) even though it is generally increasing with Tp, Td 

and Πλ. It reaches a peak at Tp = 0.15 s, Πλ = 0.2 in both Cases.  

 50th percentile: in the Case A, the optimal friction is stable only for Td = 2 s. 

For higher values, it increases  with Tp and Td but not regularly, showing 

sometimes slope inversion along a direction. This may cause several 

problems during the regression analysis. In the Case B Πµ,opt increases 

anyway with Tp, Td and Πλ, but the mesh is sufficiently regular to obtain 

better regression analysis results, as it will be discussed later. A plateau with 

Πµ,opt is reached both with Td = 3.5 s and 4 s, larger than the one seen in 

Case A. 

 84th percentile: in the Case A, values increase with the parameter but often 

in a non-monotonic way. For Td = 4 s, Πµ,opt drops at near zero values for Tp 

= 0.2 s: this event could be considered as an outlier. In the Case B, the mesh 

of the optimums is practically the same, but without the abovementioned 

irregularities, forming a plateau for Td = 3.5 s and 4 s, bigger than the one 

obtained in the 50th percentile, as expected. 

6.2 Regression analyses 

Regression analyses have been carried out to determine expressions useful to 

estimate the optimal friction values of the DCFP surfaces, the pier cap lateral 

displacement and the deformation of the isolators along each surface.  

According to the values of the R2 coefficients, the Case B regression analyses are 

clearly more accurate: by choosing R1 = 2R2 and adopting a smaller f1/f2 (2 instead 

of 4, but similar values may be adopted) the response of the system become more 

predictable with the derived expressions. Small friction surfaces show in any case 

a more predictable behaviour, according to the high values of R2 reached by 

regression analyses of 𝜓𝑥6and 𝜓𝑥8. Due to their minor engineering interest and the 
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difficulties faced in regression of the optimal dimensionless friction values, 16th 

percentile values were not considered for regression. 

6.3 Practical application 

A short example of an application is here showed. Let us consider a bridge situated 

in L’Aquila, Italy: the geographic position and the site characteristics determine 

the a0 input (spectral acceleration value for the design Td), through the 

determination of the acceleration spectra, following the guidelines provided by 

(NTC, 2008). It is then possible to estimate the median value of the pier’s cap 

displacement, the in-plant radii of the sliding surfaces necessary to ensure the 

isolator’s deformability and the deck lateral deck displacement, which is necessary 

to design expansion joints and, if any, pipes and cables passing along the bridge. 

This procedure may be done for any Limit State, by varying the a0 input. 

It is assumed that R1 + R2 = 1.5 m, VN = 100 years, CU = 1.5. 

Td [s] 2.457 

ωd
2 [s-2] 6.540 

Tp [s] 0.13 

Πλ [-] 0.18 

50th percentile 

a0 [m/s2] 
SLV SLC 

2.277 2.534 

Πμ,opt [-] 0.3308 
f1,max [-] 0.0768 f1,max [-] 0.0855 

f2,max [-] 0.0384 f2,max [-] 0.0427 

ψup [-] 0.0172 up,max [mm] 5.98 up,max [mm] 6.66 

ψx6 [-] 0.1501 x6,max [cm] 5.23 x6,max [cm] 5.82 

ψx7 [-] 0.1892 x7,max [cm] 6.59 x7,max [cm] 7.33 

ψx8 [-] 0.1514 x8,max [cm] 5.27 x8,max [cm] 5.87 

ψx9 [-] 0.1898 x9,max [cm] 6.61 x9,max [cm] 7.36 
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84th percentile 

a0 [m/s2] 
SLV SLC 

2.277 2.534 

Πμ,opt [-] 0.3985 
f1,max [-] 0.0925 f1,max [-] 0.1029 

f2,max [-] 0.0463 f2,max [-] 0.0515 

ψup [-] 0.0323 up,max [mm] 11.24 up,max [mm] 12.51 

ψx6 [-] 0.2554 x6,max [cm] 8.89 x6,max [cm] 9.90 

ψx7 [-] 0.3548 x7,max [cm] 12.35 x7,max [cm] 13.75 

ψx8 [-] 0.2577 x8,max [cm] 8.97 x8,max [cm] 9.98 

ψx9 [-] 0.3541 x9,max [cm] 12.33 x9,max [cm] 13.72 

 

6.4 Future developments 

The results of this study may be a starting point for further developments of the 

research. 

 Having obtained the probability distribution of each relative displacement 

necessary to design an isolation system and the closed-form expressions for 

the 50th and the 84th percentiles, it could be interesting perform a statistic 

study to evaluate safety coefficients. This may be necessary to compensate 

the uncertainty linked to the closed-form expressions with small values of 

R2. 

 The entire study may be performed again with Triple Friction Pendulum 

instead of DCFP bearings. The higher quantity of variables would require 

more simplifying assumptions, or, alternatively, a much higher number of 

numerical simulations. 

 Bridges with variable height piers may be introduced, even considering 2nd 

order effects on the piers if and where necessary. 

 The vertical component of the earthquake records may be considered, even 

considering 2nd order effects if and where necessary. 
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