polito.it
Politecnico di Torino (logo)

Torino e l'effetto "isola di calore" : un modello per una progettazione urbanistica sostenibile

Gualtiero Ceretti

Torino e l'effetto "isola di calore" : un modello per una progettazione urbanistica sostenibile.

Rel. Guglielmina Mutani. Politecnico di Torino, Corso di laurea magistrale in Architettura Per Il Progetto Sostenibile, 2015

Abstract:

INTRODUZIONE

[…] Il lavoro eseguito si è diviso in due parti sostanzialmente: una prima parte di analisi in cui sono stati calcolati i diversi fattori che influenzano la temperatura dell’aria e le sue micro variazioni a Torino; una seconda parte dove sono stati analizzati questi fattori e sono state fatte delle supposizioni e delle ipotesi per creare un modello da estendere su tutta Torino al fine di calcolare il rapporto tra i fattori, quali LST, albedo e i parametri di pianificazione urbanistica, e la temperatura dell’aria.

Il capitolo introduttivo serve a far luce e a spiegare il fenomeno dell’Isola di calore entrando nel dettaglio e distinguendo le varie tipologie esistenti, le caratteristiche di ognuna, le cause e gli effetti che hanno sul clima urbano. Particolare attenzione verrà prestata ai fattori che influenzano o che sono strettamente correlati all’isola di calore urbana, come: LST (Land Surface Temperature), fattore di albedo o radianza, NDVI (Normalized Difference Vegetation Index), densità edilizia, e altri ancora.

Nel secondo capitolo vengono spiegate e analizzate le diverse tecniche di raccolta dei dati necessari per lo studio delle UHI: il telerilevamento basato su immagini acquisite tramite i satelliti.

L’attenzione verrà focalizzata su due programmi satellitari, Landsat 8 e Aster, che si occupano di acquisizione di immagini con diverse risoluzioni, ma entrambi con bande termiche necessarie al calcolo della LST (temperatura superficiale). Verranno introdotte e spiegate le principali differenze tra immagini aeree e telerilevate, approfondendo i diversi campi di utilizzo.

Nel capitolo terzo, si entrerà nel merito dell’analisi vera e propria delle immagini acquisite precedentemente, spiegando e analizzando i singoli passaggi effettuati tramite il programma di analisi ArcGis 10.3. Grazie a questo programma di elaborazione immagini sono stati calcolati i diversi fattori descritti nel capitolo 1. Le operazioni eseguite e i diversi passaggi del programma saranno esplicitati tramite equazioni e immagini tratte dal programma stesso.

Il quarto capitolo sarà strutturato in due parti: la prima, in cui si parla dei dati ottenuti dall’analisi delle immagini aster e Landsat, facendo un confronto tra i risultati a cui si arriva partendo da immagini provenienti da programmi spaziali diversi; la seconda, invece, sarà la parte fondamentale della tesi, ovvero lo studio dei dati ottenuti nelle sezioni di censimento che ospitano le 7 stazioni metereologiche di Torino, andando ad analizzare i singoli aspetti e fattori che fan sì che le temperature percepite nell’arco di pochi chilometri siano così differenti l’una dall’altra. La parte fondamentale sarà l’elaborazione di un modello attraverso cui è possibile calcolare la temperatura dell’aria in funzione dei parametri di pianificazione urbana, dell’albedo e della LST. Questo modello se verificato potrà essere utile in fase di progettazione ai fini di rendere più sostenibile lo sviluppo urbano.

Il quinto capitolo è la parte conclusiva del lavoro di tesi in cui verranno tratte delle conclusioni sul lavoro svolto sulla città di Torino. Saranno analizzate le diverse applicazioni del modello, che inizialmente sarà applicato su tutta la città di Torino per verificare la presenza di isole di calore, successivamente verranno scelte due/tre sezioni di censimento su cui verrà verificato come varia la temperatura in base al modificarsi dei parametri di pianificazione urbanistica.

Il sesto capitolo, coincide con la parte conclusiva del lavoro svolto e riguarderà una serie di interventi di mitigazione delle isole di calore, utili per ridurre l’intensità delle UHI e far diminuire le temperature dell’aria in ambiente urbano.

Relatori: Guglielmina Mutani
Tipo di pubblicazione: A stampa
Soggetti: S Scienze e Scienze Applicate > SD Computer software
S Scienze e Scienze Applicate > SH Fisica tecnica
Corso di laurea: Corso di laurea magistrale in Architettura Per Il Progetto Sostenibile
Classe di laurea: NON SPECIFICATO
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/4398
Capitoli:

INDICE

INTRODUZIONE

1. URBAN HEAT ISLAND (UHI) - ISOLA DI CALORE URBANA

1.1. Il fenomeno

1.2. Tipologie di Isole di calore

1.2.1. AUHI - Isola di calore atmosferica

1.2.2. SUHI - Isola di calore superficiale

1.2.3. SUHI - Isola di calore del sottosuolo - subsurface UHI

1.3. Le cause dell’isola di calore

1.4. Influenza sul bilancio energetico

1.5.1 fattori correlati alle UHI

1.5.1. LST - Land Surface Temperatrue

1.5.2. Fattore di albedo

1.5.3. Aree verdi e vegetazione

1.5.4. Canyon urbani e morfologia urbana

1.5.5. Inquinamento e calore antropogenico

1.5.6. Sintesi

2. IL TELERILEVAMENTO - THERMAL REMOTE SENSING

2.1. Nascita e generalità

2.1.1. La trasmissione del calore

2.1.2. EM - Spettro elettromagnetico

2.1.3. Le finestre atmosferiche

2.1.4. La variazione di temperatura diurna

2.2. Leggi della radiazione nell’infrarosso termico

2.2.1. Il corpo nero

2.2.2. Legge di Plank

2.2.3. Legge di Stefan e Boltzmann

2.2.4. Legge di Wien

2.3.1 parametri principali del telerilevamento termico

2.3.1. La temperatura radiante

2.3.2. L’emissività

2.4. Programmi spaziali utilizzati nel Telerilevamento Termico

2.4.1. La risoluzione e l’importanza nelle immagini termiche

2.4.2. Caratteristiche orbitali delle piattaforme satellitari

2.4.3. Tipologie di acquisizione nel TIR

2.4.4. Tipologie di acquisizione nel TIR

3. METODOLOGIA - RACCOLTA E ANALISI DATI

3.1. Il caso studio - Torino

3.2. Raccolta dei dati

3.3. Analisi dei dati

3.3.1. LST da elaborazione dati Landsat 8

3.3.2. LST da elaborazione dati ASTER L1B

3.3.3. Fattore di albedo (A) da elaborazione dati ASTER L1B

3.3.4. Calcolo parametri di pianificazione urbanistica

4. ANALISI DEI DATI - FORMULAZIONE DI UN MODELLO

4.1. Premesse

4.2. Parametri che influenzano la temperatura dell’aria

4.3. Formulazione di un modello

4.3.1. Campo di applicazione

4.3.2. Sviluppo e formulazione di un modello

4.3.2.1. Calcolo LST in funzione dei parametri di pianificazione urbanistica

4.3.2.2. Calcolo T aria in funzione della LST calcolata

4.3.2.3. Calcolo semplificato LST in funzione dei parametri di pianificazione urbanistica

4.3.2.4. Calcolo T aria in funzione dei parametri di pianificazione urbanistica

4.3.2.5. Calcolo semplificato T aria in funzione dei parametri di pianificazione urbanistica

4.3.3. Sintesi e riflessioni

5. APPLICAZIONI DEL MODELLO

5.1. Applicazione del modello in fase pre progettuale: mappatura di Torino

5.2. Applicazione del modello in fase post progettuale

5.3. Sintesi e riflessioni

6. INTERVENTI DI MITIGAZIONE UHI

6.1. Tetti freddi - Cool Roofs

6.2. Pavimentazioni fredde - Cool pavements

6.3. Aree verdi e vegetazione

6.4. Tetti verdi - Green Roofs

CONCLUSIONI

BIBLIOGRAFIA

Bibliografia:

CATHY ANIELLO ET AL., "Mapping micro-urban heat islands using Landsat TM and a GIS", Computers & Geoscences, N 21, n. 8 (1995): pp. 965-969

AKINARU IINO, AKIRA HOYANO, "Development of a method to predict the heat island potential using remote sensing and GIS data", Energy and Buildings, N 23, (1996): pa. 199-205

QIHAO WENG, DENSHENG LUNG, JACQUELYN SCHUBRING, "Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies", Remote Sensing of Environment, N 89, (2004): pp. 467-483

STEVE KARDINAL JUSUF ET AL., "The influence of land use on the urban heat island in Singapore", Habitat International, N 31, (2007): pp. 232-242

Juan-Juan Li ET AL., "Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China", Ecological Complexity, N 6, (2009): pp. 413-420

MARINA STATHOPOULOU, CONSTANTINOS CARTALIS, "Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation", Remote Sensing of Environment, N 113, (2009): pp. 2592-2605

JÂNOS Unger et al., "Comparison and generalisation of spatial patterns of the urban heat island based on normalized values", Physics and Chemistry of the Earth, N 35, (2010): pp. 107-114

AKIO ONISCHI ET AL., "Evaluating the potential for urban heat-island mitigation by greening parking lots", Urban Forestry & Urban Greening, N 9, (2010): pp. 323-332

MARIUSZ SZYMANOWSKI, MACIEJ KRYZA, "Application of geographically weighted regression for modelling the spatial structure of urban heat island in the city of Wroclaw (SW Poland)", Procedia Environmental Sciences, N 13, (2011): pp. 87-92

NINA SCHWARZ, SVEN LAUTENBACH, RALF SEPPELT, "Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures", Remote Sensing of Environment, N 115, (2011): pp. 3175-3186

Huixi Xu ETAL., "Dynamical Monitoring and Evaluation Methods to Urban Heat Island Effects Based on RS&GIS", Procedia Environmental Sciences, N 10, (2011): pp. 1228-1237

JUNXIANG LI ET AL., "Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China", Remote Sensing of Environment, N 115, (2011): pp. 3249-3263

THOMAS HOUET, GREGOIRE PIGEON, "Mapping urban climate zones and quantifying climate behaviors e An application on Toulouse urban area (France)", Environmental Pollution, N 159, pp. 2180-2192

YANG ZHANG ET AL., "Study on Urban Heat Island Effect Based on Normalized Difference Vegetated Index: A Case Study of Wuhan City", Procedia Environmental Sciences, N 13, pp. 574-581

ELENI OIKONOMOU ET AL., "Modelling the relative importance of the urban heat island and the thermal quality of dwellings for overheating in London", Building and Environment, N 57, pp. 223-238

NINA SCHWARZ ET AL., "Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators - An application for the city of Leipzig (Germany)", Ecological Indicators, N 18, (2012): pp. 693-704

H. MERBITZ ET AL., "GIS-based identification of spatial variables enhancing heat and poor air quality in urban areas", Applied Geography, N 33, (2012): pp. 94-106

YING-YING Li, HAO ZHANG, WOLFGANG KAINZ, "Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM+ data", International Journal of Applied Earth Observation and Geoinformation, N 19, (2012): pp. 127- 138

IN-AE YEO, SEONG-HWAN YOON, JURNG-JAE YEE, "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning", Applied Energy, N 104, (2013): pp. 723-739

L.Y. Xu, X.D. XlE, S.Ll, "Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing", Environmental Pollution, N 178, (2013): pp. 102-114

JAVED MALLICK, ATIQUR RAHMAN, CHANDER KUMAR SINGH, "Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India", Advances in Space Research, N 52, n. 4 (2013): pp. 639-655

HAO ZHANG ET AL., "Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China", Applied Geography, N 44, (2013): pp. 121-133

HASSAN RADHI, FAYZE FIKRY, STEPHEN SHARPLES, "Impacts of urbanisation on the thermal behaviour of new built up environments: A scoping study of the urban heat island in Bahrain", Landscape and Urban Planning, N 113, (2013): pp. 47-61

B. CHUN, J.-M. GULDMANN, "Spatial statistical analysis and simulation of the urban heat island in high-density central cities", Landscape and Urban Planning, N 125, (2014): pp. 76-88

HUIHUI FENG ET AL., "Using land use change trajectories to quantify the effects of urbanization on urban heat island", Advances in Space Research, N 53, (2014): pp. 463-473

HALA ADEL EFFAT, OSSMAN ABDEL KADER HASSAN, "Change detection of urban heat islands and some related parameters using multi-temporal Landsat images; a case study for Cairo city, Egypt", Urban Climate, N 10, (2014): pp. 171-188

DANIJEL IVAJNSIC, MITJA KALIGARIC, IGOR ZIBERNA, "Geographically weighted regression of the urban heat island of a small city", Applied Geography, N 53, (2014): pp.341-353

A. A. BALOGUN ET AL. , Effect of tree-shading on energy demand of two similar buildings, Energy and Buildings, N 81, (2014): pp. 305-315

J. ALLEGRINI ET AL., Influence of the urban microclimate in street canyons on the energy

demand for space cooling and heating of buildings, Energy and Buildings, N 55, (2014): pp. 823- 832 *

E. CARNIELO, M. ZINZI, Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand, Building and Environment, N 60, (2014): pp. 56-65

B. ZHANG ET AL., The cooling effect of urban green spaces as a contribution to energy-saving and émission-réduction: A case study in Beijing, China, Building and Environment, N 76, (2014): pp. 37-43

M. KOLOKOTRONI ET AL. , A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London, Solar Energyn, N 84, (2014): pp. 2246-2255

M. SANTAMOURIS, Cooling the cities - A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments, Solar Energyn, N 103, (2014): pp. 682-703

F. KONG ET AL. , Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China, Landscape and Urban Planning, N 128, (2014): pp. 35-47

D.J. SAILOR, Risks of summertime extreme thermal conditions in buildings as a result of climate change and exacerbation of urban heat islands, Building and Environment, N 78, (2014): pp. 81-88

A.L. PISELLO, F. COTANA , The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring, Energy and Buildings, N 69, pp. 154-164

M. SANTAMOURIS, On the energy impact of urban heat island and global warming on buildings, Energy and Buildings, N 82, (2014): pp. 100-113

MANJU MOHAN, ANURAG KANDYA, "Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using emote sensing data", Science of the Total Environment, N 506-507, (2015): pp.453-465

L.W.A. VAN HOVE ET AL., "Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration", Building and Environment, N 83, (2015): pp.91- 103

JIACHUAN YANG, ZHI-HUA WANG, KAMIL E. KALOUSH, Environmental impacts of reflective materials: Is high albedo a 'silver bullet' for mitigating urban heat island?", Renewable and Sustainable Energy reviews, N 47, (2015): pp. 830-843

A.G. TOUCHAEI, Y. WANG, Characterizing urban heat island in Montreal (Canada)-Effect of urban morphology", Sustainable Cities and Society, (2015): pp. 01-08

S. MAGLI ET AL. , Dynamic analysis of the heat released by tertiary buildings and the effects of urban heat island mitigation strategies, Energy and Buildings, (2015)

ANNA LAURA PISELLOA AND FRANCO COTANA, Thermal-energy and environmental impact of cool clay tiles for residential buildings in Italy, Procedía Engineering, N 118, (2015): pp. 530-537

N. DEBBAGE, J.M. SHEPHERD, The urban heat island effect and city contiguity, Computers, Environment and Urban Systems, N 54, (2015): pp. 181-194

N. KALOUSTIAN, Y. DIAB, Effects of urbanization on the urban heat island in Beirut, Urban Climate, (2015)

M.F. SHAHIDAN ET AL., An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials, Building and Environment, N 58, (2015): pp. 245-257

S. GRACIK ET AL. , Effect of urban neighborhoods on the performance of building cooling systems, Building and Environment, N 90, (2015): pp. 15-29

Z.T. Al, C.M. Mak. , From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: issues and possibilities for improvement, Building and Environment, (2015)

F.J. FERNÁNDEZ ET AL. , Optimal location of green zones in metropolitan areas to control the urban heat island, Journal of Computational and Applied Mathematics, N 289, (2015): pp. 412- 425

T. BERGER ET AL. , Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, AustriaTania, Energy and Buildings, N 80, (2015): pp. 517-530

M. SANTAMOURIS ET AL. , On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings - A review, Energy and Buildings, N 98, (2015): pp. 119-124

M. DABAIEH ET AL. , Reducing cooling demands in a hot dry climate: A simulation studyfor non-insulated passive cool roof thermal performance inresidential buildings, Energy and Buildings,, N 89, (2015): pp. 142-152

F. SALATA ET AL. , How high albedo and traditional buildings' materials and vegetationaffect the quality of urban microclimate. A case study, Energy and Buildings, N 99, (2015): pp. 32-49

M.-T. HOELSCHER ET AL., Quantifying cooling effects of facade greening: Shading, transpirationand insulation, Energy and Buildings, (2015)A.G. TOUCHAEI, Y. WANG, Characterizing urban heat island in Montreal (Canada)-Effect of urban morphology", Sustainable Cities and Society, (2015): pp. 01-08

S. MAGLI ET AL. , Dynamic analysis of the heat released by tertiary buildings and theeffects of urban heat island mitigation strategiesS, Energy and Buildings, (2015)

ANNA LAURA PISELLOA AND FRANCO COTANA, Thermal-energy and environmental impact of cool clay tiles for residential buildings in Italy, Procedía Engineering, N 118, (2015): pp. 530-537

N. DEBBAGE, J.M. SHEPHERD, The urban heat island effect and city contiguity, Computers, Environment and Urban Systems, N 54, (2015): pp. 181-194

N. KALOUSTIAN, Y. DIAB, Effects of urbanization on the urban heat island in Beirut, Urban Climate, (2015)

M.F. SHAHIDAN ET AL., An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials, Building and Environment, N 58, (2015): pp. 245-257

S. GRACIK ET AL. , Effect of urban neighborhoods on the performance of building cooling systems, Building and Environment, N 90, (2015): pp. 15-29

Z.T. Al, C.M. Mak. , From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: issues and possibilities for improvement, Building and Environment, (2015)

F.J. FERNÁNDEZ ET AL. , Optimal location of green zones in metropolitan areas to control the urban heat island, Journal of Computational and Applied Mathematics, N 289, (2015): pp. 412- 425

T. BERGER ET AL. , Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, AustriaTania, Energy and Buildings, N 80, (2015): pp. 517-530

M. SANTAMOURIS ET AL. , On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings - A review, Energy and Buildings, N 98, (2015): pp. 119-124

M. DABAIEH ET AL. , Reducing cooling demands in a hot dry climate: A simulation studyfor non-insulated passive cool roof thermal performance inresidential buildings, Energy and Buildings,, N 89, (2015): pp. 142-152

F. SALATA ET AL. , How high albedo and traditional buildings' materials and vegetationaffect the quality of urban microclimate. A case study, Energy and Buildings, N 99, (2015): pp. 32-49

M.-T. HOELSCHER ET AL., Quantifying cooling effects of facade greening: Shading, transpirationand insulation, Energy and Buildings, (2015)A.G. TOUCHAEI, Y. WANG, Characterizing urban heat island in Montreal (Canada)-Effect of urban morphology", Sustainable Cities and Society, (2015): pp. 01-08

S. MAGLI ET AL. , Dynamic analysis of the heat released by tertiary buildings and theeffects of urban heat island mitigation strategiesS, Energy and Buildings, (2015)

ANNA LAURA PISELLOA AND FRANCO COTANA, Thermal-energy and environmental impact of cool clay tiles for residential buildings in Italy, Procedía Engineering, N 118, (2015): pp. 530-537

N. DEBBAGE, J.M. SHEPHERD, The urban heat island effect and city contiguity, Computers, Environment and Urban Systems, N 54, (2015): pp. 181-194

N. KALOUSTIAN, Y. DIAB, Effects of urbanization on the urban heat island in Beirut, Urban Climate, (2015)

M.F. SHAHIDAN ET AL., An evaluation of outdoor and building environment cooling achieved through combination modification of trees with ground materials, Building and Environment, N 58, (2015): pp. 245-257

S. GRACIK ET AL. , Effect of urban neighborhoods on the performance of building cooling systems, Building and Environment, N 90, (2015): pp. 15-29

Z.T. Al, C.M. Mak. , From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: issues and possibilities for improvement, Building and Environment, (2015)

F.J. FERNÁNDEZ ET AL. , Optimal location of green zones in metropolitan areas to control the urban heat island, Journal of Computational and Applied Mathematics, N 289, (2015): pp. 412- 425

T. BERGER ET AL. , Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, AustriaTania, Energy and Buildings, N 80, (2015): pp. 517-530

M. SANTAMOURIS ET AL. , On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings - A review, Energy and Buildings, N 98, (2015): pp. 119-124

M. DABAIEH ET AL. , Reducing cooling demands in a hot dry climate: A simulation study for non-insulated passive cool roof thermal performance inresidential buildings, Energy and Buildings,, N 89, (2015): pp. 142-152

F. SALATA ET AL. , How high albedo and traditional buildings' materials and vegetation affect the quality of urban microclimate. A case study, Energy and Buildings, N 99, (2015): pp. 32-49

M.-T. HOELSCHER ET AL., Quantifying cooling effects of facade greening: Shading, transpiration and insulation, Energy and Buildings, (2015)

Modifica (riservato agli operatori) Modifica (riservato agli operatori)