polito.it
Politecnico di Torino (logo)

Semantic Feature Extraction from EEG Signals

Mohammadjavad Asgari

Semantic Feature Extraction from EEG Signals.

Rel. Luca Mesin, Hossein Ahmadi. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2025

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (17MB) | Preview
Abstract:

This thesis empirically evaluates how EEG representational form shapes decoding performance across three canonical brain-computer interface paradigms: motor imagery, P300, and SSVEP. It systematically compares five EEG-native representations—Raw time-series, Welch Power Spectral Density (PSD), Spectrograms, Phase-Locking Value (PLV), and Approximate Entropy (ApEn)—paired with four models (LDA, Logistic Regression, CNN, LSTM) under a rigorous, leakage-free evaluation protocol using public datasets (BNCI2014_001, BNCI2014_009, Nakanishi2015). Using fixed computational budgets and subject-aware splitting, the results reveal a clear performance hierarchy. PSD and Raw representations dominate the core metrics when combined with deep architectures, achieving near-ceiling performance for P300 and substantial gains for MI and SSVEP. Deep learning amplifies these advantages but cannot compensate for weak representations: ApEn consistently underperforms across all conditions, while PLV offers only modest utility for MI. CNNs demonstrate superior robustness compared to LSTMs, particularly for frequency-tagged signals. These findings support a conditional Representation–Richness Principle: representational benefits emerge only when the preserved structure is aligned with paradigm-specific neurophysiology and model inductive biases. The study provides reproducible benchmarks and practical guidelines: classical baselines remain competitive for resource-constrained applications, while deep learning on PSD or Raw features offers favorable accuracy–cost trade-offs for high-performance BCIs.

Relatori: Luca Mesin, Hossein Ahmadi
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 85
Soggetti:
Corso di laurea: Corso di laurea magistrale in Data Science And Engineering
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: Politecnico di Torino
URI: http://webthesis.biblio.polito.it/id/eprint/38759
Modifica (riservato agli operatori) Modifica (riservato agli operatori)