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Abstract

This thesis report represents firstly an overview of speaker recognition

technologies, classical and new methods of automatic text-independent speaker

verification namely ASV which includes a few representative techniques from

1990s until today. Additionally, recent techniques are given emphasis to have

presented a paradigm shift from the traditional vector-based speaker models

to so-called i-vector models.

Conventional speaker recognition system pipeline starts from feature ex-

traction, which deals with raw speech data by extracting acoustic feature.

Feature Engineering is widely concerned as the most important part of pat-

tern recognition, speech signal includes many features of which not all are

important for speaker discrimination.

Significant advancements in speaker recognition field have been made

over the past years. The research trend in this area has gradually evolved

from Gaussian mixture model (GMM) to joint factor analysis (JFA) based

method, which attempts to model the speaker and channel spaces sepa-

rately, and towards the identity vector (i-vector) approach that models both

speaker and channel variability in a common single low-dimensional (e.g.,

often a few hundred) subspace termed the total variability subspace. Usu-

ally i-vector systems employ universal background models (UBM) to gen-

erate frame-level soft alignments required in i-vector estimation process, it

extends and model the traditional super-vector. The i-vectors are typically



post-processed through linear discriminate analysis (LDA) stage to do dimen-

sion reduction and generate channel-compensated features which can then

be efficiently modelled and scored with various back-end classifier such as a

probabilistic LDA (PLDA).

The issue of dimension reduction of i-vector plays an important role in

both the efficiency and accuracy in the processing of Probabilistic Linear

Discriminant Analysis, which is an classification model in the downward of

i-vector extraction. In this thesis, we report on the latest advancement in

pre-processing before PLDA modelling and scoring. Particularly, a nearest-

neighbour based discriminate analysis approach named NDA is introduced.

NDA is used for channel compensation in i-vector space, which, different from

the traditional Fisher LDA, is a non-parametric algorithm and typically of

full-rank. The NDA is much more effective (up to 35% improvement in terms

of EER) than the parametric LDA for speaker recognition according to the

experiment.

Section 1 provides fundamentals of speaker recognition. Sections 2 and

3 then elaborate feature extraction and speaker modelling principles, as well

as the current i-vector and probabilistic LDA classifiers. Section 4 and 5 de-

scribe session compensation normalization issues and dimension reduction,

especially fisher LDA and NDA algorithm. Finally, experiment results be-

tween NDA and conventional LDA are outlined in Section 6, followed by

conclusions in Section 7.
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Chapter 1

Introduction

Being able to speak to your personal computer or mobile phone and having

them recognize and understand what you say, would provide a comfortable

and natural form of communication. It would also reduce the amount of

typing you have to do, leave your hands free and allow you to move away

from the terminal and screen. You would not even have to be in front of the

terminal. Speech recognition would also help in some cases if the computer

could tell who was speaking.

As discussed in [1] and [2], the voice signal conveys information related to

the physiological characteristics of the loudspeaker as it reflects the unique

characteristics such as channel, mouth, nose, size and shape. It also con-

tains information about the behaviour aspects of a speaker such as accent,

acoustical parameters like involuntary transformation. Thus, voice samples

are often used as biometrics In the real world. Speaker recognition is the

process of automatically recognizing the speakers from his / her sound sam-
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ples. The speaker recognition activity can be divided into two main tasks,

speaker recognition (SI) and speaker verification (SV). The speaker recog-

nition is a pattern recognise a given set of speakers from the input speech

signal. Automatic Speaker Verification (ASV) solves the identity problem of

identity identity claimed in his / her voice samples. Voice-based vocabulary

content, ASV systems can be widely classified as text-dependent (TD) and

text-independent (TI) types. TD-ASV requires the same vocabulary content

as enrolment and testing. In the case of TI-ASV, there is no restriction on

the text/voice content of the voice.

Speakers identification has been most commonly used as a safety device

to control access to buildings or information. One of the most famous exam-

ples is Texas Instruments’ computer center security system. Secure Pacific

has used the speaker to verify the security mechanism as a large amount

of money transfer initiated by telephone. In addition to increasing security,

validation is beneficial because it reduces the turnaround time for these bank

transactions. The Bell core uses speaker verification to restrict remote access

to training information to authorized field personnel. The speaker recogni-

tion also provides a mechanism to restrict the remote access of a personal

workstation to its owner or a group of registered users.

Forensic analysts as well as ordinary persons benefits from speaker recog-

nition technology. The trend goes in the direction that telephone-based ser-

vices integrated speech/ speaker / language recognition will supplement or

even further replace human operated telephone services in the future. Tele-

phone conference, voice print security check, post-sale customer feedback are
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some of the examples. The advantages of such automatic services are clear:

much higher capacity compared to human operated services with hundreds

or thousands of phone calls being processed simultaneously. In fact, the focus

of speaker recognition research over the years has been tending towards such

telephony-based applications.

In addition to telephone voice data, the supply of other spoken language

files is increasing, such as television broadcasting, teleconferencing and video

clips from holidays. Extracting meta-data from these documents, such as dis-

cussion topics or participant names and gender, will automatically perform

information search and indexing. Speaker diarisation is also known as ”who

spoke when”, trying to extract the accent of different participants from a

spoken document, and is an extension of the classic speaker recognition tech-

nology applied to recording with multiple speakers.

In forensic and spokesperson litigation, speakers can be considered non-

cooperatives because they do not particularly want to be recognized. On

the other hand, in telephone-based service and access control, the user is

considered to be cooperative. On the other hand, the speaker recognition

system can be divided into text-dependent and text-independent. In a text-

dependent system suitable for a collaborative user, the recognition phrase is

fixed, or is known in advance. For example, the user may be prompted to

read a randomly selected sequence of numbers, for example, in a separate

system in the text, the words that allow the use of the speaker are not

constrained. Thus, the reference (the content of the training) and the test

(described in actual use) discourse may have completely different content,
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and the recognition system must take into account this voice mismatch. Text

independent recognition is more challenging for both tasks.

In general, speech variability represents an unfavourable factor in the

accuracy of text-independent speaker recognition. Changes in sound envi-

ronment and technical factors (sensors, channels) and ”speaker” changes in

his / her own (health, mood, ageing) represent other adverse factors. Often,

any change between two recordings of the same speaker is called session vari-

ability. Conversational variability is often described as mismatched training

and test conditions, and it is still the most challenging problem in speaker

recognition.

1.1 Speaker Recognition Overview

Each speaker recognition system has two phases: registration and verifica-

tion. During registration, the sound of the speaker is recorded, and a plu-

rality of features are typically extracted to form a voice print, a template,

or a model. During the verification phase, the voice sample or ”utterance”

is compared with the previously created voice print. For the recognition

system, the utterance is compared with multiple voice prints in order to de-

termine the best match, and the verification system compares the utterance

to a single voice print.

Figure 1.1 is referred from [3] , which displays the components of the

automatic speaker recognition system. The upper layer is the enrolment

process, the lower layer shows the identification process. In the registration
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Figure 1.1: Components of a typical automatic speaker verification system
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mode, a speaker model is created with the previously created background

model and trained using the feature vector of the target speaker. In the

recognition mode, the feature vector extracted from the utterance of the

unknown person is compared with the model in the system database to obtain

the similarity fraction. The decision module uses this similarity score to make

the final decision.

The feature extraction module first transforms the original signal into a

feature vector, which emphasizes the speaker’s specific properties and sup-

presses the statistical redundancy. Almost all of the most advanced speaker

recognition systems use a set of background speakers or cohort speaker in

one or the other to enhance the robustness and computational efficiency of

the recognizer. In the enrolment stage, the background speaker is used as

a negative example of training discriminatory patterns, or for training the

general background model of the target speaker model. In the identification

phase, the background speaker is used to normalize the speaker’s score.

The general method consists of five steps: digital voice data acquisition,

feature extraction, pattern match, make an acceptance / rejection decision,

and register to generate a speaker reference model. Feature extraction maps

each speech interval to a multidimensional feature space. (The voice interval

usually spans 10-30 ms of the speech waveform, called the speech frame).

The feature vector sequence is then compared with the speaker model by

pattern matching. This results in a matching score for each vector or vector

sequence. The matching score measures the similarity of the calculated input

feature vector to the model of the speaker or feature vector model that is
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claimed to be protected by the speaker. Finally, the decision is to accept or

reject the claimant in the order of the matching score or the matching score,

which is a hypothetical test question.

1.2 Selection of Features

Feature extraction is the estimation of variables, called a feature vector, from

another set of variables The efficient feature extraction technique extracts the

feature which is able to discriminate one pattern from another accurately.

Initially, the sound sonic is transformed into a digital signal suitable for

speech processing. A microphone or telephone handset can be used to convert

acoustic waves into analogue signals. The analogue signal is adjusted by

anti-aliasing filtering (which may require additional filtering to compensate

for any channel damage). The anti-aliasing filter limits the bandwidth of

the signal to approximately Nyquist rate (half of the sample rate) before

sampling. The adjusted analogue signal is then sampled to form a digital

signal through an analogue-to-digital (A / D) converter.

In the local speaker verification application, the analogue channel is only

a microphone, its cable and analogue signal conditioning. Thus, the resulting

digital signal can be of very high quality, lacking distortion caused by the

transmission of analogue signals over long distance telephone lines.

Feature selection is to convert these observation vectors into feature vec-

tors. The goal of feature selection is to find transformations of relatively

low-dimensional feature spaces, to retain information about the application,
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and to make meaningful comparisons using simple similarity measurements.

Figure 1.2: A summary of features from viewpoint of their physical interpre-

tation.

The most advanced ASV system uses three main types of feature ex-

traction techniques: segmentation, segmentation, and overrun analysis. The

use of frame size analysis of voice signals and 3-5 ms of the mobile range is

called sub-segment analysis. Studies have shown that speaker-specific excita-

tion source information captured using sub-segment analysis contains quite

10



a number of speaker-specific information.

In the case of segment analysis, the speech extraction frame size indicates

the channel information of the channel and the offset of the range of 10-30

ms. When the size and displacement frames are maintained in the range of

10-30 ms, it can be assumed that the speaker-specific channel information

is unstable for the actual analysis and processing. The studies carried out

in the segmentation function are used to extract the channel information to

verify the loudspeaker.

In the extra-stage feature extraction, the frame size is used to truncate

the speech and is shifted in the range of 100-300 ms. First, the technique is

used to analyse and extract the characteristics of the speaker’s behavioural

characteristics. These combinations of information, such as word duration,

intonation, spoken speed, accent, and so on. The related work shows that

the super-segmentation analysis can be used to capture some behavioural

characteristics and prove that it is valid for verifier verification.

The most advanced ASV system mainly uses short-term spectral char-

acteristics. The Dayton frequency cepstrum coefficient (MFCC), perceived

linear prediction (PLP) and linear predictive cepstral coefficient (LPCC) are

widely used feature extraction techniques because they have considerable

performance and low computational complexity.

In section 2 we would put much attention on the introduction of short-

term spectral features, as they are still most widely used feature selections

in modern speaker recognition system.
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1.3 Speaker Modelling

By using the feature vector extracted from the training discourse of a given

speaker, the speaker model is trained and stored in the system database. In

the text-dependent model, the model is discourse-specific, which includes the

time dependence between the eigenvectors. We often model feature distribu-

tion, the shape of the ”characteristic cloud”, rather than the time-dependent.

In text-dependent recognition, we can align the test and training discs in time

as they contain (assuming to include) the same phoneme sequence. However,

in text-independent recognition, the alignment of the frame level is not possi-

ble because there is little or no correspondence between the frames in the test

and reference speech. Thus, dividing the signal into a telephone or a wide

range of voice categories can be used as a preprocessing step, or a speaker

model can be constructed with speech.

There are two types of models: stochastic models and template models.

In a stochastic model, pattern matching is probabilistic and results in a

measure of the likelihood or conditional probability of a given model. For

template models, pattern matching is deterministic. The training and test

feature vectors are directly compared with each other, assuming that any one

is another imperfect copy. In a stochastic model, each speaker is modelled as

a probability source with an unknown but fixed probability density function.

The training phase is a parameter that estimates the probability density

function from the training sample. Matching is usually done by assessing the

likelihood of a test discourse about the model.
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The speaker recognition community has found a robust method of using

a single vector (the so-called super vector) to present the discourse. One of

the questions in speaker recognition is how to express discusser with different

numbers of eigenvectors in general. In general, ”super vector” refers to com-

bining a vector of a number of smaller dimensions into a higher dimension

vector; for example, the d-dimensional mean vector of the GMM adapted to

the K component is stacked into a Kd-dimensional Gaussian super vector.

The speaker recognition area has made significant progress over the past

few years. The research trends in this field have evolved from a method based

on joint factor analysis (JFA), which attempts to model loudspeakers and

channel subspaces to simulate i-vector methods that change loudspeakers and

channels to unidirectional low-dimensional (for example, Hundreds of) space

is called the total variability subspace. The most advanced i-based speaker

recognition system uses the generic background model (UBM) to generate the

required soft-pitch for the i-vector estimation process. The i-vector is usually

post-processed by the linear discriminant analysis (LDA) stage to produce

dimension reduction and channel compensation characteristics, which can

then be effectively modelled and scored using various back ends, such as

probability LDA (PLDA).

In addition, inspired by the success of the deep neural network (DNN)

acoustic model in the field of automatic speech recognition (ASR), the use

of DNN senone (context dependent triphones) posteriors soft alignments is

proposed to significantly reduce the speaker recognition error rate.

In section 3, various speaker models will be discussed in detail, from
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GMM-UBM , UBM-SVM model to i-vector-PLDA pipeline.
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Chapter 2

Feature Extraction

Feature extraction is an estimate of a variable from another set of variables

(for example, observed speech signal time series), called a feature vector [1].

Feature selection is to convert these observation vectors into feature vectors.

The goal of feature selection is to find transformations of relatively low-

dimensional feature spaces, to retain information about the application, and

to make meaningful comparisons using simple similarity measurements.

Speech parametrization is the conversion of speech signals into a set of

feature vectors. The purpose of this transformation is to obtain a more

compact, less redundant new representation, more suitable representation

for statistical modelling and calculation of distance or any other type of

score. The majority of the speech parameters used by the speaker verification

system depend on the creep representation of the speech rate.
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2.1 Filterbank-based cepstral parameters

Figure 2.1: Modular representation of a filterbank-based cepstral

parametrization.

Figure 2.1 shows a modular representation of the cepstrum representation

based on the filterbank.

Typically, before a further step, the frame is pre-emphasized and mul-

tiplied by a smooth window function. The goal of the filter is to increase

the high frequency of the spectrum, which is usually reduced by the speech

production process. The pre-emphasis signal is obtained by applying the

following filters:

xp = x(t)− a · x(t− 1) (2.1)

The value of a is usually obtained at interval 0.95 [0.98]. This filter is not

always applicable, and some people prefer not to pre emphasize signal pro-

cessing before. On the other hand, the window function (usually Hamming)

is necessary due to the finite length of the DFT. The window is first applied

to the beginning of the signal, and then further moved, and so on, until the

signal arrives. The window provides a spectrum vector for each application

of a part of the speech signal (after the application of FFT - see below). You
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must set two quantities: the length of the window and the displacement be-

tween two consecutive windows. For window length, two values are the most

commonly used: 20 milliseconds and 30 milliseconds. Hanning Hamming

and Windows are the most commonly used speakers. Usually, Hamming

window or Hanning window is used instead of rectangular window to reduce

the original signal, thus reducing the side effect.

Once the speech signal is windowed and pre emphasized, the FFT is

calculated. The famous fast Fu Liye transform (FFT) has been widely used

in practice because of its simplicity and efficiency, and it can quickly segment

the signal into frequency components. Usually only the amplitude spectrum

is preserved because there is almost no emotional importance in the belief

phase. After selecting the FFT algorithm, the only parameter used in the

FFT calculation is the number of points. The number N is usually a power of

2, greater than the number of points in the window, usually 512. It extracts

the modulus of FFT and obtains power spectrum and sampling 512 points.

DFT amplitude spectrum, that is, the overall shape of the spectral enve-

lope, contains the information of the resonance characteristics of the channel,

and is considered to be the largest part of the information in the ASV spec-

trum. The simple spectral envelope model uses a set of band-pass filters to

integrate the energy of adjacent bands. The reason for spectral smoothing

is that the size of the spectral vector decreases. In order to achieve this

smoothing and obtain the envelope of the spectrum, we multiply the spec-

trum of the previously obtained filter banks. A filter bank is a series of

bandpass frequency filters obtained by multiplying the spectrum to obtain a
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specific average frequency band. The filter banks are defined by the shape

and frequency of the filter (the left frequency, the center frequency and the

right frequency). Filters can be either triangular or other shapes, and their

frequency ratios may be different. In particular, some authors use the bark

/ Mel level to perform the frequency localization of the filter. This ratio is

the auditory scale, analogous to the frequency scales of the human ear. The

central frequency of the filter is given by the following equation

fMEL = 1000 · log(1 + fLIN/1000)

log2
(2.2)

We use the logarithm of the spectral envelope and multiply each coeffi-

cient by 20 to obtain a spectral envelope in dB. At the processing stage, we

obtain the spectral vector.

An additional transform called cosine discrete transform is usually applied

to the spectral vector in speech processing and produces a cepstral coefficient

cn =
K∑
k=1

Sk · cos[n(k − 1

2
)
π

K
], n = 1, 2, · · · , L (2.3)

where K is the number of log-spectral coefficients calculated previously,

Sk are the log-spectral coefficients, and L is the number of cepstral coefficients

that we want to calculate (L ≤ K).

Once the cepstral coefficients are calculated, they can be centered, that

is, subtracting the cepstral average vectors from each cepstral vector. This

operation is called cepstral mean subtraction (CMS), which is usually used

for speaker verification. The motivation of CMS is to remove slowly varying
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convolution noise in cepstrum. The cepstral vector can also be reduced, that

is, the variance is normalized to one component.

After the cepstral coefficients have been calculated, and possibly centred

and reduced, we also incorporate in the vectors some dynamic information,

that is, some information about the way these vectors vary in time. This is

classically done by using the ∆ and ∆∆ parameters, which are polynomial

approximations of the first and second derivatives

After calculating the cepstral coefficients, which may be concentrated

and reduced, we also include some dynamic information in the vector, that

is to say, these vectors change some information in time. This is the clas-

sical method, which uses the ∆ and ∆∆ parameters, which are polynomial

approximations of the first and second derivatives.

∆Cm =

∑l
k=−l k · Cm+k∑l

k=−l |k|
,∆∆Cm =

∑l
k=−l k

2 · Cm+k∑l
k=−l |k2|

(2.4)

In this step, you can choose whether to log energy and delta delta energy

into the feature vector. In practice, the former is often discarded, while the

latter is retained.

Once you’ve calculated all the eigenvectors, the last very important step

is to determine which vectors are useful. One way to look at the problem is to

determine the vector corresponding to the speech part of the signal. Corre-

spond to silence or background noise. A double Gauss model for computing

eigenvector distribution. In this case, the lowest average Gauss corresponds

to the background noise, while the highest average Gauss corresponds to the
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speech part. Then Gauss’s possibilities and silent background noises were

abandoned by Gauss. A similar approach is to use the double Gauss model

to calculate the logarithmic energy distribution for each speech segment, and

apply the same principle.
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Chapter 3

Speaker model and classifier

The main progress of speaker verification research is the improvement of clas-

sifier domain. Using vector quantization (VQ) and dynamic time warping

(DTW) method, the original speaker verification system is developed. Sub-

sequently, with the introduction of the Gauss mixture model (GMM) [4] [5],

channel compensation and data variability have attracted more and more

attention in the past twenty years of ASV research. An independent signif-

icantly improved generalized background model (UBM) based on GMM is

proposed, and GMM is trained by maximum likelihood method. Another

new paradigm of ASV technology is introduced by latent variable method.

For example, a simulation method based on factor analysis (FA) for inter

media variability of GMM hypermedia is proposed. Due to the combination

of FA (JFA) success, i.e., the speaker factor as a direct classification feature,

Dehak et al introduced the single integral subspace model of speaker, speaker

and channel JFA in different subspaces. The recent speaker verification tech-
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niques focus on the total variability modeling, also known as the I vector. My

vector space is composed of a single speaker and a Gauss probability LDA

correlation subspace channel model (further gplda), and the method effec-

tively solves the coherent variation. The current ASV technique uses this

I vector method, which provides an elegant framework for obtaining fixed

length variable length speech statements. In recent years, deep learning has

attracted wide attention and has aroused wide interest. Speaker verification,

this study uses DNN model to train speech recognition, and build UBM,

such as acoustic model, so that the rich information of mobile phones can be

used to develop more effective background model. DNN has also successfully

realized the extraction of speaker information features. [11] [10]

3.1 GMM-UBM system

The GMM-UBM system is a straightforward generative approach for ASV

task, which was proposed in [5]. In this framework, training phase is pre-

ceded by estimation of a speaker-independent universal background model

(UBM), using a sufficiently large speech data of several hours from multi-

ple sources.Each speaker is represented as a GMM derived by maximum-

a-posteriori (MAP) adaptation from UBM. For this purpose first, sufficient

statistics of the features from speaker’s enrolment utterances are computed.

Then relevance MAP approach is used to estimate the weights, means and

covariances of the target speaker model. During test or verification, average

log-likelihood ratio is estimated using feature vectors from T speech frames
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of test utterance against both target speaker model and the UBM.

3.1.1 Gaussian Mixture Models

The Gauss mixture model is usually used for acoustic learning tasks such

as speech / speaker recognition, because it describes the different distribu-

tions of all feature vectors. GMM assumes that the characteristic vector x

belonging to the model has the following probability:

p(x|wi, µi,Σi) =
K∑
i=1

wiN (x|µi,Σi) (3.1)

where

N (x|µi,Σi) =
1

(2π)
d
2

√
|Σi|

exp

(
−1

2
(x− µi)TΣ−1i (x− µi)

)
(3.2)

subject to
K∑
i=1

wi = 1 (3.3)

Therefore, GMM is only a weighted combination of multivariate Gaussian

distributions, assuming that the eigenvectors are independent. (In fact, we

use the diagonal covariance matrix eigenvector of the dimension, naturally

independent of each other). GMM can use multiple clusters to describe the

distribution of feature vectors, as shown in the figure.

GMM training process is µi,Σi, wi, finds the best parameters and makes

the model fit the maximum likelihood of all training data. More specifically,

the expectation maximization (EM) algorithm is used to maximize the like-
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Figure 3.1: A Two-Dimensional GMM with Two Components.
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lihood. In the case of GMM training, the two steps of an iteration of the

algorithm are

• E-Step The probability of each data point (eigenvector) is estimated

for each Gaussian to generate it. This is done directly by using the

equation 3.1

• M-Step Modify the GMM parameters to maximize the likelihood of

data. Here, the hidden variable zij is introduced to indicate where the

i-th data point is generated by Gaussian j. It can be seen that instead

of maximizing the possibility of data, we can maximize the likelihood

of data relative to Z log.

let θ = {w, θ,Σ}, the log likelihood function is

Q(θ
′
, θ) = EZ [logp(X,Z)|θ] (3.4)

where θ is current parameters, and θ
′

is the parameters we are to esti-

mate. Incorporating the constraint
∑K

i=1wi = 1 using Lagrange multi-

plier gives

J(θ
′
, θ) = Q(θ

′
, θ)− λ

(
K∑
i=1

wi = 1

)
(3.5)

Set derivatives to zero, we can get the update equation

Pr(i|xj) =
wiN (xj|µ

′
j,Σ

′
j)∑K

k=1wkN (xk|µ
′
k,Σ

′
k)

(3.6)

ni =
N∑
j=1

Pr(i|xj) (3.7)
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µi =
1

ni

T∑
t=1

Pr(i|xj)xj (3.8)

Σi =

(
1

ni

T∑
t=1

Pr(i|xj)diag(xjx
T
j )

)
− diag(µ

′

iµi
′T ) (3.9)

wi =
ni
N

(3.10)

Although the general model supports the covariance matrix, i.e., it has

all the elements of the covariance matrix, but only the diagonal covariance

matrix is used in this paper. This is for three reasons. First, the large

order diagonal covariance GMM can be used to model the density of m order

covariance GMM. Second, the diagonal matrix GMM is more efficient than

the full covariance GMM used in the training, because there is no need to

repeatedly reverse the dollar D * D matrix. Again, from our observations,

the diagonal matrix GMMs is superior to the full matrix GMM experience.

GMM can be considered as a mixture of parametric and non-parametric

density models. Like the parametric model, it has the structure and param-

eters that control the density behaviour in a known manner, but without

constraints, and the data must be of a specific distribution type, such as

Gauss or Laplace operators. Like non parametric models, GMM has many

degrees of freedom and can be modelled in any density without the need for

excessive computation and storage. It can also be considered as the ergodic

Gauss observation HMM with a single state HMM with Gauss mixed obser-

vation density, or with fixed equal transition probabilities. Here, the Gauss

component can be viewed as a potentially wide range of speech feature mod-

els, a person’s voice.
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Using the GMM likelihood function is computationally simple, based on a

well-known statistical model, sensitive to text independent tasks, not speak-

ing time, and only the acoustic observations of the underlying distribution

model. The latter has not yet utilized the higher level information of loud-

speakers transmitted in time voice signals.

3.1.2 Universal Background Model

The general background model is a GMM model for training large numbers

of speakers. Therefore, it describes the common acoustic features of human

sound.

In the GMM-UBM system, we use a single, independent speaker repre-

senting the background model [5]. p(X|λhyp). UBM is a trained and rep-

resentative speaker independent speaker distribution model. Specifically, we

need to select speech that can replace speech in the process of recognition.

This applies not only to the type and quality of speeches, but also to the

composition of speakers. For example, in the NIST-SRE single speaker de-

tection test, it is known as a priori speech of local and long-distance calls,

and male virtual speakers can only test male utterances. In this case, we

used male telephone voice training to test UBM for men. In the absence of

prior knowledge of the gender composition of alternative speakers, we will

adopt gender independent language training.
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3.1.3 Adaptation of Speaker Model

The vectors are represented independently by the background model. When

the new speaker is registered in the system, the parameters of the back-

ground model adapt to the characteristic distribution of the new speaker.

The adaptation model is then used as the speaker model. In this way, the

model parameters will not be estimated from zero.Using existing knowledge

(general speech data). The practice shows that it is beneficial to cultivate

two independent background patterns: one is the female mode, the other

is the male mode. Then, the new speaker model will be adjusted from the

background model with the same gender as the new speaker.

Figure 3.2: An example of GMM adaptation using the maximum a posteriori

(MAP) principle. The Gaussian component of the generic background model

(entity ellipse) applies to the training data (point) of the target speaker to

produce a speaker model (virtual ellipse).

The basic idea of the adaptive method is to update the speaker’s model

by updating the trained parameters in the UBM. This provides a closer
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coupling between the speaker model and the UBM, which not only produces

better performance than the decoupling model, but also allows fast scoring

techniques.

The specifics of the adaptation are as follows. Given a UBM and training

vectors from the hypothesized speaker, X = {x1, · · · , xT}, we first determine

the probabilistic alignment of the training vectors into the UBM mixture

components. That is, for mixture i in the UBM, we compute

The specific circumstances of adaptation are as follows. From the hypoth-

esized speaker and UBM we train the training vector, X = {x1, · · · , xT}, the

training vectors are first determined by the probabilistic alignment of the

UBM hybrid components. That is, for mixed I in UBM, we compute

Pr(i|xt) =
wipi(xt)∑M
j=1wjpj(xt)

(3.11)

We then use Pr(i|xt) and xt to compute the sufficient statistics for the

weight, mean, and variance parameters:

ni =
T∑
t=1

Pr(i|xt) (3.12)

Ei(x) =
1

ni

T∑
t=1

Pr(i|xt)xt (3.13)

Ei(x
2) =

1

ni

T∑
t=1

Pr(i|xt)x2t (3.14)

Finally, use the new enough statistics for the training data to update the

sufficient statistics of the old UBM of Mixture i to create the adaptation
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parameter for Mixture i with the following equation:

ŵi = [αwi ni/T + (1− αwi )wi]γ (3.15)

µ̂i = αmi Ei(x) + (1− αmi )µi (3.16)

σ̂2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂2
i (3.17)

The adaptation coefficients controlling the balance between old and new

estimates are αwi , α
m
i , α

v
i for the weights, means and variances, respectively.

The scale factor, γ, is computed over all adapted mixture weights to en-

sure they sum to unity. Note that the sufficient statistics, not the derived

parameters, such as the variance, are being adapted.

The adaptation coefficients that control the balance between old and old

estimates are αwi , α
m
i , α

v
i ,weight, mean and variance, respectively. Calculate

the scale factor , γ,on the weight of all the mixture to ensure that they are

uniform. Note that you are adjusting enough statistics, rather than exporting

parameters such as variance.

In the recognition mode, the MAP adaptation model and the UBM are

coupled, and the recognizer is usually considered to be Gaussian mixture

model - universal background model, or simply GMM-UBM. The match score

depends on both the target model λtarget and the background model λUBM

via the average log likelihood ratio:

LLRavg(X,λtarget, λUBM) =
1

T

T∑
t=1

logp(Xt|λtarget)− logp(Xt|λUBM) (3.18)
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It basically measures the difference between the target and the back-

ground model when generating observations.

3.2 Support vector machine using GMM super-

vector

Support vector machine (SVM) is a powerful discriminative classifier which

is widely used in speaker recognition in recent years. Support vector machine

is a natural way to solve this problem, basically because of the recognition of

the speaker is two kinds of problems, so we must be in the crowd between the

speaker or speaker to make assumptions to make assumptions. Support vec-

tor machines perform nonlinear mapping from input space to SVM feature

space. The linear classification technique is then applied to this potential

high-dimensional space. The main design part of the support vector ma-

chine is the kernel, which is the inner product of the support vector machine

feature space. The basic goal of support vector machine design is to find the

appropriate metric in the SVM feature space associated with the classifica-

tion problem because of the distance metric produced by the inner product

and vice versa.

An SVM is a two-class classifier constructed from sums of a kernel func-

tion K(·, ·)

f(x) =
L∑
i=1

αitiK(x, xi) + d (3.19)

where the ti are ideal outputs, d is a learned constant,
∑L

i=1 αiti = 0 , and
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Figure 3.3: Support vector machine concept.

αi > 0. Creative xi is a support vector and is obtained from the training set

through the optimization process. According to any support support, the

ideal game is 1 or -1, respectively 0 or 1 level. The basis of a class decision

is that f(x) is above or below the threshold.

The kernel K(·, ·) is constrained to have certain properties (the Mercer

condition), so that K(·, ·) can be expressed as

K(x, y) = b(x)tb(y) (3.20)

where b(x) is a mapping from the input space (where x lives) to a possibly

infinite dimensional expansion space. The Mercer condition ensures that the

margin concept is appropriate, and the optimization of the SVM is well

defined.

The optimization conditions depend on the concept of maximum margin.
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For separable datasets, the system places the hyperplane in the high dimen-

sional space so that the hyperplane has the maximum margin. The data

points from the training set located on the boundary are support vectors.

Then the focus of the SVM training process is to establish the boundaries

between classes. [6]

3.3 I-vector system

In recent years, the development of speaker recognition technology has suc-

cessfully implemented a system based on the low dimensional representation

of speech segments, called identity vectors or I vectors [7]. The vector is a

compact representation of the Gauss mixture model (GMM) hyper vector,

which captures most of the changes in the super Gauss hyper vector. It is

an average graph obtained by a posteriori distribution estimation method.

3.3.1 Total Variability

The classical joint factor analysis modelling based on speaker and channel

factors consists of defining two different spaces: The eigen space matrix of

the speaker space V and the defined channel space defined by the U system

eigen channel matrix. The method we propose is based on defining a space,

not two separate spaces. This new space, which we call the total variation

space, includes the variations of the speaker and the channel. It is defined by

the total variance of the eigenvalues of the largest eigenvector matrix which

contains the total covariance matrix of the corresponding variance. In the
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Figure 3.4: Block diagram showing different stages of I-vector extraction

process.
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new model, we do not distinguish the speaker effect and the channel effect in

the super Gauss vector space. Given a language, new speakers and channels

depend on the system GMM super vector M modified as follows:

M = m+ Tw (3.21)

Where m is the speaker vector and channel independent super vector

(which can be considered UBM super vector), T is the lower rank rectangle

matrix, w is the random vector ofN (0, I) with standard normal distribution.

The The component of the vector w is the total factor. We refer to these new

carriers as identity carriers or simply i carriers. In this modelling, assuming

that M is a normal distribution, the mean vector and the covariance matrix

TT t. The process of training the total variation matrix T is exactly the same

as learning the intrinsic speech matrix V, except for an important difference:

in the intrinsic speech training, all the recordings of a given speaker are

considered to belong to the same person; however, In the case of a matrix,

the entire set of utterances of a given speaker is thought to be produced

by different speakers (we pretend that each utterance from a given speaker

is generated by a different speaker). The new model we propose can be

seen as a simple factor analysis that allows us to project speech discs to

low-dimensional total variation space.

The total factor w is a hidden variable that can be defined by its pos-

terior distribution for the Baum-Welch statistic for a given speech. The

posterior distribution is a Gaussian distribution with an average of the dis-
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tribution that corresponds exactly to our i-vector. Similar to the Baum-

Welch statistics extracted using UBM. Suppose we have a series of L frames

{y1, y2, · · · , yL} and a UBM Ω consisting of C mixed components defined by

some feature space of dimension F. In order to study the basic total variabil-

ity subspace, we need to calculate the Baum-Welch statistic defined as

Nk(s) =
∑
t

γtk(s) (3.22)

Fk(s) =
∑
t

γtk(s)Ot(s) (3.23)

Where Nk(s) and Fk(s) represent the zero and first order statistics of the

speech session s respectively, where gammatk(s) is the posterior probability

of the mixed component k Given the observation vector Ot(s) at time frame

t.

The i vector for a given speech can be obtained using the following equa-

tion:

w = (I + T tΣ−1N(u)T )−1T tΣ−1F (u) (3.24)

We define N(u) as a diagonal matrix of dimension CFxCF whose di-

agonal blocks are NkI. is a supervector of dimension CFx1 obtained by

concatenating all first-order BaumWelch statistics Fc for a given utterance.

Σ is a diagonal covariance matrix of dimension CFxCF is estimated dur-

ing factor analysis training, and the residual variation of the total variation

matrix T is not simulated.
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3.4 PLDA classifier

Linear dimensionality reduction methods, such as LDA, are often used in

object recognition for feature extraction, but do not address the problem

of how to use these features for recognition. The latent variables of PLDA

represent both the class of the object and the view of the object within a

class. The usual LDA features are derived as a result of training PLDA, but

in addition have a probability model attached to them, which automatically

gives more weight to the more discriminative features. With PLDA, we can

build a model of a previously unseen class from a single example, and can

combine multiple examples for a better representation of the class.

Probabilistic LDA is a general method that can accomplish a wide variety

of recognition tasks, which was first proposed in face recognition area [8]. In

one-shot learning, a single example of a previously unseen class can be used

to build the model of the class. Multiple examples can be combined to obtain

a better representation of the class. In hypothesis testing, we can compare

two examples, or two groups of examples, to determine whether they belong

to the same (previously unseen) class. This can further be used to cluster

examples of classes not observed before, and automatically determine the

number of clusters.

Linear discriminant analysis (LDA) is a technique that models both intra-

class and inter-class variance as multidimensional Gaussians. It seeks di-

rections in space that have maximum discriminability and are hence most

suitable for supporting class recognition tasks. In this section we present a
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probabilistic approach to the same problem which we term probabilistic LDA

or PLDA. The relationship between PLDA and standard LDA is analogous

to that between factor analysis and principal components analysis.

We assume that the training data consists of J images each of I individ-

uals. We denote the jth image of the ith individual by xij . We model data

generation by the process:

xij = µ+ Fhi +Gwij + ξij (3.25)

This model comprises two parts: (i) the signal component µ+Fhi which

depends only on the identity of the person but not the particular image

(there is no dependence on j). This describes between-individual variation.

(ii) the noise component Gwij + ξij which is different for every image of the

individual and represents within-individual noise.

The term µ represents the overall mean of the training dataset. The

columns of the matrix F contain a basis for the between-individual subspace

and the term hi represents the position in that subspace. The matrix G

contains a basis for the within-individual subspace and wij represents the

position in this subspace. Remaining unexplained data variation is explained

by the residual noise term ξij which is defined to be Gaussian with diagonal

covariance Σ.

In the parlance of factor analysis, the matrices F and G contain factors

and the latent variables hi and wij are factor loadings. For readers familiar

with LDA, the columns of F are roughly equivalent to the eigenvectors of
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the between-individual covariance matrix, and the columns of G are roughly

equivalent to the eigenvectors of the within individual covariance matrix. The

term hi is particularly important as this represents the identity of individual

i. We term this a latent identity variable: in recognition we will consider the

likelihood that two face images were generated from the same underlying hi.

More formally, we can describe the model in Equation 3.25 in terms of

conditional probabilities:

Pr(xij|hi, wij, θ) = Gx[µ+ Fhi +Gwij,Σ] (3.26)

Pr(hi) = Gh[0, I] (3.27)

Pr(wij) = Gw[0, I] (3.28)

where Ga[b, C] represents a Gaussian in a with mean b and covariance C.

3.4.1 Gaussian PLDA (G-PLDA)

Assuming R speech for the speaker, the corresponding i-vector collection is

expressed as {ηr : r = 1, · · · , R}.Then, the introduced G-PLDA model [9]

assumes that each i-vector can be decomposed into

ηr = m+ φβ + Γαr + εr (3.29)

The terms identified by the speaker, the model consists of two parts: the

specific part of the descriptor, which describes the variability between the

speakers and does not depend on the particular discourse; channel compo-

nents. This is discourse dependent and describes the differences between
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the speakers. In particular, m is a global offset; provides the basis for the

speaker’s specific subspace (functional lecture); A potential identity vector

with a standard normal distribution. The column of ; A potential vector

with a standard normal distribution; and is the Gaussian residual of the

mean and diagonal covariance assumed to be zero. In addition, it is assumed

that all potential variables are statistically independent. Since the i vector I

handle in this work has a sufficiently small dimension (ie, our experiment is

400), and assuming is a complete covariance matrix, and removes the feature

channel. Thus, the improved G-PLDA model used herein is as follows:

ηr = m+ φβ + εr (3.30)

Using the EM algorithm to obtain the ML point estimation of model

parameters from a large number of development data sets.

3.4.2 Verification score

For the speaker verification task, given two i vectors η1 and η2 for trial, we are

interested in testing two alternative assumptions: H∫ , η1 and η2 Share the

same speaker with the potential variable β or Hd and generate the i vector

using the different identity variables β1 and β2. The verification score can

now be calculated as the log likelihood ratio of the hypothesis test

score = log
p(η1, η2|Hs)

p(η1|Hd)p(η2|Hd)
(3.31)

40



3.5 Deep neural networks for extracting baum

welch statistics

In the field of speech recognition, deep level neural networks (DNN) have

recently been successfully applied to acoustic modelling to achieve large im-

provements compared to standard GMM models [11]. Neural network is

a standard forward neural network, which is larger than the hidden layer

of traditional neural network (there are thousands of nodes in each hidden

layer) and depth (5-7). Neural network training commonly used standard

discrimination BP algorithm and stochastic gradient descent method.

The posterior probability, as the speaker’s shape and space, is extracted

from frame alignment factor and UBM is used to train the speaker in the

standard frame of instruction modeling, DNN. The use of speech perception

model is due to the influence of speech content on speech signals, which has

been neglected in text independent speaker verification.

DNN replaces GMM framework with different types of models after cal-

culation. In the GMM model, it is from the Gauss mixture model of a person,

in the circumstances of the neural network is the senones (Asia) decision tree

automatic speech recognition using a standard. The posterior probabilities

are computed at the standard, and they enter the state-of-the-art models of

vector / PLDA that are zeroth order and first order statistics [10]. An attrac-

tive advantage of this approach is that the characteristics of frame alignment

and sufficient statistical data can be changed because the two processes are
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now effectively decoupled. Therefore, the system can use the optimization

function to maximize the recognition and calculation of frame alignment us-

ing mobile phone speaker recognition accuracy, to obtain the I vector and the

last speaker to confirm the results of the best features of sufficient statistics.

3.5.1 DNNs for ASR

In the most advanced ASR system, the pronunciation of all words is repre-

sented by a series of farmer Q (e.g., bound states). Each morpheme is used

to simulate the state of a group of three-phase near acoustic spaces. Usually,

the automatically defined morpheme group Q uses the maximum likelihood

(ML) decision tree method. A decision tree is designed to increase maximum

likelihood growth by requiring a set of local optimal problems, assuming that

the data on each side of the split can be modeled with the Gauss model. The

decision tree leaves and then as senones eventually set.

The Viterbi decoder is used to adjust the training data to the correspond-

ing senones. These routes are used to estimate the probability distribution

of P (x — on Q), where X is the training data and the Q observation vector

is morpheme. The estimation and adjustment of the observed probability

distribution are optimized by iteration and iteration. Traditionally, a GMM

is allocated. In the recent system, one is used to estimate the posterior

probability of the acoustic characteristics of DNN. Probabilities can be ob-

served from the Sen agricultural rules using Bayesian ness, obtained before,

as follows:
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p(x|q) = p(q|x)p(x)/p(q) (3.32)

Where p(x|q) is the observed probability of decoding, p(q) is the previous

senone, and p(q|x) is the senone posterior from DNN. Figure 1 shows a flow

chart for training the DNN for ASR. A pre-trained Hidden Markov Model

(HMM) ASR system with GMM status is required to produce a subsequent

DNN training match. The final acoustic model consists of the original HMM

of the previous HMM-GMM system and the new DNN.

Figure 3.5: The flow diagram for training a DNN for ASR.

3.5.2 A DNN/i-vector framework

The need for a speech signal model to maximize the signal model of each

class means a spatial change factor. The classes defined by UBM do not

have intrinsic meaning. Each Gaussian covers only the feature space, which

may include a portion (or three) of a different mobile phone instance, rather
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than a single or even a specific phoneme. If a person says some phonemes,

say / acrylic / is very different, and the corresponding speech frame may be

associated with other phonemes training Gaussian alliance, say / Australia

/ ... so it is necessary to adapt to the corresponding / acrylic / gaussian

displacement speaker sound / Acrylic / Shock. Only the communication /

AO / Gaussian means will affect these frames. The final spatial factor will

not contain the fact that the speaker is pronounced / very different from

other information.

On the other hand, when calculating the exact posture probability of

the corresponding spelling pepper and predicting the correct frame of the

Cypriot, it is used to estimate the change in the way each morpheme. In the

above example, the corresponding change / acrylic / frame will be assigned to

the correct morpheme and means for those Cypriot results. The i-vector will

reflect the fact that the speaker is very different from the general population.

Simply put, when we can put this ”apple” speech Saverman definition: each

frame is the same phoneme training frame content comparison.

In acoustic modeling, DNNs have been shown to be superior to GMM

models because they use longer context windows and differentiated cultures.

As a result, a DNN model gives a better morpheme estimate than the su-

pervised UBM. Note that an important feature of our approach is that there

is no need to design a compromise that is effective for both ASR and SID.

In fact, the neural network system can use completely different features for

speaker identification, as long as it can improve the posterior probability es-

timation. This is similar to using a single center alignment in a multi-feature
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SID system, rather than aligning it with a feature. The proposed DNN /

space factor hybrid framework flow chart.

Figure 3.6: The flow diagram of the DNN/i-vector hybird farmework.
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Chapter 4

Normalization technique

4.1 Feature normalization

In general, general noise suppression techniques can be used to improve the

quality of the original time domain signal before feature extraction. How-

ever, as an additional step in the overall identification process, the signal

enhancement will increase the computational load. The design requires a ro-

bust feature extractor, or a feature extraction before modeling or normalizing

the matching algorithm.

The simplest way to normalize a feature is to subtract the average of each

feature in the entire speech. In the logarithmic spectrum and the cepstrum

region, the convolution channel noise becomes an addition. By subtracting

the mean vector, the feature set obtained from two different channels is

transformed into zero mean value, which reduces the influence of channel.

Similarly, the variance of the feature can be balanced by dividing each feature

46



by its standard deviation. When VAD is used, normalized statistics are

usually calculated based on the detected speech frame.

Discourse Mean and Variance Standardization assumes that the channel

effect is constant throughout the discourse. In order to relax the assumptions,

the mean and variance estimates can be updated by sliding the window. The

window should be long enough to well estimate the mean and variance, but

it is short enough to capture the time-varying properties of the channel. The

typical window size is 3-5 seconds.

The characteristic deformation and short term Gaussian purpose is to

modify the short term feature distribution to refer to the distribution. This

is achieved by the cumulative distribution function of the ”twist” feature,

which makes it match the reference distribution function, such as Gaussian.

Each feature stream is independently deformed. By applying a global linear

transformation before warping, the independence hypothesis is relaxed, with

the aim of achieving short-term decorrelation or feature independence. Al-

though it is observed that the Gaussian characteristic improves the accuracy

of the characteristic warpage, it is quite complicated to implement.

RASTA filtering uses a bandpass filter in a logarithmic or cepstrum do-

main. The filter is applied along the time trajectory of each feature and

suppresses the modulation frequency outside the typical speech signal. For

example, a slowly changing convolution channel noise may be considered as

a low frequency portion of the modulation spectrum. Note that the RASTA

filter is signal independent, whereas the CMS and variance normalization are

adaptive because they use the statistics of the given signal.
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4.2 Score normalization

The last step in speaker verification is decision making. This procedure

involves comparing the likelihood between the desired speaker model and the

incoming speech signal and the decision threshold. If the likelihood is higher

than the threshold, the claimed speaker will be accepted or rejected [12].

Decision threshold adjustment is very troublesome in speaker verification.

If the selection of the numerical value is still an open problem in the domain

(usually a fixed experience), the reliability of the system can not be guaran-

teed at runtime. This uncertainty is mainly due to the difference between

the experimental results and the actual field.

This fraction varies from source to source. First of all, the nature of

the registered material can vary from speaker to speaker. It can also be

analyzed from the aspects of speech content, duration, environmental noise

and speaker model training quality. Second, registration data (for speaker

modeling) and test data may exist mismatches, which is the main problem

in speaker recognition. Two main factors may lead to mismatch: speaker

/ speaker (emotional changes, internal change itself through the speaker

changes caused by health status and age) of some environmental conditions

and transmission channel, recording material or acoustic environment. On

the other hand, the variability of human language is a special problem in

speaker independent threshold system, and it is also a potential factor af-

fecting the reliability of decision boundary. In fact, this change is the speaker

can not be measured directly, it is not a simple speaker protection verifica-
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tion system (by decision process) of all potential imposter attacks. Finally,

as the training materials, the test value is divided into client and impostor

impact test section quality characteristics.

Fractional normalization has been explicitly introduced to cope with

changes in scores and make it easier to adjust speaker independent decision

thresholds.

A score normalization of the form

s′ =
s− µI
σI

(4.1)

Is the normalized s′ is the normalized score, s is the original score, µI and

σI are the estimated mean and standard deviation of the fake score distribu-

tion, respectively. In zero normalization (”Z norm”), impersonation vertex

statistics µI and σI are related to the target speakers, and they are calcu-

lated off-line in the speaker registration phase. This is achieved by match-

ing a batch of non-target statements with the target model and obtaining

the mean and standard deviation of these scores. In the test normalization

(”T-norm”), the parameters are test-dependent, which are calculated in the

verification phase ”in flight” by matching the eigenvector of the unknown

loudspeaker with a set of colon models statistics.

4.2.1 Znorm

Zero-normalization (Znorm) technology has been used extensively for speaker

verification in the mid-1990s. In practice, the speaker model is tested against
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a set of speech signals generated by some impostors, resulting in imperson-

ator similarity score distributions. The speaker-related mean and variance

normalization parameters are estimated from the distribution (see (16)) Run-

time Verification System produces similarity scores. One advantage of the

Znorm is that the estimation of the normalized parameters can be performed

during the speaker model training period.

4.2.2 Tnorm

Specification or parameter estimation of the mean and variance of the dis-

tribution of the impostor scores based on test specification, using the test

speech signal is different from the Znorm rather than the impostor model.

During the test, the input speech signal and that compared with the tra-

ditional speaker model and a set of fraud model to estimate the fraction

distribution and normalized parameters of continuous impostor. If Znorm is

a speaker normalization technique, Tnorm is a test dependency. Similarly, in

the process of testing speech testing and standardized parameter estimation,

Tnorm avoids the possible problems of znorm based on possible mismatches

between test and standardized utterances. On the contrary, Tnorm needs to

be tested online.
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Chapter 5

Pre-process and dimension

reduction

Linear dimensionality reduction method has a long tradition in object recog-

nition. Most notably, these methods include principal component analysis

(PCA) and linear discriminant analysis (LDA). Although PCA identifies the

energy of most of the data in the linear subspace, LDA identifies the data

of the different classes relative to the most extended subspace in each class.

This makes LDA suitable for recognition, classification and other problems.

One question that can not be answered by dimensionality reduction is how

do we deal with the low dimensional representation of data? A common

method is to project the data into the PCA subspace, thus eliminating the

singularity, and then find the LDA subspace. However, after projection, how

do we combine the multivariate representations of the resulting components?

Obviously, some dimensions (for example, the main projection direction de-
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termined by LDA) must be more important than others, but how do we

incorporate this difference into the importance of identification? How do we

perform tasks such as classification and hypothesis testing, and before we use

multiple instances of a new class, we haven’t seen these tasks yet.

5.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a generalization of Fisher linear dis-

criminant. It is used in statistics, pattern recognition and machine learning

to find, characterize, or separate linear combinations of two or more classes

of objects or events. The obtained combinations can be used as linear clas-

sifiers, or more widely used to reduce the dimensionality before subsequent

classification.

LDA is closely related to the analysis of variance (ANOVA) and regression

analysis, and attempts to represent dependent variables as other features

or linear combinations of measurements. However, the variance analysis of

categorical variables and continuous variables, and discriminant analysis has

continuous and categorical variables (i.e. category labels), Logistic regression

and probit regression analysis of variance is more similar than LDA, because

they also explained a categorical variable by continuous parameter. In the

application of the irrational assumption of normal distribution of independent

variables, these other methods are preferred, which is the basic assumption

of the LDA method.

LDA is also closely related to principal component analysis (PCA) and
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factor analysis, since they both seek linear combinations of the best data

explanatory variables. LDA explicitly attempts to simulate the differences

between classes of data. On the other hand, PCA doesn’t take into account

any differences in class. Factor analysis establishes a feature combination

based on difference rather than similarity. Discriminant analysis is also dif-

ferent from factor analysis, because it is not an interdependent technique:

independent variables and dependent variables (also known as standard vari-

ables) must be distinguished.

Linear Discriminant Analysis is commonly used to identify the linear fea-

tures that maximize the between-class separation of data, while minimizing

the within-class scatter. Consider a training data set containing N examples

{x1, · · · , xN}, where each example xi is a column vector of length d. Each

training example belongs to one of the K classes. Let Ck be the set of all

examples of class k, and let nk = |Ck| be the number of examples in class

k = 1, · · · , k. In LDA, the within-class and between-class scatter matrices

are computed:

Sw =
ΣkΣiεCk

(xi −mk)(xi −mk)
T

N
(5.1)

Sb =

∑
k nk(mk −m)(mk −m)T

N
(5.2)

where

mk =
1

nk
ΣiεCk

(5.3)
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is the mean of kth class, and

m =
1

N

∑
i

xi (5.4)

is the mean of the data set. We seek the linear transformation

x→ W Tx (5.5)

The difference between classes is maximized relative to the intraclass vari-

ance, where W is a d textbfxd′ matrix that is the required dimension. It can

be seen that the optimal W column is a generalized eigenvector that makes

Sbw = λSww (5.6)

Corresponds to d maximum eigenvalues. One consequence of this result is

that W is diagonalizing both the scattering scattering matrices W TSbW and

W TSwW . In other words, the LDA will be released between the class and

the internal data. LDA projection can be obtained by fitting a Gaussian

mixture model to the training data. The resulting hybrid model can be

used to classify the categories represented in the training data rather than

categorize them. For this purpose, different probabilistic models are needed,

provided by Probabilistic LDA.

As mentioned earlier, the i-vector simulates the speaker and channel-

related information in the same total variability subspace. Thus, in order to

select the most relevant feature subset for the speaker recognition task, the

LDA may be applied to the i vector to eliminate the direction in which the

speaker identification is not information. In addition, reducing the dimen-
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sion of the i-vector by LDA can improve the computational efficiency of the

subsequent back-end components in the system.

There are three disadvantages to the properties of the dispersion matrix

SbandSw. First, let’s assume that the basic distribution of this class is Gaus-

sian, that is, the covariance matrix for all categories. Therefore, it can not

be expected that the parameter LDA will well fit non-Gaussian and multi-

mode (rather than unimodal) distributions. As known in the speaker recog-

nition community, the actual distribution of i vectors may not necessarily be

Gaussian distributions. This is especially true when recording sound in the

presence of noise and channel distortion. In addition, for NIST SRE-type

scenarios, records come from various sources and are collected (sometimes

outside), but there is no guarantee that the distribution is single. Second,

note that the Sb level is C-1, which means that the parameter LDA can pro-

vide the most C-1 discrimination. However, in applications such as speech

recognition where the number of language categories is much smaller than

the size of the i-vector, this may not be enough. However, this may not pose

a challenge to the speaker recognition task, where the number of trained

speakers exceeds the dimension of the total variance subspace. Finally, since

only the type centroid of Sb is considered, the parameter LDA can not effec-

tively capture the boundary structure between adjacent categories, which is

crucial for classification.

55



5.2 Non-parametric discriminant analysis

As we have said repeatedly, L-type classification only needs (L-1) features.

However, (L-1) features are suboptimal in the Bayesian sense, unless the

posterior probability function is chosen, although they are optimal for the

criteria used. Therefore, if the estimation of Bayesian error in feature space

is much larger than that in the original variable space, some methods must

be designed to enhance the feature extraction process.

One possibility is to artificially increase the number of classes. So that

we can increase the level of Sb. This can be done by dividing each class into

multiple clusters. For the case of multi-modal behavior, clustering algorithms

that ”correctly” identify clusters can be found, which may work well. As a

second possibility, after determining the L-1 features, they can be removed,

leaving subspaces orthogonal to the extracted features. A similar process can

then be applied to subspaces to extract additional features.

In this section, a non-parametric discriminant analysis is introduced to

overcome the two problems mentioned earlier, the algorithm was proposed

early in [13] [14] and further implemented in IBM speaker recognition sys-

tem [15]. The basis for this expansion is the use of k-nearest (kNN) tech-

niques to measure non-parametric interspersed interspersed scatter matrices

between local base classes and are generally full-rank. As a result, neither

artificial generation nor sequential methods are required. In addition, the

non-parametric nature of the scatter matrix inherently causes the extracted

features to retain structure important for classification.
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The determination of the linear mapping can be thought of as finding

the rotation and multiplication of the original data space, and then selecting

the subspace in which all subsequent work is performed. Therefore, two

issues must be addressed. First, you must specify the process of determining

rotation and scaling. Second, you must specify the sort order of the rotation

and zoom features to facilitate the selection process.

Non-parametric discriminant analysis (NDA) is introduced to overcome

the parameter form of LDA by extending the scattering matrix. The nor-

mality assumption of LDA is relaxed, so it can deal with the abnormal data

distribution, by combining the intra class scatter matrix and the inter class

scatter matrix between the sb direction and the boundary of sw, respectively.

In NDA, the expected value represents the global information of each class

and the average value of the local sample instead of the nearest neighbour

based on the individual sample. More specifically, in the NDA method, the

inter class scatter matrix is defined as,

Sb =
C∑
i=1

C∑
i=1,j 6=i

Ni∑
l=1

wijl (xil −M
ij
l )(xil −M

ij
l )T (5.7)

where xil denotes the lth sample from class i, and Mij
l is the local mean

of k-NN samples for xil from class j which is computed as,

Mij
l =

1

K

K∑
k=1

NNk(x
i
l, j) (5.8)

where NNk(x
i
l, j) is the kth nearest neighbor of xil in class j.The weighting

function wijl is defined as
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wijl =
min{dα(xil, NNk(x

i
l, i)), d

α(xil, NNk(x
i
l, j))}

dα(xil, NNk(xil, i)) + dα(xil, NNk(xil, j))
(5.9)

where α is a constant between zero and infinity, and d(·) denotes the distance

(e.g., cosine or Euclidean). The weighting function is a local gradient that

emphasizes amplitude to reduce their influence on the scattering matrix. For

samples near the classification boundary, the weight parameter is close to

0.5, and drops off to zero as we move away from the classification boundary.

The control parameter, alpha, adjusts how rapidly w falls to zero as we move

away.

The nonparametric within-class scatter matrix, Sw, is computed in a sim-

ilar fashion as Sb, except the weighting function is set to 1 and the local gra-

dients are computed within each class. The NDA transform is then formed

by calculating the eigenvectors of Sw
−1
Sb.

Careful study of non-parametric interspersed distribution matrix can make

three important observations. First, we note that the local mean vectorMij
l

approaches the global mean class j (ie µj) as the nearest neighbor number K

approaches Nj, . In this case, if we set the weight parameter to 1, the NDA

transform essentially becomes an LDA projection, which means that LDA is

a special case of the more general NDA.

Second, Sb is usually full-rank because all samples are considered in the

scatter matrix between nonparametric classes (not just centroids). This

means that, unlike LDAs that provide the most C-1 discriminant features,

NDA usually results in a d-dimensional vector for classification (assuming
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d-dimensional input space). As we discussed earlier, this is important for

applications such as speech recognition, where the number of classes is much

less than the total subspace (or general input space) dimension.

Finally, NDA is more effective than LDA in maintaining different cate-

gories and crossing different categories of complex structures (ie, local and

boundary structures). As can be seen from the example (k is set to 1 for

simplicity), LDA uses only the global gradient obtained from the two cen-

troid levels to measure the scatter between classes. On the other hand, NDA

uses a local gradient along the boundary highlighted by the weighting func-

tion wijl . Therefore, the boundary information is embedded in the result

transformation.

Figure 5.1: An example of a symbol with a non-parametric argument between

two classes. v1 represents the global gradient of the class centroids.
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From another class to the NN, each vector indicates the direction of the

local to another class. If we select these vectors only from the samples located

at the classification boundaries (V1, V3, V4, V5, etc.) then the scatter matrix

of these vectors should specify the subspace in which the boundary region

is embedded. Samples away from the boundary (V2, etc.) tend to have a

greater magnitude. These large values can have a considerable impact on

the scattering matrix, distorting the information on the boundary structure.

Therefore, it seems appropriate to emphasize how to move samples away

from the border.
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Chapter 6

Implementation and

experiment result

In order to demonstrate and evaluate the proposed NDA approach, we have

run several experiments on NIST-SRE 2010 benchmark datasets. Further, we

have also provided a detailed comparison between our approach and several

state of the art methods. Cross-validation method was used for refining the

parameter values in each experiment.

A Gaussian PLDA system for the SRE10 extended eval was run using

i-vectors from a gender-dependent 2048-UBM with 60-MFCCs. The i-vector

extractor is also gender-dependent. It returns two cell arrays (target and

non-target scores) for the 9 conditions.

The dataset used here in the experiment is collected from NIST-SRE10

plan [16], of which female development dataset has 18345 total i-vectors

and is labelled into 1880 speakers. Male development dataset has 13057
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i-vectors which represent total speech files, those i-vectors are labelled by

1281 speakers. Both T matrix in i-vector system and Phi matrix in PLDA

system are pre-trained in advanced using the development data, verification

was done using testing dataset. Both training and evaluation process are

done in gender dependent phase, that is, male and female separately.

In both male and female system, i-vectors are regarded as front-end fea-

tures produced by a generative model which represents one speaker’s speech

segment. I-vectos has 400 dimension, speaker-specific subspace dimension is

set to 150, which refers to the dimension of hidden variable beta in PLDA

system. Features are pre-processed by NDA reduction to 300 dimension, with

parameter K set to 15. Length normalization is applied to all i-vectors. The

two steps of the length normalization are whitening and then projection into

unit sphere and the noise term has full-covariance.

The results for SRE10 extended 1conv-1conv is evaluated in terms of

EERs and DCFs [16], which are calculated by Bosaris toolkit [17] from PLDA

scores.

As shown in the table 6.1, 9 DET shows 9 conditions indicated in NIST-

SRE10 plan, whose target and non target trials present in the following. First

two columns present the result of original i-vector G-PLDA system without

any dimension reduction process, while the other two sections indicate the

implementation with LDA and NDA, respectively. It is clear to observe with

LDA, EER remains the similarity with original results while minDCF has

huge drop. While in NDA, Equal error rate has consistently reduction with

respect to both original and LDA based system, and it also retains the good
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Table 6.1: Comparison between no pre-process, LDA and NDA in i-vector

PLDA system, in terms of EER and minDCF

no pre-process LDA NDA

DET TGT NTGT EER newDCF EER newDCF EER newDCF

1 4304 795995 1.57% 0.2479 1.55% 0.0154 1.41% 0.0134

2 15084 2789534 2.55% 0.4735 2.45% 0.0242 2.22% 0.0222

3 3989 637850 2.47% 0.4584 2.48% 0.0247 2.28% 0.0222

4 3637 756775 1.73% 0.3380 1.78% 0.0177 1.51% 0.0150

5 7169 408950 1.85% 0.3629 1.86% 0.0185 1.50% 0.0150

6 4137 461438 4.25% 0.7488 4.30% 0.0430 3.47% 0.0342

7 359 82551 5.64% 0.6825 5.40% 0.0539 4.10% 0.0393

8 3821 404848 1.72% 0.4162 1.87% 0.0183 1.55% 0.0149

9 290 70500 1.10% 0.1801 0.93% 0.0080 0.89% 0.0083
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result of minDCF reduction. Both LDA and NDA has channel compensation

feature which reflects in the minDCF decrease, and NDA does show good and

consistent discriminant feature compared with LDA.
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Chapter 7

Conclusions

In this thesis, an overview of speaker recognition system is presented, which

contains from feature extraction, modelling technique to the choose of classier.

From traditional method to state-of-the-art system. The impact of pre-

process of i-vectors is investigated, we emphasize the effective of dimension

reduction algorithm i.e. LDA. The improvement here is made by the intro-

duction of NDA, which modifies the calculation of between scatter matrix

and release the drawback of traditional fisher LDA. Satisfied result has been

shown by the implementation of NDA in NIST 2010 SRE. The research effort

to tackle the problem for speaker verification context has been significantly

increased in recent years. Further more, research directions currently and

in the future are as follows: Deep Neural Network (DNN), Metric Learning

Technique, Sparse methods, Dimensionality reduction techniques, Miscella-

neous Opportunities. Huge effort and attention should be effort into ASV

research and we wish a better future will come soon.
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