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Chapter 1

Composite materials: introduction

and application

Most of the modern technologies requires the use of high performance materials, able

to offer, with declining weight, a set of properties that cannot be found together in

traditional materials. The possibility to combine different properties, characterizing

different materials, in a single strong element was realized to meet the needs of

companies and researchers and it is in a continuous improvement.

With the term composite materials are usually indicated materials obtained

through the union of at least two constituents: every material corresponds to a

phase and for this reason the composite is defined by a inhomogeneous structure.

Usually the constituents constituting the composite material are divided by a clear

interface with null thickness and each one of them is provided of different chemi-

cal and physical properties at the macroscopic and structural level capable to make

them insoluble and separated from the others. What was said allow us to distinguish

composite materials from metal alloys because, being a combination of different ma-

terials in shape and composition, every constituent keeps its own identity in the

final compound without fusing completely in the other one. Examples of this typol-

ogy of material are found in nature. In particular, it is possible to characterize as

composites

• wood, made by cellulosics fibers in a resinous matrix (lignin)
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1 – Composite materials: introduction and application

Figure 1.1: Abies alba

• bone, made by calcium crystals immersed in a cartilage matrix

Figure 1.2: Bone tissue

1.1 Composite materials constituents

Every single material which make the final composite is, as we said before, a con-

stituent and, on the basis of its role, can be called matrix or reinforcement. The

matrix is a continuous homogeneous phase which has the task of keeping together

the reinforcement, the second constituent, by ensuring that the particles or fibers

have the right dispersion in the material and by transfering the stresses to them.

The matrix’s nature defines different composite material cathegories:
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1 – Composite materials: introduction and application

• ceramic-matrix composites (CMCs), in which the matrix is a ceramic material

as the alumina (aluminium trioxide);

• metal-matrix composites (MMCs), with a metal matrix, generally aluminium

or titanium or their alloys;

• polymer-matrix composites (PMCs), in which the matrix is a thermoplastic or

a thermosetting polymer, like Nylon or epoxy resin.

Obviously, everyone of these matrices provide different characteristics to the com-

posites: for example, in aeronautic applications a PMC is preferred since, thanks to

its low density, it ensures a low weight of the final material. The reinforcement is

represented by a phase scattered into the matrix in different ways and it is necessary

to guarantee stiffness and mechanical strength to the material by sustaining most

of the load applied to the structure. As has been done for the matrix, it is possible

to classify composite material relative to the reinforcement’s type:

• particle reinforced composites (PRC), in which the reinforcement is made of

particles;

• fiber reinforced composites (FRC), in which is possible to have different kind

of fibers (long, short) and fibers’ orientation (unidirectional, multidirectional);

• structured composites, such as sandwich panels and laminated composite ma-

terials.

Since the reinforcement is the effective resistant constituent, the material’s behavior

can be isotropic or anisotropic, depending on the existance of a preferential orien-

tation direction of the reinforcement. So it is intuitive that a particle reinforced

composite is always isotropic while a fiber reinforced composite, with unidirectional

fibers, is anisotropic. Furthermore, different reinforcements improve different mate-

rial’s characteristics: usually, particles are used to increase the resistance to wear,

the superficial hardness, the workability and the resistance at high temperature;

instead fiber reinforcement, the most common in mechanical constructions, is used
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1 – Composite materials: introduction and application

to improve the resistance to the static mechanical stresses in one direction, if unidi-

rectional, or more directions, if multidirectional, keeping a low overall weight.

(a) Particle reinforced com-
posite

(b) Fiber reinforced composite (c) Structured composite
(laminated)

Figure 1.3: Different type of composites, depending on the reinforcement’s
shape

1.2 Different matrices’ natures

Following the classification done on the basis of the matrices’ typology, it is useful

to specify the different characteristics that the material assumes, so to justify the

choices made in the continuation of the study.

1.2.1 Polymer matrices

They are made of polymers and, above all, they are the most widespread for both

the construction semplicity and the restrained costs. It is possible to classify the

matrices of possible use in two categories:

• thermoplastics;

• thermosets.

Thermosets The main characteristics of thermosets is that they require curing,

with which they undergo a molecular cross-linking process, formed by strong cova-

lent bonds. This procedure is irreversible and it renders them infusible: this means
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1 – Composite materials: introduction and application

that, once the process occured, the resin cannot be reprocessed. They therefore offer

high thermal stability, good rigidity and hardness, and resistance to creep. The use

of a certain resin instead of another one depends on the temperature field the ap-

plication requires. For temperature under 250°C, epoxy resins are preferred because

of their better mechanical properties compared to other polymers, their excellent

cohesion with fibers, good chemical resistance, low recede, that means low residual

stresses, and a remarkable thermal stability. This kind of resin is the most used

in aeronautical and aerospace applications. Then, there are the polyester resins,

used in combination with glass fibers, characterized by a low cost, a brief polymer-

ization time and good mechanical properties: these ones are preferable in railway,

naval, chemical and electrical applications. For temperatures above 250°C, phenolic

resins are used, since they can guarantee the same epoxy’s properties even at high

temperature. The price to pay is represented by the high pressure required during

the polymerization, the high void content and the typical black colour. Concerning

what we said, it is possible to find them in high temperature applications [14].

Thermoplastics Resins with a linear molecular structure, which don’t undergo

chemical modification during the heating mold, are defined thermoplastics. The

heat causes the melting and the solidification occures during the cooling down pro-

cess. The polymer chain associate through intermolecular forces, weaken rapidly

with increased temperature, yielding a viscous liquid, thus it is possible to reshape

thermoplastics by heating, but for a limited number of cycle, because too many

processes can degrade the resins. They are usually reinforced with short discontin-

uous fibers such as fiberglass or carbon fibers. There are two major advantages of

thermoplastic composites: the first is that thermoplastic resins have an increased

impact resistance of comparable thermoset composites, in some instances even 10

times higher; the other major advantage is the ability to reform, that, in theory,

also allows for recycling at the end of life. It is possible to find examples of common

thermoplastics in polyethilene terephthalate (PET), polypropilene, polycarbonate,

vinyl, polyethylene, nylon, polybutylene terephthalate (PBT) and polyvinyl chloride

(PVC).
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1.2.2 Metal matrices

This kind of matrix is little used because of problems inherent to the introduction

of fibers inside the matrix, which has to be in liquid state but with a temperature

that doesn’t damage the fibers themselves. Another problem is to obtain a uniform

fiber distribution and a perfect alignment. One of the most difficult requirement to

respect is the wettability: frequently the metal matrix does not soak completely the

fibers making it impossible to create a composite. However, the principal danger

is represented by the temperature with which the matrix wets the fibers: in this

case it is high, providing the potential to form intermediate deposits which damage

the fibers. Despite these difficulties, the aerospace industry shows interest in the

development of the metal-matrix composites because of their combination of low

specific thickness and high resistance: indeed, some parts of the Space Shuttle’s

fuselage are made in MMCs because of the high operating temperature.

1.2.3 Ceramic matrices

The principal purpose of the reinforcement in this kind of material is to increase the

toughness and the resistance typically limited of the ceramic matrices. As the metal

matrix composite, the reinforcement can be in the form of particle, short or long

fibers but, in every case, it is possible to have an increasing resistance thanks to the

effect of the interruption of the crack’s propagation. However what we want to obtain

is a raising toughness: ceramic materials have interesting characteristics because of

their strong covalent or partially covalent ionic bonds that produce a high Young

modulus and a significant hardness, even at very high temperatures. Nevertheless,

these same bonds that provides such an excellent characteristics, don’t let the crystal

lattices to slip, preventing any plastic deformation.

The principal problem is represented by the reinforcement’s addition: the matrix

can’t be brought to the fusion point because it decompose before or their fusion

temperatures are so high to react with the toughening phase. The only way is

the sintering process, that imply to start from the dust to get the final material.

Leaving out the difficulties of this process and the low quality obtained from it, the
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1 – Composite materials: introduction and application

application in the aerospace industry are numerous: brake disks, thermical barriers,

combustion chambers and every situation requiring high temperature resistance.

1.3 Reinforcement phase

As stated before, the principal reinforcement typologies are fibers and particles.

The use of a specific kind of reinforcements affects the behaviour of the composite

material: in particular, the effective resistance and the degree of anisotropy change

drastically between PMC or FRC. Since this is a thesis of aerospace interest, we will

focus our attention on the fiber reinforced composite, avoiding the particle reinforced

composites.

1.3.1 Fiber reinforcement

The fiber is the part constituting the reinforcement which has the task to serve as re-

sistant part. Many materials have a elevated resistance when they are in fiber shape:

glass, for example, normally considered fragile and little tough, has a Rm = 170MPa

in its classic form but it can reach the amount of 3500MPa in fibers with diameter

less than 100µm. The behaviour of carbon and graphite is similar. Anyway, fibers

don’t support compression loads, that is why they need a material to serve as matrix

who distributes uniformly the stress on the reinforcement and protects them from

chemically aggressive environments [1]. In the composite realization, fibers can be

continuous or discontinuous : in the first case, they are long and their disposition is

aligned to form woven or laminate, while, in the second instance, they are short and

randomly arranged or aligned.

• Discontinuous fibers - d = 1 ÷ 10µm, L = 10 ÷ 100 d - can be arranged

randomly or oriented. If randomly organized, they provide the material an

isotropic behavior, as the particle reinforced composite. Instead, if aligned,

the composite material is anisotropic or orthotropic;

• Continuous fibers - L ≥ 100 d - are oriented in a particular direction. Obvi-

ously, the behavior is intentionally anisotropic, with a better resistance in a
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1 – Composite materials: introduction and application

particular direction, as, for example, that of a specific load. Usually, the ma-

trix is a resin, with good ductility and lightness, reinforced with very strong

fibers made with glass, carbon or polymeric substances.

1.3.2 Principal types of fibers

Glass fibers Glass fibers are, by far, the most used reinforcement in the composite

industry in order to replace heavier metal parts. Although glass weighs more than

carbon, and is not as stiff, it confers a high impact-resistance and higher elongation.

Anyway, the properties conferred to the fibers can widely change and different per-

formance levels can be achieved simply modifying the glass type, the fiber diameter

and form and the sizing chemistry [36]. Fiber properties are established by the fiber

manufacturing process and the elements and coatings used in this process. During

glass fiber production, raw materials are melted and formed into long and fragile

filaments, varying in diameter between 3.5÷ 24µm. The primary ingredient is silica

sand, resulting in more than the 50% of the glass fiber’s weight . Other particular

materials like metal oxides can be added to the silica or it is possible to change the

processing methods in order to obtain fibers for particular applications:

• E-glass is the standard form of glass fiber, accounting for more than 90%,

well-know for electical applications (Electrical-glass). Its chemical composition

makes it an excellent insulator and it is particularly well suited to applications

in which radio-signal transparency is desired. It is the most economical glass

fiber for composites, offering sufficient strenght in most employment;

• S-glass is a high traction resistant glass. Its resistance is, indeed, 33% greater

than that one of E-glass and its Young modulus is 20% higher. This glass is

usually used for aerospace applications where great resistance-to-weight ratios

are required with good characteristics at high temperature and a high fatigue

limit, all features that occurs in this kind of fibers;

• D-glass is another type of glass fiber, particularly suitable for electrical appli-

cations, thanks to its low dielectric constant and lower density, although its

mechanical properties are worse than S and E glass ones;
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• C-glass is the corrosion-resistant glass, that loses much less of its weight when

exposed to an acid solution than does E-glass. However, E- and S-glass are

much more resistant to sodium carbonate solution than is C-glass.

Carbon fibers The mechanical performance of carbon fibers derive from the par-

ticular crystalline structure of graphite: the stronger the crystalline structure, the

better the final composite. A graphite crystal has a structure made by overlapping

carbon atoms plane layers. The bonds between atoms belonging to same planes

are strong (covalent bonds) while those ones between atoms of different layers are

moderately weak (van der Waals forces): it is clear that the crystals are strongly

anisotropic structures and it is up to the manufacture process to arrange the crys-

talline structure in the right direction. This is certainly hard to make and practically

it is impossible to obtain perfect crystals and orientation precision that is why the

resulting mechanical characteristics will be worse than theoretical ones.

To produce carbon fibers, you start with precursors, among which there are

polyacrylonitrile (PAN), rayon and pitch, whose choice depend on the production

cost, the process complexity and the speed of making, then the precursor fibers are

chemically treated, heated and stretched to create high-strength fibers. The most

common precursor employed in carbon fiber manufacturing process is PAN because

of its amazing mechanical qualities such as high tensile strength (to 6800MPa) and

Young modulus. Furthermore, there are a lot of possible applications, ranging from

aerospace structures to recreational goods: depending on the final curing tempera-

ture, in fact, different classes of carbon fibers are proposed, with different tenacity

level and stiffness (from intermediate to ultra-high modulus) [30]. Another produc-

tion technique starts from petroleum-pitch as precursor: these fibers have high to

extremely high stiffness, lower tensile strength and low to negative axial coefficient

of thermal expansion (CTE) and these properties are extensively adopted in high

stiffness components who needs a good thermal conductivity.

The final product is made up of bundles called joms which have a low spe-

cific weight, low CTE, high mechanical resistance and stiffness. Although they are

stronger than other kind of fibers, carbon fibers are less impact-resistant and they

9



1 – Composite materials: introduction and application

can also experience galvanic corrosion in contact with metal: in order to overcome

this problem, a barrier material or veil ply (often fiberglass/epoxy) is used during

laminate layup [36].

Boron fibers Boron fibers are the result of a research program, whose primary

objective was to examinate the whole field of elements which have the chatacteristic

to create a reinforcement, on the basis of high fusion point and low density criteria.

They are obtained by means of a laser-assisted chemical vapor deposition which, pre-

cisely, deposites the elemental boron on an uniform tungsten wire substrate. This

process is expensive, for both the cost of the tungsten thread and the deposition’s

scarce efficiency so they have considered to use, as substratum, the cheaper carbon

thread; but during the deposition, boron experiences a remarkable elongation, caus-

ing the breakup of the filament carbon. To alleviate the problem the thread shall be

covered by a thin pyrolytic graphite layer who postpones the breakup and protects

the covering boron from damages.

Aramid fibers They are made up of synthetic polyamide chains, in which the 25%

of amide bonds is connected to two aromatic cycles. The aramid fiber, thanks to a

combination of excellent specific weight and high traction resistance, has a greater

specific resistance of any other fiber both in terms of impact-resistance and of crack-

propagation, as well as vibration damping. This is precisely why they are used in

bulletproof vests and other armor and ballistic applications, but even for helicopter

rotor blades, solid rocket motors, compressend natural gas tanks and other parts

that must withstand high stress and vibration. For these applications, the most

used aramid fibers are Nomex and Kevlar. The high cost of high-performance fibers

can be a deterrent to their selection.

1.4 Composites for aerospace applications

Fiber-reinforced polymer composites materials, thanks to their combination of light-

ness and mechanical resistance, are becoming the preferred materials for aerospace
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and aeronautical applications, as well as a field where remarkable results are achieved

with research projects. «In particular, their use as primary structural materials in

recent years in several technology-demonstrator front-line aereospace projects world-

wide has provided confidence leading to their acceptance as prime materials for

aerospace vehicles» [21]. This is obtained thanks to the will of the aerospace indus-

try to improve the performance of commercial and military aircraft, that constantly

drives the development of improved high performance structural materials.

As result of what was said, «the application of high performance composite ma-

terials to military aircraft can be traced back almost three decades to the F-14 (US

Navy) and F-15(US Air Force) fighters, which use boron/epoxy skins in their em-

pennages» [40]. Since then the use of composite materials in military and transport

aircraft has increased. Initial applications to aircraft structures were in secondary

structures such as fairings and control surfaces. With technological progresses, the

use of composite materials for primary structures such as wings and fuselages has

increased [10]. Instead, to find the first significant application of these materials

in commercial transport aircrafts, it is necessary to move in Europe where Dasa

Airbus introduced a rudder made entirely in composite for the A300 and A310 in

1983, followed in 1985 by a much more complex vertical tail fin. The first signi-

ficative difference was that the metal vertical tail had about 2000 parts while the

composite one had less than 100 parts. As a consequence, the composite vertical

was not only lighter but also cheaper than the metal one thanks to the reduced part

number and lower assembly costs. So, the usage of this new material with other

design efficiencies led to significatively reduce the fuel comsuption. Currently the

A300-600 airframe weight is 4.5% composites [10].

Nowadays, thanks to their versatility, composites are used for both structural

applications and components, in all aircraft and spacecraft, from complete airplanes

such as the Beech Starship to helicopter rotor blades, wing assemblies, propellers,

seats and instrument enclosures. Here there is reported a table, taken from Nayak

[26], that summerizes the principal characteristics of the fibers.
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Table 1.1: Different fibers commonly used in aerospace applications [26]

Fiber Density Modulus Strength
g/cm3 (GPa) (GPa)

Glass
E-glass 2.55 65− 75 2.2− 2.6

S-glass 2.47 85− 95 4.4− 4.8

Aramid
Low modulus 1.44 80− 85 2.7− 2.8

Intermediate modulus 1.44 120− 128 2.7− 2.8

High modulus 1.48 160− 170 2.3− 2.4

Carbon
Standard modulus 1.77− 1.80 220− 240 3.0− 3.5

Intermediate modulus 1.77− 1.81 270− 300 5.4− 5.7

High modulus 1.77− 1.80 390− 450 2.8− 4.5

Ultra-High strength 1.80− 1.82 290− 310 7.0− 7.5

The application areas are:

• Glass fibers

– E-glass - small passenger a/c parts, aircraft interiors, secondary parts;

rocket motor casing;

– S-glass - highly loaded parts in small passenger a/c ;

• Aramid fibers

– Low modulus - fairings; non-load bearing parts;

– Intermediate modulus - radomes, structural parts; rocket motor casings;

– High modulus - highly loaded parts;

• Carbon fibers

– Standard modulus - almost all types of parts in a/c, satellites, antenna

dishes, missiles;
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– Intermediate modulus - primary structural parts in high performance

fighters;

– High modulus - space structures, control surfaces in a/c;

– Ultra-High strength - primary structural parts in high permormance fight-

ers, spacecraft [26].

It was chosen to study carbon fibers thanks to their versatility and greater use

in both transport and military aircraft, while, for the matrix, a termoset resin was

picked: the epoxy resin is the most popular one, with a moderately high tempera-

ture of usage, a low shrinkage (2−3%) and a its comparatively ease of process, that

makes possible to give varieties of structure, morphologies and wide range of prop-

erties, although it is more expensive than other thermosets like phenolic, polyester

or polyimides.

1.5 The repeating unit cell

The main purpose of this study is the prediction of the fracture in composite ma-

terials, largely described previously. To achieve this goal, it must be considered the

effective of the reinforcement’s disposition in the matrix: indeed, the distance be-

tween two fibers widely influences the stress and strain fields which defines the crack

initiation. The theory behind the fracture behavior of a composite material and the

derived strength will be discussed in the later chapters, but here is important to in-

troduce the repeating unit cells. They are cell models containing a certain number

of fibers, used to obtain the structure of a composite material: in many kind of com-

posites, such as unidirectional fiber reinforced composites, the macrostructure can

be seen as made by a periodic array of a simpler microstructure, i.e. the repeating

unit cell [43]. So, exploiting the simplicity of the analysis of this cell, which is char-

acterized by reduced dimensions, the overall behavior of a more complex material

can be derived. A periodic-array miscrostructure assumption has as consequence

the limitation that the reinforcement phase has constant size and orientation [23].

This is not necessarily tru in actual materials, since mistakes in the manufacturing
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process could cause the variation in size and distribution of the fibers in the matrix.

However, considering that here the subject of study are unidirectional fiber compos-

ite materials, we can assume that the fibers are uniformely sized: a fiber diameter

of 6µm is considered for the whole reinforcement phase from now on.

1.5.1 Periodic boundary conditions

So, the usage of a repeating unit cell entails that the entire material should be

derived by a repetition along the cross-section space of the basic cell. For this

reason, it is necessary to ensure the continuity between neighboring RUCs so that,

when the cell is prone to deformations, any separation in the structure will occur

[13]. What was said can be achieved by means of periodic boundary conditions, a set

of equations (see eq.1.1) in terms of displacements which guarantee that each RUC

in the entire structure has the same mode of deformation so that there is no gap

or overlap between contiguous RUCs [42]. Considering an arbitrary quadrilateral

RUC in the underfomed configurations with one corner point placed at the origin

(0, 0, 0), the equations corresponding to the periodic boundary conditions are [11]

ux(L1, y, z)− ux(0, y, z) = εxxL1,

uy(L1, y, z)− uy(0, y, z) = 2εxyL1,

uz(L1, y, z)− uz(0, y, z) = 2εxzL1,

ux(x, L2, z)− ux(x, 0, z) = 2εyxL2,

uy(x, L2, z)− uy(x, 0, z) = εyyL2,

uz(x, L2, z)− uz(x, 0, z) = 2εyzL2,

ux(x, y, L3)− ux(x, y, L3) = 2εzxL3,

uy(x, y, L3)− ux(x, y, L3) = 2εzyL3,

uz(x, y, L3)− uz(x, y, L3) = εzzL3

(1.1)

where L1, L2 and L3 are the lengths of the cell along the x, y and z directions

respectively, ux, uy and uz are the displacement of the RUC boundary along the x,

y and z direction and εij is the tensorial strain [11] .
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1 – Composite materials: introduction and application

1.5.2 RUCs realizations

The following figures represent the RUCs created for the analysis. As said before,

the fiber diameter df is constant and equal to 6µm while the fiber volume fraction,

defined by

Vf =
vf
vc

(1.2)

where vf is the volume of the fibers contained within the volume of the cell vc, is

equal to 0.52.

Three different type of RUC are taken into account, containing 5, 10 or 30 fibers

randomly arranged. Every RUC is a square and it is simple to evaluate the length

of the cell’s side, from the total area of the fibers, given by (πr2f )×Nf , where rf is

the fiber radius and Nf is the number of fibers, divided by the fiber volume fraction

Vf .

(a) RUC #1 (b) RUC #2 (c) RUC #3 (d) RUC #4 (e) RUC #5

(f) RUC #6 (g) RUC #7 (h) RUC #8 (i) RUC #9 (j) RUC #10

Figure 1.4: Five-fibers RUC renditions, L = 16.49µm
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1 – Composite materials: introduction and application

(a) RUC #1 (b) RUC #2 (c) RUC #3 (d) RUC #4 (e) RUC #5

(f) RUC #6 (g) RUC #7 (h) RUC #8 (i) RUC #9 (j) RUC #10

Figure 1.5: Ten-fibers RUC renditions, L = 23.32µm

(a) RUC #1 (b) RUC #2 (c) RUC #3 (d) RUC #4 (e) RUC #5

(f) RUC #6 (g) RUC #7 (h) RUC #8 (i) RUC #9 (j) RUC #10

Figure 1.6: Thirty-fibers RUC renditions, L = 40.39µm
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Chapter 2

Theoretical background: Finite

Elements Method and Unified

Formulation

The laws describing every phisical phenomena are usually expressed in terms of

partial or ordinary differential equations (PDEs or ODEs). This means that, to

have a solution of typical problems in a area of interest such as structural analysis,

fluid flow, mass transport, heat transfer and electromagnetical potential, boundary

value problems must be solved analytically.

For the vast majority, these problems, with different geometries, cannot be solved

with classical methods. So, an approximation of the equations can be constructed

typically based upon different types of discretizations: these methods approximate

the partial differential equations with numerical model equations, resulting in an

algebraic system. The solutions of the numerical model equations are, in turn, an

approximation of the real solution to the PDEs or the ODEs. In order to obtain

what was said, the finite elements method (FEM) is used.

The finite elements method yields values of the unknowns at discrete number of

points over the domain, called nodes. To solve the problem, it subdivides a domain

of interest into smaller, simpler parts that are called finite elements and then the

simpler equations which describe these finite elements are assembled into a larger

system of equations that models the entire problem. In the end, an associated
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2 – Theoretical background: Finite Elements Method and Unified Formulation

error function is minimized to approximate a solution. For this purpose, variational

methods from the calculus of variation is used.

There are two important peculiarity in FEM that make this method so popular:

1. «piece-wise approximation of physical fields on finite elements provides good

precision even with simple approximation functions (increasing the number of

elements we can achieve any precision)» [27];

2. «locality of approximation leads to sparse equation system for a discretized

problem. This helps to solve problems with very large number of nodal un-

known» [27].

As said, to enhance the precision of the method, i.e. to obtain a more realistic

solution, it is important to increase the number of elements which describes the

physical domain: this means that a greater number of algebraic equations must

be solved and therefore a lot of time to perform the calculations. For this reason,

the turning point in the application of the finite element methods there was when

computers capable to quickly solve complex algebraic systems were developped.

Similarly, even innovations in mathematical field were waited: in particular, methods

that can be used to approximate the differential equations were necessary, among

which an especially significant one is the weight residual method [6].

2.1 Introduction to the Unified Formulation

Considering now that the Finite Elements analysis is common knowledge, so to not

dwell on the procedures characterizing this method, it is important to introduce a

new method to derive the FE matrices and vectors which are involved in every study

about the mechanics of structures: the Carrera Unified Formulation (CUF).

The CUF is a class of theories of structures, for both one dimensional (beam) and

two dimensional (plate and shell) cases, who, using a condensed notation, allows

us to express the displacement field along the cross-section or the thickness as an

expansion with arbitrary functions. The result of this notation is called Fundamental

Nucles, simple matrices or vectors indipendent from the theory of structures used,
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2 – Theoretical background: Finite Elements Method and Unified Formulation

and it can provide, with a low computational cost, the same results obtained only

by 3D elements by using only 1D and 2D finite elements [6]. So, the derivation of

the Fundamental Nuclei is essential and it is here analyzed.

2.2 FEM and Theory of structures approximations

Let us consider a simple structure, such as a cantilevered beam, and let’s take

into account the displacement field along the three direction x and z, the cross-

section coordinates, and y the axial direction. In the most general situation, the

three displacement components, who are called ux, uy and uz, where the subscript

indicates the direction of the displacement, are dependent from the three coordinates

of the space

ux = ux(x, y, z)

uy = uy(x, y, z)

uz = uz(x, y, z)

(2.1)

So, we can include these three components in a vector u 1 which can be expressed

as follows

uT = (ux, uy, uz) (2.2)

At this point, as the Finite Elements formulation suggests, the entire structure

can be discretized along the axial direction y, into a set of simpler elements defined

by the nodes: in this way, the displacement field can be seen as the sum of the nodal

displacements ui multiplied by a shape function Ni

u(x, y, z) = Ni(y)ui(x, z) (2.3)

where the repeating indexes follow the Einstein notation. As we can notice, the

dependence from the three coordinates is so splitted and, while the shape functions

take the y-axis dependence, the nodal displacements become only dependent by the

cross-section coordinates x and z.

1From now on, all the variables reported in bold are vectors or matrices
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2 – Theoretical background: Finite Elements Method and Unified Formulation

Now, it is possible to introduce the Unified Formulation by considering the nodal

displacements, as done by the finite elements formulation, as the sum of generic

functions Fτ (x, y) multiplied by a coefficient uτi

ui(x, z) = Fτ (x, z)uτi

= F1(x, z)u1i + F2(x, z)u2i + ...+ Fτ (x, z)uτi + ...+ Fm(x, z)umi

(2.4)

where m is the number of terms in the expansion and uτi are the actual unknown.

So, the final displacement field will be expressed in term of a double expansion,

depending from two indexes, τ and i:

u = Ni(y)Fτ (x, z)uτi =
n∑
i=1

m∑
τ=1

NiFτuτi (2.5)

and even its virtual variation can be expressed with the same notation just changing

the indexes from τ and i to s and j

δu = Nj(y)Fs(x, z)δusj (2.6)

2.3 Derivation of the Fundamental Nucleus

In order to apply the finite element method, the first thing to do is to write the

geometrical relations and the constitutive equations from the displacement field, in

a way similar to the eq.2.5. The geometrical relation that we need is between strain

and displacement by means of the partial derivative

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.7)

while the constitutive equation is given by the Hooke’s law, which link stress and

strain by using of the material coefficient matrix C

σ = Cε (2.8)
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2 – Theoretical background: Finite Elements Method and Unified Formulation

Considering that the displacement field is 3-dimensional, we can write the differential

operator b as follows

b =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

∂/∂z 0 ∂/∂x

0 ∂/∂z ∂/∂y

∂/∂y ∂/∂x 0


(2.9)

so that the strain and the stress become

ε(x, y, z) = bNi(y)Fτ (x, z)uτi (2.10)

σ(x, y, z) = CbNi(y)Fτ (x, z)uτi (2.11)

and the virtual variation

δε(x, y, z) = bNj(y)Fs(x, z)δusj (2.12)

At this point it is easy to derive the virtual variation of the internal work δLint,

made by the integral on the volume of the virtual variation of the strain multiplied

by the stress

δLint =

∫
V

δεTσdV = δusjk
τsijuτi

= δuTsj

∫
V

[
Fs(x, z)Nj(y)bTCbNi(y)Fτ (x, z)

]
dV uτi

(2.13)

where the 3× 3 matrix kτsij is the fundamental nucleus and it is made by [6]

kτsij =

∫
V

Fs(x, z)Nj(y)bTCbNi(y)Fτ (x, z)dV (2.14)

2.4 Assembly technique

The derivation of the matrices through the Unified Formulation can be easily imple-

mented in computer code by using four loops on the four indexes i, j, τ and s. The
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finite element matrix will be the results of these loops where the fundamental nu-

cleus is evaluated for every combination of these indexes. Here is reported a scheme,

taken from the book cited in [6], that make easy to understand how this assembly

procedure can be obtained to describe and entire structure

Figure 2.1: «Representation of the assembly procedure: the fundamental
nucleus is the core, the loops on τ and s build the matrix for a given pair of
i and j, the loops on i and j give the matrix of the elements, and the loop
on the elements give the global stiffness matrix» [6]

2.5 Weak Form of the Solid Model

At this point, it is possible to use the Principle of Virtual Displacements to derive

the equilibrium equations in terms of the Fundamental Nuclei. In particular, there

are two possible forms of the equilibrium equations:

• the "strong" form, who is the entire formulation of the equilibrium equations

without any simplification, in terms of displacements, stresses and strains. It

allow us to evaluate the equilibrium of a generic point into a generic body,

but, as we can imagine, these kind of equations are difficult to solve and they

can be used only for simple geometries and simple boundary conditions;
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• the "weak" form, who instead can be used to solve the problem in a lot of

practical applications and which satisfies the equation derived for the strong

form only according to an integral criterion. Thanks to the assumption of this

weak form, the derivative of the virtual displacements can be approximated

without using the integration by part [6].

Now, considering that the Principle of Virtual Displacements (PVD) is given by

the equivalence between the work done by the external tractions and body forces

on an admissible displacement field and the work done by the equilibrated stresses

(solution of the actual problem) on the virtual strain, which corresponds, in a static

case, to

δLint = δLext (2.15)

it is necessary to obtain the virtual variation of the external work (δLext) following

what has been done in the book [6].

Let us consider as known the vector containing the external loads, acting for

semplicity at the nodes of the body that we are analyzing: this vector can be

expressed as P. To obtain the external work, we need a vector containing the

virtual nodal displacements, that is δU, even used to write the displacement field

in the finite element method: from this, it is immediate

δLext = δUTP (2.16)

The displacement field u can be written, in according to the finite elements method,

as the product of the nodal displacements and the shape functions (usually Lagrange

polynomials)

u = NU (2.17)

from whom we can obtain the strain

ε = bu = bNU = BU (2.18)

The virtual variation of the internal work derived from this notation and from the

application of the Hooke’s law is

δLint =

∫
V

δεTσdV =

∫
V

δεTCεdV =

∫
V

δUTBTCBUdV (2.19)
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Since the nodal displacements are constant on the volume, they can be removed

from the integral

δLint = δUT

(∫
V

BTCBdV

)
U (2.20)

where ∫
V

BTCBdV = K (2.21)

So, from the equivalence of the priciple of the virtual work derives

δUTKU = δUTP (2.22)

which means

KU = P (2.23)

the equilibrium equation in "weak" form for a structural element [6].

2.6 The Taylor expansion class

The definition of the equilibrium equations for a structural model goes through the

characterization of a proper displacement field, for both the shape functions and

the terms of the expansion Fτ who defines the cross-section behavior: the Unified

Formulation allows to choose arbitrarily the number of terms, i.e. the order of the

expansion and the accuracy of the displacement field above the cross-section. It is

considered as well-known the choice of the shape functions N(y), that usually are

Lagrange polynomials, so we can focus our attention on the two possibilities for

the class of expansion: the Taylor- and the Lagrange-class. Here is presented the

Taylor-like expansion and the relevant fundamental nuclei [6].

It is possible to start showing the complete linear expansion model, made by a

first-order Taylor-like polynomial. From now on, N is the order of the expansion: for

this linear case N = 1. The displacement field is given by the following equations:

ux = ux1 + xux2 + zux3

uy = uy1 + xuy2 + zuy3

uz = uz1 + xuz2 + zuz3

(2.24)
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where, as we can see, there are 9 displacements variables and it showed a complete

linearity in x and z. This linear model is responsible of a constant distribution of

the strain above the cross-section (εxx, εzz and γxz) and a linear one of the strain

along the axial direction (εyy, γxy and γyz, see Eq.2.7). It should be noticed that,

with some semplifications, from this model is possible to obtain the Euler-Bernoulli

and the Timoshenko beam theory (EBBT, TBT).

2.6.1 Unified formulation of expansion

On the basis of what we have said in the previous sections, in according to the

Einstein notation the displacement vector can be written as

u = Fτuτ (2.25)

where

u =


ux1 + xux2 + zux3

uy1 + xuy2 + zuy3

uz1 + xuz2 + zuz3

 (2.26)

So, the expansion’s functions Fτ are

Fτ=1 = 1

Fτ=2 = x

Fτ=3 = z

(2.27)

2.6.2 Higher-order Taylor expansion class

The linear model is sufficient to describe simple situation as the bending of a beam,

but, in order to derive the mechanical response for complex loads, boundary con-

ditions or geometry, higher orders are required [6]. In the unified formulation, it

is possible to define the displacement field starting from the Eq.2.25 where Fτ are

functions of the cross-section coordinates x and z while uτ are the uknown nodal

displacements: so, to get a higher order of the description, i.e. a more accurate de-

scription of the mechanical phenomenon, it is sufficient to increase the order of the
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functions of x and z. Obviously, as the order of the functions increases, the number

of the unknowns will increase too, which means an increasing computational cost.

In the following table, various Fτ are specified until N = 3, where M is the

number of terms in the expansion

Table 2.1: Taylor-like expansion [6]

N M Fτ

0 1 F1 = 1

1 3 F2 = x, F3 = z

2 6 F4 = x2, F5 = xz, F6 = z2

3 10 F7 = x3, F8 = x2z, F9 = xz2, F10 = z3

...
...

...
N (N + 1)(N + 2)/2 F(N2+N+2)/2 = xN , ... , F(N+1)(N+2)/2 = zN

For orders greater than 3, a technique similar to the Tartaglia’s triangle can be

used to evaluate Fτ , considering every F as the product of the elements above on

the left and on the right.

2.7 The Lagrange expansion class

To define the displacement field of structures, different classes of functions can be

chosen, such as harmonics, exponentials or polynomials. Among these, the second

class of functions on which is based the CUF models consists of the Lagrange poly-

nomial expansions, where the Fτ expansion functions coincide with the Lagrange

polynomials, similarly to what happen for the shape functions N , while the un-

known variables uτ are nodal displacements, that can be physically placed on the

structure discretizing the cross-section with a set points [6].

This particular class of functions can be useful in many situation thanks to its

features. First of all, the Lagrange expansion is dependent only on the elements used

to discretize the cross-section: this means that a local refinement of the model can

be simply done refining the discretization of the structure. Moreover, the unknown

variables are displacement components, without rotations or higher-order variables.
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What was described, lead to enhanced capabilities of the CUF Lagrangian-Elements

models in terms of accuracy and computational cost.

The first important thing to remember about the Lagrange polynomials is that,

usually, they are given in terms of normalized coordinates, even though this is not

a compulsory choice: its utilisation is preferred because, with respect to the actual

coordinates, it entails to advantages that will be discussed in the next paragraphs.

Since the Lagrange polynomials depend on the number of nodes of discretization,

different solutions are presented having different features in terms of accuracy and

computational cost. This lead to the definition, as done in the book Carrera et al.

[6], of different sets of elements with triangular or quadrilateral shape, containing

respectively 3 or 6 nodes and 4 or 9 nodes.

Because of the choices done is this thesis, here only the quadrilateral elements will

be presented.

2.7.1 Normalized coordinates and Lagrange polynomials

As said before, two kinds of quadrilateral elements can be used: the simplest La-

grange polynomial involves four points above the cross-section and the relevant

elements is so called L4, as we can see from Fig.2.2 in which α and β are the nor-

malized cross-section axis [6].

Similarly to what we have done for the Taylor expansion class, it is possible to de-

fine the Fτ for the displacement field, in terms of the normalized coordinates (see

Eq.2.28 below)

Fτ =
1

4

(
1 + αατ

)(
1 + ββτ

)
, τ = 1, 2, 3, 4 (2.28)

where ατ and βτ are the coordinates of the normalized cross-section’s nodes, pre-

sented in the table below.
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Table 2.2: Normalized coordinates of the four-nodes cross-section [6]

Point ατ βτ

1 −1 −1

2 1 −1

3 1 1

4 −1 1

Figure 2.2: Lagrange element with four-node in actual and normalized coor-
dinates

In practice, the L4 expansion can be seen as a linear expansion in α and β, with

the addiction of a bilinear term αβ.

Now, to enhance the accuracy of the description of the displacement field, the L9 el-

ements are introduced, adding a node for every side of the quadrilateral and antoher

one in the center (see Fig.2.3). The equations of the Fτ are given by [6]

Fτ =
1

4

(
α2 + αατ

)(
β2 + ββτ

)
, τ = 1, 3, 5, 7

Fτ =
1

2
α2
τ

(
α2 + αατ

)(
1− β2

)
+

1

2
β2
τ

(
β2 + ββτ

)(
1− α2

)
, τ = 2, 4, 6, 8

Fτ =
(
1− α2

)(
1− β2

)
, τ = 9

(2.29)

where the coordinates (ατ , βτ ) of the nodes in the normalized system are exhibited

in the table 2.3
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Figure 2.3: Lagrange element with nine-node in actual and normalized coor-
dinates

Table 2.3: Normalized coordinates of the nine-nodes cross-section [6]

Point ατ βτ

1 −1 −1

2 0 −1

3 1 −1

4 1 0

5 1 1

6 0 1

7 −1 1

8 −1 0

9 0 0

2.7.2 Displacement field with a Lagrange elements

Now, in order to describe the cross-section displacement field, Lagrange elements

are used, defined by a set of Lagrange polynomials. We have already said that

the unknown variables of the displacement field are only traslational displacements:
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moreover, since every Lagrange elements is defined by a set of given point, it is possi-

ble to place the unknowns on the physical surface of the body using a discretization

of the cross-section [6]. Obviously, since every node is linked to an unknown vari-

able, the definition of the cross-section mesh define in turn the degrees of freedom

of the structure, i.e. the computational cost.

The displacement field introduced by a L4, the Lagrange polynomial with four

nodes is

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4

(2.30)

while the one related to the L9 is

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9

(2.31)

So, it is not so difficult to evaluate the degrees of freedom of the expansions, which

is given by the number of unknown variables ux1 , ... , uzN

Figure 2.4: L4 and L9 elements with the relevant Degrees of Freedom

2.7.3 Locally refined cross-sections

The other important feature of the Langrange expansion class is that, since the

polynomials depend on the points of the cross-section discretization, it is possible to
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obtain a more accurate model just increasing the density of the mesh: in particular,

this possibility can be exploited to refine locally the structural model, as, for exam-

ple, if there is the necessity to impose geometrical discontinuities [6]. The utilisation

of several Lagrange elements for the discretization requires the definition of a local

and a global connectivity, as it can be seen in the following figures in which there is

an example of structure made by two L9 elements.

Figure 2.5: An example of two elements assembled

So, the most interesting feature is given by the local refined models, which can be

used when local effects are discriminatory for the global behavior of the structure.

A typical example is given by a thin-walled structure under the action of a punctual

load on both the top and the bottom edges [6]. In fact, the displacement of the

cross-section is accentuated close to the loading points, while the load is much less

effective on the vertical edges. To properly detec the resulting displacement using the

Taylor-like expansion, it is necessary to increase the order of the terms which defines

the displacement field acting globally on the structure’s cross-section, even where

the effect of the loads is not marked; conversely, using the Lagrange polynomials is
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possible to increase the number of the nodes where they are necessary, resulting in

fewer degrees of freedom. (see Fig.2.6).

Figure 2.6: Different refinement for TE and LE elements

Actually, the local refinement is possible even using the TE elements but the pro-

cess would require the imposition of compatibility conditions by means of Lagrange

multipliers [6].

Now, after the introduction to the theoretical basis of the Unified Formulation,

in the next chapter several structures will be analyzed using these procedures.
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Chapter 3

CUF application: assessment of

referred structures

The purpose of this chapter is to analyze some referred structures using the Carrera

Unified Formulation. The use of this particular approach can be extended to a large

casuistry who concerns the static and the modal analysis of different structures, from

simple cantilever beams to more complex geometries, and even usual micromechan-

ical problems of simple and complex composite structures, variable from a single

fiber Representative Volume Element to periodical cellular materials.

It was already specified that, by varying the basic geometries of the axial dis-

cretization or the element of the cross-section mesh, it is possible to obtain different

complex geometries with a relative constructive semplicity. Moreover by choosing a

more or less dense mesh, i.e. a greater o smaller number of elements of discretiza-

tion, for both the axial direction and the cross-section, different levels of accuracy of

the results can be achieved, with a higher or lower computational cost respectively.

Then, in this chapter, the effect of the shear locking phenomenon is also evalu-

ated with three different approaches for its correction: the reduced integration, the

selective integration and the mixed interpolation tensorial components approach.

The shear locking is a numerical phenomenon who can occur if the thickness of the

structure, which is subject to numerical study, tends to zero (Cinefra et al. [8];
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Reddy [33]). As the thickness decreases in fact the shear stiffness tends to be in-

finite, causing consequently an overestimation. In order to correct this behavior,

a lower number of Gauss points are used to define the discretization, with a lower

resulting stiffness[6].

3.1 Static analysis of a cantilever beam

In this section, a cantilever beam is considered in order to evaluate the displacement

under the action of different types of load.

The analysis will be conducted using the Finite Element Method and more specif-

ically the Carrera Unified Formulation, varying the number and the type of the

elements for the discretization along the axial direction of the beam, two different

expansion classes for the displacement field on the cross-section and two different

approaches for the shear locking phenomenon’s correction.

Introduction to the problem Let us consider a cantilever beam, defined by one

free tip and one clamped tip, under the action of a load Pz = −50N applied in one

single point at the center of the free tip [6]. The reference system used is shown

below (Fig. 3.1). The cross-section edge, h, is 0.2m long and two slenderness ratios

are considered: L/h = 100, 10. The material used is the aluminium, with a Young’s

modulus E = 75GPa and a Poisson’s ratio ν = 0.33.

Figure 3.1: Reference system
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3.1.1 Analysis via Taylor-like expansion

This first part of the analysis is done using a Taylor-like expansion, following what

was said in the previous chapter of the thesis (2). The Taylor-like expansion can

be seen as a generalisation of the model provided by Euler-Bernoulli [12] and Tim-

oshenko [39] and it can be enhanced varying the order of the expansion, i.e. adding

elements to the sum.

Obviously, as we can expect, increasing the order of the Taylor-like expansion, the

computational cost will increase, even though this is not well-visible for simple prob-

lems in which the number of the elements is limited.

The objective of this example is to evaluate the displacement of the free-tip

along the z direction, uz, and to see how many elements are necessary to achieve

convergence of results. Different degree of approximation can be obtained varying

the following parameters:

• the number of the elements adopted for the description of the beam, from 5

to 40;

• the elements’ type, who can be chosen between B2, B3 and B4;

• the order of the Taylor-like expansions of the displacement field, indicated as

N = 2, 3, 4;

where the number of elements indicates the y-axis mesh’s density and the type of

elements specifies the number of nodes which defines each elements of the axial

mesh. In particular, in the key-word, B stands for Beam-like element and the

following number is the number of nodes which it contains (see Fig.3.2).

Finally, it is good to specify that two possibility will be considered to avoid the

problem of the shear locking: the selective integration and the reduced integration.

These two methods will be important especially in the cases of low-order expansion.
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(a) (b) (c)

Figure 3.2: From left to right: B2, B3 and B4 element in their local reference
system

Mesh refinement and convergence analysis The results obtained are summa-

rized in the tables below (Tab. 3.1, 3.2 e 3.3), sorted on the theory order, where the

last three columns report the values acquired via Full integration, Selective integra-

tion and Reduced integration.

In order to evaluate the accuracy of the results, it is possible to compare the results

with the Euler-Bernoulli Beam Theory (EBBT), which allow us to calculate the

displacement of the free tip for the cantilever beam using the formula

uzEBBT =
PzL

3

3EI
(3.1)

where Pz is the load, L is the length of the beam, E is the Young modulus and I is

the cross-section moment of inertia. It is good to remember that the Euler-Bernoulli

theory have better results for beams with high slenderness ratios.

It can be noticed that, as the number of nodes for each element increases, less

elements are required for the axial discretization, since there are globally still many

points. Moreover, the effectiveness of the Reduced Integration to correct the shear

locking phenomenon is proved: it is possible to obtain very accurate results even

when the theory order, the number of elements and the type of the element are not

sufficient for a good characterization. In this sense, the Selective Integration shows

worse results while using the Full Integration it is not even possible to achieve usable

values for the B2 elements. The numerical effect of the shear locking is mitigated

considering a thicker beam (L/h = 10), in fact the value of the displacement is close

to the comparison value.
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Finally, it seems that the order of the Taylor-like expansion does not produce any

effect since the semplicity of the problem is well described by the hypothesis of the

Euler-Bernoulli theory, so it is useless to consider higher order terms.

Table 3.1: Theory order N = 2

Type of elements No. of elements Full I. Sel. I. Red. I.

L/h = 100, uz × 102m

uzEBBT × 102 = −1.331m

B2

5 −0.009 −1.236 −1.320

10 −0.035 −1.286 −1.329

20 −0.128 −1.310 −1.331

40 −0.397 −1.322 −1.332

B3

5 −1.284 −1.297 −1.333

10 −1.311 −1.315 −1.332

20 −1.323 −1.324 −1.332

40 −1.328 −1.329 −1.332

B4

5 −1.311 −1.314 −1.332

10 −1.323 −1.324 −1.332

20 −1.328 −1.328 −1.332

40 −1.331 −1.331 −1.332

L/h = 10, uz × 105m

uzEBBT × 105 = −1.336m

B2

5 −0.521 −1.243 −1.317

10 −0.950 −1.293 −1.326

20 −1.204 −1.315 −1.328

40 −1.294 −1.324 −1.329

B3

5 −1.301 −1.304 −1.329

10 −1.320 −1.320 −1.329

20 −1.326 −1.326 −1.329

40 −1.328 −1.328 −1.329

B4

5 −1.319 −1.319 −1.329

10 −1.326 −1.326 −1.329

20 −1.328 −1.328 −1.329

40 −1.329 −1.329 −1.329
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Table 3.2: Theory order N = 3

Type of elements No. of elements Full I. Sel. I. Red. I.

L/h = 100, uz × 102m

uzEBBT × 102 = −1.331m

B2

5 −0.009 −1.236 −1.320

10 −0.035 −1.286 −1.330

20 −0.128 −1.310 −1.332

40 −0.397 −1.322 −1.332

B3

5 −1.284 −1.298 −1.333

10 −1.311 −1.315 −1.332

20 −1.323 −1.324 −1.332

40 −1.329 −1.329 −1.332

B4

5 −1.311 −1.314 −1.333

10 −1.323 −1.324 −1.332

20 −1.328 −1.329 −1.332

40 −1.331 −1.331 −1.332

L/h = 10, uz × 105m

uzEBBT × 105 = −1.336m

B2

5 −0.521 −1.245 −1.322

10 −0.951 −1.295 −1.328

20 −1.206 −1.317 −1.330

40 −1.296 −1.326 −1.330

B3

5 −1.303 −1.306 −1.331

10 −1.322 −1.322 −1.331

20 −1.328 −1.328 −1.331

40 −1.330 −1.330 −1.331

B4

5 −1.321 −1.321 −1.331

10 −1.328 −1.328 −1.331

20 −1.330 −1.330 −1.331

40 −1.331 −1.331 −1.331
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Table 3.3: Theory order N = 4

Type of elements No. of elements Full I. Sel. I. Red. I.

L/h = 100, uz × 102m

uzEBBT × 102 = −1.331m

B2

5 −0.009 −1.236 −1.320

10 −0.035 −1.286 −1.329

20 −0.128 −1.310 −1.331

40 −0.397 −1.322 −1.332

B3

5 −1.284 −1.298 −1.333

10 −1.311 −1.315 −1.332

20 −1.323 −1.324 −1.332

40 −1.328 −1.329 −1.332

B4

5 −1.311 −1.314 −1.333

10 −1.323 −1.324 −1.332

20 −1.328 −1.329 −1.332

40 −1.331 −1.331 −1.332

L/h = 10, uz × 105m

uzEBBT × 105 = −1.336m

B2

5 −0.521 −1.245 −1.323

10 −0.951 −1.295 −1.329

20 −1.206 −1.317 −1.332

40 −1.297 −1.327 −1.332

B3

5 −1.303 −1.306 −1.333

10 −1.322 −1.323 −1.332

20 −1.329 −1.329 −1.332

40 −1.332 −1.332 −1.332

B4

5 −1.321 −1.322 −1.333

10 −1.329 −1.329 −1.332

20 −1.331 −1.331 −1.332

40 −1.332 −1.332 −1.332
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3.1.2 Analysis via Lagrange polynomials

As said before, in addition to the Taylor-like expansion, it is possible to use the

Lagrange polynomials in order to evaluate the displacement field along the cross-

section. This kind of analysis involves a proper definition of the cross-section through

L-elements: in fact, a set of Lagrange polynomials is defined by a given number of

points which, in turn, depend on the type and number of elements used for the

cross-section mesh. So in contrast to the Taylor-like, the order of the terms for the

displacement field is defined by the density of the mesh.

In this analysis five different discretization are chosen: 1L4, 2 × 1L4, 1 × 2L4,

2×2L4, 1L9 (note that 2×1 indicates that there are 2 elements L4 along the x-axis

and 1 element L4 along the z-axis), where the elements are represented in the figure

below.

(a) (b)

Figure 3.3: L4 and L9 element

Mesh refinement and convergence analysis The problem considered is the

same proposed in the previous section: a cantilever beam, with a compact square

cross-section (h = 0.2m) having a length-to-thickness ratio equal to 100, made by

the same material and under the same loading condition. The displacement of the

free tip is evaluated [6]. Considering the previous analysis, the full integration is

chosen, in order to define better the influence of the cross-section discretization,

with 40B4 elements along the y-axis.

The results are summarized in the following table and they show that, even

considering the same number of points, if we see at the different result from 2× 2L4
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and from 1L9, the type of the element plays an important part into the accuracy of

the analysis. In the table, TE means the usage of a Taylor-like expansion and LE

of the Lagrange-like expansion.

Table 3.4: Effect of the L-type elements (L/h = 100), uzEBBT × 102 =
−1.331m

Model uz × 102m

TE
N = 2 −1.3306

N = 3 −1.3307

N = 4 −1.3307

LE
1L4 −1.8656

2× 1L4 −1.1641

1× 2L4 −1.2340

2× 2L4 −1.2676

1L9 −1.3307

Then two different cantilever beams are considered with two square cross-section:

the material, the load and the geometry of the section are unvaried, but we may

take into account two length-to-thickness ratio, L/h = 10, 100.

The following tables show us the effect of the number of elements along the y-axis

combined with different cross-section discretizations [5]. It has to be take in account

that, for the y-along mesh, B4 elements were used with the selective integration.

Table 3.5: Effect of the number of elements (L/h = 100)

No. Elem. 5 10 40

uz × 102m

N = 2 −1.314 −1.324 −1.331

1L4 −1.846 −1.858 −1.866

1L9 −1.314 −1.324 −1.331
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Table 3.6: Effect of the number of elements (L/h = 10)

No. Elem. 5 10 40

uz × 105m

N = 2 −1.319 −1.326 −1.329

N = 3 −1.321 −1.328 −1.331

N = 4 −1.322 −1.329 −1.332

1L4 −1.846 −1.853 −1.854

1L9 −1.319 −1.326 −1.329

Table 3.7: Effect of the number of L4 elements (L/h = 100)

No. Elem. 1L4 2× 1L4 1× 2L4 2× 2L4

uz × 102m

5 −1.843 −1.154 −1.220 −1.252

10 −1.856 −1.160 −1.228 −1.261

40 −1.866 −1.164 −1.234 −1.268

It is immediate to understand that the L9 elements provides better results, while

the L4 elements can be used only combined with many elements on the y-axis mesh

or if in a large number themselves. Moreover, a lower computational cost has to be

paid if the Lagrange polynomials are used instead of the Taylor-like expansion.

3.2 Static analysis of a hollow square cross-section

Let us now establish a hollow square cross-section beam, made with an isotropic

material with E = 75GPa, ν = 0.33 and ρ = 2700 kg/m3. The beam is clamped

at both the edges and the cross-section geometry is defined by L/h = 20, h/t = 10

and h = 1m.

It is possible to study the displacement of the middle-length section, varying the load

applied, using first the Taylor-like expansion and then the Lagrange polynomials [6].
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3.2.1 One punctual load

It is considered one punctual load applied to the coordinates (0, L/2, −h/2). The

displacement of the loaded point will be calculated using three different orders

for the TE (N = 4, 8, 11) and three cross-section’s discretization made up by

8L9, 9L9, 11L9 LE elements (see fig.3.4).

(a) 8L9 (b) 9L9 (c) 11L9

Figure 3.4: Cross-section discretization [6]

The results are showed in the tab.3.8

Table 3.8: Loaded point transverse displacement of the hollow square beam
[6]

Theory uz × 108m

Results Reference

TE
N = 4 1.199 1.209

N = 8 1.249 1.291

N = 11 1.262 1.309

LE
8L9 1.246 1.277

9L9 1.311 1.308

11L9 1.330 1.326

3.2.2 Two punctual loads

Two punctual loads are now applied to the same beam: Pz = ±1N applied at

(0, L/2, ∓h/2). It is possible to investigate the transverse displacement of the two
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loaded point using the Taylor-like expansion and the Lagrange polynomials with the

discretization (3.4(a)) and (3.4(c)).

Table 3.9: Two loaded point transverse displacement [6]

Theory uztop × 109m uzbot × 109m

Results Reference Results Reference

TE
N = 4 −0.180 −0.178 0.180 0.178

N = 8 −1.011 −1.046 1.011 1.046

N = 11 −1.221 −1.270 1.221 1.270

LE
8L9 −0.939 −0.985 0.939 0.985

11L9 −0.927 −0.972 1.436 1.456

3.3 Static analysis of a C-shaped cross-section beam

The analysis of the differences between the results attained with Taylor expansions

and Lagrange polynomials continues with the open cross-sections [6]. The first

one considered is a C-shaped beam (see Fig.3.5) with the following parameters:

L/h = 20, h/t = 10, h = b2 = 1m, b1 = b2/2. The material is, as usual, an isotropic

metal.

Figure 3.5: C-shaped cross-section
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The displacement of the point at (−b2/2, L, 0.4) in the Tab.3.10 is obtained using

the Taylor-like expansion with order N = 4, 8, 11 and the Lagrange polynomials

with two L9 meshes, showed in Fig.3.6.

(a) 6L9 (b) 9L9

Figure 3.6: C-shaped cross-section discretization [6]

Table 3.10: Transverse displacement at (−b2/2, L, 0.4) [6]

Theory uz × 108m

Results Reference

TE
N = 4 −0.237 −0.245

N = 8 −2.159 −2.161

N = 11 −2.561 −2.565

LE
6L9 −2.930 −2.930

9L9 −2.983 −2.982

3.3.1 Flexural-torsional load

A flexural-torsional load is considered as a second loading case. A point force (Pz =

−1N) is applied at (b1, L, −h/2) and, in this case, two length-to-thickness ratio

are taken into account (L/h = 20, 10) with a 9L9 cross-section discretization. The

results consist of tension and displacement in particular points (Tab.3.11) while,

following, the deformed shape of the beam is showed.
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Table 3.11: Displacements and stresses of the C-shaped beam [6]

Length-to-thickness Results Reference (x, y, z)

Ratio

L/h = 20

uz × 106m

−1.462 −1.462 (−b2/2, L, h/2)

σyy × 10−2 Pa

4.052 3.976 (b1, L/10, h/2)

σxy × 10−2 Pa

−2.040 −1.691 (b1, L, −h/2)

σyz × 10−1 Pa

−2.333 −2.348 (0.4, L/10, 0)

L/h = 10

uz × 107m

−2.272 −2.272 (−b2/2, L, h/2)

σyy × 10−2 Pa

2.026 2.055 (b1, L/10, h/2)

σxy × 10−2 Pa

−3.649 −3.837 (b1, L, −h/2)

σyz × 10−1 Pa

−1.855 −1.863 (0.4, L/10, 0)

Figure 3.7: Free-tip of the C-shaped beam after the application of the load
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3.4 Static analysis of a open hollow square cross-

section beam

An open, square cross-section is now considered (Fig.3.8), while the cross section

is defined by the ratios L/h = 20, h/t = 10, where h = 1m. The material is

isotropic, characterized by a Young modulus E = 75GPa, a Poisson ratio ν = 0.33

and density ρ = 2700 kg/m3, the structure is clamped at both the edges with two

opposite unit loads (±Px) applied at (0, L, −0.45) [6].

Figure 3.8: Open, hollow square cross-section

Three different L9 discretization are adopted (see Fig.3.9) in order to calculate

the x-axis displacement of the point (0, L, −h/2).

(a) 9L9 (b) 11L9 (c) 11L9∗

Figure 3.9: Open square cross-section discretization [6]

47



3 – CUF application: assessment of referred structures

Results The displacement is indicated in Tab.3.12. It is important to specify that

this kind of problem cannot be analyzed by the Taylor-like expansion, since the ap-

plication of the two opposite force at the same point would imply null displacement.

Table 3.12: Horizontal displacement at (0, L, −h/2) [6]

Elements ux × 108m

Results Reference

9L9 4.897 4.884

11L9 4.906 4.888

11L9∗ 5.135 5.116

Figure 3.10: Free-tip of the open square cross-section under the load’s appli-
cation

3.5 Static analysis with solid-like geometrical BCs

Differently from the cases in which the geometrical boundary conditions are imposed

over the entire cross-section, it is possible that the problem requires more localized

BCs. The next examples place theirselves in this argument.

3.5.1 Compact rectangular beam

The first example take into account is a compact rectangular beam, clamped at the

lateral edges (see Fig.3.11), with the following geometrical characteristics: L/h =
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100, b/h = 10, h = 0.01m. A set of 21 unitary point loads is applied over the

surface (z = h/2) along the mid-span cross-section, with constant steps on x [6].

It is possible to evaluate the vertical displacement uz of the point at the middle of

the beam (0, L/2, 0) using the Lagrange polynomials for the displacement field with

a mesh, over the cross-section, of 10L9 elements (Tab.3.13).

Figure 3.11: Compact rectangular beam, clamped at the edges

Table 3.13: Vertical displacement at (0, L/2, 0) [6]

Elements uz × 107m

Results Reference

10L9 −1.102 −1.110

Figure 3.12: Deformed mid-span cross-section of the compact beam

3.5.2 Compact rectangular curved beam

Now let us consider a circular arch cross-section beam clamped at the lateral edges

(Fig.3.13) [6]. The geometry is defined by the length L = 2m, the outer radius

r1 = 1m, the inner radius r2 = 0.9m and the angle of the arch θ = π/4 rad, while
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three unitary point load are applied, in the radial direction, on the bottom surface

at y = 0, L/2, L.

The mesh over the cross-section is made by 12L9 elements, organized as in the

Fig.3.14 and it is possible to calculate the vertical displacement of the point on the

top surface, along the mid-span cross-section, in correspondence of the loaded point

(y = L/2, θ = θ/2) (see Tab.3.14).

Figure 3.13: Circular arch cross-section rectangular beam, clamped at the
edges

Figure 3.14: L9 mesh for circular arch cross-section rectangular beam [6]

Table 3.14: Vertical displacement of the beam’s top surface (y = L/2, θ =
θ/2) [6]

Elements uz × 1010m

Results Reference

12L9 4.703 4.809
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Figure 3.15: Deformed shape of the curved beam

3.5.3 C-shaped cross-section beam

It is now taken into consideration the previous c-shaped cross-section beam (see

Fig.3.5) with the same geometrical parameters [6]. The boundary condition pro-

posed is that one showed in the following figure (Fig.3.16), with only the bottom

flanges clamped, while the L9 mesh chosen in made by 13 elements (Fig.3.17).

Two point load Pz = −1N are applied at (0, 0, 0.4) and (0, L, 0.4): it is possi-

ble to evaluate the vertical displacement of the loading point using the Lagrange

polynomials (Tab.3.15).

Figure 3.16: C-shaped cross-section beam, bottom flanges clamped [6]
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Figure 3.17: L9 mesh for c-shaped cross-section beam [6]

Table 3.15: Vertical displacement of the loading point (0, 0, 0.4) [6]

Elements uz × 1010m

Results Reference

13L9 −3.690 −3.662

Figure 3.18: C-shaped cross-section beam with bottom flanges clamped after
deformation

3.6 Static analysis of a symmetric laminated beam

A three-layer symmetric beam is considered [28] (see Fig.3.19). The dimensions of

the beam are known: the length L = 2m, the width b = 0.2m and the heigth

h = 0.1m. The beam is divided into three sub-domains, one per layer, and ev-

eryone of their is made of an orthotropic material with the following properties:
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EL = 25.0GPa, ET = EZ = 1.0GPa, νLT = νLZ = νTZ = 0.25, GLT = 0.5GPa

and GTZ = GLZ = 0.2GPa.

As we said before, a symmetric [0°, 90°, 0°] cross-ply lamination is applied. The

beam is clamped at y = 0 while it is loaded at y = L with four point load Pz = −25N

at (0, L, ±h/2) and (b, L, ±h/2).

Figure 3.19: Three layered symmetric beam

Results Discretizing the cross-section in 3L9 elements, it is possible to investigate

the displacements, the normal stresses and the shear stresses at different points of

the beam (Tab.3.16) and, using paraview, the variation of σyy and σyz over the

cross-section heigth is also obtainable (see Fig.3.20).

Table 3.16: Displacements and stresses on the beam [28]

Theory uz × 103m σyy × 10−3 Pa σyz × 10−3 Pa

(0, L, h/2) (0, L/2, h/2) (0, L/2, 0)

LE Res. Ref. Res. Ref. Res. Ref.
3L9 −0.73 −0.72 311.01 311.07 −6.99 −6.92

TE Res. Res. Res.
N = 6 −0.74 310.86 −7.25
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Figure 3.20: Variation of normal and shear stresses along the z-axis, Solid
and 3L9 ref. solution are referred to [28]

3.7 Static analysis of a eight-layer composite beam

For this test, a cantilever eight-layer composite beam is taken into account [28].

The geometry of the structure is shown in the Fig.3.21, where the materials have

the following characteristics:

1. EL = 30GPa, ET = EZ = 1GPa, G = 0.5GPa and ν = 0.25;

2. EL = 5GPa, ET = EZ = 1GPa, G = 0.5GPa and ν = 0.25.

Four equal loads are applied at the corners of the beam’s cross-section tip, directed as

the z-axis with a value of −0.05N . The vertical displacement and the normal stress

are investigated into two different points (Tab.3.17) and the evolution of normal

and shear stresses, along the mid-length cross-section, are plotted versus the beam’s

heigth (Fig.3.22).

Figure 3.21: Eight layered composite beam
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Results As we said before, stresses and displacements are investigated using the

CUF, describing the displacement field with the Taylor-like expansion and the La-

grange polynomials, in order to obtain increasingly accurate results.

Table 3.17: Displacements and stresses on the eight-layer beam. The refer-
ence value is in the brackets [28]

Model uz × 106m σyy × 102 Pa

(a/2, L, 0) (a/2, L/2, −h/2)

LE
8L9 −3.029 [−3.029] −730 [−730]

8L16 −3.029 −730

TE
N = 6 −3.027 −730

N = 9 −3.031 −730
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Figure 3.22: Variation of normal and shear stresses along the z-axis, 8HL4
ref. solution is referred to [28]
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3.8 Single and double cell static analysis

For the following analysis a single cell and then a double cell unit is considered,

in order to perform the analysis of basic units who can be repeated all along the

space to simulate structure with a high level cof complexity [3]. The cross-section

model for the single cell model is described in the Fig.3.23 where the cell is square

and b = 0.1mm, d = 0.08mm, L/b = 10. Isotropic material is then chosen for this

assessment:

1. fiber is defined by E = 202.038GPa and ν = 0.2128;

2. matrix has E = 3.252GPa and ν = 0.355.

while the structure is clamped at y = 0 and loaded at (b/2, L, 0) with a vertical load

FZ = −0.1N . Results were obtained by means of TE and LE models, using a 10B4

mesh with a cross-section discretization defined using 20L9 elements, as shown in

Fig.3.23.

(a) (b)

Figure 3.23: Single fiber-matrix cross-section and relevant discretization

The double cell model is instead obtained just repeating the single cell model,

shifted over the x-axis, and maintaining the same cross-section discretization and

materials (Fig.3.24). It is necessary to specify that a = 2b.
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The structure is clamped at y = 0 and loaded with two vertical point load, applied

at Point A (a/4, L, b/2) and Point B (3a/4, L, b/2).

Figure 3.24: Double cell cross-section

Results for single cell model The displacement of the loading point is analyzed,

varying the model of the cross-section displacement field (Tab.3.18).

Table 3.18: Vertical displacement of the loading point (b/2, L, 0) [mm] [3]

Model uz × 105mm

Results Reference

LE
20L9 −7.825 −7.933

TE
N = 1 −7.844 −7.835

N = 2 −7.783 −7.774

N = 3 −7.786 −7.777

N = 4 −7.803 −7.794

N = 5 −7.804 −7.795

N = 6 −7.809 −7.800

N = 7 −7.809 −7.800

N = 8 −7.813 −7.804

Results for double cell model First, the displacement of the point A is ana-

lyzed, using the LE and TE model (Tab.3.19). Then, the normal and the shear stress
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is evaluated in Points E (a/4, L/2, 0.04), F (3a/4, L/2, 0.03) and C (0.01, L/2, 0)

(Tab.3.20), where the Solid solution is obtained from Abaqus.

Table 3.19: Vertical displacement of the loading point (a/4, L, 0) [mm] [3]

Model uz × 105mm

Results Reference

LE
20L9 −3.646 −3.958

TE
N = 1 −3.922 −3.917

N = 2 −3.871 −3.868

N = 3 −3.872 −3.869

N = 4 −3.881 −3.879

N = 5 −3.881 −3.879

N = 6 −3.887 −3.885

N = 7 −3.887 −3.885

N = 8 −3.889 −3.887

Table 3.20: Normal and shear stresses on the double cell, the reference values
are in the brackets [3]

Model σyy × 10−2MPa σyy × 10−2MPa σyz × 10−1MPa

Point E Point F Point C

LE

40L9 4.657 (4.647) 3.508 (3.522) −1.321 (−1.584)

TE

N = 1 4.680 (4.734) 3.555 (3.551) −0.981 (−0.981)

N = 2 4.627 (4.679) 3.514 (3.509) −1.592 (−1.591)

N = 3 4.627 (4.679) 3.514 (3.509) −1.773 (−1.771)

N = 4 4.576 (4.625) 3.517 (3.513) −1.760 (−1.759)

N = 5 4.576 (4.625) 3.517 (3.513) −1.656 (−1.655)

N = 6 4.597 (4.641) 3.557 (3.552) −1.671 (−1.670)

N = 7 4.597 (4.641) 3.557 (3.552) −1.592 (−1.590)

N = 8 4.619 (4.664) 3.561 (3.556) −1.584 (−1.583)

SOLID [3]
(4.744) (3.546) (−1.519)
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3.9 Static Analysis of a cross-ply beam with differ-

ent models

Let us consider a cross-ply beam [4], made by three layers at [0°, 90°, 0°], with the

following geometry: length L = 40mm, width b = 0.8mm and height h = 0.6mm.

The fibers considered have a diameter of 0.016mm each one and every different

component is studied with its mechanical characteristic:

1. Fiber is considered orthotropic with E1 = 202.038GPa, E2 = E3 = 12.134GPa,

G12 = G13 = 8.358GPa, G23 = 47.756GPa, ν12 = ν13 = 0.2128 and ν23 =

0.2704;

2. Matrix is an isotropic material with E = 3.252GPa and ν = 0.355;

3. Layer’s characteristics are calculated by means of the Rules of Mixture, from

which results E1 = 103.173GPa, E2 = E3 = 5.145GPa, G12 = G13 =

2.107GPa, G23 = 2.353GPa, ν12 = ν13 = 0.2835 and ν23 = 0.3124,

where 1 is the longitudinal direction, 2 is the orthogonal direction and 3 is the

transverse one.

(a) First model (b) Second model

Figure 3.25: Two models for the cross-section of the cross-ply beam

Two different models are taken into account for the structural analysis: the first

model is made by three layers and just one single fiber-matrix cell is inserted in the

bottom layer; instead, the second one is obtained with four cell in bottom e top
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layer, while the middle layer is constituted by the orthotropic material indicated

before (Fig.3.25).

The cross-ply beam is considered cantileverd, with one edge clamped and the other

edge loaded with a vertical point load FZ = −1N at (b/2, L, 0).

Results The displacement and the stresses are calculated in different point over

the cross-section and they are displayed in Tab.3.21. In particular, the vertical

displacement is calculated in the center of the cross-section at (b/2, L, 0), while σyy

and σyz are evaluated at the center point of the third cell of the bottom layer, which

means at (5b/8, L/2, −0.2).

Table 3.21: Displacement and stresses on the cross-ply beam, the reference
values are in the brackets [4]. σyz is obtained using the Mixed Interpolation
Tensorial Components approach for the model 1 and the Selective Integration
for the model 2.

Theory Order uz × 102mm σyy × 10−2MPa σyz × 10−1MPa

(b/2, L, 0) (5b/8, L/2, −0.2) (5b/8, L/2, −0.2)

Model 1
LE 30L9 −1.447 (−1.498) −5.467 (−5.659) −2.954 (−2.381)

TE N = 5 −1446 (−1.498) −5.457 (−5.659) −0.378 (−2.381)

Model 2
LE 164L9 −1.089 (−1.548) −5.538 (−5.849) −1.391 (−2.169)

TE N = 5 −1.435 (−1.548) −5.538 (−5.849) −0.764 (−2.169)

3.10 Modal analysis of a cantilever beam

The utilisation of the Carrera Unified Formulation is possible even in case of Modal

Analysis of simple and complex geometries. In particular, the natural frequencies

of some structures can be evaluated under different constraint conditions, materials

or cross-sections.

In this section, two different geometries for the cross-section are analyzed, both

cantilevered, with one edge clamped and the other one free to move. The study will

be performed using the Taylor-like expansion and it has, as objective, the evaluation
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of the effect of the theory order on the accuracy of the results.

3.10.1 Cantilevered compact section

Let us consider a cantilevered beam with a rectangular cross-section [29]. The

geometry of the section is shown in Fig. 3.26, where b = 0.03m and h = 0.1m, with

a length-to-thickness ratio L/h = 100.

The material used is steel, with E = 210GPa, ν = 0.33 and ρ = 7900 kg/m3, and

the discretization along y-axis is done with 40B4 elements.

Figure 3.26: Rectangular cross-section

It is possible to calculate analytically the natural frequencies by means of the

Euler-Bernoulli model (EBBM)

ωn =
1

2π

√
EI

ρA
(βn)2 (3.2)

and then compare these results with those ones obtained via FEM and Taylor-like

expansion to describe the displacement field.

Results In the table below there are the first ten natural frequencies
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Table 3.22: Natural frequencies (Hz) for L/h = 100, via Taylor-like expan-
sion

Frequencies Analytical TBM N = 1 N = 2 N = 3 N = 4

Solution

f1 0.250 0.250 0.250 0.250 0.250 0.250

f2 0.833 0.833 0.833 0.834 0.834 0.834

f3 1.566 1.566 1.566 1.569 1.569 1.569

f4 4.384 4.384 4.384 4.391 4.391 4.391

f5 5.219 5.217 5.217 5.223 5.223 5.223

f6 8.592 8.590 8.590 8.604 8.603 8.603

f7 14.203 14.198 14.198 14.221 14.220 14.220

f8 14.615 14.597 14.598 14.616 14.613 14.613

f9 21.216 21.207 21.207 21.242 21.240 21.240

f10 28.639 28.577 28.577 28.613 28.604 28.604

In the end the error is obtained using the formula

∆% =
∣∣∣ωan − ω

ωan

∣∣∣× 100 (3.3)

Table 3.23: Percentage error with reference to the analytical solution

Frequencies Analytical TBM N = 1 N = 2 N = 3 N = 4

Solution

f1 0.250 0 0 0 0 0

f2 0.833 0 0 0.12 0.12 0.12

f3 1.566 0 0 0.19 0.19 0.19

f4 4.384 0 0 0.16 0.16 0.16

f5 5.219 0.04 0.04 0.08 0.08 0.08

f6 8.592 0.02 0.02 0.14 0.13 0.13

f7 14.203 0.04 0.04 0.13 0.12 0.12

f8 14.615 0.12 0.12 0.01 0.01 0.01

f9 21.216 0.04 0.04 0.12 0.10 0.10

f10 28.639 0.22 0.22 0.09 0.12 0.12
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3.10.2 Cantilevered thin-walled structure

It is now considered a thin-walled beam with a semi-circular cross section, as shown

in Fig.3.27 [29]. The geometrical dimensions are given as following: the radius

r = 0.0245m, the thickness t = 0.004m and the length L = 0.82m.

The material is assumed to be aluminium with E = 68.9GPa, ν = 0.3 and ρ =

2700 kg/m3 and the boundary condition chosen is one edge clamped and one edge

free (cantilever beam). In the end a mesh of 20B4 elements is setted with a cross-

section discretization made by 10L9 elements.

The first three coupled and the first three uncoupled frequencies are in Tab.3.24.

Figure 3.27: Semi-circular cross-section cantilever beam

Table 3.24: First three coupled and uncoupled natural frequencies with for a
semi-circular cross-section cantilever beam [29]

Frequence EBBM N=2 N=4
Results Reference Results Reference Results Reference

Uncoupled frequencies (Hz)

1 31.94 31.86 32.04 31.98 31.98 31.00

2 199.95 199.57 199.47 199.07 198.81 193.28

3 558.81 557.77 552.62 551.50 549.54 532.99

Coupled frequencies (Hz)

1 72.99 72.84 70.77 72.81 68.68 67.33

2 454.64 453.71 446.09 445.18 349.70 357.81

3 1260.55 1257.94 1204.68 1202.23 593.33 593.76
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3.11 Micromechanical analysis

The aim of this section is the micromechanical analysis of composites structures.

This target can be achieved using two different processes: homogenization and

de-homogenization that, respectively, returns the effective material properties of

a composite or the stiffness matrix and the tension field in a Representative Volume

Element (RVE) using the Carrera Unified Formulation.

3.11.1 Fiber reinforced composites

The effective moduli of uni-directional fiber reinforced composites are examined in

this section [18].

Two different cases are analyzed, both of them modeled with a square pack RVE,

as shown in Fig.3.28: the first one is an Aluminium matrix in which Boron fibers

are immersed, with a fiber volume fraction of 47%; the second case is a composite

made by Epoxy matrix and Graphite reinforce (60%).

The properties of the two materials are the following:

• Boron fiber - E11 = E22 = 379.3GPa, G12 = 172.41GPa, ν12 = ν23 = 0.1;

• Graphite fiber - E11 = 235.0GPa, E22 = 14.0GPa, G12 = 28GPa, ν12 = 0.2,

ν23 = 0.25;

• Aluminium matrix - E11 = E22 = 68.3GPa, G12 = 26.3GPa, ν12 = ν23 = 0.3;

• Epoxy matrix - E11 = E22 = 4.8GPa, G12 = 1.8GPa, ν12 = ν23 = 0.34;

Figure 3.28: Component-wise discretization of the square pack RVE
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Results The Component-wise discretization is made using 20L9 elements for the

cross-section and 2B4 elements for the beam. The displacement field along the cross-

section is obtained using the Lagrange polynomials and the results are compared

with those written in [18] (Tab.3.25).

Table 3.25: Effective moduli of the materials [18]

E11 E22 G12 G23 ν12 ν23

(GPa) (GPa) (GPa) (GPa) (−) (−)

Boron/Aluminium Composite, V F = 40%

Result 215.2 144.2 54.4 45.9 0.195 0.254

Reference 215.2 144.3 54.4 46.0 0.195 0.253

Graphite/Epoxy Composite, V F = 67%

Result 142.8 9.6 6.10 4.47 0.252 0.349

Reference 142.8 9.6 6.10 3.13 0.252 0.349

3.11.2 Void filled composite

In the following example, it is analyzed the local and global behaviour of a void-filled

composite [18].

As shown in Fig.3.29, two kinds of geometry are investigated, one with a circular

and the other with a square inclusion. The beam, made of copper, with the Young

modulus E = 127GPa and Poisson ratio ν = 0.34, is discretized with 2B4 elements

while the cross-section with 40L9 elements.

The result of the analysis is the modified Young modulus in the longitudinal direction

E22: for this purpose, four different volume fractions are considered: 0.0204, 0.1837,

0.5102, 0.7511 (Tab.3.26).

Results The Young modulus was evaluated, referred to those obtained in [18]

while, in Fig.3.30, the von-Mises stress field, σvm, is depicted when a transverse

tensile strain ε11 of 0.001 is applied.
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(a) Circular void (40L9) (b) Square void (40L9)

Figure 3.29: Discretization of the two types of inclusion

Table 3.26: Transverse Young modulus E22 (GPa) of void-filled composite
with different void volume fraction [18]

Void volume fraction
0.0204 0.1837 0.5102 0.7511

Circular void
Result 120.58 83.03 39.59 12.26

Reference 120.36 82.27 39.57 10.32

Square void
Result 120.47 81.90 39.86 18.28

Reference 120.22 82.02 39.85 18.28

(a) Result (b) Reference [18]

Figure 3.30: von-Mises stress contours σvm [MPa] over the cross-section of
the RVE with a void volume fraction of 0.5102
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The analysis exposed so far has to be seen as an introduction to the real work

on the microstructure of a composite material. The same approach used in these

example will be extended to the micromechanical analysis through homogenization

and de-homogenization processes in order to figure out the strength of a particular

Repeating Unit Cell. Then, after a proper statistical study on the fiber distribution

for each cell, it will be possible to correlate the strength and the stiffness achieved

to the randomness’ degree characterizing the reinforcement phase.

Bearing this goal in mind, it is now possible to discuss the statistical analysis of

the repeating unit cells showed in chapter 1.
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Chapter 4

Statistical analysis of the RUCs:

description of fibers’ arrangement

and degree of randomness

The complete characterisation of a repeating unit cell, of whom we want to model

the micromechanical behavior and define the crack mechanism, goes through the

definition of the fiber volume fraction. The reinforcing phase is, in fact, responsible of

the composite material’s resistance under the application of a load and, consequently,

a greater or a smaller amount of fibers influences the value of properties such as the

proportional limit, yield strength or fracture strength.

Nevertheless, it is obvious that the only characterisation of this parameter is

not enough to completely understand the stress and strain field who modifies, in

a meaningful way, the crack initiation process. Indeed, microstructural details like

fiber distribution or imperfections generate high local stresses and/or strains [7],

causing weakness in such areas: it is not unusual that, considering a cross-ply lami-

nate, the transverse plies are cause of crack initiation even though their load is lower

than that one associated to the parallel plies [16].

Therefore, it is possible to indentify two different variability factors: the first one

consists of the constituent properties, as it was studied during the years [20, 17];

instead the second one is about the morphological variability, that is any divergence

from the ideal fiber arrangement, defined by the hexagonal pack of fiber [35], that
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can lead to fiber clustering or accumulation of matrix. This morphological non-

uniformities are caused by techniques and parameters chosen for the manufacturing

process and, since often they are not editable, it is necessary to characterize them in

order to evaluate how they affect plastic deformation, damage evolution and fracture

of the global material.

In this chapter, statistical descriptors of the fiber arrangement are investigated

to provide quantitative informations about the randomness’ degree and to detail

the interaction for both long range and short range. Then, they are applied to

different repeating unit cell and it will be possible to distinguish the pattern of the

second-phase population and to correlate the latter with the local stress field.

4.1 Nearest neighbor distribution

As the name can suggest, the nearest neighbor distribution can be seen as the as

the probability of finding the closest neighbor of a given point as a function of

the distance from that particular reference: it is given by the probability density

function ψ(r) such that ψ(r)dr is the probability to have no point in the circular

region defined by the distance r from a given fiber’s center and to have at least one

point in the annular region with inner radius r and outer radius r + dr. It can be

seen as a descriptor of the minimum distance between fibers and this is particularly

important in the micromechanical behavior of the composite material, since it has

been found that the greatest peak in the stress field, which can produce a fracture,

normally appear where the inter-fibers distance is smallest [15].

So, this distribution function can be used to detail short range fibers interaction, if

the closest neighbor is considered, but it can even be used as a quantitative descriptor

of intermediate and long range interaction, if higher order nearest neighbor are taken

into account.

The first possibility that we have is to consider the random array of fibers as a

spatial point pattern, an arrangement of zero-dimensional point in a two-dimensional

geometry. This can be represented by a stationary Poisson point process [37], de-

fined by an intensity NA, namely the total number of points divided by the area
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of observation. In the stationary Poisson point process, the probability that the

nearest neighbor is located exactly at a distance defined by r is easy to obtain and

it is given as follows [38]

ψn(r) = 2πrNA
(πr2Na)

n−1

(n− 1)!
e−πr

2NA (4.1)

where n defines the neighbor’s order that we want to analyze. The expression for

the closest neighbor, i.e. n = 1, is given by Gurland in [9].

Now, a real microstructure of a composite material consists of unidirectional fibers

of finite size in a three-dimensional space which becomes, if we consider the cross-

section that is the fundamental point of our study, a set of randomly arranged circles

in a two-dimensional geometry: this means that the distribution is similar the one

described by the Poisson point process but, since it can’t exist fiber overlapping, the

position of every entity is not independent from that of the other fibers inside the

cell. For this reason, the Eq. 4.1 cannot be used to describe the nearest neighbor

probability density function. Nevertheless, we may assume that the position of

every fiber is defined by zero-dimensional points distant each other at least the fiber

diameter and that the nearest neighbor probability distribution function follows the

Gaussian distribution (or Normal distribution).

The normal distribution is the most common continuous probability distribution,

widely used to represent random variables whose distributions are uncertain or that

are supposed to concentrate their value around a single mean one. It is defined by

the two parameters:

• µ, the mean value or the expectation of the variable

µ =

∑N
n=1 xn
N

(4.2)

where xn is the variable of interest and N is the total number of occurences;

• σ2, the variance, that is the expectation of the squared deviation from the

mean value (where σ is the standard deviation)

σ2 =

∑N
n=1(xn − µ)2

N − 1
(4.3)
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The probability density function of the Gaussian distribution is

f(x|µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.4)

and this very function will be used to define the nearest neighbor distance probability

function, considering the variable x as the distance between a given fiber’s center

and its closest neighbor.

It is therefore essential to develop a script that can compute the distance between a

fixed point and the others forming-part of the population in order to find then the

minimum of these distances: for this purpose, the Matlab environment has been

chosen.

4.2 Second-order intensity function

In order to distinguish between different types of point patterns and to characterize

the long-range fibers interaction, the second-order intensity function, also known as

the Ripley’s K-function, is the most used descriptor.

This function is defined as the number of further points expected to lie within a

radial distance from a given center and divided by the number of points per unit

area, NA. The reason why this descriptor is associated to the figure of B.D. Ripley

is that he provided a correct estimator to take into account a correction for the

effect of the edges’ proximity [34]. The equation that can be used to extimate this

descriptor, is the following

K(r) =
A

N2

N∑
k=1

w−1
k Ik(r) (4.5)

where A is the area of observation, N is the total number of points, Ik(r) is the

number of points inside the circular area defined by the radius r and wk is the ratio

of the circumference contained within the area A to the whole circumference with

radius r, in other words the correction factor, as shown in the Fig.4.1.

In addition, to understand the functioning of the second-order intensity function, it

is possible to refer to the work of Pyrz [32] who used this descriptor to distinguish

different spatial point pattern. Some examples of points arrangement are reported

in Fig.4.2.
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Figure 4.1: Estimation of K(r) [22]

(a) (b)

(c) (d)

Figure 4.2: From top left to bottom right: regular-random, hard-core and
Poisson arrangement and relevant K-function [32]
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Firstly, it is necessary to remember that the Poisson distribution is built under

the hypothesis of completely positional independence, which means that for every

point in the area of observation, each possible location has about as much chance

to be chosen as every other else. Although this distribution doesn’t fit well the real

case, in which there is the constraint of the fibers overlapping, the Poisson process

of points is one of the most studied and may sometimes provide a useful basis

for comparison to understand how a pattern deviate from complete randomness.

Moreover, if from the figure seems that the arrangement is not so chaotic, with

couples of points close and large empty regions, any impression of aggregation is

misleading [32]. The second-order intensity function for the Poisson distribution

is well-known and equal to πr2 [31] and its line on the K-function graph divides

clustered patterns from regular arrangement.

The regular-random pattern shows instead a characteristic "stair" shape, simi-

larly to a regular set, alternately horizontal fragments and tract with a high slope:

the first ones are indicative of an empty region in the cell at the corresponding dis-

tances, while the second ones identify clustered amount of points. It is therefore

important to say that a strong clustering of regular random-random models results

in a function far above the K(r) corresponding to the Poisson set.

Finally, for the hard-core distribution, probably the most similar to that repro-

duced in this thesis. The relevant K-function is, at first, constant and equal to zero

since the minimum inter-punctual distance is defined by the finite size of the fibers,

then it approaches to the Poisson curve from below, suggesting that, at the end, the

distribution is on the regular side of random [32]. The sensibility of this function

is such as to be capable to identify every disturbance of a regular pattern: in fact,

since a perfect regular arrangement would have a ideal step function, in the event

of a distorsion the curve will decline from its ideal trend.

It is also important to report the work of Zeman and S̆ejnoha [45] who have

evaluated the effect of the correction factor wk comparing the values of the K-

function assuming periodicity to the values obtained using the correction factor wk,

in order to take into account points outside of the sampling area. This result is

shown in Fig.4.3
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Figure 4.3: Effect of the wk factor in according to [45]

4.3 Radial distribution function

The last descriptor that can be used to define the arrangement of fibers and the

degree of randomness is directly derived from the second-order intensity function

[31]. Starting from the definition of the second-order intensity function, who gives

the average number of points lying within a radial distance from a given center, if

we want to know the average number of fibers whose center lies in an annular region

with inner radius r and outer radius r+dr, it is sufficient to evaluate the difference

dK(r) = K(r + dr)−K(r) (4.6)

and to divide this value by the area of the ring, 2πrdr, and the number of fibers per

unit area, NA [2]. This leads to the radial distribution function, or pair distribution

function, g(r), which is defined by the equation

g(r) =
1

2πrNA

dK(r)

dr
(4.7)

where NA is the ratio of the total number of fiber N in the observation area A, while

the other elements are already known.

Referring to the the work of Matsuda et al. [24], it is possible to obtain a discretized

definition of the pair distribution function as follows

g(r) =
1

2πrNAdr

1

N

N∑
i=1

dK(r) (4.8)
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where N is the total number of centers in the considered area, and that provides

the same results of the continuous definition.

The radial distribution function provides not only informations about the vari-

ation of the average fiber density as a function of the distance from a point [41],

but even informations about the occurence intensity of inter-fibers distances: local

maxima indicates a inter-fiber distance more frequent while local minima represent

the least ones. Here there are some examples taken from Pyrz [31], which show the

pair correlation function g(r) for some well-known point pattern

(a) (b)

Figure 4.4: Pair distribution function, from [31]

The values obtained for a random Poisson distribution are identically equal to

1: therefore, values of g(r) which lies above the Poisson one show that the relevant

distance occurs more frequently than in the case of perfect randomness, while, on

the contrary, values smaller than 1 define infrequent distances [31]. For this reason,

it seems reasonable to assume that, in a cross-section with a random distribution

of fibers, the damage initiation will happen where g(r) > 1. Nevertheless, for a

population of finite size fibers, such as the one that will be examinated, a value

of the pair distribution function greater than 1 doesn’t mean necessarily clustered

fibers. This is because, as demonstrated in the work of Yang et al. [44], g(r) for an

actual material depends not only on the spatial fibers centers pattern but even on

the fiber volume fraction, on the average size of the second-phase, etc. Also, it is
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important to specify that the radial distribution function tend to be unitary as the

value of the radius tends to be infinite. In fact,since the area of the annular region is

linearly dependent on the radius (Aar = 2πrdr), as the distances become sufficiently

large, the annular area becomes so large that, automatically, it will contain every

possible variation of the fiber distribution. So dK(r)→ NA(2πrdr) as r → +∞ and

consequently g(r)→ 1 [44].

Anyway, if it is possible to find a value of r for which the function is approxi-

mately equal to 1, this distance can be seen as the scale of local disorder [31], that

is the distance by which the effect of a local geometrical disorder should be taken

into consideration, a geometrical range of inter-fibers interaction. Instead, for a de-

terministic distribution, the pair distribution continuously decreases, showing peaks

in correspondance of a deterministic inter-fiber distances [22].

4.4 Analysis of the repeating unit cells

Once the statistical descriptors were defined, it is necessary to use them to describe

the fiber arrangement in every repeating unit cell, in order to define the degree of

randomness and how this affects the strength of the composite material.

As said before, different amounts of fibers were chosen for the RUCs so to have

several possibilities for the fibers centers pattern, which is reflected, in turn, in a

wider coverage of actual cases. Every RUC created has been reported in the first

chapter of this thesis, while the all curves obtained for each of them are in the

Appendix.

4.4.1 Five-fibers RUCs

The first type of RUC analyzed is that with five fibers.

Nearest neighbor distribution function In order to show different possibilities

in the nearest neighbor distances, five repeating unit cells are chosen, defined by

numbers 3, 6, 8, 9 and 10, since they seem to cover a broader range of cases. Both the
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probability density function and the number of occurences of the nearest neighbor

distance will be shown to better define the fibers centers pattern.

(a)

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b)

6 6.5 7 7.5 8 8.5 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Figure 4.5: Five-fibers RUC #3 and relevant nearest neighbors distances and
distribution function

For the RUC 3, which contains seven points of observation, there are four dif-

ferent distances between a fiber and its closest neighbor, as it is possible to see in

Fig.4.5(b). This means that, even if the cell seems to have a regular pattern in the

fiber distribution, actually the spacing is not constant but there are two couples of

points who are closer in respect to the others.

However, since the number of fibers contained is relatively small, it is easy to think

that the two occurences are indeed the same distance of 6.7µm measured two times:

the first one from a fiber 1 to its closest neighbor, the fiber 2; conversely, the second

time from the fiber 2 to the fiber 1. Being this distance smaller than others, we can

expect that this inter-fiber region will be the crack initiation zone.

In the end, since the first nearest neighbor distance occurs for a value greater than

6µm, there aren’t fibers in contact, as we can actually see from the RUC represen-

tation in Fig.4.5(a).

The RUC #6 (see Fig.4.6) has 6 points of observation out of 8 who are closer

while the remaining two are more far. Also, the three smaller values are diversified

by only a tenth of micron: this means that the damage of the material will be

influenced not only by the inter-fiber distance but even from some other factors, like

the quality of the fiber-matrix interface.
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Figure 4.6: Five-fibers RUC #6 and relevant nearest neighbors distances and
distribution function

It is nevertheless important to make clear that, even if the distances are well-

distributed, the degree of randomness reached in this case is high, because a lot of

possibilities, in terms of distances, have the same probabilities to happen: the low

and wide curve of the probability density function demonstrates this, so it is possible

to think that this spatial point pattern is very similar to a hard-core pattern seen in

the Pyrz’s work [32]. In fact, in that distribution, every point of the RUC has the

same probabilities to be occupied by a fiber than any other point as long as there

is not fibers overlapping, as it is happening in this case.
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Figure 4.7: Five-fibers RUC #8 and relevant nearest neighbors distances and
distribution function

The two curves resulting for this RUC #8, containing 10 fibers, show us a good

degree of randomness: the two more internal fibers, substantially, are differently

spaced from the others, although of a small amount, and, moreover, they interrupt
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a regular pattern. This can be a good example of unintended inclusion in the rein-

forcing phase.

The probability density function of the nearest neighbor distances covers a wide

range of distances, which means that stress and strain field will be extremely vari-

able.

The fourth case (see Fig.4.8) shows us a very simple situation, with two couples

of fibers near, with a small nearest neighbor distance, while the other ones have a

greater distance from its closest neighbors. This suggests that these two couples of

fibers with a smaller inter-fiber distance will be that between which the strain and

the stress will increase until the breaking point.
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Figure 4.8: Five-fibers RUC #9 and relevant nearest neighbors distances and
distribution function

It is good to notice that in no case fibers overlapping or contact is showed, since

the nearest neighbor distance is always strictly greater than the fibers’ diameter.

Moreover, it results that a greater degree of randomness is reached when the curve

of the nearest neighbor distance’s occurences is horizontal, i.e. when the probability

density function is low and wide, because this can be intended as no regularity in the

arrangement of the fibers. On the contrary, a higher and narrow pdf would mean

that fibers are regularly spaced.

For the last case (see Fig.4.9), we have choose a RUC with 7 points of obser-

vation which shows a very high degree of randomness. In fact, as it is possible to

imagine looking at the fibers’ centers pattern in Fig.4.9(a), the fibers cover the area

of observation without clustering.
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Figure 4.9: Five-fibers RUC #10 and relevant nearest neighbors distances
and distribution function

The result of this arrangement is that the distance of 6.8µm is the most frequent

because it was evaluated for 4 times out of 7: considering the small number of fibers,

this can mean that two couples of fibers are the closest, a situation similar to that

one seen for the RUC 9, in Fig.4.8.

After these examples, it seems easy to understand that the degree of randomness

which affects these RUCs, influences the strength since a different distance between

two fibers causes a different stress and strain field.

Second-order intensity function Now it is possible to analyze the second-order

intensity function for the same RUCs, in order to understand something more about

the long range interaction between fibers.

The analysis is stopped for a value of the distance for which wk is not so small,

i.e. the circumference considered is not entirely outside of the RUC, in this way the

function won’t approach to infinite. Also, the mesh used in Matlab for r is very

dense so to catch every variation in the area of interest, even if the function will

appear fragmented.

The first characteristic that can be noticed, looking at Fig.4.10 is that the second-

order intensity function is identically equal to zero until a particular distance: the

value of r for which the function is, for the first time, different from zero is the same

who can be found in the nearest neighbour distance curve of the occurences as the

smaller distance between two closest neighbors.
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Figure 4.10: Second-order intensity function for RUC #3 and RUC #6

In fact, if the circumference has radius r ≤ 6µm, there are no fibers inside its

area, so the value of k(r) = 0. Moreover, the fewer the occurences for the smallest

nearest neighbor distance, the smaller the first value of k(r) /= 0 .

It is even possible to see how the two curves show a totally different pattern: for the

RUC 3, the function is made by short tracts, which is identifier of a high variability

of the inter-fibers distance and a high degree of randomness, while, for the RUC

6, the curve is made by longer tracts, which means that the number of occurences

for the same inter-fibers distance is greater than 1. Similarly, longer tracts with a

lower slope means empty regions in the area of observation: the two informations

combined demonstrate that the RUC 6 is more regular than the RUC 3, information

confirmed by the trend of the nearest neighbor curves.
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Figure 4.11: Second-order intensity function for RUC #8 and RUC #9
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The RUC 8 is that one with the greatest number of points of observation and

the trend of the curve is highly fragmented: in fact this cell exhibits a pronounced

set of stairs that can suggest a regular pattern of the points, as it is possible to say

looking at Fig.4.7(a).

Nevertheless, the different size of every stair let us assume that the distance between

every fiber is variable, so this pattern is random but less than the other RUCs seen

so far. Differently, the RUC 9 exhibits, at first, a vertical trend of the curve that,

though with some short fragments with low slope, lasts for a greater value of r.

Actually, the RUC 6 and 9 seem really similar at first sight but the second-order

intensity function is very sensitive to every variation in the punctual pattern ana-

lyzed, so that it is possible to understand the difference between the two RUC: the

RUC 6 has a more regular trend since the curve looks like a stair-shape function,

that is characteristic of the regular pattern (Pyrz [32]); instead, the RUC 9 shows

a regular-clustered trend, which means that a high number of fibers are clustered

while, for long range, the matrix occupies most of the cell.
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Figure 4.12: Second-order intensity function for RUC #10

The last RUC is the number 10. The trend of the second-order intensity function

is different from the other RUCs seen until now: in fact, the function tends to assume

higher slope for short- and long-range (i.e. between 6 and 8µm and between 10 and

12µm), while it is flat for the medium-range.

So it is easy to think that, with respect of a given point, there is some fibers clustering

for short and long distances and empty regions for medium distances.
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Radial distribution function The third statistical descriptor is the radial dis-

tribution function, defined in the previous section, with which it is possible to figure

out the variation of the fiber density in respect to the distance from a given point.
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Figure 4.13: Radial distribution function for RUC #3 and RUC #6

As it was found with the second-order intensity function, this function has values

different from zero only for r > 6µm, because there isn’t fibers overlapping. More-

over, the choice of the distance mesh in Matlab has a very strong influence over

the results: since we are evaluating the number of points inside an annular region

with thickness equal to dr, a dense mesh, with a very high number of elements and a

small dr, results in a thin shell and, considering the low number of fibers inside the

RUC, a lot of situations in which the annular area doesn’t catch the fibers’ centers.

This explain the high number of distances for which the value of the function is

equal to zero.

Nevertheless, the trend of the curve is very clear. As it was possible to understand

from the literature, the Poisson curve, which define the complete random pattern,

is indentically equal to one: for this reason, values of g(r) greater than one means

that the relative distance, that has to be read as a particular inter-fibers distance,

is more frequent than abscissa’s value with a radial distribution function lower than

one. So, for the RUC 3 there are a lot of radii for which g(r) > 1, i.e. a highly random

repeating unit cell, while for the RUC 6 a couple of distances show a pair distribution

function far greater than one, which can be read as a more regular arrangement.

Furthermore, as we can see in Fig.4.13(b), the curve has an asymptote equal to 1,
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so NA = N/A is illustrative of the entire section.
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Figure 4.14: Radial distribution function for RUC #8 and RUC #9

The RUC 8 has a very particular trend, similar to the regular pattern described

in the literature, with a lot of spikes and zeros. Moreover, since there aren’t values

of r for which the function approaches to a constant value, it is not possible to define

a scale of a local disorder which, in fact, affects the whole RUC.

On the contrary, the curve of the RUC 9 have a trend similar to the hard-core

pattern: the function rapidly decreases after a first peak, which is the value of the

inter-fiber distance more frequent, and it seems to assume a constant value for high

r. Actually, it would be like this if it wasn’t for the reduced dimensions of the RUC

who make empty every annular region before achieving of a constant value.
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Figure 4.15: Radial distribution function for RUC #10

In the end, the radial distribution function for the RUC 10 shows us several

peaks: the average density of fibers is extremly variable and, in particular, this
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seems higher for both short- and medium-range, that are the distances identified by

the higher values of g(r). Obviously, even in this case, as r increases, the function

tends to be zero, since the annular region would be outside the RUC.

4.4.2 Ten-fibers RUCs

Nearest neighbor distribution function As done in the previous section, five

different RUCs are chosen, containing 10 different fibers, with both the probability

density function and the number of occurences of the nearest neighbor distance.
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Figure 4.16: Ten-fibers RUC #2 and relevant nearest neighbors distances
and distribution function

The RUC 2 contains ten points of observation, from which only three different

distances results with respect of its closest neighbor. As we can see from Fig.4.16(b),

a value of 6.4µm was found for 2 times out of 10 while 6.5µm and 6.7µm divide

equally the remaining 8 events. Obviously, this is reflected in the probability density

function, which focus itself around these two values. For these reasons, it is possible

to think that the cell coverage is sufficiently regular even if the RUC itself has a

good degree of randomness, since the disposition doesn’t follow a particular pattern.
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Figure 4.17: Ten-fibers RUC #3 and relevant nearest neighbors distances
and distribution function

Looking only at the fibers pattern, showed in Fig.4.17(a), this repeating unit cell

doesn’t seem so different from the previous one, exhibiting the same number of points

of observation and a complete random arrangement. Nevertheless, the short-range

interaction between the fibers is different since there is one particular inter-fibers

distance that happens for most of the times (6.5µm for 50% of occurences). This

will influence the stress and strain field, modifying the strength of the material. The

resultant probability density function is more narrow than the previous one, with a

peak around that value of the distance.

(a)

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

6 6.5 7 7.5 8 8.5

0

0.2

0.4

0.6

0.8

1

1.2

(c)

Figure 4.18: Ten-fibers RUC #7 and relevant nearest neighbors distances
and distribution function

The situation represented with the RUC 7 is far from the previous two showed

until now. Even though in Fig.4.18(b) is appreciable a value of the nearest neighbor

distance which occures more frequently than any other else, it has to be taken into

account the number of fibers centers in the RUC. In fact, since there are 13 points
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of observation, the distance r = 6.6µm can be found only for 5 times, compared

to the other relative maxima, which correspond to 2 occurences. What was said

can be cleared looking at Fig.4.18(c) where it is represented the probability density

function who results wider and more flattened compared to that ones in Fig.4.16(c)

and 4.17(c). Therefore, it is difficult to understand only with this informations

where the crack will initiate.
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Figure 4.19: Ten-fibers RUC #8 and relevant nearest neighbors distances
and distribution function

The RUC 8 shows a behavior, for the short-range interaction, similar to the

last one, with a wide and flattened probability density function but, actually, the

result obtained in Fig.4.19(c) is distorted by the presence of a fiber isolated from the

others. The number of occurences’ curve exhibits an initial peak, reaching almost

the 50% of the total occurences, and then other 5 different distances which happens

for a fewer times. For this reason, the pdf curve should be stretched around the

most frequent value: if this didn’t happen it is because, for a single time, a nearest

neighbor distance of 8.1µm is measured, relatively to the isolated fiber, and this

make the average value of the nearest neighbor distance increases. Because of this

increased value, the pdf is flattened so to cover a wider range of distances. Anyway,

the repeating unit cell doesn’t seem to have a regular spatial point pattern but only

evenly spaced fibers.

The last RUC chosen is the number 9. It is the RUC with the greatest number

of points of observation (16) so the number of occurences’ nearest neighbor curve

should be particularly variable.
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Figure 4.20: Ten-fibers RUC #9 and relevant nearest neighbors distances
and distribution function

Actually, only five different distances are measured which means that the values

recur between different couples of fibers and that the higher values in the stress

and strain field may be located in different regions of the cell. Furthermore, it is

important to notice that the trend of the curve in Fig.4.20(b) is very similar to the

one concerning the RUC 7 but, since a greater number of fibers are located on the

edges of the repeating unit cell, a fewer fibers are inside the area so that the fiber

volume fraction is constant but the average inter-fibers distance is higher. As result,

the trend of the curve is similar, so that we can imagine a similar punctual pattern,

but it is translated by 0.5µm so that the strength of the RUC should reflect that.

Similarly, the pdf curve has a highest value a little lower than the pdf curve for the

RUC 7, which depends on the number of fibers inside the cell, and the function is

traslated to greater distances.

Second-order intensity function Then, in order to define the long-range in-

teraction between fibers and to understand the fiber arrangement, we can observe

the k-function. As we can see from the two figures (Fig.4.21), since there is no

fibers overlapping, the second-order intensity function start for values of the dis-

tance greater than 6µm. Moreover, what was said for the five-fibers RUC is still

valid: the function is highly fragmented because of the number of points inside the

cell and because of the spacing of the distance’s mesh chosen in Matlab which the

more is dense, the greater the probability of finding empty regions in the cell, i.e.

horizontal tracts of the curve.
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Figure 4.21: Second-order intensity function for RUC #2 and RUC #3

The general trend is more interesting to characterize: for both the two RUC, the

curve assumes the same values at short- and medium-range and the first idea made

looking at the nearest neighbor distribution function is confirmed. The cells seems

similar but, while the distance between a given point and its closest neighbor resulted

different in the sense of the frequency of the event, here the average interaction

between fibers is defined and, for r ≤ 13µm, the trend is the same. A bigger

difference instead results for high values of the radius as the final value of k(r)

differs by 0.5 × 103. This means only that the fibers, for the RUC 2, are shifted

towards the edges of the section. That said, the pattern for the two RUCs is what

we can expect from a hard-core pattern, as seen in Pyrz [32].

0 5 10 15

0

1

2

3

4

5

6

(a)

0 5 10 15

0

1

2

3

4

5

6

(b)

Figure 4.22: Second-order intensity function for RUC #7 and RUC #8

The next RUCs, in Fig.4.22, are identified by number 7 and 8. Both the curves

89



4 – Statistical analysis of the RUCs: description of fibers’ arrangement and degree of randomness

exhibit a more linear general trend, with a concavity less accentuated which defines,

in respect to the previous unit cells, less clustered fibers. On the contrary, if we focus

our attention on a smaller scale, several differences will become clear. Horizontal

fragments of the curve are indicative of empty regions in the area of observation

and, in general, a lower slope means a lower concentration of fibers for the relevant

distances: in this sense, it is possible to highlight the difference between the two RUC

because the no 7 has a more visible horizontal tract around 10µm (so on average that

distance from a given center is occupied by the matrix); the no 8 instead shows two

distinct horizontal tracts around 7µm and 12µm, which means that the medium

range interaction for the two unit cell is different.

What was said certainly will define a different crack propagation, but, anyway,

these considerations will be more clear during the micromechanical study of the

cross-section.
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Figure 4.23: Second-order intensity function for RUC #9

The last RUC shows a trend that is characteristic for unit cells with a low number

of fibers, as it is possible to see in the work of Liu and Ghoshal [19]. The function, in

fact, has a high slope for short distances, which means a high degree of interactions

for short-range, while tends to be horizontal for medium range, i.e. empty space in

the section. Then the function increase the slope once again because of the presence

of other fibers and a lower value of the correction factor wk, since a greater fraction

of the circumference used to describe the radial distribution is outside the area of

observation.
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Radial distribution function In the end, the second-order intensity function for

the same unit cells is here represented.
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Figure 4.24: Radial distribution function for RUC #2 and RUC #3

Differently from what happened for the five-fibers RUC, there are fewer zeros

throughout the entire function. Moreover, the curve begin to be different from zero

even for r < df : this behavior is not due to fibers overlapping, which, as we can see

from the representation of the RUC and from the other functions, does not happen

but depends on the mesh of the distances into the script. By choosing a more dense

mesh, as we did, the radial distribution of the cell is well characterized but the

first annular region which includes a fiber center is that one after r = 5.8µm. So,

Matlab connect with a straight line g(r = 5.5µm) = 0 to g(r = 6.1µm) /= 0

(considering a dr = 0.6) and this results in a tract of the curve greater than zero

when it is supposed to be zero. A solution can be introduced using dr < 0.6 but

this will increase the number of zeros and the value of g(r), which would be best to

avoid.

That said, the results of the two functions are strictly influenced by the low

number of fibers but they seem similar to that obtained from Sanei et al. [35]: the

value of g(r) is variable around 1 for the RUC 2, which reflects a more random

arrangement and a more variable fiber’s density, while the average value for the

RUC 3 is smaller and more constant, which reflects a more regular pattern and a

constant density.
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Figure 4.25: Radial distribution function for RUC #7 and RUC #8

In the same way, the behavior of the RUC 7 and 8 is different and it defines two

types of unit cell. For the no 7, the function assumes a trend with the local maxima

having the same value for high distances while the first peak is larger than usual: in

fact, looking at the fiber arrangement, we can see some fibers clustered in the center

of the cell and a regular pattern of the fibers on the edge of the section. The RUC

8 instead shows a set of decreasing and narrow local maxima, reflection of a lower

degree of clustering and a greater average inter-fibers distance.

At last, there is the no 9. Repeating what was possible to say looking at the

other descriptors, this RUC has a highly random fibers arrangement, because of the

fibers arranged all along the edges which leaves a lot of space in the center of the

cell who can be randomly occupied by the fibers.
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Figure 4.26: Radial distribution function for RUC #9
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The result is a curve which shows an unitary asymptote: remembering the Pois-

son distribution, defined in Pyrz [31], who is the most random arrangement that

can be obtained and who has an identically unitary value of g(r), the approach of

this RUC’s function to the Poisson distribution is indicative of a high degree of ran-

domness which, obviously, will affect the strength of the cell because of the stress

and strain field highly variable.

4.4.3 Thirty-fibers RUCs

The last step is made by the statistical analysis of the thirty-fibers RUCs.

Nearest neighbor distribution function The first descriptor used to charac-

terize the short-range interaction between fibers is the nearest neighbor distribution

function. Five RUCs were been described in this section, in order to show as much

as possible different characteristics: they are identified by the number 1, 4, 6, 9 and

10.

The first one described is the no 1, who contains exactly thirty points of obser-

vation. The nearest neighbor distance more frequent is the smaller one, r = 6.5µm,

that, with other two values around this one, in particular 6.6µm and 6.7µm, mo-

nopolizes the distances evaluated. Because of the high number of fibers inside the

cell, in fact, the fibers are distributed so as to be near and the result is that higher

distances are less frequent.
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Figure 4.27: Thirty-fibers RUC #1 and relevant nearest neighbors distances
and distribution function
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A frequent small distance will affect the strength of the whole composite mate-

rial. Since the local stress increases where there is shorter inter-fiber space, such

a high number of fibers close to each others, will increase the strain and facilitate

the crack initiation. The resulting probability density function exhibits a peak in

correspondance of the most frequent values, approaching to zero after 7.5µm, who

is the last value of the nearest neighbor distance measured.
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Figure 4.28: Thirty-fibers RUC #4 and relevant nearest neighbors distances
and distribution function

This second case is referred to RUC 4 and, looking at the Fig.4.28(b), it is

easy to understand that this unit cell has a higher degree of randomness. Even

though the same distance r = 6.5µm is the most frequent, with 8 events out of 32

points of observation, this RUC have a wider range of values in which the number

of occurences’ curve of the nearest neighbor distance distributes and, in general,

everyone of this value appears a few times in respect to the total. It is possible to

extrapolate the same informations looking at the probability density function who

has a lower maximum and it is wider. So, the fibers are distributed more randomly

than in the previous section: nevertheless, this is not sufficient to figure out wheter

the strength will be greater or lower.

This third example can seem similar to the previous one, at first sight, but,

actually, the maximum percentage of the number of occurences is higher for this

RUC and a lower range of distances results from the analysis. So, the probability

density function is stretched around 6.7 − 6.8µm, with a maximum value higher

than the previous examples.
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Figure 4.29: Thirty-fibers RUC #6 and relevant nearest neighbors distances
and distribution function

A situation like this one is indicative of a regular inter-fibers distance distribution

which does not means that the spatial point distribution is regular, since there are

no informations about the orientation of the closest neighbor.

The fourth case is the RUC 9 who contains 38 points of observation. This high

number of points is the reason why the curve in Fig.4.30(b) has a maximum between

30% and 35%, which corresponds to 12 events out of 38: the RUC does not present

a regular spacing for the inter-fibers distance, in fact the remaining 26 occurences

are divided in a range who varies between 6.5µm and 8.8µm, more than any other

example made until now.
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Figure 4.30: Thirty-fibers RUC #9 and relevant nearest neighbors distances
and distribution function

The litmus test of this behavior is, as always, the proability density distribution

function. The absolute maximum of the function is relatively and the function covers

the same range of distance that we said before. So, it is clear that the inter-fibers
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distance’s distribution is anything but regular and, as it turns out looking at the

representation of the repeating unit cell in Fig.4.30(a), in the cross-section there is

a good alternation of clustered fibers and void spaces.
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Figure 4.31: Thirty-fibers RUC #10 and relevant nearest neighbors distances
and distribution function

The RUC no 10 is defined by the same amount of points but, however, even

though the arrangement of fibers can look similar, a different behavior in terms of

short-range interaction is exhibited. First of all, the distances evaluated for the

nearest neighbors varies in a less wide range; then, looking at the local maxima, for

this example there are many distances which occur frequently, not only the distance

relative to the absolute maxima. This means that the average behavior of the fibers

arrangement is more -regular than the RUC 9, even though we do not know yet

how this will affect the resistance of the whole material. The resulting probability

density function curve is more narrow and has a greater maximum value.

Second-order intensity function It is important to specify that the values

reached by the function are rather high compared with those who results from

literature: this is because of the value of wk, the correction factor, which is low

in our study because of the small dimensions of the RUC. For this reason, part of

the circumference used for the analysis, as the radius become higher, quite often is

outside of the cell, which means that wk < 1 causes the value of k(r) to increase.

On the same basis, the evaluated distance is stopped to low values in order to have

useful values of this factor. However what was said will not influence the general

trend of the curve, which is the subjective of the study.
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Figure 4.32: Second-order intensity function for RUC #1 and RUC #4

As we can say looking at this two figure (see Fig.4.32), since the number of the

fibers contained in every RUC is increased, the shape of the curve is smoother and

similar to those one in [32], concerning actual materials. The trend is the same for

both the cases for short- and long-range, i.e. short and long distances, while the value

of k(r) seems so to be a little different in the central part of the curve: in particular,

the k-function is greater for the RUC 4, which means that there is a region, in the

cell, where the fibers are a little more clustered than in the RUC 1. This can modify

the behavior under load of the composite material and it will be more clear after

the micromechanical analysis of the structures. In the end, the different final value

reached by k(r) for r = rmax substantially differs by a little amount between the

two unit cells because of the greater number of points of observation contained in

the second RUC.

In the following figure, Fig.4.33, is set out the second-order intensity function

for the three RUCs specified. Since the trend is almost similar for the three cases,

it is possible to think that, with a greater number of fibers inside every unit cell,

the degree of randomness reached is sufficiently high to let us assimilate the spatial

point pattern to the hard-core distribution seen in [32]. This distribution is the most

random possible taking into account the finite dimension of the fibers, feature who

lead to exclude every position distant less than the fiber’s radius from another point

already placed.
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Figure 4.33: Second-order intensity function for RUC #6, RUC #9 and RUC
#10

Nevertheless there are a few differences between the three curves: the first one

is the maximum value who is greater for unit cells with more points of observation;

moreover, looking at the curve for the RUC 10, it is possible to notice two small

stairs, who define an empty region at the relevant distances from every fiber’s center.

Radial distribution function Finally, the third statistical descriptor, necessary

to figure out the average fiber density variation, is shown. As done with the previous

unit cells with five or ten fibers, a dr = 0.6µm is chosen as compromise to have

few zeros all along the curve and to well characterize its average behavior. As the

number of fibers increases, the value of the descriptor, after the first high peak, is

getting closer to the unit, as we can expect for r → ∞, since NA = N/A becomes

representative of the entire cell.
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Figure 4.34: Radial distribution function for RUC #1 and RUC #4

However, when the value of g(r) is greater than 1 this means that the relevant

inter-fibers distance is more frequent than in case of complete randomness, i.e. the

Poisson distribution.

For the RUC 1 (Fig. 4.34(a)) we can see a more regular behavior of the average

fiber density, since after the first two peaks, as the radius increases, the radial

distribution function shows less and less frequent events; on the contrary, for the

RUC 4 (Fig. 4.34(b)) it is possible to notice that a greater number of spikes occures,

indicative of a more variable behavior and, for this, a greater degree of randomness.

In the end, as always, the function approaches to zero, since the annular region

will be entirely outside of the unit cell and this means that no fibers are inside of

it. Then, the RUC 6, 9 and 10 (Fig. 4.35) are analyzed. The biggest difference

between the first unit cell and the following two is the shape and the value of the

first peak. As we could imagine from the nearest neighbor distribution function but

it is clearer here, a large number of fibers are characterized by a particular distance

between the fibers since the function assumes a high value in correspondance of this

specific distance; on the contrary, the two spikes for the RUC 9 and 10 reach a lower

value and the they have a larger shape. This means that, even if in the cell there

are more points of observation and in percentage the number of events is greater

compared to the most frequent distance of the sixth RUC, here the average distance

between the fibers assumes two specific values for every unit cell: that is why the

peak is larger and smaller.
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Figure 4.35: Radial distribution function for RUC #6, RUC #9 and RUC
#10

The remainder of the function is similar for the three, defined by a usual fluctu-

ation around a value a rather smaller than 1 and, in the end, for the same reason

specified for the previous case (see Fig.4.34), the approach to zero as the annular

region falls out of the unit cell.

What was said characterizes to a large extent the pattern of the fibers inside the

RUCs described. In fact, it was possible to define, as it was repeated many times, the

short-, medium- and long-range interaction between fibers and the average density

of the reinforcement phase: so, the work done so far is an absolute starting point to

relate the stiffness and the strength of a composite material to its microstructure,

who is largely influenced by the working process.
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Chapter 5

Failure Analysis of the RUCs:

conclusions

The purpose of the analysis conducted so far is the evalutation of the failure, in

terms of strength, of the repeating unit cells and its possible connection with the

degree of randomness defined by the fiber pattern.

The computational instruments that are usually used to simulate the failure of

the composite materials, requires generally a high computational cost, which trans-

lates in a high time necessary to perform the analysis. The use of the Carrera Unified

Formulation, as demonstrated by de Miguel et al. [25], can reduce significatively the

degrees of freedom, performing a comprehensive evaluation of mechanical problems

in reduced time.

Preliminary reusults are obtained using the traditional finite elements method

and the commercial software Abaqus has been used to carry out progressive failure

analysis simulation. However, to reduce the computational cost of the analysis, the

use of the Carrera Unified Formulation will be a stimulus for future works.

5.1 Failure Analysis

The failure analysis has been conducted applying a force in the direction of the

x axis. The results of the application of this force is a deformation of the cell in

101



5 – Failure Analysis of the RUCs: conclusions

the same direction, which tends to stretch: this elongation causes a variation in the

stress and strain fields of the model and stress increases. This phenomenon is caused

by the proximity of the reinforcement phases, who is significatively more resistant

compared to the matrix, and the smaller the distance, the higher the stress in the

area. For this reason, in this same area, the matrix should sustain a high load and,

being this phase weak, with a low critical stress σcr, i.e. the stress which causes the

failure of the material, a crack begin and tends to propagate all along the dimension

of the cell causing, eventually, the breaking of the material.

In the stress-strain curve, it is possible to see a peak and then a decreasing trend.

If the crack propagates for the entire section and the material is no longer able to

resist, the curve goes to zero, while, if conversely there is a resistant part left, the

curve increases again until the crack is completed, i.e. the stress decreases to zero.

The absolute maximum in the stress-strain curve is the strength of the material,

σult: it is the maximum value of the stress applicable to the model which causes a

fracture.

5.2 Results on five fibers RUCs

The first type of RUC renditions analyzed contains five fibers as was described be-

fore. It is shown the crackpath for 8 renditions in order to differentiate the behavior

of the cells.

(a) RUC #1 (b) RUC #3 (c) RUC #4

Figure 5.1: Crackpath for RUCs #1, RUC #3 and RUC #4
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(a) RUC #5 (b) RUC #6 (c) RUC #7

Figure 5.2: Crackpath for RUCs #5, RUC #6 and RUC #7

(a) RUC #8 (b) RUC #9

Figure 5.3: Crackpath for RUCs #8 and RUC #9

In some RUCs the failure of the cell happened in the boundary region: that ones

which present a failure not influenced by the fibers’ number are the RUCs 6, 7 and 8

and for this models the stress-strain curve was derived and related to the statistical

analysis previously made.

First of all, the stress field is showed, to understand where the crack begin and

what is the reasons for which the stress is concentrated.
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(a) RUC #6 (b) RUC #7

(c) RUC #8

Figure 5.4: Stress field for RUCs #6, RUC #7 and RUC #8

(a) RUC #6 (b) RUC #7

(c) RUC #8

Figure 5.5: Crack initiation for RUCs #6, RUC #7 and RUC #8
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In Fig.5.4 is highlighted, with a red circle, the region where the stress is higher, for

both the matrix and the fibers and where the crack will begin. It is possible to notice

that, as said before, the concentration of the stress happens in an interface area

between matrix and fiber and, in particular, where the distance of two reinforcement

phases is low. To confirm what was said, it is also shown the moment when the crack

begins.

The initiation of the crack is different for the three RUCs (Fig.5.5): for the

number 6 just a couple of elements fails, decreasing the resistant section of a small

amout. The RUC 7 has an instantaneous growth of the fracture: for the same value

of the applied load,the failure begins and run through the entire section, causing

the failure. The result of this behavior will be reflected in the stress-strain curve,

which will decrease suddenly to zero. Finally, the RUC 8 shows that the crack grows

suddenly for a certain amount but, before the total failure, some part of the cell will

continue to resist.
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Appendix A

Record of the Statistical Analysis on

the repeating unit cells

In this Appendix, the results of the statistical analysis on every RUC are showed.

All the curves obtained are reported with the relevant fiber distribution.
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Figure A.1: Five-fibers RUC #1 and relevant statistical descriptors
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(a) RUC #2
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Figure A.2: Five-fibers RUC #2 and relevant statistical descriptors

(a) RUC #3
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Figure A.3: Five-fibers RUC #3 and relevant statistical descriptors
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(a) RUC #4

6 6.5 7 7.5 8 8.5 9

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Nearest neighbor distance

6 6.5 7 7.5 8 8.5 9 9.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) Nearest neighbor Pdf

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

(d) Second-order intensity function

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

3.5

4

(e) Radial distribution function

Figure A.4: Five-fibers RUC #4 and relevant statistical descriptors

(a) RUC #5
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Figure A.5: Five-fibers RUC #5 and relevant statistical descriptors
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(a) RUC #6
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Figure A.6: Five-fibers RUC #6 and relevant statistical descriptors

(a) RUC #7
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Figure A.7: Five-fibers RUC #7 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #8
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Figure A.8: Five-fibers RUC #8 and relevant statistical descriptors

(a) RUC #9
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Figure A.9: Five-fibers RUC #9 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #10
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Figure A.10: Five-fibers RUC #10 and relevant statistical descriptors
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Figure A.11: Ten-fibers RUC #1 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #2
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Figure A.12: Ten-fibers RUC #2 and relevant statistical descriptors

(a) RUC #3
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Figure A.13: Ten-fibers RUC #3 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #4
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Figure A.14: Ten-fibers RUC #4 and relevant statistical descriptors

(a) RUC #5
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Figure A.15: Ten-fibers RUC #5 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #6
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Figure A.16: Ten-fibers RUC #6 and relevant statistical descriptors

(a) RUC #7
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Figure A.17: Ten-fibers RUC #7 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #8
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Figure A.18: Ten-fibers RUC #8 and relevant statistical descriptors

(a) RUC #9
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Figure A.19: Ten-fibers RUC #9 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #10
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Figure A.20: Ten-fibers RUC #10 and relevant statistical descriptors
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Figure A.21: Thirty-fibers RUC #1 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #1
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Figure A.22: Thirty-fibers RUC #1 and relevant statistical descriptors

(a) RUC #2
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Figure A.23: Thirty-fibers RUC #2 and relevant statistical descriptors

117



A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #3
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Figure A.24: Thirty-fibers RUC #3 and relevant statistical descriptors

(a) RUC #4
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Figure A.25: Thirty-fibers RUC #4 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #5
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Figure A.26: Thirty-fibers RUC #5 and relevant statistical descriptors

(a) RUC #6
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Figure A.27: Thirty-fibers RUC #6 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #7
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Figure A.28: Thirty-fibers RUC #7 and relevant statistical descriptors

(a) RUC #8
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Figure A.29: Thirty-fibers RUC #8 and relevant statistical descriptors
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A – Record of the Statistical Analysis on the repeating unit cells

(a) RUC #9
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Figure A.30: Thirty-fibers RUC #9 and relevant statistical descriptors

(a) RUC #10
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Figure A.31: Thirty-fibers RUC #10 and relevant statistical descriptors
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