Yan Xu
Enhancing a machine learning-based social media threat intelligence automotive framework.
Rel. Stefano Di Carlo, Alessandro Savino, Nicola Scarano, Luca Mannella. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (8MB) | Preview |
| Abstract: |
This project will involve the design and implementation of a comprehensive data processing pipeline for detecting cybersecurity threats, specifically tampering attacks, in the automotive sector. The student will work on collecting and analyzing social media data using advanced data science techniques to extract meaningful insights about emerging security risks. This will involve processing unstructured text data, identifying relevant patterns, and utilizing large language models (LLMs) for text analysis and threat identification. The technical work will require the student to develop systems for data crawling, data cleaning, and text analysis, followed by the integration of AI models for detecting specific threat indicators. The project will provide experience in data engineering, machine learning, and natural language processing (NLP). |
|---|---|
| Relatori: | Stefano Di Carlo, Alessandro Savino, Nicola Scarano, Luca Mannella |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 50 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Data Science And Engineering |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
| Aziende collaboratrici: | NON SPECIFICATO |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38758 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia