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Chapter 1 

introduction 

Punching shear is a type of failure of reinforced concrete slabs subjected to high localized 

forces. In flat slab structures this occur at columns support points and in this situation 

the failure is due to shear. 

This type of failure is catastrophic because no visible signs are shown prior to failure (brittle 

failure). Punching shear failure disasters have occurred several times in this past decades [1], 

[2], [3].  

A typical flat plate punching shear failure is characterized by the slab failing at the 

intersection point of the column. This results in the column breaking through the portion of 

the surrounding slab. This type of failure is one of the most critical problems to consider 

when determining the thickness of flat plates at the column-slab intersection, accurate 

prediction of punching shear strength is a major concern and absolutely necessary for 

engineers so they can design a safe structure. 

 

Figure 1.1: Punching failure of a slab with the typical view of the slab portion outside the shear crack.

http://civildigital.com/category/civil-engineering-articles/failure-mechanisms/
http://civildigital.com/response-rescue-operation-bhuj-earthquake-india/
http://civildigital.com/compressive-strength-concrete-concrete-cubes/
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This brittle failure was examined by many researchers in the form of tests, analytical models, 

and finite element analyses. Several researchers proposed empirical equations based on tests 

observations, which provide the basis of the existing design codes [4], [5], [6], [7].  

The existing punching shear testing database, even though it is large, cannot address all 

aspects of punching shear stress transfer mechanisms. Therefore, in modern research in 

structural engineering, finite element analyses (FEA) are essential for supplementing 

experimental research in providing insights into structural behaviour, and, in the case 

presented, on punching shear transfer mechanisms. The work described herein, is on 

modelling concrete slab-column using a 3D analysis, in order to investigate the behaviour of 

this structures and to verify a new model for punching proposed by Prof. Antonio Marí Bernat 

[8]. 

Flat slabs simulations with nonlinear finite element analyses have been performed using the 

software MIDAS FEA. Initially, have been conducted experiments in order to validate if the 

modelling technique, the FE-analyses showed good agreement for peak loads and structural 

responses during loading. 

A geometrically simple prototype of a reinforced concrete slab supported on its centre by a 

column was used in the present work, then other two slabs (edge and corner) were simulated. 

The critical events that preceded punching failure were similar to what had been observed in 

previous investigations where concrete columns were employed.  

The sensitivity of the material and the FEA model to various parameters is discussed. The 

constitutive model is described in detail, including the effects of various material parameters 

on the accuracy of the analysis. Then, the finite element simulation results are presented. The 

numerical results are compared to the test results in terms of forces and deflections. 

The aim of this work is to present the effectiveness of the proposed calibrated finite element 

model in describing and analyzing punching shear tests by identifying key parameters of the 

model. Furthermore, a new mechanical model for the estimation of the punching shear 

strength of reinforced concrete slabs without shear reinforcement is presented. The model is 

an adaption of a previously existing model for shear strength, developed by the authors        

A.Marí, A.Cladera, J. Bairán, C. Ribas, E. Oller, N. Duarte [8], which incorporates the 

contribution of the main shear resisting mechanisms. This model’s accuracy is strengthened 

by comparing its hypothesis of multiaxial state of stresses in the compressed zone with the 

FEA results, which shows a satisfactory similarity in terms of stresses distribution.  
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Chapter 2 

State of knowledge 

2.1  Punching shear models 

Several researchers have conducted laboratory tests to study the structural behaviour of 

reinforced concrete slabs supported on columns. In the available literature two major groups 

of tests can be distinguished. The first group deals with punching failure where the shear 

stress in the vicinity of the column is assumed to be uniform, which is the case for most 

interior columns. The other group deals with non-symmetric shear stresses around the column 

due to unbalanced moments over the column.  

The available experiments can be divided into yet another two groups; those with and those 

without shear reinforcement. In the present study shear reinforced flat slabs have not been 

treated.  

In this chapter are presented the principal models that have been developed through the past 

decades. 

2.1.1 Kinnunen and Nylander (1960) 

The structural response of reinforced concrete slabs supported on interior columns was 

experimentally investigated by Kinnunen and Nylander (1960) [4]. The test specimens 

consisted of circular slab portions supported on circular columns placed in its centre and 

loaded along the circumference. Kinnunen and Nylander observed two main failure modes; 

namely, yielding of the flexural reinforcement at small reinforcement ratios (failure in 

bending) and failure of the slab along a conical crack within which a concrete plug was 

punched. 
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The initiation of cracking was similar in all the test specimens that suffered punching failure, 

starting with the formation of flexural cracks in the bottom surface of the slab caused by 

moments. 

 

 

Figure 2.1: Crack propagation for Kinnunen's and Nylander's tests on centrically supported slabs. 

On the basis of their test results, Kinnunen and Nylander developed a rational theory for the 

estimation of the punching shear strength in the early 1960s based on the assumption that the 

punching strength is reached for a given critical rotation  , not only did the model agree well 

with the test results, it was also the first model that thoroughly described the flow of forces.  

Their observations during the tests led to the mechanical model, illustrated in Figure 2.2. 

They divide the slab outside the shear crack into sectors/elements between radial cracks. Each 

element is assumed to act as a rigid body supported by an imaginary conical shell in the part 

of the slab immediately above the column (see Figure 2.2). 

Failure is assumed to occur when the stress in the conical shell and the compression strain in 

the tangential direction reach critical values. 
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Figure 2.1: Mechanical model developed by Kinnunen and Nylander (1960). 

Kinnunen in 1971 continued his research on punching shear with an investigation on flat slabs 

supported at their edges [5]. 

Thus far, this proposal remains one of the best models for the phenomenon of punching. 

Subsequently, some improvements were proposed by and Carl Erik Broms (1990) [6] to 

account for size effects and the effect of increasing concrete brittleness. 

2.1.2 Broms (1990) 

While very elegant and leading to good results, this model was never directly included in 

codes of practice because its application is too complex. Punching failure is here treated in a 

manner similar to Kinnunen and Nylander's but which utilizes generally recognized values for 

concrete properties, different compression zone heights in radial and tangential directions, and 

more realistic position for the bottom of the stable shear crack. 

The author’s hypothesis is that punching occurs when the concrete in compression near the 

column is distressed by either a high circumferential strain or a high radial stress cV  and V  

denote the corresponding ultimate capacities. 

For the high tangential compression strain failure mechanism is considered a uniaxially 

compressed cylinder specimen. It behaves elastically up to a strain of 0.0008, so when the 

specimen is strained to more than 0.0008, the behaviour of the specimen changes. 

 Now consider the compression zone in a flat plate between the inclined shear crack and the 

column face (Figure 2.2).  
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 Figure 2.1: High tangential compression strain failure mechanism by Broms (1990). 

If the tangential concrete strain exceeds 0.0008 macro cracks will start to form. It is then 

possible for the inclined shear crack to propagate to the column face and cause punching to 

occur.  

Small slabs exhibit a concrete strain capacity greater than 0.008 due to size effect and 

different concrete grades show an increasing brittleness (decreasing strain capacity) with 

increasing strength. This two conditions are assumed to affect the critical value cpu  , once the 

critical value cpu  is determined, then the punching failure load cV  can be calculated. 

The second punching failure mechanism is the high radial compression stress failure 

mechanism. Looking at the compression zone in the vicinity of the column, as shown in 

Figure 2.2. The column force V is transferred to the slab via inclined radial forces that must 

pass under the root of the shear crack. 
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Figure 2.2: High radial compression stress failure mechanism by Broms (1990). 

The inclination of the crack is assumed to be 30 degrees, which is in conformity with test 

results. The radially compressed concrete is assumed to form an imaginary conical shell with 

constant thickness. 

Punching is assumed to occur when the stress in the conical shell reaches the value 1.1 'cf

(where 'cf is the specified compressive strength of concrete in psi) at the bottom of the shear 

crack. The factor 1.1 is applied since some strength increase can be anticipated due to the 

concrete being biaxially stressed. The punching load V  can now be determined by the 

condition of equilibrium in the vertical direction. 

2.1.3 Guandalini, Burdet and Muttoni (2009) 

Muttoni (2008) [9] gave evidence supporting the role of the shear critical crack in the 

punching shear strength. Muttoni presented a mechanical explanation of the phenomenon of 

punching shear on the basis of the opening of a critical shear crack. It leads to the formulation 

of a new failure criterion for punching shear based on the rotation of a slab. This criterion 

correctly describes punching shear failures observed in experimental testing, even in slabs 

with low reinforcement ratios. The critical shear crack theory describes the relationship 

between the punching shear strength of a slab and its rotation at failure. After reaching a 

maximum level, the radial compressive strain decreases; and shortly before punching, tensile 
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strains may be observed. These strains can be explained by the development of an elbow 

shaped strut (Figure. 2.3) with a horizontal tensile member along the soffit due to the 

development of the critical shear crack. 

  

Figure 2.3: Test by Guandalini and Muttoni: (a) cracking pattern of slab after failure; (b) theoretical strut 

developing across the critical shear crack; (c) elbow-shaped strut; and (d) plots of measured radial strains in 

soffit of slab as function of applied load, Muttoni (2008). 

Also, experimental results on slabs with a particular lay-out of circular reinforcement in 

which only radial cracks form and in which the formation of circular cracks is avoided, 

confirmed the role of the critical shear crack. 

Then in 2009 the critical shear crack theory is described in Guandalini, Burdet and Muttoni. 

This theory is based on the assumption that the shear strength of members without transverse 

reinforcement is governed by the width and roughness of an inclined shear crack that 

develops through the inclined compression strut carrying shear. In two-way slabs the width 

cw  of the critical shear crack is assumed proportional to the slab rotation   and the effective 

depth d of the member (Fig. 2.4). 
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Figure 2.3: Slab deflection during punching test: (a) measured values of w at top and bottom face of a slab tested 

by Guandalini, Burdet and Muttoni (2009); and (b) interpretation of measurements according to critical shear 

crack theory. 

The failure load is obtained at the intersection (Figure. 2.4) of the failure criterion with the 
load-rotation curve of the slab. 

  

Figure 2.4: Design procedure to check punching strength of slab. 
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According to Muttoni, the load-rotation relationship can, in a more general case, be obtained 

from a nonlinear numerical simulation of the flexural behavior of the slab, or in the axial 

symmetric case by a numerical integration of the moment-curvature relationship. 

An advantage of this method is that it finds the value of the rotation capacity of the slab, and 

thus of its ductility. Due to the relation between the shear carried across a crack and the depth 

of a section, this method takes the size effect into account. 
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2.2  Code provisions 

2.2.1  Eurocode 2, EN 1992-1-1: 2004 [10] 

Punching shear can result from a concentrated load or reaction acting on a relatively small 
area, called the loaded area loadA   of a slab or a foundation. The shear resistance should be 
checked at the face of the column and at the basic control perimeter 1u . 

An appropriate verification model for checking punching failure at the ultimate limit state is 

shown in Figure 2.5. 

 

 

Figure 2.5: Verification model for punching shear at the ultimate limit state 

The basic control perimeter 1u  may normally be taken to be at a distance 2d from the loaded 

area and should be constructed so as to minimize its length (Figure 2.6). 
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The effective depth of the slab is assumed constant and may normally be taken as: 

 
2

y z
eff

d d
d


     

 
(2.1) 

where yd  and zd   are the effective depths of the reinforcement in two orthogonal directions. 

 

Figure 2.6: Typical basic control perimeters around loaded areas 
 

Control perimeters at a distance less than 2d should be considered where the concentrated 

force is opposed by a high pressure (e.g. soil pressure on a base), or by the effects of a load or 

reaction within a distance 2d of the periphery of area of application of the force. 

For a loaded area situated near an edge or a corner, the control perimeter should be taken as 

shown in Figure 2.7, if this gives a perimeter (excluding the unsupported edges) smaller than 

that obtained from Figure 2.6 above. 

 

Figure 2.7: Basic control perimeters for loaded areas close to or at edge or corner 

The control section is that which follows the control perimeter and extends over the effective 

depth d. For slabs of constant depth, the control section is perpendicular to the middle plane 

of the slab.  
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The design procedure for punching shear is based on checks at the face of the column and at 

the basic control perimeter 1u .  

The design shear stress (MPa) along the control sections, is ,Rd cV : 

,Rd cV  is the design value of the punching shear resistance of a slab without punching shear 
reinforcement along the control section considered. 

 
The check that should be carried out is:    ,Ed Rd cV V  

Where the support reaction is eccentric with regard to the control perimeter, the maximum 

shear stress should be taken as: 

1

Ed
Ed

Vv
u d

                                                                                                                          (2.2) 

Where: 

d  is the mean effective depth of the slab, which may be taken as   / 2y zd d  where: 

yd , zd  is the effective depths in the y- and z- directions of the control section. 

1u  is the length of the control perimeter being considered. 

For structures where the lateral stability does not depend on frame action between the slabs 

and the columns, and where the adjacent spans do not differ in length by more than 25%, 

approximate values for   may be used as it shown in Figure 2.8.           

  

Figure 2.8: Recommended values of β. 
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The design punching shear resistance [MPa] may be calculated as follows: 

   
1/3

, , 1 min 1100Rd c Rd c l ck cp cpv C k f k v k                                                             (2.3) 

Where: 

ckf  is the characteristic concrete strength in MPa.  

d is the effective depth in mm. 

2001 2k
d

       

0.02l ly lz         is the length of the control perimeter being considered. 

ly lz   relate to the bonded tension steel in y- and z- directions respectively. The values ly

and lz  should be calculated as mean values taking into account a slab width equal 

to the column width plus 3d each side. 

  / 2cp cy cz      

, cy cz   are the normal concrete stresses in the critical section in y- and z directions (Mpa, 
positive if compression): 

 
,Ed y

cy
cy

N
A

    and  ,z
z

Ed
c

cz

N
A

   

 

,Ed yN  and ,zEdN  are the longitudinal forces across the full bay for internal columns and the 

longitudinal force across the control section for edge columns. The force 

may be from a load or prestressing action. 

cA   is the area of concrete according to the definition of EdN   

The values of the parameters depend on the National Annex. The recommended values are: 

,
0,18

Rd c
c

C


     with 1.5c    

3/2 1/2
min 0.035 ckk f    

1 0.1k    

The punching resistance of column bases should be verified at control perimeters within 2d 

from the periphery of the column. 
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2.2.2 fib Model Code 2010 

The provisions of fib Model Code 1990 are the basis of the present Eurocode 2 as only minor 

adjustments were carried out. The fib Model Code 2010 [11] provides a new design concept 

for punching shear based on critical shear crack theory developed by Muttoni (2008) [9]. In 

this physical In this physical model with empirical adjustment factors, the punching shear 

resistance depends on the width of the critical shear crack, which is related to the slab 

rotation. The design model was derived from punching shear tests on isolated flat slab 

elements, but the model can also be used for ground slabs and footings. 

As the Eurocode 2, the check that should be carried out is:    ,Ed Rd cV V  

, 0
ck

Rd c v
c

f
V k b d


                                                                                                           (2.4)  

Where: 

ckf  is the characteristic concrete strength in MPa.  

vd   is the shear resisting effective depth (distance between centroid of flexural reinforcement 
and surface at which slab is supported. 

1.5c    is the partial safety factor for concrete.  

The parameter k considers the influence of the width of the critical shear crack and depends 

on the slab rotation   and the maximum aggregate size. 

 
1

1.5 0.9   0.6dgk d k 


                                                                                            (2.5) 

Where: 

d  is the mean value of the flexural effective depth in mm. 

 
32 0.75

16dg
g

k
d

 


 (with gd  in mm), considers the influence of the aggregate size. 

The critical shear resisting perimeter can be estimated as: 

0 1,e redb k b                                                                                                                            (2.6)                                    

ek  accounts for a non-symmetrical shear stress distribution along the critical perimeter. In 
non-sway systems and where differences between adjacent spans are <25%, this factor 
may be taken as 0.9, 0.7 and 0.65 for interior, edge and corner columns, respectively.  
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1,redb  is the basic control perimeter at a distance 0.5d from the periphery of the loaded area 
(Figure 2.9). 

 

  

Figure 2.9: Design perimeters according to Eurocode 2 (a) and fib Model Code 2010 (b). 

The Model Code 2010 introduced different levels of approximation (LoA) from LoAI to 

LoAIV, with increasing accuracy of determination of the slab rotation  . 

As LoA increases, so the calculated slab rotations generally decrease, leading to higher 

punching shear capacities. 
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2.2.3 ACI 318-2008 [12] 

The critical section for shear in slabs subjected to bending in two directions follows the 

perimeter at the edge of the loaded area. The shear stress acting on this section at factored 

loads is a function of 'cf  ( 'cf is the specified compressive strength of concrete in psi) and 

the ratio of the side dimension of the column to the effective slab depth. A much simpler 

design equation results by assuming a pseudo critical section located at a distance / 2d  from 

the periphery of the concentrated load. 

When this is done, the shear strength is almost independent of the ratio of column size to slab 

depth. For rectangular columns, this critical section was defined by straight lines drawn 

parallel to and at a distance / 2d  from the edges of the loaded area. 

The nominal shear strength cV  shall be taken as the smallest of (ACI 318-08 §11.11.2.1, in 

US customary units): 

0
42 'c cV f b d


 
  
 

                                                                                                      (2.7) 

0
0

2 's
c c

dV f b d
b



 

  
 

                                                                                                    (2.8) 

04 'c cV f b d                                                                                                                (2.9) 

Where: 

 'cf  is the specified concrete cylinder strength, in psi. 

    is the ratio of the long side to the short side of the column, concentrated load of reaction 

area. 

    is the factor to account for concrete density, to be taken as 1 for normal density concrete. 

0b    is the perimeter of the critical section for shear. 

s   in interior columns is equal to 40, edge columns is equal to 30 and corner columns is 

equal to 20. 

d   the distance from the extreme compression fiber to the centroid of tensile reinforcement. 
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2.2.4 Comparison of code provisions  

Gardner (2005) [13] compared experimental data with the provisions of ACI 318-05 [12], 

Figure 2.10 and Figure 2.11, and EN 1992-1-1:2003 10], Figure 2.12.  

According to Gardner, comparison of the code provisions with experimental results is not 

straightforward because the code expressions were developed to be conservative and use 

specified or characteristic concrete strengths, reported for experimental studies. 

The code punching shear predictions were calculated using the reported mean concrete cylinder 

strengths. A second note to the data is that the median thickness of the tested slabs was 140 mm 

(5.51 inches), with a maximum of 320 mm (12.6 inches), which is smaller than slabs used in 

practice.  

The data show that only ACI 318-05 with a rounded shear perimeter meets the criterion of a 5% 

fractile value greater than one. The results obtained by using EN 1992-1-1:2003 seemed to be 

unconservative, but the coefficient of variation was smaller than for the results obtained by using 

ACI 318-05. 

 

  

Figure 2.10: Comparison of test/predicted using ACI 318-05 with rounded corners shear perimeter, by Gardner 
(2005). 
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Figure 2.11: Comparison of test/predicted using ACI 318-05 with assumption of square shear perimeter, by 
Gardner (2005). 

 

  
 

Figure 2.12: Comparison of test/predicted using CEB-FIP MC90 and EN 1992-1-1:2003, by Gardner (2005). 
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Chapter 3 

Description of a new punching shear mechanical model for 

RC slabs  

Even though shear punching of slabs has been experimentally and theoretically studied from 

long time, there is not yet a consensus about the resisting mechanisms and the modes of 

failure that take place.  

This is evidenced by the differences in the treatment of the shear punching strength in the 

most important codes provisions, such as EC2 [10] and ACI [12], these differences concern 

some essential design parameters such as the position of the critical perimeter or the minimum 

and maximum distances to the column faces where the punching reinforcement should be 

placed. 

It can be said, that many of the punching codes provisions are based on empirical models, 

adjusted to tests results, but without a consistent theory behind. 

Furthermore, for the case of slabs with transverse reinforcement, the code provisions provide 

results very disperse and even unsafe when compared with experimental results, as evidenced 

in chapter 2.  

Most existing punching tests are not representative of real structures, since they only represent 

a part of the slab near the column (usually internal column, and much less side or corner 

columns), and they do not take into account structural effects such as redistribution of 

moments due to cracking or membrane effects. 

Certainly, advanced numerical models are capable to simulate the local and global observed 

behaviour. However, there is still a lack of objectivity in the selection of the parameters such 
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as constitutive equations, cracking, size effect, mesh configuration, bond between concrete 

and reinforcement, etc. which drives to a large variability in the results. Numerical methods 

are also too time consuming for being used in daily design.  

Since punching is a brittle and undesirable failure, in order to reach the required safety level 

without an unaffordable cost, simplified but safe and accurate design models are needed. Such 

models should be capable to capture the most important phenomena that take place and 

should be verified with available experimental results. As described in chapter 2, Kinnunen 

and Nylander (1960) [4] were the first ones to set the theoretical bases for a sound analysis of 

the problem; Broms (1990) [6] then focused his research on the multiaxial stress state of the 

problem, faced the size effect and formulated a model for eccentrically loaded columns; 

finally Muttoni (2008) [9] applied the critical shear crack theory to punching.  

However, some important aspects are still in discussion, for example:  

1) A clear criterion to define the position of the critical perimeter;  

2) The efficiency of the shear reinforcement used, which depends on its position and on its 

anchorage capacity;  

3) The influence of the presence of punching reinforcement on the concrete contribution (due 

to the change in the crack inclination);  

4) The influence of the moment transferred from the slab to the column on the punching 

strength.  

In this chapter, a new mechanical model for the estimation of the punching shear strength of 

reinforced concrete slabs is presented. The model is an adaption of a previously existing 

model (compression chord capacity model) for shear strength, developed by the authors       

A. Cladera, A. Marí, J. Bairán, C. Ribas, E. Oller, N. Duarte [8], which incorporates the 

contribution of the main shear resisting mechanisms. For this purpose, the differences 

between the shear and punching resistant mechanisms are identified and accounted for into 

the equilibrium and compatibility equations and into the failure criterion. The model is 

validated by comparing their results with those available punching tests on slabs with and 

without punching reinforcement. The results of the model have been compared with those of 

two large punching databases, without and with shear reinforcement [14] and general good 

agreement has been obtained. Finally, conclusions are drawn about the practical applicability 

of the model and the possibilities of its extension. First of all, it is necessary a brief 

description of the previously existing model for shear and then will be described the 

adaptation for the punching phenomena. 
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3.1 The compression chord capacity model 

This model incorporates in a compact formulation, the contributions of the concrete 

compression chord, the cracked web, the dowel action and the shear reinforcement.  

The mechanical character of the model provides valuable information about the physics of the 

problem and incorporates the most relevant parameters governing the shear strength of 

structural concrete members. 

3.1.1 Theoretical background 

The model consider that the shear strength, uV  (eq. 3.1) is the sum of the shear resisted by 

concrete and by the transverse reinforcement sV , furthermore it must be lower than the shear 

force that produce failure in the concrete struts, ,maxuV .  

The concrete contribution is explicitly separated into the shear resisted in the uncracked 

compression chord cV , shear transferred across web cracks wV  and the dowel action in the 

longitudinal reinforcement lV . The importance of the different contributing actions is 

considered to be variable as cracks open and propagate.  

   u c w l s ctm c w l s ctmV V V V V f b d v v v v f b d                                                          (3.1) 

variables cv  , wv  , lv  ,  and sv  are the dimensionless values of the shear transfer actions considered in 

the multi-action model or background mechanical model, (Eq. 3.2, 3.3, 3.4a,b, 3.5). 
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bb xv v K
b d b


    

       
    

                                                                  (3.2) 
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Where: 

 1.2 0.2 0.65a     considers the size effect in the compression chord, (a in meters); 

0 0 cp

cp ctm

x h xx d
d d d h f





  
    

  
   is the neutral axis depth ratio with 0 21 1e l

e l

x
d

 
 

 
     

 

 ;  

, 2v eff w fb b h b      if fx h   

 , 1v eff v wb b b       if fx h ,     

2 3

3 2f fh h
x x


   

    
   

; 

 
2

cos
1 0.3 s p

p
ctm

P x d d
K

f bd
  

    is the strength factor related to crM ; 

0.85cot 2.5s

s

d
d x

  


  is the critical crack inclination; 

For the maximum shear strength due to the strut crushing, (Eq. 3.6), this model adopts the 

formulation of the current EC2, derived from plasticity models, but assuming that the angle of 

the compression strut is equal to the angle of the critical crack given in (Eq. 3.5). 

 ,max 1 2

cot
1 cotu cw w cmV b zv f 







                                                                                               (3.6) 

Strut crushing is not a common failure mode, but it is possible in cases when larger 

contribution of sV  exists, so the verification is introduced.  

As larger values of sV  implies large amount of stirrups, usually this will occur with smear 

cracking in the web. Therefore, Eq. 3.6 represents a check that another failure mode, strut 

crushing, prevents the occurrence of the compression chord failure.  

Note that these expressions do not include partial safety factors and that depend on mean 

values of the mechanical properties. 

A main assumption of the model is to consider that failure occurs when, at any point of the 

compression chord, the principal stresses ( 1 , 2 ) reach the Kupfer’s biaxial failure envelope, 

in the compression-tension branch (Figure 3.1).  

This assumption is based on the experimental observation that when this happens, the 

concrete in the compression chord, subjected to a multi-axial stress state, initiates softening, 

reducing its capacity as the crack propagates. 
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Figure 3.1: Adopted failure envelope for concrete under a biaxial stress state. 
 

When the load is increasingly applied, flexural cracks appear as the bending moment 

increases. It is assumed that the critical crack is the closest crack to the zero-bending moment 

point and that it starts where the bending moment diagram at failure reaches the cracking 

moment of the cross section. The critical section, where failure occurs, is assumed to be 

located where the critical crack reaches the neutral axis depth. This assumption is justified 

because any other section closer to the zero-bending moment point has a bigger depth of the 

compression chord, produced by the inclination of the strut and will resist a higher shear 

force.  

  
 

Figure 3.2: Critical shear crack evolution and horizontal projection of the first branch of this crack. 
 

On the other hand, any other section placed between this section and the maximum moment 

section will have the same depth of the compression chord but will be subjected to higher 

normal stresses and, therefore, the uncracked concrete zone will have a higher shear transfer 

capacity. 
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It is possible to consider the horizontal projection of the first branch of the flexural-shear 

critical crack to be equal to 0.85d, this is equivalent to considering that its inclination is 

approximated as in (Eq. 3.5). 

As a result of the above assumptions, the distance between the zero bending moment point 

and the initiation of the critical crack is /cr cr us M V , and the position of the critical section 

will be 0.85u cr ss s d  , which is usually a little higher than sd .  

This is the reason why for design purposes, ds is adopted as the position of the section where 

shear strength must be checked for reinforced concrete members. 

In prestressed members, the cracking moment is higher and the position of the critical crack is 

shifted away from the zero-bending moment point with respect to members with ordinary 

reinforcements. For this reason, it is proposed that the shear strength is checked at a section 

placed at a distance  1 0.4 /s cp ctmd f .  

The higher cracking moment in a prestressed concrete section, with respect to a reinforced 

concrete section, is considered in the background mechanical model by means of the strength 

factor pK  (Eq. 3.2). 

Figure 3 plots, in a schematic way, the different contributing actions in the proposed model 

(Figure 3a, 3b) and compares them with the contributing actions in the Level III of 

Approximation of Model Code 2010 (Figure 3c), and the steel contribution of a variable angle 

truss model (Figure 3d), as the one given in EC2 for members with shear reinforcement.  

The different models are not contradictory; in fact, the fundamental difference is that they 

have been derived from different simplifying assumptions. The model developed by the 

authors considers that the maximum load occurs slightly after the first branch of the critical 

crack reaches the neutral axis depth, as also proposed by [15]. Other models take into account 

the full crack development.  

When the second branch of the critical crack is developed, the aggregate interlock in the first 

branch is activated. It could be understood that the shear transferred by the non-cracked 

concrete zone in this model (Figure 3a, 3b) is approximately equal to the contributing actions 

in the other models that takes place after the development of the second branch of the critical 

crack (aggregate interlock or stirrups crossing that zone). 
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Note that the angle   (Figure 3a, 3c) is the angle of the critical crack, and it is an angle fixed 

by the assumptions carried out in the models.  

However, the angle   in Figure 3d is the angle of the compression field, an equilibrium angle 

that can be chosen by the designer. 

 

  
 

Figure 3.3: Shear contributing actions at failure. a) Background mechanical model for elements without 
stirrups. b) Background mechanical model for elements with stirrups. c)Model Code 2010 model. 
d)Variable angle truss model. 
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3.1.2 General and minor changes to simplify the procedure 

The theoretical background of the new mechanical model has been presented in the previous 

section. However, for design purposes, some simplifications are necessary in order to make 

the model easier to use in daily engineering practice. 

Considering that when shear-flexure failure takes place, both the residual tensile stresses, wv

(Eq. 3.3), and the dowel action, lv  (Eq. 3.4), are small compared to the shear resisted by the 

uncracked zone, cv  (Eq. 3.2), the two first mentioned contributing actions, wv and lv  have 

been incorporated into cv  (Eq. 3.2). 

The resulting equation is presented in Eq. 3.7: 

   (2/3)
,0.3 1u c w l ctm s ck v eff s Vcu

xV v v v f b d V f b d V
d

                                          (3.7) 

 
All the parameters of Eq. 3.7 have been defined previously and Vcu  is a non-dimensional 

confinement factor which considers the increment of the shear resisted by the concrete caused 

by the stirrup confinement in the compression chord (Eq. 3.8).  

This parameter will be taken constant and equal to 0.4 for simplicity reason in the type-code 

expression, although its actual value is generally between 0.2 and 0.6 for normal members. 

,0.5 1 0.4v eff
Vcu

w

bb x
b d b


 

    
 

                                                                                         (3.8) 

 

Note that the influence of normal forces in Eq. 3.7 is considered by the parameter x/d. The 

strength factor pK , which consider the higher cracking moment in a prestressed concrete 

section with respect to a reinforced concrete section, has been considered equal to 1.0 due to 

its relatively low influence and for simplicity reasons. 

Eq. 3.7 depends on the neutral axis depth ratio, x/d. This value may be computed using the 

value taken from Eq. 3.2 disregarding the compression reinforcement, but it may be also 

simplified as proposed in Eq. 3.9.  

 
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                                                                          (3.9) 
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Consequently, the model considers the influence of the amount of the longitudinal tensile 

reinforcement in an indirect way, through the variation of the neutral axis depth. An increase 

of the amount of the longitudinal reinforcement would increase the neutral axis depth, 

increasing the shear strength and decreasing the inclination of the critical crack.  

The longitudinal compression reinforcement is disregarded in Eq. 3.9 because its effect 

decreasing the neutral axis depth but is compensated by the increase of the shear strength 

caused by the presence of steel in the concrete compression chord. 

Eq. 3.7 has been derived taken into account that, in most beams, the residual tensile stresses 

wv , and the dowel action lv , are small compared to the shear resisted by the uncracked zone 

cv . However, in some members, (e.g. one-way slabs) with low levels of longitudinal 

reinforcement and without stirrups, this assumption would lead to too conservative results, as 

the dimensionless shear contribution due to residual stresses along the crack may be 

comparable to the contribution of the uncracked zone, since x/d is small.  

In this situation, it is possible to derive an equation for the minimum shear strength ,mincuV  that 

takes explicitly into account the residual tensile stresses action. This expression will be very 

useful for elements with low amounts of longitudinal reinforcement.  

The resulting equation for this minimum shear strength is given by Eq. 3.10, in which x/d 

shall not be taken higher than 0.20. 

  (2/3)
,min

0

200.25cu c w ctm ck w
xV v v f b d f b d
d d


 

        
 

                                                  (3.10) 

The influence of the compression flange is considered in the general model by means of the 

effective shear width given by the values in Eqs. 3.2. In the case in which fx h , the 

effective width shall be interpolated between the web width wb , and the effective width in the 

compression flange vb  . 

The value of ,v effb  ,due to its complexity in Eq. 3.2, can be calculated with the simplified 

expression (Eq. 3.11): 

, 2v eff v w fb b b h b                      if fx h                                                                    (3.11 a) 
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           if fx h                                                                    (3.11 b) 
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These values are compared with the ones of Eq. 3.2 in Figure 3.4 for some T-beams with 

compression flanges.  

  
 

Figure 3.4: Comparison between exact and simplified relative effective width for shear strength 
calculations. 

The results shown that the error between the original formulation and the simplification is 

generally lower than 10%. 

3.1.3 Size effect 

Due to the brittle character of the failure that takes place when the second branch of the 

critical crack propagates, it is necessary to take into account the size effect.  

The empirical factor proposed by other authors [16] was adopted in the background 

mechanical model, by means of the term   which can be assimilated to the size effect of a 

splitting test. According to such model, the size effect on the shear failure of slender beams 

seems to depend on the size of the shear span a, that would be proportional to the diameter of 

the specimen of a hypothetical splitting test that occurs at the beam compression chord, 

between the point where the load is applied and the tip of the first branch of the critical shear 

crack. The value of   given by Eq. 3.2 was derived from a previous experimental work 

carried out by Hasegawa et al. [17], in which a linear relationship was proposed for the size 

effect.  
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However, this work was lately re-examined by Bažant et al. [18], suggesting that the splitting 

tensile strength followed the size effect term developed by fracture mechanics with an 

asymptote, as shown in Eq. 3.12:  

0

'max ,
1

t
N y

B f
 



 
    

                                                                                                     (3.12) 

Where 'tf  is a measure of material tensile strength, 0  is proportional to the diameter of the 

cylinder, B is an empirical constant and y  is the asymptote. Moreover, the shear strength of 

structural concrete members is affected, not only by the element size, but also by its 

slenderness a/d. For the previous reasons, a new empirical size effect term is proposed which 

depends on d and a/d. The factor depending on d will be taken as the factor proposed by ACI 

Committee 446 [19], Eq. 3.13, which is an expression similar to the one on the left inside the 

parenthesis in Eq. 3.12.  
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                                                                                                                        (3.13) 

The new combined size and slenderness effect factor is given in Eq. 3.14: 
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                                                                                                     (3.14) 

Figure 3.5 compares Eq. 3.14 with previous size effect factor   given by Eq. 3.2. 

  
 

Figure 3.5: Comparison between size effect term given by Eq. 3.14 and new size effect term given by 
Eq. 3.2. 
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3.1.4 Simplified shear design 

The design procedure of members with or without shear reinforcement shall verify 

equilibrium and shall consider the influence of the stresses transferred across cracked concrete 

wV , by the compression chord cV , and the contribution of the shear reinforcements sV  and 

longitudinal reinforcements lV , (Figure 3.6). 

 

 Figure 3.6: Shear contributions and notation for simple supported beam and cantilever beam. 

Shear strength shall be checked at least at a distance  1 0.4 /s cp ctmd f  from the support 

axis and at any other potential critical section, where /cp Ed cN A   is the mean concrete 

normal stress due to axial loads or prestressing (compression positive) and ctmf  is the mean 

concrete tensile strength, not greater than 4.60 MPa. 

The inclination of the compression strut is considered equal to the mean inclination of the 

shear crack, computed as follows:  

0.85cot 2.5s

s

d
d x

  


                                                                                                            (3.15) 

where x is the neutral axis depth of the cracked section, obtained assuming zero concrete 

tensile strength. For reinforced concrete members without axial loads, 0x x  (see Eq. 3.9). 
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The shear strength, is the smaller value given by Eqs. 3.16 and 3.17  

Rd cu suV V V                                                                                                                        (3.16) 

,max 1 2
cot cot 

1 cotRd cw w cdV b z v f  








                                                                                     (3.17) 

Where cuV  is the shear resisted by the concrete considering the different contributions given in 

(Eq. 3.18), cu c l wV V V V     
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xV f b d V K f b d
d d

 
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    
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                                               (3.18) 

And suV  the shear resisted due to the shear reinforcement:  

   1.4 cot cotsw
su ywd s

AV f d x sen
s

                                                                         (3.19) 

  is a combined size and slenderness effect factor, given by Eq. 3.14. 

The parameter ,v effb  shall be calculated using Eqs. 3.11. 

For the determination of cdf  in Eq. 3.18, ckf  shall not be taken greater than 60 MPa. cK  is 

equal to the relative neutral axis depth, x/d, but not greater than 0.20 when computing ,mincuV .  

The constant 1.4 is not a calibration factor, but a term to take into account the confinement of 

the concrete in the compression chord caused by the stirrups, as shown in Eq.3.8. The rest of 

terms can be seen in the notations. Shear reinforcement is necessary when the shear design 

force exceeds the shear resisted by the concrete without shear reinforcement given by Eq. 

3.18.  

Then, the necessary shear reinforcement is: 

   1.4 cot cot
sw Ed cu

ywd s

A V V
s f d x sen  




  
                                                                      (3.20) 

The additional tensile force tdF  in the longitudinal reinforcement due to the shear force EdV  

may be calculated from:  

 cot 0.5 cot cottd Ed suF V V                                                                                    (3.21)  
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The tensile force of the longitudinal reinforcement,  /Ed tdM z F   should be taken not 

greater than  ,max /Ed tdM z F  , where ,maxEdM is the maximum moment along the beam.  

In elements with inclined prestressing tendons, longitudinal reinforcement at the tensile chord 

should be provided to carry the longitudinal tensile force due to shear defined by Eq. 3.21. 

 

3.2 Adaptation of the compression chord capacity model to punching 

shear 

The model presented before was created to predict shear resistance for reinforced concrete 

slabs and beams. In order to adapt this mechanical model for the estimation of the punching 

shear strength it is necessary an adaption of the existing model for shear strength.  

For this purpose, the differences between the shear and punching resistant mechanisms are 

identified and accounted for into the equilibrium and compatibility equations and into the 

failure criterion. The model is validated by comparing their results with those available 

punching tests on slabs with and without punching reinforcement. 

3.2.1 Relevant differences between shear and punching failures which must be 

accounted for. 

Even though punching may be considered as a slab shear failure around a column, the 

following differential aspects must be taken into account when formulating the punching 

strength of a slab: 

 Position of the critical crack and of the critical section  

In a two-way slab supported by isolated columns, the bending moment law does not follow 

the same pattern than in a beam (see Figure 2), the section where the cracking moment is 

reached is placed at a distance of the column face, generally cracks  less than 2d.  

Therefore, the critical crack develops in a “D” region, following an almost straight path from 

its initiation to the intersection of the compressed face of the slab with the support perimeter.  
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Figure 3.7: Position of critical crack and critical perimeter geometry. 

Then, the critical section will be that where the critical crack reaches the neutral axis, placed 

at a distance to the column face given by Eq. 3.22: 

cotcrit crack
xs x s
d

                                                                                                          (3.22) 

Equaling the radial bending moment per unit width  rm r  to the cracking moment per unit 

width, the value of cracks  can be obtained.  

According to the elastic theory of plates, for a uniformly distributed load,  rm r  is given by 

Eq. 3.23:  

   
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r crack crack crack crack col
V rm r m r r e s r r

r






                              (3.23) 

Where EdV  is the total shear transferred by the slab to the column,   is the Poisson 

coefficient, 0r  and r  are the distances to the column axis from the zero bending moment 

point and from the point where the moment is calculated, respectively, and colr  is the radius of 

a column with equal perimeter than the actual column.  

Combining Eq. 3.22 and Eq. 3.23, the distance from the critical perimeter to the column face 

and the inclination of the critical crack are given by Eq. 3.24: 
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                                                                            (3.24) 

cot 2.5cracks
d

                                                                                                                  (3.25) 

Eq. 3.24 shows that the position of the critical perimeter, it depends on /colr d , on 0 / colr r  

(and, therefore from span length and from the bending moments law) on / Vcrack Edm  (thus 

from the column depth, the concrete tensile strength and the shear force transferred to the 

column) and from x/d. 

Since for design purposes it is desirable a simpler way to define the critical perimeter, two 

studies have been done to estimate the value of /crits d : 

1) A study of the cases included in the database of experimental tests [20]. 

2) A parametric study on 648 cases of typical slabs and columns including two slab concrete 

strengths, three span lengths, four slab slenderness /L d , three total load levels, three bending 

moments distributions, and three values of the column relative axial ratio  /d cd cN f A  .  

The results of  /c r i ts d obtained in the tests were slightly higher than in the simulation, since 

the reinforced amount in the tests was forced to avoid flexural failure. The average value was 

0.55 so 0.5crits d  will be conservatively adopted in this work. So, if we suppose the critical 

distance 0.5d from the support, the length became d  (Eq. 3.26). 

0.5 0.5d d d x
x d x x




 
    

  
                                                                                         (3.26) 

 

 Effect of the radial geometry 

Eq. 3.18 has been derived for beams with constant width b, however, in a slab supported on 

isolated columns, the critical perimeter is smaller than the cracking perimeter (Figure 3.8).  
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Figure 3.8: Effect of radial geometry. 

Since Eq. 3.18 is referred to the critical perimeter, the cracking moment at the cracking 

section should be substituted by    / 0.2 /crack crack crit crack critr r r r    , where 0.2 is the 

dimensionless cracking moment of a rectangular section.  

Thus, according to the compression chord capacity model for shear resistance when the 

moment at the cracking section is crack   the value of cV  should be multiplied by factor 

0.94 0.3bK   , which in this case is shown in Eq. 3.27: 
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0.94 0.06 0.94 0.06 0.94 0.06
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col col

crack
b

col colcrit

r d r
r d x dK r rr

d d

 
   

 

                           (3.27) 

Where colr  is the radius of a column with the same perimeter than the actual column.  

For design purposes, a conservative value of / 3d x   can be adopted, thus resulting an 

average value of 1.1bK  .  

In addition, there are circumferential moments which compress the bottom part of the slab, 

which is subjected to a triaxial stress state. These moments produce transverse compressions 

in the bottom of the slab, of similar value to the radial compressions, generating a triaxial 

compression state, which enhances the shear strength of the uncracked concrete zone, in 

approximately 15-20%.  

In this work an increment of 18% is adopted, according to the studies made. 
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 Local effect of the support on the stress state at the critical point. 

In the case of punching, the critical section is placed at a distance of around 0.5d of the 

column face, so the critical point is close enough to column’s face to be affected by the 

vertical stresses cv , introduced by the column.  

Figure 3.7 shows a scheme of the vertical stresses cv  in the vicinity of the column where, for 

simplicity, a constant average value has been assumed, obtained by dividing EdV  (total shear 

transferred from the slab to the column)  by critA  (slab area surrounded by the critical 

perimeter).  

The adequacy of such assumption was verified by means of a nonlinear analysis.  

In this model, the shear resisted by the compressed concrete chord is that existing when the 

critical crack propagates inside the compressed zone. This is assumed to take place when the 

principal stresses  1 2,   at the weakest point of the compression chord in the critical section 

reach the Kupfer biaxial stresses failure envelope, see Figure 3.1. 

Once the normal and principal stresses that produce failure are known, the shear stress at the 

critical point can be obtained. Assuming a parabolic distribution of shear stresses with zero 

values at both ends of the parabola, the shear force cV  is obtained through direct integration 

(Eq. 3.28). 
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                                                     (3.28) 

Where 1  is the principal tensile stress at failure, expressed as 1 t ctR f  , where 

 21 0.8 /t ccR f  . 

In order to estimate the influence of such vertical stresses, Eq. 3.28 has been solved for 

different longitudinal reinforcement ratios  , concrete strengths and vertical stresses, cv . 

It has been found that cV  increases affect almost linearly with /cv ctf  according to a factor 

K  defined in Eq. 3.29: 

1 0.56 ;cv Ed
cv

ctm crit

VK
f A




 
   
 

                                                                                   (3.29) 
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Where critA  is the surface of slab surrounded by the critical perimeter. 

3.2.2 Proposed equations for punching shear strength of slabs without shear 

reinforcement 

Taking into account the above considerations, Eq. 3.18 can be adapted to punching as follows: 

 2/3
0 ,min1.18 0.3 0.56   c b c b cd cv crit cu

xV k V k f u d V
d

                                                    (3.30) 

,mi
2 3

0
n

/ 200.25 0.36cu cd critf u d
d

V 
 

  
 

                                                                                 (3.31) 

which is almost equal to Eq. 3.18, but substituting the width b  by the critical perimeter critu , 

and including the effect of the radial geometry and the effect of the column confining stresses 

cv . 

For building slab floors subjected to distributed loads, the shear span, a, to be used in the size 

effect parameter  , defined in Eq. 3.14, can be estimated as the average distance from the 

position of the line of zero radial bending moment to the edge of the column, 0 0 0y zl l l  , 

where 0 0.2y yl l  and 0 0.2z zl l ,  and zl  are the span lengths in the y and z directions.  

The neutral axis depth /x d  should be obtained using the average of the longitudinal 

reinforcement ratios ,ly lz  , in the two orthogonal directions, adopting an effective slab width 

,s effb  approximately equal to the column side or diameter plus 3 times the slab effective depth 

at each side of the column. When computing the minimum punching strength ,mincuV  (Eq. 

3.31), ,s effb  is the effective depth of the slab d, but not less than 100 mm.  
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Chapter 4 

Modelling of reinforced concrete slabs in Midas FEA 

Three slab-column specimens (SB1, R1 and no.2) without shear reinforcement were analyzed 

using a 3D analysis with the commercial FEA program Midas FEA. 

The purpose of this project has been to simulate punching failure of reinforced concrete slabs 

supported at their edges in order to study the structural behaviour during this phenomenon, 

furthermore has been verified that one of the hypothesis of the compression chord capacity 

model, the multiaxial state of stresses in the compressed zone, was respected in the results. 

The aim of the study has been to provide information that can be of use when appropriate 

designs of reinforced concrete slabs supported on steel columns are sought. 

4.1 Nonlinear FE analysis and numerical methods. 

The finite element method is used to numerically solve field problems. In structural 

engineering this method is employed by dividing the structure into finite elements, each 

allowed to only one spatial variation. Since element variations are believed to be more 

complex than limited by a simple spatial variation, the solution becomes approximate.  

Each element is connected to its neighbouring element by nodes. At these nodes equilibrium 

conditions are solved by means of algebraic equations. The assembly of elements in a finite 

element analysis is referred to as the mesh.  

Due to the approximation of the spatial variation within each element the solved quantities 

over the entire structure are not exact.  

However, the overall solution can be improved by assigning a finer mesh to the structure. 
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4.1.1 Nonlinearity in the analysis 

In a nonlinear analysis it is possible to follow nonlinear structural responses throughout the 

loading history as the load is applied in several distinguished steps. 

These load steps, or increments, are considered as a form of nonlinearity, superordinate to the 

types of nonlinearity that will be described further on.  

A mathematical description of the overall structural response is presented by the following 

equation system: 

A x b                                                                                                                                (4.1) 

Where: 

 A  is the structural matrix. 

x  is the vector of displacements. 

b  is the unknown vector containing internal forces. 

Within each load step a number of iterations are carried out until equilibrium is found for the 

equation system. 

Nonlinearity can also be employed for constitutive, geometrical and contact relations all of 

which have been used in the simulations in this work. Nonlinear constitutive relations 

consider the range of material responses from elastic to plastic behaviour;  

It is possible to account for nonlinear material behaviours, such as cracking of concrete and 

yielding of reinforcement. These in turn cause redistribution of forces within the structure. 

Geometrical nonlinearity accounts for the ongoing deformations of the structure including the 

change of force direction.  

The analysis accounts for the changing structural matrix due to deformations and uses an 

updated matrix for the consequent load increment. When fluctuating contact between two 

adjacent parts of a structure is experienced, contact nonlinearity accounts for the changes of 

contact forces and presence of frictional forces. 
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4.1.2 Numerical solution methods 

In order to solve nonlinear equation systems iterative solution methods are used. Their scope 

is to find approximate numerical solutions to the equation systems that correlate the external 

forces to the structural response.  

In Midas FEA iterations are carried out using either one of the four default solution methods, 

namely Newton-Raphson, modified Newton-Raphson, Arc Length and Initial Stiffening.  

Within an analysis it may be appropriate or even necessary to switch between solution 

methods due to regional responses in the load-displacement function. 

 The Newton-Raphson method 

The Newton-Raphson (N-R) iteration is an iterative solution method using the concept of 

incremental step-by-step analysis to obtain the displacement iu  for a given load iP .  

N-R method keeps the load increment unchanged and iterates displacements and is therefore 

suitable to use in cases when load values must be met. The N-R iteration can also be used for 

incremental increase of the deformation u.  

The search for the unknown deformation is described by the tangent of the load-displacement 

function. This is known as the tangent stiffness ,t iK  and describes the equilibrium path for 

each increment. The N-R iteration scheme is illustrated in Figure 4.1 which describes the 

search for the unknown deformation when a load is applied. 

  

Figure 4.1: Newton-Raphson iteration scheme. 



42 
 

For the case where the initial deformation is 0u  the method according to which equilibrium is 

found can be described as follows. For the load increment 1P  the corresponding 

displacement 1u  is sought. By means of the initial tangential stiffness ,0tK  the displacement 

increment u  can be determined as: 

1
,0 1tu K P                                                                                                                            (4.2) 

Adding this increment to the previous displacement 0u  gives the current estimate Au  of the 

sought displacement 1u  according to: 

0Au u u                                                                                                                             (4.3) 

The current error, or load imbalance, PAe  is defined as the difference between the desired 

force 1P  and the spring force AK u  educed by the estimated displacement Au . 

The stiffness K is evaluated from the tangent of the function at the point where Au  is found. 

1PA Ae P K u                                                                                                                         (4.4) 

However, since the deformation has not been deduced by the current force 1P  this solution is 

not exact. If the error is larger than the limiting tolerance another attempt is made to find 

equilibrium.  

The new displacement increment u  starting from the point a is calculated by means of the 

previous imbalance PAe . Hence a displacement Bu  closer to the desired 1u is determined: 

1
,t A PAu K e                                                                                                                           (4.5) 

B Au u u                                                                                                                             (4.6) 

Analogously, if the displacement Bu  does not meet the tolerances for the load imbalance 

according to (4.4) yet another iteration within this load increment is carried out, now starting 

from point b. The iterations continue until the load imbalance approaches zero, the analysis 

then enters the next load increment 2P  where these iterations are carried out until the load 

equilibrates to 2P  and the analysis has converged to a numerically acceptable solution 2u  for 

the load step. 
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Continued iterations normally cause force errors to decrease, succeeding displacement errors 

to approach zero and the updated solution to approach the correct value of the displacement. 

Moreover, smaller load increments can enhance the probability of finding equilibrium within 

each step. 

 The modified Newton-Raphson method 

The nonlinearity of the equations lies in the internal forces and the stiffness matrix having 

nonlinear properties. The stiffness matrix is deformation dependent and is therefore updated 

for each repetition. However, the recalculation of the stiffness matrix is very time consuming 

and this dependency can be neglected within a load increment in order to preserve linearity of 

the stiffness tangent. When neglected, the stiffness matrix is calculated based on the value of 

the deformations prior to the load increment.  

This simplification is referred to as the modified Newton-Raphson iteration where the 

stiffness matrix is only updated for the first iteration in each step (see Figure 4.2).  

  

Figure 4.2: Modified Newton-Raphson iteration scheme. 

Apart from increasing computing pace, the drawback of this simplification is reduced 

accuracy. 

 



44 
 

In the beginning of an analysis quite large load increments can be used. However, when the 

structure experiences significant loss of stiffness, normally during excessive crack 

propagation or when approaching failure load, increments need to decrease in order to achieve 

equilibrium.  

The use of smaller load increments can sometimes be insufficient since the stiffness reduction 

implies increasing deflections while loading decreases. Graphically this is visualized as the 

change of tangent direction. When the stiffness tangent becomes negative iterations by means 

of the N-R method fail to find the sought solution.  

The Arc Length iteration is such a method. 

 The Arc Length iteration method 

In the Arc Length (AL) iteration a load multiplier is introduced that increases or decreases the 

intensity of the applied load in order to obtain convergence within a step faster.  

With this method the solution path is kept constant and increments of both forces and 

displacements are iterated as shown in Figure 4.3.  

  

Figure 4.3: Arc Length iteration scheme. 
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At the end of each step both loading and displacement conditions become fixed. The fixation 

is performed by establishing the length of the loading vector. 

In the N-R formulation the degrees of freedom were associated with the displacements, but 

for this method an ulterior degree of freedom for the loading must be introduced; the load 

multiplier  . 

Depending on the structural response the value of   varies throughout the analysis leading to 

an increase or decrease of the increment within the step. The value is based on the previous 

iteration. If convergence difficulties are encountered   is reduced, whilst for easily 

converged responses the value is increased resulting in larger load increments. 

The Arc Length method presents some advantages compared to the Newton-Raphson as it is 

very robust and computational efficient. For this reason, it can provide good results even 

when the N-R method cannot be used. For instance, it is well applicable when large cracks 

occur and is also able to capture behaviours when the stiffness is decreased, such as snap-

through and snap-back phenomena (see Figure 4.4). 

  

Figure 4.4: Snap-trough and snap-back phenomena. 
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 The Initial Stiffening iteration method 

The initial stiffness method uses the stiffness matrix, calculated at the beginning of the 

analysis stage. And regardless of the load level, the stiffness matrix remains unchanged during 

the entire process of analysis. This method is used for those analyses, which tend to exhibit 

instability. Stable solutions are generally found, but relatively small increments result in slow 

convergence. 

 

Figure 4.5: Initial Stiffening iteration scheme. 

For this work has been chosen the normal Newton-Raphson iteration method. This method 

has shown good behaviour during the analysis, the only disadvantage shown was that the 

stiffness matrix must be set up at each iteration and, if a direct solver is used to solve the 

linear set of equations, the time-consuming decomposition of the matrix has to be performed 

every iteration as well. In summary, the Regular Newton–Raphson method usually needs only 

a few iterations, but each iteration is relatively time-consuming. 
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4.2 Modelling reinforced concrete in Midas FEA. 

The modelling and simulations presented in this report have been performed using the Midas 

FEA software for nonlinear finite element analysis of civil engineering structures. 

Now implemented theories and modelling considerations are presented. 

Realistic nonlinear finite element analyses of reinforced concrete structures require proper and 

adequate definitions of material models. When simulating a structural response by means of 

nonlinear finite element analyses, there are a few aspects regarding the input parameters that 

need to be addressed. First and foremost, it is important to distinguish between the different 

aims of analyses before determining the material parameters.  

If attempting to simulate an actual response, i.e. behaviour of a conducted experiment, 

material values as close as possible to the properties of the actual specimen are desirable.  

If the aim is to simulate the real response of a no conducted experiment it is appropriate to 

assign mean values to the material models. 

If the purpose of the simulation is to obtain an appropriate design, a safety format must be 

adopted. In case of an analysis for design, the material parameters should be chosen as the 

lower characteristic values with applied partial safety factors. Then, the obtained ultimate load 

from the analysis corresponds to the design resistance. If other safety margins than those 

proposed by EC2, characteristic values can be combined with the safety factors that are of 

interest. However, Broo, Lundgren and Plos (2008) [21] have recently confirmed that the use 

of design values in an analysis does not only scale the response but can in some cases 

simulate non-realistic responses. Then it is more appropriate to use mean values for the 

analysis and scale the results for design purposes by means of a global safety factor. How this 

safety factor should be determined is currently under investigation. In this work, only mean 

values were used for the material modelling. 
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4.2.1 Material modelling 

With Midas FEA, material properties are automatically generated by the input of concrete 

compressive strength or the yield strength of steel. However, all values of the generated 

material properties, especially regarding concrete, are not always in correspondence to the 

expressions given in EC2 [10] or MC2010 [11] and have therefore been manually assigned to 

the materials within this study using values obtained during the real tests of these slabs.  

Concrete was modelled with the “total strain crack model”.  

In general analysis models for concrete cracking can be classified into a discrete crack model 

(discontinuum model) and a smeared crack model (continuum model). The discrete crack 

model uses finite elements at which concrete cracks are separately represented as boundaries. 

In the smeared crack model, concrete cracks are assumed to be scattered and distributed, such 

that discrete elements are not used at the crack locations. The discrete crack model has the 

advantage of being able to specifically represent such behaviors as physical discontinuity due 

to concrete cracking and failure and bond slips of reinforcing bars. However, it has some 

disadvantages in that the accuracy of analysis significantly depends on the material properties 

required, and that finite element modeling can be quite complex. The smeared crack model 

assumes that locally generated cracks are evenly scattered over a wide surface. This model is 

known to be suitable for reinforced concrete structures with reasonable amount of 

reinforcement, and its finite element modeling is relatively simple.  

  

Figure 4.6: Fixed and rotating crack models. 
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The total strain crack model is classified under the smeared crack model and provides two 

methods, which are separated into the fixed crack model and the rotating crack model 

depending on the reference crack axes.  

The former assumes that the axes of cracks remain unchanged once the crack axes are 

defined. On the contrary, the latter is a method in which the directions of the cracks are 

assumed to continuously rotate depending on the changes in the axes of principle strains, in 

both cases of the fixed and rotating models the first crack at the integral points always initiates in 

the directions of the principle strains.  

The smeared crack approach is more advantageous than the discrete one, giving satisfying 

accuracies of global results at low computational costs. In the material model the smeared 

crack approach is implemented and the features of the cracks are smeared over an entire 

element. It is important to bear in mind that the smeared crack model disables the cracks to 

fully open and thus the transfer of tensile stresses through the crack is somewhat higher than 

in reality. 

In addition, concrete subjected to compressive stresses shows a pressure-dependent behavior, 

i.e., the strength and ductility increase with increasing isotropic stress [22]. Due to the lateral 

confinement, the compressive stress–strain relationship is modified to incorporate the effects 

of the increased isotropic stress. Furthermore, it is assumed that the compressive behavior is 

influenced by lateral cracking [23]. 

The increase in the strength with increasing isotropic stress is modeled with the four-

parameter Hsieh-Ting-Chen failure surface, which is defined as: 

22 1 1
22.0108 0.9714 9.1412 0.2312 1 0c

cc cc cc cc

JJ f If
f f f f

                                                 (4.7) 

with the invariants 1I  and 2J  defined in terms of the stress in the concrete ci  according to: 

1 1 2 3c c cI                                                                                                                      (4.8) 

      2 2 2
2 1 2 2 3 3 1

1
6 c c c c c cJ                                                                             (4.9) 
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The maximum principle stress 1cf  is: 

 1 1 2 3max , ,c c c cf                                                                                                          (4.10) 

This is not the maximum tensile stress but the maximum principal stress. The parameters in 

Eq. 4.7 are determined by fitting of the uniaxial tensile and compressive strength, the biaxial 

compressive strength and experimental data of triaxial tests on concrete specimen.  

The stress 3cf   is assumed to result in failure and is determined by scaling the linear elastic 

stress vector c nsts E     such that Eq. 4.7 holds true.  

The compressive failure stress in multi-axial stress situation is then given by: 

 3 1 2 3min , ,c c c cf s                                                                                                        (4.11) 

If the scaling factor s is negative, thus resulting in a positive failure stress, the stress vector 

3cf  is scaled to the tensile side of the failure surface, and the failure strength is set equal to a 

large negative value ( 30 ccf ). The failure strength cff  is given by: 

3cf cf f                                                                                                                              (4.12) 

The peak stress factor K  is given by Selby: 

1cf

cc

f
K

f                                                                                                                           (4.13) 

and the peak strain factor is assumed to be: 

K K                                                                                                                                (4.14) 

In unconfined compression, the values at the peak are given by the values of uniaxial 

compressive strength, and the peak stress factor is equal to one.  

The parameters of the compressive stress– strain function now become: 

cf ccf K f    ,   0p K                                                                                                    (4.15) 

The value of the initial strain 0  is given by the relationship: 
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0 1
cc

c

n f
n E
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

                                                                                                                    (4.16) 

The equations given above result in a gradual increase in the maximum strength in confined 

compression, with an initial slope of the stress–strain diagram given by the Young’s modulus. 

In a full triaxial stress situation, the failure surface cannot be reached and a linear stress–strain 

relation is obtained (Figure 4.7) 

  

Figure 4.7: Influence of lateral confinement on compressive-strain curves. 

Furthermore, it is assumed that the compressive behavior is influenced by lateral cracking.  

In cracked concrete, large tensile strains perpendicular to the principal compressive direction 

reduce the concrete compressive strength. The compressive strength pf  is consequently not 

only a function of the internal variable i , but is also a function of the internal variables 

governing the tensile damage in the lateral directions ,1l , ,2l  . The reduction factors due to 

lateral cracking are denoted as  cr cr lat     and  cr cr lat     which are functions of 

the average lateral damage variable given by 2 2
,1 ,2lat l l    . 

The relationship for reduction due to lateral cracking is the model according to Vecchio and 

Collins (Figure 4.8). 

1 1
1cr

cK  


                                                                                                                 (4.17) 
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Where    
0

0.27 0.37lat
cK 



 
   

 
   and    1cr   

 
Figure 4.8: Reduction factor due to lateral cracking (Vecchio and Collins). 

Midas FEA has implemented various models that simulate concrete’s behaviour and in 

particular three of these were used for compression behaviour and one for tension. Then a 

parametric analysis has been conducted in order to obtain the best fitting result. 

 Thorenfeldt model 

The first model for compression behaviour is the one proposed by Thorenfeldt [24] (Figure 

4.9). 

 

 Figure 4.9: Thorenfeldt model. 
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The equation of the Thorenfeldt curved line is expressed by: 
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Where n and k are: 
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                                                                                  (4.20) 

This model requires the value of pf  that is known, and the peak strain p  that needs some 

consideration about the confinement conditions of concrete and lateral cracking. 

The increased ductility of confined concrete is modeled by a linear adoption of the descending 

branch of the Thorenfeldt curve according to: 

 1 1 i p
i p p

u p

f f r r f
 

 

 
         

                                                                                (4.21)  

r is the factor, which models the residual strength of the material (see Figure 4.10).  

 

 Figure 4.10: Compressive behaviour under lateral confinement used for thorenfeldt. 
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The ultimate strain in compression is assumed to be determined by the ratio between the peak 

strength and the compression strength and the strain at the peak according to Eq. 4.22 

p
u p

cc

f
f



 
 

  
 

                                                                                                                     (4.22) 

The scalar   needs to be determined; in this work 3   is assumed.  

The residual strength pr f  also depends on the ratio between the peak strength and the 

compressive strength according to Eq. 4.23 

0
p

cc

f
r r

f



 
  
 

                                                                                                                        (4.23) 

0r  is an initial value. It is assumed 0 0.1r  . 

The linear compression–softening relationship is only applied to the Thorenfeldt curve if the 

peak value pf  is considerably larger than the compressive strength ccf . Has been assumed 

/ 1.05p ccf f  .  In case lateral compression and lateral cracking result in / 1.05p ccf f  , the 

ductility of the material will not increase. 

 Parabolic model (Feenstra) 

The Parabolic Model suggested by Feenstra [25] is derived on the basis of the fracture energy 

(Figure 4.11).  

  

Figure 4.11: Feenstra model. 
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This curved line is presented by the following three characteristic variables: compressive 

strength 0cf  , compressive fracture energy 0cG  , characteristic element length 0h  . 

 0,18 0,32100 100 0,028c f cm gG G f d                                                                                (4.24) 

Where: 

fG  is the tensile fracture energy. 

cmf  is the mean compressive strength. 

gd  is the maximum size of the aggregate. 

The strain / 3p  at which one-third of the maximum compressive strength cf  is reached, is: 

1
3 3

p c

c

f
E


                                                                                                                          (4.25) 

The strain p  at which the maximum compressive strength is reached, is: 

4 4
3 3

pc
p

c

f
E


                                                                                                             (4.26) 

Note that / 3p  and p  are determined irrespective of the element size or compressive 

fracture energy. Finally, the ultimate strain p , at which the material is completely softened 

in compression, is: 

3
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u p
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h f
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                                                                                                             (4.27) 

Based on the above variables, the following curved line is defined: 
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It could now easily be verified that the fracture energy cG  and the characteristic element 

length h govern the softening part of the curve only:  

3
1 
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 Parabola-rectangle stress distribution (EC2) 

The third model is the simplified constitutive law for concrete compressive behaviour named 

parabola-rectangle distribution [10]. 

This model depends only on the final compressive strength cf , and the strains 2 2‰c   and 

3.5‰cu  . 

The following curved line is defined: 
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                                (4.30) 

  

Figure 4.12: Parabola-rectangle model EC2. 

This model has been created using a Multilinear model in Midas FEA (Figure 4.13). 
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Figure 4.13: Multilinear function in Midas FEA. 

The concrete material model has been developed with two separate models for tensile and 

compression behaviour that can be used simultaneously. 

The tensile behavior model defined by the total strain crack model has elastic, ideal, brittle, 

linear, exponential, Hordijk, multi-linear and user-defined behaviors. The total strain crack 

model materializes the softening function based on the fracture energy. In case of a smeared 

crack model, these models have a relation with crack bandwidth. 

Only the Hordijk model was used in this work. 

 Hordijk model 

Hordijk, Cornelissen and Reinhardt [26] proposed an expression for the softening behavior of 

concrete, which also results in a crack stress equal to zero at a crack strain (Figure 4.21). Use 

the following values as input: tensile strength 0tf  , tensile fracture energy 0fG  , crack 

band width 0h  . The function is defined by Eq. 4.31. 
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 Figure 4.14: Hordijk model. 

The parameters 1 3c  , 2 6.93c   . 

The ultimate crack strain then is written as: 

 .  

I
fcr

nn ult
t

G
h f

                                                                                                                       (4.32) 

 Reinforcement model 

Rather than defining reinforcements with distinct finite elements, the concept of embedded 

reinforcements can be used with this software. In this concept the stiffness of the 

reinforcements is added to the stiffness of the continuum elements in which the 

reinforcements are located, the continuum elements in which reinforcement is embedded are 

called mother elements.  

In this analysis all the elements are “bar in solid” elements where the stiffness of the divided 

bar reinforcement segments will be added to the stiffness of the corresponding mother 

elements. In bar reinforcement segments, 2 integration points are used for the line type and 1 

integration point is used for the point type reinforcement. The locations of the integration 

points are automatically calculated. 

Steel for reinforcement is modeled with Von Mises model that is one that is mostly used for 

analysis of metallic materials. It assumes that yielding occurs when a regular octahedral shear 

stress oct  reaches a defined limit. 
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Figure 4.15: Von Mises yield surface. 

 

It was necessary to create a hardening function to describe the response of the steel used in the 

real test.   

Von Mises hardening behavior model follows the strain hardening hypothesis, which assumes 

that hardening progresses with increase in plastic deformation.  

4.2.2 Calculation of the crack bandwidth “h” 

In order to obtain a good simulation, has been studied the influence of the parameter h on the 

analysis. This parameter is needed in both Feenstra and Hordijk models. For 3D elements the 

crack bandwidth can be defined as the cubic root of the element’s volume [27]. The mesh was 

formed by tetrahedral elements so initially has been calculated as 15h V mm  . Then, 

using code provisions from EN 1992-1-1: 2004 [10], were studied all the models using 

,maxrh S  and ,max / 2rh S , where ,maxrS  is the maximum crack spacing (Eq. 4.33). 

,max 3 1 2 4
,

r
p eff

S k c k k k 


                                                                                                    (4.33) 

Where: 

  is the bar diameter. Where a mixture of bar diameters is used in a section, an equivalent 

diameter eq  should be used. For a section with 1n  bars of diameter 1  and 2n  bars of 

diameter 2 , the following expression should be used 
2 2

1 1 2 2

1 1 2 2
eq

n n
n n
 


 





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c  is the cover to the longitudinal reinforcement. 

1k  is a coefficient which takes account of the bond properties of the bonded reinforcement. Is 

equal to 0.8 for high bond bars and 1.6 for bars with an effectively plain surface (e.g. 

prestressing tendons). 

2k  is a coefficient which takes account of the distribution of strain. Is equal to 0.5 for 

bending, 1 for pure tension and for cases of eccentric tension or for local areas 

intermediate values of 2k  should be calculated from the relation    2 1 2 1/ 2k     , 

Where 1  is the greater and 2  is the lesser tensile strain at the boundaries of the section 

considered, assessed on the basis of a cracked section. 

The values of 3k  and 4k  for use in a Country may be found in its National Annex. The 

recommended values are 3,4 and 0,425 respectively. 

Ultimately eff  can be calculated using Eq. 4.34: 

,

s
eff

c eff

A
A

                                                                                                                         (4.34) 

Where ,c eff effA b h   and       min 2,5 ; ; / 2effh h d h x h   . 
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Chapter 5 

Simulation of laboratory tests 

5.1 Laboratory for test comparison. 

Three test specimens belonging to previous researches have been simulated in Midas FEA. 

The first simulated specimen was a slab-column connection tested by Bamidele Adetifa and 

Maria Anna Polak (2005) [28] denoted SB1. The test specimen SB1 had no shear 

reinforcement and the height of the slab specimen was 120 mm with square shape 

(1800x1800mm). This isolated slab-column connection is loaded through the column and 

simply supported along the edges with restraints applied at the in-plane distances of 1500 x 

1500 mm. The height of the column extending from the top and the bottom faces of the slab 

was 150 mm. Details and dimensions are shown in Figure 5.1. 

 

  

Figure 5.1: Dimensions and flexural reinforcement of SB1 specimen. 
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The setup for testing is shown in Figure 5.2 and 5.3. 

The setup was built around a testing frame. Simple supports at the edges were achieved by 

using 40 mm-wide, 25 mm-thick steel plates placed on a rigid pedestal system constructed 

from W-sections. Neoprene strips were bonded to the bearing plates underneath the slab to 

ensure uniformity of contact and allow rotations at supports. The specimens were subjected to 

concentric axial load only through a hydraulic actuator. To simulate continuous slab 

construction and avoid the slab edges lifting during testing, the corners of the slabs were held 

down. The slabs were tested by applying a load through the column until failure. The slab was 

loaded in displacement control. 

  
 

Figure 5.2: Experimental setup with specimen SB1. 
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Figure 5.3: Schematic of experimental setup SB1. 
 

Slab SB1 was loaded by applying a velocity that increased from 0 mm/s to 40 mm/s, such that 

the slab displaced at a rate of 20 mm/s. 

The second simulated specimen was the corner supported slab denoted R1 from the 

experiments conducted by Ingvarsson (1977) [29]. It consisted of a rectangular slab         

(1855x2145x120 mm) supported on its corners by rectangular concrete columns, (Figure 5.4). 

Loads were concentrated forces applied in 16 neoprene bearings symmetrically disposed 

around the centre of the slab. 

 

Figure 5.4: Schematic of flexural bottom reinforcement type of slab R1. 
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The last simulated specimen was the edge supported slab denoted No.2 in the report of 

Kinnunen (1971) [5].  Specimen No.2 was a rectangular slab (3000x1800x130 mm) supported 

on its opposite short edges by square concrete columns (Figure 5.5). Along its longer edges 

the slab was unsupported and believed to be limited by lines of shear force peaks. All 

specimens experienced failure in punching shear. 

 

 

Figure 5.5: Schematic of flexural reinforcement type of slab no.2. 

This model was charged on 8 neoprene bearings around the centre. During testing of the 

specimens, several types of data were measured throughout the loading; reinforcement strains, 

concrete compressive strains on the bottom surface near the columns, slab deflections and 

rotations. In addition, observations were made on crack propagation at each load step in order 

to distinguish the crack patterns. The comparisons have been limited to load-displacement 

responses, crack patterns and failure modes. In figure 5.6 is shown the response in terms of 

forces and displacements; applied on top of the column for slab SB1 and on the neoprene 

bearings for R1 and no.2. The displacement was measured in the column’s centre for SB1, and 

in the centre of the slab for R1 and no.2. 

 

Figure 5.6: Load – displacement measured during tests. 
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5.2 Simulation of laboratory tests. 

The first specimen has been modelled entire;  

Slab SB1 has been simply supported along the edges, but in order to simulate the real 

behavior it was necessary to use further restraints along the edges of the central column (to 

avoid buckling) and on the corners of the slab to held them down during the loading process. 

(Figure 5.7)  

 

 

Figure 5.7: Boundary conditions for slab SB1. 

For specimens R1 and no.2 in order to reduce required computer capacity, it was convenient 

and, due to symmetry, sufficient to only model a quarter of the test specimens. In the 

symmetries boundary conditions were introduced such that free movement was prevented in 

the direction with geometrical continuity. Apart from the symmetry lines, boundary 

conditions were added for the column supports fixing every movement at the base of the 

structure. 

Corner supports 
Uz= 0 

 

Column supports 
Ux =Uy= 0 

 

Bottom supports 
Uz = 0 
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Figure 5.8: Boundary conditions for slab R1. 

 

Figure 5.9: Boundary conditions for slab no.2. 

The mesh of all models was formed by solid tetrahedral elements. Meshed models can be seen 

in Figure 5.10, where specimen SB1 was divided into 73468 finite elements, R1 into 309502 

finite elements and specimen Nr. 2 into 350621 finite elements. 

Column supports 
Ux =Uy= Uz=0 
Rx =Ry= Rz=0 

 

Simmetry coditions 
Ux =0 

 

Simmetry coditions 
Uy =0 

 

Column supports 
Ux =Uy= Uz=0 
Rx =Ry= Rz=0 

 

Simmetry coditions 
Ux =0 

 

Simmetry coditions 
Uy =0 
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Figure 5.10: Mesh configuration of specimens. 

Finally, Reported concrete and steel strengths, for the compared specimens, were determined 

according to a former European standard. Material data for the three specimens are presented 

in Table 5.1. 

Table 5.1 Material data for specimen 

 fc 

[MPa] 

ft 

[MPa] 

υ 

[ - ] 

Gc 

[N/mm] 

Gf 

[N/mm] 

Ec 

[MPa] 

fy 

[MPa] 

fu 

[MPa] 

εy 

[ - ] 

εu 

[ - ] 

SB1 44 2.2 0.15 7 0.07 28000 455 650 0.0023 0.05 

R1 28 2 0.15 7.251 0.07251 29030 470 470 0.0023 0.05 

No.2 26 1.86 0.15 6.913 0.069134 28432 420 420 0.0023 0.05 

 

The column load at failure of specimen SB1 had the average value of 253 kN, for specimen 

R1 the average value for failure was 107 kN and for no.2 was 123 kN. During the analyses 

these loads have been divided in 25 load steps. 

Each structure has been modelled three times with each compression law, modifying the crack 

bandwidth, then analysed other 3 times including confinement effect and  lateral cracking 

(only for Feenstra and Thorenfeldt models), reaching a total of 3x3x5=45 analyses. 

Analysis combinations are shown in Table 5.2, 5.3 and 5.4 for specimen SB1, R1 and no.2 

respectively. 
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Table 5.2 Combinations used for SB1 specimen 

 Compression 
model 

Tension 
model 

h 
[mm] 

1 EC2 Hordijk 15 
2 Feenstra  Hordijk 123 

3 Thorenfeldt Hordijk 245 

4 EC2 Hordijk 15 

5 Feenstra  Hordijk 123 

6 Thorenfeldt Hordijk 245 

7 EC2 Hordijk 15 

8 Feenstra  Hordijk 123 

9 Thorenfeldt Hordijk 245 

 

 

 

Table 5.3 Combinations used for no.2 specimen 

 Compression 
model 

Tension 
model 

h 
[mm] 

1 EC2 Hordijk 15 
2 Feenstra  Hordijk 92.5 

3 Thorenfeldt Hordijk 185 

4 EC2 Hordijk 15 

5 Feenstra  Hordijk 92.5 

6 Thorenfeldt Hordijk 185 

7 EC2 Hordijk 15 

8 Feenstra  Hordijk 92.5 

9 Thorenfeldt Hordijk 185 

 

 

 

Table 5.4 Combinations used for R1 specimen 

 Compression 
model 

Tension 
model 

h 
[mm] 

1 EC2 Hordijk   15 
2 Feenstra  Hordijk 65 

3 Thorenfeldt Hordijk 130 

4 EC2 Hordijk 15 

5 Feenstra  Hordijk 65 

6 Thorenfeldt Hordijk 130 

7 EC2 Hordijk 15 

8 Feenstra  Hordijk 65 

9 Thorenfeldt Hordijk 130 
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Numerical results are classified with a code like XX-hYYY-ZZZ where: XX can be Th or Fe 

or PR respectively for Thorenfeldt, Feenstra or Parabolic-rectangle compression curves, h is 

the crack bandwidth and YYY is its value in mm, calculated according 4.2.2, ZZZ can be 

NCC for analyses where the effect of lateral compression and lateral cracking is not taken into 

account or YCC when these two effects are taken into account. 

The comparison has been made between numerical outputs and experimental ones in term of 

ultimate load, Pu, and displacement of the reference point, u. 

5.3 Results from analyses, specimen SB1. 

Table 5.5 presents the final analysis results in terms of ultimate load-displacement for slab 

SB1 in every combination made. The simulation gives brittle punching shear failure as in the 

experiment. 

Table 5.5 Ultimate load and displacement for each combination, SB1 specimen 

 
Specimen SB1 

Ultimate 
displacement 

[mm] 

Ultimate 
load 
[kN] 

 experimental 11.90 253 

1 Th-h015-NCC 15.16 258.7 

2 Th-h123-NCC 15.56 253.5 

3 Th-h245-NCC 15.85 269.1 

4 Fe-h015-NCC 13.27 258.7 

5 Fe-h123-NCC 15.48 253.5 

6 Fe-h245-NCC 16.74 269.1 

7 Th-h015-YCC 14.28 258.7 

8 Th-h123-YCC 5.71 144.9 

9 Th-h245-YCC 8.79 181.1 

10 Fe-h015-YCC 13.27 258.7 

11 Fe-h123-YCC 15.41 248.4 

12 Fe-h245-YCC 17.12 263.9 

13 PR-h015-NCC 12.34 258.7 

14 PR-h123-NCC 13.92 269.1 

15 PR-h245-NCC 14.57 263.9 

 

All models provide good solutions in term of load-displacement curves. The effect of 

confinement and lateral cracking seems not to affect Feenstra model, whereas it leads to 

premature failure with Thorenfeldt one in association with higher bandwidths.  
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The model that provides the best accuracy is the parabolic-rectangle in combination with a 

crack bandwidth equal to h=√ =15mm (Pu,fem / Pu,exp =1.022, u,fem / u,exp = 1.036). 

Nevertheless it overestimates the stiffness after first cracking, whereas the same model with h 

= Sr,max/2 = 123mm underestimates it. A more correct approximation may be reached with a 

crack bandwidth 15<h<123mm.  

Specimen SB1 analyses results are shown in Figure 5.11(a,b,c,d,e). 

 

Figure 5.11 (a): Results of parametric analysis for SB1 specimen using Feenstra  model. 

 

Figure 5.11 (b): Results of parametric analysis for SB1 specimen using Thorenfeldt model. 
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Figure 5.11 (c): Results of parametric analysis for SB1 specimen using confined Feenstra model with lateral 

cracking. 

Figure 5.11 (d): Results of parametric analysis for SB1 specimen using confined Thorenfeldt model with lateral 

cracking. 

 Figure 5.11 (e): Results of parametric analysis for SB1 specimen using Parabola – Rectangle model. 
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The generic deformed shape of the slab prior to the sudden loss of capacity is illustrated in 

Figure 5.16 and clearly indicate failure in punching in every analysis as the slab above the 

column experienced vertical displacements, except for the ones that diverge before failure 

Compared to the vertical displacements that were observed from the experiment, the analysis 

is quite well corresponding. 

  

Figure 5.12: Displacements of specimen SB1 during the last load step with h=15mm and EC2 compression 

model. 
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5.4 Results from analyses, specimen no.2. 

Table 5.6 presents the final analysis results in terms of ultimate load-displacement for slab 

no.2 in every combination made. The simulation gives brittle punching shear failure as in the 

experiment. 

Table 5.6 Ultimate load and displacement for each combination, no.2 specimen 

 
Specimen no.2 

Ultimate 
displacement 

[mm] 

Ultimate 
load 
[kN] 

 Experimental 20.11 123.3 

1 Th-h015-NCC 18.44 143.3 

2 Th-h123-NCC 20.36 148.4 

3 Th-h245-NCC 21.10 153.6 

4 Fe-h015-NCC 19.52 138.2 

5 Fe-h123-NCC 20.17 148.4 

6 Fe-h245-NCC 22.12 153.6 

7 Th-h015-YCC 16.82 138.2 

8 Th-h123-YCC 21.36 158.7 

9 Th-h245-YCC 21.83 133.1 

10 Fe-h015-YCC 15.99 140.8 

11 Fe-h123-YCC 22.61 158.7 

12 Fe-h245-YCC 25.02 168.9 

13 PR-h015-NCC 19.06 133.1 

14 PR-h123-NCC 22.44 148.4 

15 PR-h245-NCC 23.45 148.4 

 

All models provide good solutions in term of ultimate load but relevant differences can be 

seen in term of ultimate displacements. The effect of confinement and lateral cracking seems 

to affect neither Feenstra nor Thorenfeldt model.  

The model that provides the best accuracy (Pu,fem / Pu,exp =1.079, u,fem / u,exp =0.947) is the 

parabolic-rectangle in combination with a crack bandwidth equal to h=15mm that is the cubic 

root of the element’s volume. Nevertheless it underestimates the stiffness after first cracking, 

and overestimates it before failure.  A more correct approximation may be reached with a 

crack bandwidth Sr,max /2 <h< Sr,max .  
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Specimen nr.2 analysis results are shown in Figure 5.13(a,b,c,d,e). 

Figure 5.13 (a): Results of parametric analysis for no.2 specimen using Feenstra  model. 

Figure 5.13 (b): Results of parametric analysis for no.2 specimen using Thorenfeldt model. 

Figure 5.13 (c): Results of parametric analysis for no.2 specimen using confined Feenstra model with lateral 

cracking. 
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Figure 5.13 (d): Results of parametric analysis for no.2 specimen using confined Thorenfeldt model with lateral 

cracking. 

Figure 5.13 (e): Results of parametric analysis for no.2 specimen using Parabola – Rectangle model. 

The generic deformed shape of the slab prior to the sudden loss of capacity is illustrated in 

Figure 5.14 and clearly indicate failure in punching in every analysis as the slab above the 

column experienced vertical displacements, except for the ones that diverge before failure 

Compared to the vertical displacements that were observed from the experiment, the analysis 

is quite well corresponding. 
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Figure 5.14: Displacements of specimen no.2 during the last load step with h=15mm and EC2 compression 

model. 
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5.5 Results from analyses, specimen R1. 

Table 5.7 presents the final analysis results in terms of ultimate load-displacement for slab R1 

in every combination made. The simulation gives brittle punching shear failure as in the 

experiment. 

Table 5.6 Ultimate load and displacement for each combination, R1 specimen 

 
Specimen R1 

Ultimate 
displacement 

[mm] 

Ultimate 
load 
[kN] 

0 Experimental 20.95 106.8 

1 Th-h015-NCC 23.37 120.6 

2 Th-h065-NCC 28.39 120.6 

3 Th-h130-NCC 30.00 133.1 

4 Fe-h015-NCC 19.05 120.6 

5 Fe-h065-NCC 20.13 120.6 

6 Fe-h130-NCC 21.12 124.8 

7 Th-h015-YCC 17.89 116.4 

8 Th-h065-YCC 19.77 120.6 

9 Th-h130-YCC 20.41 124.8 

10 Fe-h015-YCC 20.22 124.8 

11 Fe-h065-YCC 20.34 108.1 

12 Fe-h130-YCC 22.00 108.1 

13 PR-h015-NCC 20.87 116.4 

14 PR-h065-NCC 22.76 120.6 

15 PR-h130-NCC 23.29 120.6 

 

All models provide good solutions in term of ultimate load but tend to underestimate the 

ultimate displacement. The effect of confinement and lateral cracking seems to have nil effect 

on Feenstra model and very little on Thorenfeldt one.  

The model that provides the best accuracy (Pu,fem / Pu,exp =1.089, u,fem / u,exp =0.996) is the 

parabolic-rectangle in combination with a crack bandwidth equal to h=15mm that is the cubic 

root of the element’s volume. Nevertheless it underestimates the stiffness after first cracking, 

and the ultimate displacement. 

Specimen R1 analysis results are shown in Figure 5.15(a,b,c,d,e). 
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Figure 5.15 (a): Results of parametric analysis for R1 specimen using Feenstra  model. 

Figure 5.15 (b): Results of parametric analysis for R1 specimen using Thorenfeldt model. 

 

Figure 5.15 (c): Results of parametric analysis for R1 specimen using confined Feenstra model with lateral 

cracking. 
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Figure 5.15 (d): Results of parametric analysis for R1 specimen using confined Thorenfeldt model with lateral 

cracking.

Figure 5.15 (e): Results of parametric analysis for R1 specimen using Parabola – Rectangle model. 

The generic deformed shape of the slab prior to the sudden loss of capacity is illustrated in 

Figure 5.16 and clearly indicate failure in punching in every analysis as the slab above the 

column experienced vertical displacements, except for the ones that diverge before failure 

Compared to the vertical displacements that were observed from the experiment, the analysis 

is quite well corresponding. 

0

20

40

60

80

100

120

140

0 5 10 15 20

Lo
ad

 [
kN

] 

Displacements [mm] 

Thorenfeldt YCC       (d)      

test

h=15mm

h=65mm

h=130mm

0

20

40

60

80

100

120

140

0 5 10 15 20 25

Lo
ad

 [
kN

] 

Displacements [mm] 

ParRec NCC            (e) 

test

h=15mm

h=65mm

h=130mm



80 
 

 

Figure 5.16: Displacements of specimen R1 during the last load step with h=15mm and EC2 compression 

model. 

5.6 Validation of code provisions and new model 

The shear punching strength predictions of all tested beams obtained with nonlinear analysis 

have been compared with experimental results, all FEA values have been divided by 

experimental failure load in Table 5.7, furthermore, three current structural codes (EC-2, 

Model Code 2010, ACI-318-08) and the proposed model seen in 3.2.2  have been compared 

with experimental results, to see which one is able to better predict specimen’s behaviour, 

Figure 5.17. All explicit partial safety factors have been removed from the original 

formulations, and the mean value of the materials strength has been used for these 

calculations. The proposed model correlates significantly better with the  tests results than any 

of the three considered code formulations. 
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Table 5.7 Comparison between ultimate load predicted by FEA and code predictions. 

 PuFEA / Pu,exp δuFEA / δu,exp 
 Analysis SB1 No.2 R1 SB1 No.2 R1 

Th-h√ -NCC 1,02 1,16 1,13 1,27 0,92 1,12 

Th-hSrmax/2-NCC 1,00 1,20 1,13 1,31 1,01 1,36 

Th-hSrmax-NCC 1,06 1,25 1,25 1,33 1,05 1,43 

Fe-h√ -NCC 1,02 1,12 1,13 1,12 0,97 0,91 

Fe- hSrmax/2-NCC 1,00 1,20 1,13 1,30 1,00 0,96 

Fe- hSrmax -NCC 1,06 1,25 1,17 1,41 1,10 1,01 

Th- h√ -YCC 1,02 1,12 1,09 1,20 0,84 0,85 

Th- hSrmax/2-YCC 0,57 1,29 1,13 0,48 1,06 0,94 

Th- hSrmax -YCC 0,72 1,08 1,17 0,74 1,09 0,97 

Fe- h√ -YCC 1,02 1,14 1,17 1,12 0,80 0,97 

Fe- hSrmax/2-YCC 0,98 1,29 1,01 1,29 1,12 0,97 

Fe- hSrmax -YCC 1,04 1,37 1,01 1,44 1,24 1,05 

PR- h√ -NCC 1,02 1,08 1,09 1,04 0,95 1,00 

PR- hSrmax/2-NCC 1,06 1,20 1,13 1,17 1,12 1,09 

PR- hSrmax -NCC 1,04 1,20 1,13 1,22 1,17 1,11 

 

  

Figure 5.17: Ratio between predicted failure load by FEA, and codes and experimental result. 
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Chapter 6 

Conclusions 

Nonlinear finite element analyses have been conducted in order to assess the structural 

behaviour with respect to punching shear of flat. The simulation of the test specimens SB1, R1 

and No. 2 showed good correspondence to the observations from the experiments. 

However, certain observations were made, namely; 

 The FE-analyses showed a somewhat stiffer response than the conducted experiments. 

This is believed to derive from the smeared crack formulation that is used in the 

concrete model. 

 The ultimate load was very well corresponding to reality, although predicted 

deformations tends to be much larger than experimental. This might be due to the 

inability of the FE-analysis to simulate fracture between the elements. 

 An higher crack bandwidth value provides much elasticity to the model, its value 

should be chosen in between cubic root of elements volume and a half of maximum 

crack spacing. 

 For design purposes software for 3D analysis have good reliability, but their results 

must be supported by previous analysis conducted with traditional methods. 

 A simplified compression model for concrete, as the Parabola-Rectangle, is able to 

provide a good ultimate displacement and fit the experimental results even better than 

more complex models.  

 The predictions of compression chord capacity model fit very well the experimental 

results and also with FEA results. The mechanical character of the model provides 

valuable information about the physics of the problem and incorporates the most 

relevant parameters governing the shear strength of structural concrete members. Due 

to this fact and the simplicity of the derived equations it may become a very useful 

tool for structural design and assessment in engineering practice. 
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