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Summary

In this work the coupled Finite Fracture Mechanics criterion is applied to investigate
the brittle crack initiation in structures containing a circular hole under mode I loading
conditions. The analysis involves the implementation of the stress field and stress inten-
sity factor functions already proposed in literature. The accuracy of these expressions are
verified numerically through a finite element analysis by ANSYS R© code. Theoretical
FFM prediction are compared with experimental results on two different polymeric ma-
terials: PMMA and GPPS.
The agreement is found to be generally satisfactory, confirming the potentialities of FFM
in the framework of Fracture Mechanics.
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Sommario

Nella presente tesi è stato utilizzato il criterio della Meccanica della Frattura Finita
(FFM) per studiare la propagazione di crack in strutture fragili contenenti un foro circo-
lare e caricate in modo I. L’analisi comprende l’implementazione del campo tensionale e
della funzioni che descrivono il fattore di intensificazione degli sforzi già presenti in let-
teratura. L’accuratezza di queste espressioni è stata verificata numericamente tramite un’
analisi agli elementi finiti condotta attraverso l’uso del software ANSYS R©. Le previ-
sioni teoriche, derivanti dall’applicazione della FFM, sono state confrontate con i risultati
sperimentali realizzati su due differenti materiali polimerici: il PMMA e il GPPS.
L’accordo tra previsioni teoriche e dati sperimentali è risultato più che soddisfacente, con-
fermando le potenzialità della FFM nell’ambito della Meccanica della Frattura fragile.
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CHAPTER 1

Introduction

Fracture Mechanics investigates the failure behavior of structural elements. As a mat-
ter of fact, the strength of structures decreases in presence of defects such as cracks,
notches, holes. Fracture can be present and can be studied over different scales from
nanoscale (10 times the average dimension of atoms) to macroscale. No higher scales are
generally considered. Most of the time, microcracks propagate due to fatigue, i.e. the
application of cyclical loads; they grow, coalesce and, for subsequent phases, increasing
fractures are formed and in this way it is possible to pass from the analysis of an inte-
ger solid to the one that presents microcracks and, then, macrocracks. The definition of
resistence has to be reviewed in order to consider not only the tensile strength as it can
only quantify the particle’s resistance to an applied load (not considering inherent flaws
present in brittle materials or the concentration of the stresses around these flaws when
the material is loaded and their effect to the fracture process). Hence another parameter
has to be introduced and it is the force that opposes itself to the propagation of the crack,
i.e. the toughness to fracture. Fracture toughness is an intrinsic material property and
is defined as a measure of the energy required to create a new surface in a material. It
represents a sort of critical value of the Stress Intensity Factor (SIF). The SIF is used in
fracture mechanics to predict the stress state near the tip of a crack caused by a remote
load or residual stresses. The magnitude of SIF depends on sample geometry, the size
and the location of the crack, the magnitude and the modal distribution of the loads on the
material. Also the already quoted scale of the analysis, is a key feature. Therefore, basing
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Chapter 1. Introduction 4

on their behavior, it is possible to distinguish two kind of materials: the first shows high
strength but low toughness and it represents the class of brittle materials (once there is a
crack, this propagates with high speed until the failure of the body); the second, instead,
presents lower strength but high toughness and in this case we talk about ductile materi-
als. So fracture studies have been profoundly changed in the last years by the focus on
structural element sensitivity to defects and size scale effect. Obviously a foundamental
step that has to be taken into account is a proper stress analysis including the stress con-
centration whatever the crack propagation mechanism is.
The evaluation of the stress field in a structural body due to the presence of a crack can
be obtained within the linear elastic theory. Obviously a great attention has to be paid
concerning the high stresses surrounding the crack-tip and to the probably presence of
plasticization phenomena and other non linear effect. In spite of this linear elastic stress
analysis can be defined as the fundamental base of the moste current fracture studies if
the small scale yielding hypotesis is respected. In this case non linear effects are limitated
to a small region in the surroundings of the crack-tip while the remaining portion is char-
acterized by the linear elastic field.
The theory of linear elastic fracture mechanics (LEFM) was firstly developed by Griffith
and Irwin and it was able to predict the behaviour of bodies containing cracks in terms of
brittle fracture. For what concerns the studies underlying in this thesis, a brittle fracture
can be defined as any sudden failure caused by the propagation of cracks due to the appli-
cation of monotonically increasing loadings. However the LEFM is a field that presents
some limitations. Indeed, the traditional stress approach provides good results for crack-
free bodies and the energetic approach gives good results for large cracks bodies while
for intermediate conditions (small cracks, notches, holes) both approaches fail.

In order to overcome these limitations and to propose a more generally applicable
method a new approach have been successfully developed by introducing an internal ma-
terial length ∆. The value of ∆ is obtained by imposing the fulfilment of the two limit
cases: long crack failure load for the stress criterion and no crack failure load for the en-
ergetic criterion. On the other hand the two mentioned failure criteria remain distinct and
in general it can be asserted that the fulfilment of one implies the violation of the other
one. Nevertheless it is possible to couple these two approaches. In this case ∆ is no more
a material parameter, but it becomes a structural one. A more detailed explanation of
this concepts is the main character of Chapter 2 about Finite Fracture Mechanics, which
shows the limits of the LEFM and the classical theories and puts in evidence the strengths
of this new evoluted method.

Once defined the theoretical basis, the attention will be focused on practical studies.
In Chapter 3 precise complutational analysis to evaluate the stress field and the stress in-
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tensity factor functions well determined infinite geometries will be presented. The bodies
under consideration show defects (a central hole) characterized by different dimensions.
Two different materials and two different loading conditions are taken into account. The
obtained predictions are in good agreement with those available in the literature.

In Chapter 4 the experimental tests conducted by an external team of researchers on
two different materials, PMMA and GPPS, will be described. Two different typologies of
test were carried out: the first one is the traditional brazilian disk test on circular speci-
mens, generally used in geothecnical studies, to investigate the strength of rock materials.
The second one is the classical tensile test on rectangular samples, generally used for
metallic material components studies. Both tests involved PMMA and GPPS consider-
ing, at least, four different hole sizes. They were small enough to apply the same analysis
derived from infinite geometries. Thanks to the tests it was possible to evaluate the failure
load and a comparison between numerical simulation outputs and experimental ones is
provided. The great agreement between them is demonstrated by the low percentage of
error obtained.

Finally, some final considerations will be presented. Indeed the final chapter goal is
to put in evidence how useful can be the application of the finite element analysis if the
modeler knowledge of the dynamics of representation is suitable and above all how the
finite fracture mechanics has revolutionized not only the way of approaching to the brittle
failure of bodies containing flaws and defects.



CHAPTER 2

Finite Fracture Mechanics

2.1 Introduction

Fracture Mechanics is the science which describes the failure behavior of bodies con-
taining defects. Generally, it can be stated that fracture is determined by local stress
concentrations and, knowing its development, the sudden failures in structural bodies can
be avoided. It is shown that, under certain well-defined conditions, crack propagation can
be predicted using linear elastic analysis. In this case the field under attention is the so
called Linear Elastic Fracture Mechanics (LEFM). The conditions necessary for brittle
failure can be foreseen but only assuming that a crack already exists. If the crack is al-
ready there it has to merely consider its propagation. Two are the failure criteria provided
by LEFM: the first based on the stress field study, and the second concerning energetic
assumptions. But the two approaches works well in the two opposite situations; in fact the
first one provides good results for bodies without cracks and the second one considering
elements characterized by enough large cracks. The lack of satisfaction, respectively, of
the two restrainments implies the failure of them and the birth of singularities. According
to the stress criterion, it can be asserted that the failure takes place if, at least in one point,
the maximum principal stress reaches the tensile strength:

σ = σu (2.1)

Yet the application of this principle provides a null failure load (singular stress field
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Chapter 2. Finite Fracture Mechanics 7

in front of the crack tip) for a body containing a crack. For what concern, instead, the
energetic criterion, it states that the failure occurs when the crack driving force G equals
the crack resistance Gf :

G = Gf (2.2)

G is defined as the strain energy released for a unitary increment of the fracture area
and it is called strain energy release rate while Gf , the fracture energy, is the energy
needed to create the unit fracture surface and it is a property of the material. Indeed,
applying the Irwin relation (1957):

G =
K2
I

E
Gf =

K2
IC

E
(2.3)

the Eq.( 2.2) can be rewritten equivanlenty and it can be said that the failure is achieved
when:

KI = KIC (2.4)

whereKI is the SIF andKIC the Fracture Thoughness. But the imposition of Eq.( 2.2)
to crack free elements gives infinite failure load, being the stress intensity factor zero in
absence of crack.
Therefore the criteria work for the extreme cases and problems arise if they are applied
to intermediate cases (for example short cracks, notches and holes). As solution for this
drawback the methodology of the Theory of the Critical Distance (TCD) can be exploited.
The TCD is not one method but a group of methods which have certain features in com-
mon, principally the use of a characteristic material length parameter, the critical distance
∆, and the use of linear elastic analysis. The simpler Point Method (PM), or point-wise

stress criterion and the slightly more complex method Line Method (LM), or average

stress criterion, are analyzed. These methods calculate a stress value and equate it to
a characteristic strenght for the material. The advantage is to obtain analytical results
for sufficiently ordinary geometries or to couple the failure criterion with a linear elastic
analysis performed numerically by the finite element method. The task of the character-
istic lenght is to take into account the fracture thoughness for stress based criteria and the
tensile strength for energy based criteria. The aim is to show how predictions of brittle
fracture can be made very easily, for situations where the elastic stress field around the
stress concentration feature is known, for example from FEA.
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2.2 Stress and energy based approaches

It is possible to consider two different tipologies of specimens: a circular and a rect-
angular plate. The first is loaded by a compressive force P and has two symmetric cracks
with an extension equal to a (with a ≥ 0) in the direction of the application of the force.
The second is loaded by a tensile force P and has two symmetric cracks of length a in the
direction orthogonal to the one of the application of the load. For the sake of simplicity
only the failure mode I is analyzed:

Figure 2.1: BD geometry
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Figure 2.2: Tensile plate geometry

It has been said that it is possible to consider two different methods to achieve the
same goal, the point-wise stress criterion and the average stress criterion. Considering the
first one, failure occurs when the stress at a distance ∆PS attains the tensile strength σu.
Instead, referring to the latter criterion, failure happens when the average stress achieves
the critical value σu ahead of the crack-tip over a ∆LS long segment from the hole. They
can be written respectively:

σx(R + ∆PS) = σu (2.5)

∫ R+∆LS

R
σx(y)dy = σu∆LS (2.6)

Obviously PS and LS stand for ”point-wise stress” and ”line stress” respectively. Both
these criteria if applied to crack free sample give the Eq.( 2.1). Instead, if Eq.( 2.5) are
applied to bodies with a relatively large crack (i.e. ∆ � a) the characteristic lenghts can
be determined. In this case only the asymptotic stress field at the crack-tip is required:

σx(y) =
KI√
2πy

(2.7)
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Substituting Eq.( 2.7) in Eq.( 2.6) the critical distance can be obtained:

∆LS =
2

π

(
KIC

σu

)2

(2.8)

If a theoretical solution for the stress field is not available, a numerically achieved
one can be introduced in Eq.( 2.6) derived by a FEA. Generally, this is required when
complex geometries in the intermediate cases (between no cracks and large cracks) are
studied because the exact stress field is necessary. This is the way to achieve exact solution
since the stress field is not available in literature.
For what concern the failure of specimens, in case of plain samples, it can be assumed
that the collapse is reached when the energy available during an extension of the crack,
∆LE , attains the critical value Gf∆LE . So the modification of the LEFM leads to the
same result of the stress criterion. In formulae:∫ ∆LE

0

G(a)da = Gf∆LE (2.9)

or considering the Irwin relationship:∫ ∆LE

0

K2
I (a)da = K2

IC∆LE (2.10)

If specimens with ∆LE � a are considerd this method corresponds to the application
of Eq.( 2.4). On the other hand, imposing Eq.( 2.1) for a a = 0 the critical distance is
again obtained:

∆LE =
2

π

(
KIC

cσu

)2

(2.11)

having substitued the value of the stress intensity factor with the expression:

KI(a) = cσ
√
πa (2.12)

where c is a dimensionless parameter that depends on the location of the crack and it
is equal to 1 for a centered crack. In this last case the Eq. ( 2.8) and ( 2.11) are the same.
Even if the stress and the energy criterion are pretty similar, from a computational point
of view, the last one is the most suitable because the SIF values are obtainable from
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handbooks or specific LEFM codes. On the contrary, the stress function σx(y) usually is
not inferable analitically and so it has to be calculated for each value of a. Therefore with
the application of Eq.( 2.10) only one function, KI(a) is necessary for every value of a to
get the critical load.
The critical distance, regardless how it is evaluated (application of Eq.( 2.8) or ( 2.11) ),
is a structural parameter which describes the material brittleness. Small values of ∆ are
indicative of a brittle behavior and viceversa, the large ones are clue of a ductile behavior
ruled by Eq.( 2.1).
The predictions of the PM and LM are identical for long cracks and, trivially, for plain
tensile specimens. Still it is not guaranteed that the predictions are identical for any other
problem. However the differences between the PM and LM results are almost always
small. The first method can be accurated in some cases and the second in others. This
may be related to the operative mechanism of failure. In any case the differences in the
results, between PM and LM, are so small that both are proper to describe experimental
data that inevitably contains a certain amount of scatter.
The most important peculiarity that has to be pointed out from the study of the average
stress and energy criteria is their physical meaning: with finite fracture mechanics it can be
asserted that fracture does not propagate continuosly but through finite crack extensions
(FCE), at least at the first step, whose length is a material constant. It has been said
that the predictions of the two criteria are very similar but not identical and in fact it
is not possible to obtain the stress intensity factor from the stress field, for any crack
extension, and viceversa. On the criteria ( 2.6) and ( 2.9) the FFM approach is founded.
This approach can not give continuos crack growth but almost all the fracture processes
are characterized by a discontinuos crack growth (talking about polymers for example).
The crack discontinuities are probably connected to the microstructure features of the
materials and, being not fully understood yet, the finite extension of a crack is assumed a

priori. The FFM criterion can be applied to all classes of materials and at all size scales.
The Eq.( 2.6) and ( 2.10) generally provide results in good agreement with experimental
data but they still contains some defects. The flaws can be noticed if specimens whose
structural size is comparable to the finite crack extensions are analized. Unfortunately it
could be the case of concrete-like materials.
Besides, it can be stated that in the context of FFM the two PMs are just an approximation
of the LMs.
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2.3 Coupled stress and energy FFM

According to the introduced criteria, internal lenghts ∆LS and ∆LE are considered
and to obtain their values the contemporaneus fulfilment of the two limit cases (long crack
failure load for the stress criteria and no crack failure load for the energetic one) has to be
imposed. It means that Eq.( 2.6) and ( 2.10) has to be satisfied. Yet it has to be pointed
out that the two approaches remains distinct since the achievement of the former implies
the violation of the latter and viceversa. In order to bypass this drawback the extension
of the crack ∆SE is no more considered as a material constant and becomes a structural
parameter. It can be write that:

∫ R+∆SE

R σx(y)dy = σu∆SE∫ ∆SE

0 G(a)da = Gf∆SE

(2.13)

This implies that the failure happens whenever there is a length ∆SE over which the
resultant of stresses is σu∆SE and, at the same time, the energy available for the crack
extension is Gf∆SE . The unkowns of the problems are obviously the failure load σf and
the critical distance ∆SE .
The fulfilment of the two equations represent a necessary and sufficient condition for the
propagation of the crack.
Therefore coupling the stress and energy FFM Eq.( 2.13) is obtained and so the present
fracture criterion can be called as coupled FFM criterion.
The critical length can be evaluated taking into account different rules. In fact it is stated
before that there are two stress and two energetic failure criteria so, in this circumstances,
at least four combinations are suitable. However the most proper ones concerns the aver-
age energy criterion. In a first combination it can be consider that LE approach is coupled
to the PS one. In this case the failure can be observed if the stress is higher than the tensile
strenght over the crack step ∆ and, at the same time, the energy suitable for the crack step
has to be equal to the crack extension multiplied by the fracture energy. It means that:σx(R + ∆) = σu∫ ∆

0 G(a)da = Gf∆
(2.14)

Instead if, in a second case, the average stress criterion LS is combined to the LE
approach the failure occurs when the stresses resultant over the crack step ∆ is equal to
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σu multiplied by the extension crack lenght ∆. It means that:
∫ R+∆SE

R σx(y)dy = σu∆SE∫ ∆SE

0 K2
I (a)da = K2

IC∆SE

(2.15)

Applying and solving one of these two systems, the conditions for the failure can be
predicted that means exctract the values σf and ∆. So the approach expressed by ( 2.14)
and ( 2.15) can be called PS+LE and LS+LE criterion. The first was been introduced by
Leguillon (2002) and the secon by Cornetti et al. (2005).



CHAPTER 3

Circular hole in a tensile plate

3.1 Introduction

The investigation of the brittle failure of a plate with a centre circular hole represents
a plane problem which was firstly studied by Kirsch in 1898 . Generally, the unkowns
in this condition are at least five, the three σx, σy, τxy and the two displacements, u and
v. In the field of plane elasticity the equations can be reduced to three by considering
only σx, σy e τxy (regardless the used coordinate system). Indeed, it is possible to impose
a unique equation in the unkown φ which is a function of the stress components and
that gives us the stress field by derivation. It is then possible to obtain the stress field
and, obviously, the strain field by the constitutive law and the displacements field by
integration. It has to be said that every time that notches or holes are made on a solid
body the flow of stress field does not remain uniform. Around the defects, in the case that
will be discussed and explained, stresses will attain their maximum value. In case of a
hole subjected to a remote uniaxial tensile load it has been demonstrated that this value is
equal to three times the nominal one and it decreases moving away from the discontinuity
point represented by the hole. Using the Principle of the Superposition of the Effects,
it is possible to represent a lot of different situations. In fact it must be noted that in
the last fifthy years the world of the Fracture Mechanics was characterized by a continue
evolution. Not only the stress field is an important parameter but another one has to be put
in evidence, the Stress Intensity Factor. Concerning the SIF, in the Seventies there was a

14
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great effort to put together a comprehensive compilation of solutions for cracks available
at that time. This was satisfied by Tada’s ”Stress Analysis of Cracks Handbook” , first out
in 1973 and with its third edition published by ASME in which Irwin and Paris cooperated
on. According to this handbook not only the Tensile Test but also the Brazilian Test
results were compared to the theoretical and numerical ones, (derived from computational
analysis) and a characteristic brittle behaviour was delineated. These theoretical studies
perfectly explain and are in agreement with the results achieved by the tests conducted
and the numerical simulations implemented.

3.2 Kirsch’s solution for the stress field

Let us consider an infinite plate subjected to an uniaxial tensile stress σ in the x direc-
tion (Fig. 3.1) (Carpinteri, 1992):

Figure 3.1: Infinite plate subjected to tensile stresses

A circular hole of radius R is present at the center of the plate. Let us fix a polar
coordinate system (R’, θ), where R’ is the radial coordinate and θ is the circumferential
one. On the body σθ , σr and τrθ are present. No other external stresses wil act on the
hole and, therefore, only the two stresses, σr and τrθ will act. The distribution of stresses
is perturbed in the surroundings of the hole. The aim is to calculate the effect of stress
concentration on the edge of the defect.
Let us consider the portion of the plate inside the circumference of radius R’, where
R’ >> R.
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The external circumference has a radius R’ that tends to infinite and conditions will have
to be put (that will not be polar symmetric conditions) on it. Then Mohr relations will
have to be applied to express the boundary conditions in polar coordinates. The boundary
conditions at the infinite are not trivial because they are not axisymmetric; we will have
an uniaxial stress with center on σr axis and that is tangent to the τrθ axis. Then the center
will have (σ/2, 0) coordinates.
Accordingly stresses acting upon the external circumference are not perturbed by the hole.
They can be deduced from the Mohr’s Circle. Let us consider a vector ray that runs along
the circumference of 2θ and length σ/2. This is the representative point of tensions. It can
be obtained:

Figure 3.2: Mohr’s Circle

σr(r = R′) =
1

2
σ (1 + cos 2θ) abscissa of the representative point (3.1)

τrθ(r = R′) = −1

2
σ sin 2θ ordinate of the representative point (3.2)

Basically these are the boundary conditions. The radial stress ( 3.1) is made of two parts.
The first component is constant and provides the following stress field within the ring:
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σr = −σ
2

R2R′2

R′2 −R2

1

r2
+
σ

2

R′2

R′2 −R2
(3.3)

σθ = +
σ

2

R2R′2

R′2 −R2

1

r2
+
σ

2

R′2

R′2 −R2
(3.4)

In the limit case in which R’→∞ (the case of a circulare hole in an infinite means) the
two expressions simpifly as follows:

σr = −σ
2

(
1− R2

r2

)
(3.5)

σθ =
σ

2

(
1 +

R2

r2

)
(3.6)

The second component of σr ( 3.1) and the tangential stress τrθ ( 3.2) provide a stress field
which can be evaluated starting from the Airy function expressed below:

φ = f(r) cos 2θ (3.7)

Equation ( 3.7) gives us the actual solution that satisfies the boundary conditions.
By imposing the operator ∇4 to the Airy function the θ variable can be removed and we
have: (

d2

dr2
+

1

r

d

dr
− 4

r2

)2

f = 0 (3.8)

In this way f represents the only unkown of the problem.
The complete integral of Eq.( 3.8) is:

f(r) = Ar2 +Br4 +
C

r2
+D (3.9)

Obviously, we have a complete integral that is function of four arbitrary constants because
we have a fourth order operator.
The stress field components are obtained by derivation of the Airy stress function:

σr = −
(

2A+
6C

r4
+ 4Dr2

)
cos 2θ (3.10)
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σθ =

(
2A+ 12Br2 +

6C

r4

)
cos 2θ (3.11)

τrθ =

(
2A+ 6Br2 − 6C

r4
− 2D

r2

)
sin 2θ (3.12)

The indetermination of the constants can be solved imposing the boundary conditions.
Two of them will be imposed on the infinite edge and the other two on the edge of the
hole:

σr(R
′) =

σ

2
cos 2θ (3.13)

τrθ(R
′) = −σ

2
sin 2θ (3.14)

The polarsymmetric solution will be added to Eq.( 3.13) and ( 3.14) at the end.

σr(R) = 0 (3.15)

τrθ(R) = 0 (3.16)

There are no normal and tangential stresses. Composing the two ones it will be stated
that the stress vector is zero.
Equations ( 3.13), ( 3.14), ( 3.15), ( 3.16) form a system of four equations in four un-
kowns. Introducing them in the expressions of the stress field ( 3.10), ( 3.11), ( 3.12) it ca
be obtained:

2A+
6C

R′4
+

4D

R′2
= −σ

2
(3.17)

2A+ 6BR′2 − 6C

R′4
− 2D

R′2
= −σ

2
(3.18)

2A+
6C

R4
+

4D

R2
= 0 (3.19)

2A+ 6BR2 − 6C

R4
− 2D

R2
= 0 (3.20)

For R’→∞ the above expressions simplify as follow:

A = −σ
4
, B = 0, C = −σ

4
R4, D =

σ

2
R2 (3.21)

Introducing the four constants ( 3.21) into Equations ( 3.10), ( 3.11) and ( 3.12) and adding
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the polarsymmetric solution yields:

σr =
σ

2

(
1− R2

r2

)
+
σ

2

(
1 + 3

R4

r4
− 4

R2

r2

)
cos 2θ (3.22)

σθ =
σ

2

(
1 +

R2

r2

)
− σ

2

(
1 + 3

R4

r4

)
cos 2θ (3.23)

τrθ = −σ
2

(
1− 3

R4

r4
+ 2

R2

r2

)
sin 2θ (3.24)

The foundamental parameters of the study are only two: the nominal stress σ applied at
infinite and the radius R of the hole. In fact, if R’→∞ the two equations on the edge are
verified while for R’=R the two equations on the hole are obtained.
Considering the three components of the stress field, talking about resistence verifications,
the circumferential component σθ is that on which we have to focus on, also because is
the tensile tension of the hole that, in certain points, assumes the maximun value (a sym-
metric one on the intersection points of the vertical symmetric axis and the circumference
of the hole) as it can be seen in the figure:

Figure 3.3: Properties of the solution

So for θ = π
2

we have :

σθ(max) = 3σ and σθ(min) = -σ

The function shuts off quite rapidly and it can be confused with the asymptotic value
provided by the nominal stress at a distance equal to three or four times the radius from the
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center. The concentration factor, equal to three in this case, is a multiplier of the stresses,
it does not depend from the radius of the hole and it is fundamental in terms of verifica-
tion. Therefore it is evident the local character of the stress concentration around the hole:

If r increases σθ tends quickly to σ
At a distance:

- r=2R and θ = π
2

σθ =
σ

2

(
1 +

R2

4R2

)
− σ

2

(
1 + 3

R4

16R4

)
(−1) = 1.22σ (3.25)

- r=4R and θ = π
2

σθ =
σ

2

(
1 +

R2

16R2

)
− σ

2

(
1 + 3

R4

256R4

)
(−1) = 1.04σ (3.26)

It is true that removing some of the material a weakness is created but it can be said
that the smaller is the radius of the hole the greater is the concentration of stresses. It can
be seen as a kind of compensation.
In this case of study was analyzed only the infinite plate subjected to an uniaxial stress but
different loads, tensile and compressive ones, can be applied. Thanks to the elasticity the
solution can be reached through the Superposition of the Effects. For example, compos-
ing vertical tensile stress with a horizontal one it will be find an isotropic and hydrostatic
state of stress. The Mohr Circle is reduced to a point with a concentration factor of the
stresses equal to two (due to a factor equal to three and a factor equal to minus one) as it
can be seen below:
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Figure 3.4: Superposition of effects

This case is a polarsymmetric one.
When the boundary condition is uniform at infinity the circumferential stress is also uni-
form on the edge of the hole.
Composing, instead, a compressive vertical stress with a tensile horizontal one the fol-
lowing case can be found and so on:

Figure 3.5: Superposition of effects

Substituting in the Eq.( 3.23) the new conditions, the following equation is obtained:
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σθ = σθ(π/2) + 3σθ(0)= σ

(
1− R2

r2
+ 6

R4

r4

)
(3.27)

3.3 Tada’s solution for the stress intensity factor

A fundamental subsequent step is the evaluation of the Stress Intensity Factor (SIF)
that represents the multiplier of the stress field in the surroundings of the damage (the
hole in this case) in a structural body. Obviously, it has to be underlined that this is
possible, because we are in the field of the plane stresses. For the settled purpose different
paths can be traced. Close-form solutions (but these are limited to very simple case),
Computational solutions and Experimental solutions (that will be the argument of the
next section) and the use of Fracture Handbook. It was already found out how the stress
concentration factor at the edge of a hole is independent from the hole radius but the size
of the stress concentration region depends on R. The expression for the stress intensity
factor of two symmetric cracks emanating from a circular hole in an infinite rectangular
plate in tension can be searched out in the Tada’s work, named ”The Stress Analysis Of
Cracks Handbook”. In fact as it can be seen:

Figure 3.6: Infinite plate with two symmetric cracks

The equations that allow to obtain the SIF values can be summarize below:

KI(a) = σ
√
πaFλ(s) (3.28)

s =
a

R + a
(3.29)
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Fλ(s) = (1− λ)F0(s) + λF1(s) (3.30)

F0(s) = 0.5(3− s)[1 + 1.243(1− s)3] (3.31)

F1(s) = 1 + (1− s)[0.5 + 0.743(1− s)2] (3.32)

These formulas have been applied for different situations, varying the characteristic
parameters λ (to take into account both tensile and compressive load case), the radius
of the hole R and the crack extension length a, in order to achieve the values of the SIF
for five different hole dimensions inside a plate, subjected to a compressive force, and
again for others five different hole dimensions inside a plate subjected, instead, to a ten-
sile force.
The following tables show the SIF results of a plate with a hole at its center considering
two different values of the hole radius, respectively 4 mm and 0.5 mm and an extension
of the cracked region a which varies from 0.1 mm and 0.8 mm.
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- For the compressive load case, assuming λ = -3 the trend can be represented as
follows: :
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Figure 3.7: SIFs R = 4mm
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Figure 3.8: SIFs R=0.5mm
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- For the tensile load case, assuming λ = 0 the trend can be represented as follows: :
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Figure 3.9: SIFs R = 4mm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Extension of crack region [mm]

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

SI
F 

[M
Pa

*m
m

0.
5 ]

×10-3 Stress Intensity Factor from Handbook

Figure 3.10: SIFs R=0.5mm
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As it can be seen the properties of the material do not get involved in the computations
of the SIFs (no material characteristic appears in the formulations), therefore the results
are generally applicable whatever is the constituent material of the bodies under analysis.
From the graphics two different trends can be observed, both for the compressive and
tensile load case. The first is a growing monotonous trend shown in correspondence of
relatively large diameter hole as it can be seen in Fig.( 3.5) and ( 3.9). Differently the
presence of small diameter hole in the plate produces a downward trend concerning the
compressive case as shown in Fig. ( 3.10). A peak is evident in correspondence of an
extension of the crack equal to 0.15 mm and then a plunge untill an extension of the crack
region of about 0.6 mm. Afterwards, again, a soft increment of the SIF can be noticed.
Instead, this behavior is not exhibited in the tensed plate with small radius hole. In fact, in
Fig.( 3.10), after a cracked region of about 0.2 mm, almost a linear trend can be pointed
out. The different conducts can be justified taking into account that in presence of so
small defect dimensions, phenomena of plasticization may occur.

3.4 Computational analysis

The target of the study is, now, the application of the Finite Element Method (FEM)
to analyze the brittle behavior of finite dimensions plates with center circular hole. In
order to do this the ANSYS R© Software is used (software developed by EnginSoft c©).
In particular, for this field of study, ANSYS Mechanical APDL is the most appropriate
product of those available. The structural integrity of a component under the action of
applied loads and environmental conditions can be examined thanks to this branch of the
software. Indeed, fracture mechanics uses concepts from applied mechanics to develop
an understanding of the stress and deformation fields around a crack tip when a crack is
present in a structure. A sound knowledge of these stress and deformation fields helps in
developing fail-safe and safe-life designs for structures. Such fracture-mechanics-based
design concepts are, now, widely used. So the circular plate subjected to compressive
load and the rectangular plate subjected to tensile load are implemented. Two differ-
ent materials are used for all geometries, PolyMethylMethAcrylate (PMMA) and Gener-
alPurposePolyStyrene (GPPS). In sake of simplicity only two models for each load case
are described.

3.4.1 Brazilian Disk geometry

The study is focused on the circular plate. It exhibits a radius of 40 mm and a thickness
of 10 mm. To simplify, the modeling is however conducted in a 2D field and then, the
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results are multiplied by the value of the thickness. This parameter is different for PMMA
and GPPS models, respectively 10 mm and 8 mm. In the first case the hole radius is equal
to 4 mm and in the second one to 0.5 mm. The first step (and the fundamental one)
concerns the choice of the type of element. It has a great importance especially about
the crack-tip region. In fact, because high stress gradients exist in the region around the
crack tip, the finite element modeling of a component containing a crack requires special
attention in that region. The recommended element type for a 2-D fracture model is
PLANE183, the 8-node quadratic solid:

Figure 3.11: 8-node element
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So, as it can be seen in Fig.( 3.13):

Figure 3.12: ANSYS element choice and characteristic
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PLANE183 has quadratic displacement behavior and is well suited to modeling irreg-
ular meshes. KEYOPT(3) is used to enable generalized plane strain. It is possible, then,
to describe the characteristics of the materials through the material models present in the
library. In particular the structural model is chosen (linear-elastic-isotropic). The Young
Modulus and the Poisson Coefficient are inserted. It must be remembered that Mechanical
APDL does not work with specific unit of measure so any input must be consistent with
the measurement unit of the desired results. Hence, considering PMMA, an E = 2960
MPa and a ν=0.38 are entered:

Figure 3.13: Material Model

Instead, when the models refer to GPPS, an E = 3100 MPa and a ν=0.34 are imposed.
Once these preliminar steps are concluded, the geometry can be shaped. Due to the sym-
metry of the problem (geometric and load symmetry) only a quarter of the disk is ana-
lyzed. Several ways can be adopted for this purpose. In this case it is convenient to create
several keypoints in active coordinate system and then the lines and arcs of the disk. Af-
terwards the create areas operation can be done. In this way the crack tip can be assigned
as the origin of the coordinate system. Obviously, at this stage of modeling also the ex-
tension of the crack region has to be expressed. Considering an a = 0.4 mm Tab.( 3.1) and
( 3.2) are used:
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KEYPOINT x[mm] y[mm]
6 0 0
5 0 -0.4
1 0 -4.4
4 0 35.6
2 4.0 -4.4
3 40.0 -4.4

Table 3.1: KPs coordinates - R = 4 mm

KEYPOINT x[mm] y[mm]
6 0 0
5 0 -0.4
1 0 -0.9
4 0 39.1
2 0.5 -0.9
3 40.0 -0.9

Table 3.2: KPs coordinates - R = 0.5 mm

So the geometries in Fig.( 3.14) and ( 3.15) are:

Figure 3.14: Brazilian Disk Geometry - R = 4 mm
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Figure 3.15: Zoom to the crack-tip - R = 4 mm

The same can be observed for the small radius hole:

Figure 3.16: Brazilian Disk Geometry - R = 0.5 mm
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The subsequent step is of extreme importance to achieve a good result in the numerical
simulation and it is the meshing of the areas and, above all, of the crack region. It has to
be emphasized that the meshing has to be different respectively if only the stresses have
to be evaluated or if the SIFs have to be calculated. In the first case an almost ordinary
mesh can be realized. So not too extreme refinement is needed and the simple mesh tool
can be used. Different is the situation in the second case. Indeed, the crack-tip has to be
created. This can be done through the Concentrat KPs Tool in Size Cntrls as shown in
Fig.( 3.17):

Figure 3.17: Concentrat KPs Tool

The precise nature of stress and deformation fields depends on the material, geometry
and other factors. To capture the rapidly varying stress and deformation fields,a refined
mesh has to be used in the region around the crack tip. For linear elastic problems, the
displacements near the crack tip vary as

√
r where r is the distance from the crack tip.

The stresses and strains are singular at the crack tip, varying as 1√
r . To produce this

singularity in stresses and strains, the crack tip mesh has to provide crack faces coincident
and quadratic elements, around the crack tip, with the midside nodes placed at the quarter
points (singular elements) as shown below:

Figure 3.18: Singular Element

So the first row of elements around the crack tip should be singular. The Concentrat
KPs Tool assigns element division sizes around a keypoint. It automatically generates
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singular elements around the specified keypoint (the keypoint 6 in this case). Other fields
on the command allow to control the radius of the first row of elements and the number of
elements in the circumferential direction. For reasonable results, the first row of elements
around the crack tip should have a radius very small. In the circumferential direction,
roughly one element every 30◦ or 40◦ is recommended so 8 elements are imposed. The
crack-tip elements should not be distorted and should take the shape of isosceles triangles.
The meshes implemented are displayed in Fig.( 3.19) and ( 3.20):

Figure 3.19: General mesh and mesh around the crack-tip - R = 4 mm

Figure 3.20: Mesh around the crack-tip - R = 0.5 mm
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Made the mesh it is necessary to give the boundary conditions input to the software
and to apply the load. Due to the presence of a quarter model the symmetric boundary
conditions can be selected and, for the external load, a concentrated force in y direction
equal to -0.5 N is selected. The force is applied in correspondence of the keypoint 4 in
this case so at the top of the vertical radius of the disk:

Figure 3.21: Application of the load

The phase of the preprocessing is thus concluded. It is, hence, possible to solve the
problem and to extract the results. So stresses and SIFs are evaluated. In particular, the
stress field has to be calculated along the crack face. To obtain it a path along the vertical
radius has to be described. In the postprocessing selecting the two keypoints 1 e 4 the
path can be created with the specific tool and the stress output extrapolated as below:
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Figure 3.22: Path definition

Figure 3.23: Stress output
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Different is the situation for the calculus of the SIFs. In particular the crack-tip node
component and the crack-extension direction are both necessary for the stress-intensity
factors calculation. The auxiliary crack-tip field is based on the crack-extension direction.
To ensure the accuracy of the SIFs calculation, it is crucial that it is correctly defined the
crack-extension. The auxiliary crack-tip field is based, besides, on the local crack-tip
coordinate systems. So in the postprocessing phase, first of all, a local coordinate system,
has to be created. This can be done selecting the crack-tip as first node (it represents the
origin of the coordinate system), a whatever second node along the crack face and a third
node orthogonal to the last one. In this way local crack-tip coordinate system shows the
local x-axis pointed to the crack extension and the local y-axis pointed to the normal of
the crack surfaces or edges. The program automatically calculate the local coordinate
systems based on the input crack front nodes and the normal of the crack surface or
extension directions. Activated the local coordinate system it has to be specified that the
SIFs results has to be evaluated considering this specific system. Then, again a path has
to be imposed. For 2-D crack geometry, firstly the crack-tip node has to be selected. For
a half-crack model, two additional nodes are required, both along the crack face. The
second node has to be close to the crack tip and the third one a little further away (it can
be picked the first three nodes) as indicated in Fig.( 3.24):

Figure 3.24: Definition of the Path for the evaluation of the SIFs

Finally, with the Nodal Calcs Tool the SIFs can be extracted. The command specifies
whether the model is plane-strain or plane-stress. The asymptotic or near-crack-tip be-
havior of stress is usually thought to be that of plane strain. The KCSYM field specifies
whether the model is a half-crack model with symmetry boundary conditions, a half-crack
model with antisymmetry boundary conditions, or a full-crack model; it can be seen be-
low:
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Figure 3.25: Nodal Calcs Tool

In the Tab.( 3.3) and ( 3.4) are provided the SIFs of the numerical simulations of the
two hole diameters in correspondence of the different extension of the crack region with
the attached errors compared to the theoretical values:

a[mm] KI(a)E− 2[MPa ·mm0.5] e[%]
0.1 0.0283 0.9689

0.15 0.0335 0.7325
0.2 0.0373 0.4553

0.25 0.0404 0.4703
0.3 0.0430 0.5147

0.35 0.0451 0.5922
0.4 0.0471 1.3606

0.45 0.0483 0.7839
0.5 0.0499 1.5160

0.55 0.0509 1.6676
0.6 0.0521 2.2976

0.65 0.0527 2.0505
0.7 0.0519 -0.5459

0.75 0.0528 0.2731
0.8 0.0536 1.0308

Table 3.3: SIFs values and errors - R = 4 mm
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Figure 3.26: SIFs - R = 4 mm

a[mm] KI(a)E− 2[MPa ·mm0.5] e[%]
0.1 0.01862 -0.70578
0.15 0.01932 0.92654
0.2 0.01873 -1.15377
0.25 0.01851 -0.49201
0.3 0.01836 0.61656
0.35 0.01786 -0.44401
0.4 0.01767 -0.18562
0.45 0.01739 -0.88268
0.5 0.01752 0.46086
0.55 0.01736 -0.12826
0.6 0.01725 -0.79136
0.65 0.01750 0.46526
0.7 0.01741 -0.41459
0.75 0.01765 0.36928
0.8 0.01755 -0.86590

Table 3.4: SIFs values and errors - R = 0.5 mm



Chapter 3. Circular hole in a tensile plate 39

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Extension of crack region [mm]

1.7

1.75

1.8

1.85

1.9

1.95

SI
F 

[M
Pa

*m
m

0.
5 ]

×10-3 Stress Intensity Factor from ANSYS

Figure 3.27: SIFs - R = 0.5 mm

As it can be easily deduced from the previous results, the numerical simulations of
the Brazilian Disks produces values in perfect agreement with the theoretical studies. The
biggest mistakes, in terms of SIFs, are found in correspondence of circular plate with the
bigger radius with a maximum value almost equal to 2.30% which is, however, an accept-
able value.

3.4.2 Tensile plate geometry

In this second part the numerical simulations of the rectangulare plate with circular
hole are described. The plate is characterized by a lenght l= 100 mm and a height h= 40
mm. Also in this case the computational analysis is conducted in a 2D field and then the
results are multiplied by the thickness. The constituent materials are PMMA and GPPS
and the respectevely thicknesses are equal to 10 mm and 8 mm. Two cases are examined,
the first considering a hole radius equal to 4 mm and the second one with a hole radius
equal to 0.5 mm. In sake of simplicity only an extension of the crack region a = 0.4
mm, for each geometry, is shown. As for the Brazilian Disk, the first step is the choice
of the element. Obviously, also for this case, the element which has to be used is the
PLANE 183 and the element behavior selected is the plane strain. The Young modulus
and Poisson coefficient are entered once selected the Material Props Tool and isotropic
linear elastic type, among the structural models, is chosen. To create the geometries the
keypoints coordinates are inserted in the active coordinate system as shown in Table ( 3.5)
and ( 3.6):
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KEYPOINT x[mm] y[mm]
7 0 0
3 0 -15.6
2 0 0.4
1 0 4.4
6 4.0 4.4
5 50.0 4.4
4 50.0 -15.6

Table 3.5: KPs coordinates - R = 4 mm

KEYPOINT x[mm] y[mm]
7 0 0
3 0 -19.1
2 0 0.4
1 0 0.9
6 4.0 0.9
5 50.0 0.9
4 50.0 -19.1

Table 3.6: KPs coordinates - R = 0.5 mm

As it can be seen in the figures below only a quarter of the plates are modeled thanks
to the geometric and load symmetry of the cases:
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Figure 3.28: Rectangular plate - R = 4 mm

Figure 3.29: Rectangular plate - R = 0.5 mm
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It is necessary, then, to create the mesh. For what concern the evaluation of the stresses
along the crack face a not too much refined mesh is needed. It can be performed with tri-
angular elements. Instead for the calculation of the SIFs the crack-tip has to be delineated
in Size Cntrls Tool considering a very small first row of elements around the crack-tip
value and a number of elements again equal to 8. The crack-tip elements should assume a
not distorted isosceles triangular shape. The meshes implemented are shown in Fig.( 3.30)
and ( 3.31):

Figure 3.30: Rectangular plate mesh - R = 4 mm

Figure 3.31: Rectangular plate mesh - R = 0.5 mm
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Before to run the analysis the symmetric boundary conditions have to be applied and
the tensile concentrated force equal to 0.5 N has to be put on the correspondent keypoint
(the number 5 in this cases):

Figure 3.32: Rectangular plate load - R = 4 mm and R = 0.5 mm
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Afterwards the models can be solved. For what concern the stress field, a path has to
be indicated. It has to be realized picking the nodes along the failure direction. A local
coordinate system, then, has to be created. The origin is selected in correspondence of
the crack-tip. Then a node along the propagation of the crack has to be picked and, at the
end, a node in the orthogonal direction. This new coordinate system has to be chosen to
be the active one. In the general postprocessing the path along the extension of the crack
is delineated and the SIFs are extracted. The values and the correlated percentage of error
compared to the theoretical results for the two cases are provided in Tab( 3.7) and ( 3.8):

a[mm] KI(a)E− 2[MPa ·mm0.5] e[%]
0.1 0.004493 0.041341644

0.15 0.0054 0.482497952
0.2 0.0061 0.551340332

0.25 0.0067 0.975560746
0.3 0.00718 0.922257402

0.35 0.0076 0.984157164
0.4 0.00795 0.840210396

0.45 0.00826 0.751424103
0.5 0.00856 0.970523171

0.55 0.00879 0.728661058
0.6 0.00901 0.670840722

0.65 0.00919 0.420138033
0.7 0.0094 0.697631023

0.75 0.00956 0.615908904
0.8 0.009713 0.61218595

Table 3.7: SIFs values and errors - R = 4 mm
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Figure 3.33: SIFs - R = 4 mm
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a[mm] KI(a)E− 2[MPa ·mm0.5] e[%]
0.1 0.00344 0.78368532

0.15 0.00374 0.517541182
0.2 0.00394 0.820614092

0.25 0.00408 0.929655247
0.3 0.00417 0.427639598

0.35 0.0042652 0.336720672
0.4 0.004358905 0.337484745

0.45 0.00447517 0.893820778
0.5 0.004555149 0.658595297

0.55 0.004657393 0.91582858
0.6 0.004745976 0.881102958

0.65 0.004819744 0.545797851
0.7 0.004919252 0.746749651

0.75 0.005003048 0.634472574
0.8 0.005097002 0.731834304

Table 3.8: SIFs values and errors - R = 0.5 mm
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Figure 3.34: SIFs - R = 0.5 mm
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As it can be easily seen also in the graphs, the results in case of a rectagular tensed
plate with a center hole are almost perfectly in agreement with the theoretical ones. There-
fore it can be put in evidence that the numerical simulations can represent a powerful and
simple tool to study the brittle behavior of bodies that are affected by defects.



CHAPTER 4

Experimental tests and FFM analysis

4.1 Introduction

Two different types of test were carried out by a team of researchers in Tehran on two
different polymeric materials: PMMA and GPPS. The first one is the classical Brazilian
Test and the other one is the Tensile Test. The purpose, for both of them, is to investigate
size effects, i.e. the decrease of the strength as the hole radius increases and the failure
load. Due to their simplicity and efficiency, these tests are very commonly used as testing
methods for fracture investigation. This is only one of the many fields in which they
are applied (geothecnical, infrastructural and structural ones). Finally, the coupled FFM
criterion will be applied to investigate the experimental results.

4.2 Brazilian Disk geometry

The so-called Brazilian Disk or Compression Test has been used for more than fifty
years as an indirect method to determine the tensile strength of brittle materials. The
method, that has found great application in rock engineering, is now chosen because
specimens can be easily prepared and the test is simple to be performed. The test is
based on the observation that most brittle materials in biaxial stress fields fail in tension
along the loaded diameter of the disc specimen and diametral crack propagation, due to
tension, is often observed. In the present study, the diametral crack propagation behaviour

47
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in the simple Brazilian Disk is experimentally studied in an attempt to establish a correla-
tion between analitycal studies and invastigated results. For the determination of fracture
parameters different typologies of disk specimens are considered, half of them made in
PMMA and the other half in GPPS and all of them are characterized by a central hole. So
it has been introduced a sort of weakness in the samples.:

Figure 4.1: BD specimen - R = 4 mm



Chapter 4. Experimental tests and FFM analysis 49

Figure 4.2: BD specimen - R = 2 mm

A disk shaped PMMA specimen is loaded by two steel jaws at diametrically opposite
surfaces over an arc of contact of approximately 10 degrees until the failure. Five differ-
ent radius are used (40 mm, 20 mm, 10 mm, 5 mm and 2.5 mm) and for all the different
samples the test is performed three times. The thickness is the same for all of them and it
is equal to 10 mm. The radius of the jaws is equal to 1.5 times the radius of the specimens
radius. A guide pin clearance permits rotation of one jaw relative to the other. On the
other hand, also disk samples of GPPS are tested. There is not only a material difference
but also a geometrical parameter, the thickness, is changed. In these cases the thickness
is equal to 8 mm. The characteristics of the two polymers are represented in Tab.( 4.1):

Material property PMMA GPPS
Tensile strenght [MPa] 78 40

Fracture toughness [MPa ·m0.5] 1.75 0.9

Table 4.1: BD specimens properties

A load is applied through multiple load steps untill the failure as it can be seen in the
photos below:



Chapter 4. Experimental tests and FFM analysis 50

Figure 4.3: BD specimen - R = 1 mm

Three specimens per hole radius are tested and by means of laboratory equipment an
average failure load is obtained. The results are shown in Tab.( 4.2) and ( 4.3):

Specimen index Fracture load [N] Average load [N]
P-0.5-1 37150 -
P-0.5-2 33810 35660
P-0.5-3 36020 -
P-1-1 28800 -
P-1-2 26230 27650
P-1-3 27920 -
P-2-1 21830 -
P-2-2 23100 23210
P-2-3 24700 -
P-4-1 20250 -
P-4-2 19936 19420
P-4-3 18074 -
P-8-1 15432 -
P-8-2 16168 15338
P-8-3 14414 -

Table 4.2: BD test results PMMA specimens
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Figure 4.4: BD specimen - R = 0.25 mm
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Specimen index Fracture load [N] Average load [N]
G-0.5-1 15930 -
G-0.5-2 15280 15100
G-0.5-3 14090 -
G-1-1 12260 -
G-1-2 11970 12050
G-1-3 11920 -
G-2-1 9950 -
G-2-2 9130 9360
G-2-3 9000 -
G-4-1 8070 -
G-4-2 7645 7760
G-4-3 7656 -
G-8-1 6525 -
G-8-2 6220 6310
G-8-3 6185 -

Table 4.3: BD test results GPPS specimens

Imposing the FFM theory and applying the Eq.( 2.15) is it possible to evaluate numer-
ically the average failure load for each BD.

4.3 Tensile sample geometry

The second tipology of laboratory test conducted to evaluate the failure load is the
classical tensile test. The specimens in this case present a rectangular shape and are char-
acterized by a length l = 100 mm and a height h = 40mm. Every specimen show a central
hole and different diameter holes are considered. In particular diameters equal to 4 mm,
2 mm, 1 mm and 0.5 mm. For each diameter dimension three specimens are studied.
Also for what concern the material of this second kind of samples two different polymers
are used, again PMMA and GPPS. The PMMA bodies presents a thickness equal to 10
mm and the GPPS ones a thickness equal to 8 mm. Generally the tensile test is real-
ized on metallic specimens but nowadays this test can be conducted on the most diverse
materials (even on concrete like specimens). Indeed, tensile tests are performed for sev-
eral reasons. The results of tensile tests are used in selecting materials for engineering
applications. Tensile properties frequently are included in material specifications to en-
sure quality. Tensile properties often are measured during development of new materials
and processes, so that different materials and processes can be compared. Finally, ten-
sile properties often are used to predict the behavior of a material under forms of loading
other than uniaxial tension. The strength of interest may be measured in terms of either
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the stress necessary to cause appreciable plastic deformation or the maximum stress that
the material can withstand. These measures of strength are used, with appropriate caution
(in the form of safety factors), in engineering design. Also of interest is the material’s
ductility, which is a measure of how much it can be deformed before it fractures. Rarely
is ductility incorporated directly in design; rather, it is included in material specifications
to ensure quality and toughness. Low ductility in a tensile test often is accompanied by
low resistance to fracture under other forms of loading. The analyzed specimens can be
observe in Fig.( 4.5) and ( 4.6):

Figure 4.5: Tensile test PMMA specimen - R = 2 mm R = 0.25 mm

Figure 4.6: Tensile test GPPS specimen - R = 2 mm
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As it can be seen the typical tensile specimen has enlarged ends or shoulders for grip-
ping. The important part of the specimen is the gage section. The cross-sectional area
of the gage section is reduced relative to that of the remainder of the specimen so that
deformation and failure will be localized in this region. The gage length is the region
over which measurements are made and is centered within the reduced section. The dis-
tances between the ends of the gage section and the shoulders should be great enough so
that the larger ends do not constrain deformation within the gage section. Otherwise, the
stress state will be more complex than simple tension. The most important concern inthe
selection of a gripping method is to ensure that the specimen can be held at the maxi-
mum load without slippage or failure in the grip section. Bending should be minimized.
The most common testing machines are universal testers, which test materials in tension,
compression, or bending. Testing machines are either electromechanical or hydraulic.
The principal difference is the method by which the load is applied. Electromechanical
machines are based on a variable-speed electric motor; a gear reduction system; and one,
two, or four screws that move the crosshead up or down. This motion loads the speci-
men in tension or compression. Crosshead speeds can be changed by changing the speed
of the motor. A microprocessor-based closed-loop servo system can be implemented to
accurately control the speed of the crosshead. Hydraulic testing machines are based on
either a single or dual-acting piston that moves the crosshead up or down. In a manually
operated machine, the operator adjusts the orifice of a pressure-compensated needle valve
to control the rate of loading. In a closed-loop hydraulic servo system, the needle valve
is replaced by an electrically operated servo valve for precise control. In general, elec-
tromechanical machines are capable of a wider range of test speeds and longer crosshead
displacements, whereas hydraulic machines are more cost-effective for generating higher
forces. The tensile test involves mounting the specimen in a machine, such as those just
described, and subjecting it to tension. The tensile force is recorded as a function of the
increase in gage length. It can be observed:
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Figure 4.7: Tensile load test PMMA specimen - R = 0.25 mm

Figure 4.8: Tensile load test PMMA specimen - R = 1 mm
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Figure 4.9: Tensile load test GPPS specimen - R = 2 mm

In the simple tensile test, the data comprise a single measurement of peak force and the
dimensional measurements taken to determine the cross-sectional area of the test speci-
men. The first analysis step is to calculate the “tensile strength,” defined as the force
per unit area required to fracture the specimen. More complicated tests will require
more information, which typically takes the form of a graph of force versus extension.
Computer-based testing machines can display the graph without paper, and can save the
measurements associated with the graph by electronic means. So the tests are performed
untill the failure of the specimens. Some broken samples are shown in Fig.( 4.10) and
( 4.11):
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Figure 4.10: PMMA broken specimen

Figure 4.11: GPPS broken specimen
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The results are shown in Tab.( 4.4) and ( 4.5):

Specimen index Fracture load [N] Average load [N]
P-0.5-1 24100 -
P-0.5-2 21600 22200
P-0.5-3 20900 -
P-1-1 17800 -
P-1-2 17700 17250
P-1-3 16250 -
P-2-1 14900 -
P-2-2 14650 14600
P-2-3 14250 -
P-4-1 11800 -
P-4-2 12250 12200
P-4-3 12550 -

Table 4.4: Tensile test results PMMA specimens

Specimen index Fracture load [N] Average load [N]
G-0.5-1 9050 -
G-0.5-2 8580 8730
G-0.5-3 8560 -
G-1-1 7400 -
G-1-2 6900 6950
G-1-3 6550 -
G-2-1 6210 -
G-2-2 5780 5800
G-2-3 5410 -
G-4-1 5250 -
G-4-2 4900 5050
G-4-3 5000 -

Table 4.5: Tensile test results GPPS specimens

Again, applying the FFM theory and with the use of ANSYS R© software it is possible
to obtain the Pcritical through the extrapolation of the stress values and the related errors
respect the experimental results are evaluated.

4.4 FFM predictions and comparison

After carried out the experimental and numerical tests it can be pointed out the good
agreement and the validity of the expressions introduced in chapter 1. The formulae of
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the LS and LS+LE criteria were particularized to the geometries analyzed. In fact, results
provided from the FFM theory compared to the experimental data shows in general a
good agreement and the analitical simulations give very close predictions. Anyway some
limits can be individuated. The quality of the results is, in fact, related to the geometries
of the hole and smaller is the radius of the introduced defects bigger is the percentage of
errors in the forecasts of the failure load. It can be seen in the following graphs where the
brazilian disk cases are examinated:

Figure 4.12: Brazilian disk tests, results: experimental data (circle), LS predictions
(dashed line), FFM predictions (continuous line)
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Figure 4.13: Tensile tests, results: experimental data (circle), LS predictions (dashed line),
FFM predictions (continuous line)
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From the overlying figures it is possible to deduce that, obviously, the stress field
decreases as much as the hole radii increase. It is trivial because bigger is the weakness
lesser is the load that can bring the collapse of the structural element. Above all the
graphs show the great agreement between the experimental values and the numerical ones
obtained considering the FFM theory. The two trends almost coincide regardless the
material under analysis and the better correspondence is achieved considering the smaller
hole radius. This result can be justified taking into account that if the hole dimension is
small, the bodies can be assumed as infinite means and so the initial Eq.( 3.23), applied
to evaluate the stress function used in the LS method, leads to very satisfactory outcomes.
As it can be easily perceived good results are also reached considering the tensile plate
geometries that show the lesser percentages of error. These percentages are provided in
the following graphs:
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Figure 4.14: PMMA and GPPS BD comparison of results
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Figure 4.15: PMMA and GPPS tensile plate comparison of results

As it can be seen, the critical load deriving from experimental and numerical analysis
are very close, taking into account the bigger hole dimensions. Instead, some differences
can be noticed if the smallest diameters are considered and it can be predictable because,
in these cases, some plasticization phenomena could take place. The main feature of the
graphs that has to be put in evidence is that the percentage of error is under the 12% with
the exception of smaller holes for what concerns the brazilian disk geometry. Instead, ana-
lyzing the tensile plates, the percentage of error is about the 13% considering the smallest
hole dimensions but it is lesser, more or less the 8%, with the other hole diameters. There-
fore, it can be asserted that seen analysis fully reflects the great agreement between the
experimental and the FFM analysis and that the best correspondence is obtained with the
tensile plate geometries.



CHAPTER 5

Conclusions

In this thesis the brittle failure of structural elements characterized by flaws and de-
fects has been analyzed. In particular the effects of the presence of circular holes have
been put in evidence. Two different geometries have been studied, the brazilian disk and
the tensile plate. For each geometry two different materials (PMMA and GPPS) have
been considered and, for all the elements, the hole diameters have been varied from a
maximum of 8 mm to a minimum of 0.5 mm. Experimental tests were carried out and
the critical load have been obtained. Obviously, bigger is the dimension of the defects
lesser is the amount of the load that can be applied until the failure. The holes represent,
in fact, a weakness introduced in the structural bodies. Taking into account the smaller
hole dimensions it has been seen that the specimens assume a configuration that can be
modeled as an infinite geometry. This infinite geometry has been studied with the intro-
duction of the FFM theory. The application of the FFM have made possible to evaluate
the stress field and the SIFs, considering different values of the crack extension, of all
the specimens. With a finite element analysis, conducted through the ANSYS R© code, all
the values of interest (σ and KI) have been extrapolated and they have been compared,
respectively, to the experimental and theoretical ones. From the comparison it has been
put in evidence that the FFM method is able to obtain results that are every close to the
real ones. Indeed, the percentage of error, for what concerns the stress field, is lesser than
the 13%, with some exception, for the BD geometry and it is about the 8% for tensile
plate geometry (always with the exception of the smallest hole radius). The percentage of

63
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error related to the SIFs evaluation is even lower, reaching a maximum of about the 2%
in the BD geometry with the bigger hole radius.
The quality of the outputs are influenced by the dimensions of the flaw and it has to be
pointed out that, even if a general brittle behavior is observed, in the surroundings of
the holes, especially for what concern the smallest ones, plasticization phenomena can
happens. The non-consideration of this feature can slightly alterate the value of the re-
sults. These assessments can help to achieve better upshot. Besides it is important to
remember another assumption of the above analyses, which is that the material behaves
as a homogeneous continuum. In practice, of course, materials are not continuous and
for most materials, properties such as strength and toughness are strongly affected by the
behaviour at the microstructural level, where features such as grains, precipitates and in-
clusions exert both positive and negative effects. A fact which is often overlooked is that
if stress and strain fields are examinated at this small scale, it can be found that they are
strongly inhomogeneous, affected by microstructural parameters such as local grain ori-
entation, disparities in the elastic stiffness of different phases, and the properties of grain
boundaries and other interfaces. Experimental measurements (Delaire et al., 2000) and
computer models (Bruckner-Foit et al., 2004) have revealed the large extent of these local
variations in stress and strain, which can be as high as a factor of 10. These effects may be
of relatively little importance if the scale of the fracture process is large – for example, if
the size of the plastic zone is much larger than any microstructural feature, in which case
it may be satisfactory to think of the stresses calculated by continuum analysis as average
quantities, ignoring their local variations. However, the fact is that many failure processes
happen on the microstructural scale.

All the criteria used until now, as widely discussed, involve a new structural parameter:
the internal length ∆. The evaluation of the latter requires two other parameters to be
determined: the flexural strenght σu and the fracture toughness (that means the critical
stress intensity factor) KIC .

So far a value of σu = 78MPa for PMMA and a value of σu = 40MPa for GPPS
bodies have been used, properties estimated by some tests carried out by other reaserchers
on different specimens, and the value of KIC = 1.75MPa ·m0.5 again for PMMA and
the value of KIC = 0.9MPa ·m0.5 for GPPS bodies.

The great success of fracture mechanics has been to show that, under certain well-
defined conditions, the propagation of the crack can be predicted using some very simple
linear elastic analysis. It can possible to predict the conditions necessary for brittle frac-
ture assuming that a crack already exists. If a crack is not present then it will have to be
created during the failure. If the crack is already there, on the other hand, we merely have
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to consider its propagation. A simplifying assumption is that crack growth is under local
control, by which we mean that the criteria for propagation can be entirely determined
by stress conditions in the immediate vicinity of the crack tip. Within these limitations,
the behaviour of the crack can be described using the parameter KI , the stress intensity
factor, which was defined in the previous section where it has be seen that it uniquely
determines the magnitude of the stress field in the vicinity of a crack.

The last few decades have seen an enormous rise in computing power and, with
it,methods of numerical analysis which allow to simulate complex systems. This has
led to a qualitative change in the way in which components are being designed, moving
away from simplified analytical calculations and empirical rules towards computer simu-
lations. A computer model has, anyway, important limitation and it can be accurate only
if the modeler knowledge is accurate since boundary conditions, as applied loads and re-
straints, and feature of mesh elements are of primary importance in the representation of
the reality and in the deduction of the searched outputs.

In this work it has been analyzed the behavior of brittle elements in the field of the
fracture mechanics. Their main characteristic is the focus on a new influencing parameter,
the critical distance ∆, that is only a function of the material for what concerns the stress
criteria (or equivalently the energetic criteria) and that, instead, is a function of the whole
structure when energetic and stress conditions are coupled.
In particular, with the numerical simulation, the line stress method (LS) with the finite
element analysis (FEA) was used and taking advantage of the LS+LE criterion the fail-
ure of specimens was predicted with a great agreement respect the experimental tests. In
fact, to check the validity of these approaches a series of compressive and tensile tests
was conducted by a team of reaserchers in Teheran. The tests considered different speci-
mens, circular and rectangular ones, with center hole diameters varying from 8 mm to 0.5
mm for what concerns the disks, and from 4 mm to 0.5 mm for what concerns the rect-
angular plate. Polymethylmethacrylate and Polystyrene are the material composing the
specimens. A total number of 30 specimens for the disks and 24 specimens for the plates
were tested. PMMA and GPPS are brittle materials but it is now well known that the
brittleness is a property also of the structure and in fact some errors can occur decreasing
the geometrical parameters of the samples.
The ANSYS R© finite element software was used to achieve the targets in particular to
estimate the stresses in the vicinity of the crack-tip and the stress intensity factors. The
results were generally satisfactory and the corresponding percentage of errors were very
low. The values of the stress intensity factors were also evaluated with the application of
the Tada&Paris Handbook (”The stress analysis of cracks”-1973) and an almost perfect
agreement was put in evidence.
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At the end it is possible to say that while the prediction of failure with the classical
theoretical analysis can be obtained only for few particular geometries and under precise
characteristics (stress criterion-no crack present and energy criterion-large crack present)
the application of the finite fracture mechanics covers a wider field of situations. With the
exploitation of the new finite element softwares the desired outputs can be obtained more
easily.
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