Mohammadjavad Asgari
Semantic Feature Extraction from EEG Signals.
Rel. Luca Mesin, Hossein Ahmadi. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (17MB) | Preview |
| Abstract: |
This thesis empirically evaluates how EEG representational form shapes decoding performance across three canonical brain-computer interface paradigms: motor imagery, P300, and SSVEP. It systematically compares five EEG-native representations—Raw time-series, Welch Power Spectral Density (PSD), Spectrograms, Phase-Locking Value (PLV), and Approximate Entropy (ApEn)—paired with four models (LDA, Logistic Regression, CNN, LSTM) under a rigorous, leakage-free evaluation protocol using public datasets (BNCI2014_001, BNCI2014_009, Nakanishi2015). Using fixed computational budgets and subject-aware splitting, the results reveal a clear performance hierarchy. PSD and Raw representations dominate the core metrics when combined with deep architectures, achieving near-ceiling performance for P300 and substantial gains for MI and SSVEP. Deep learning amplifies these advantages but cannot compensate for weak representations: ApEn consistently underperforms across all conditions, while PLV offers only modest utility for MI. CNNs demonstrate superior robustness compared to LSTMs, particularly for frequency-tagged signals. These findings support a conditional Representation–Richness Principle: representational benefits emerge only when the preserved structure is aligned with paradigm-specific neurophysiology and model inductive biases. The study provides reproducible benchmarks and practical guidelines: classical baselines remain competitive for resource-constrained applications, while deep learning on PSD or Raw features offers favorable accuracy–cost trade-offs for high-performance BCIs. |
|---|---|
| Relatori: | Luca Mesin, Hossein Ahmadi |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 85 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Data Science And Engineering |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
| Aziende collaboratrici: | Politecnico di Torino |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38759 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia