polito.it
Politecnico di Torino (logo)

AI-Driven Editorial Automation: Enhancing Sports Journalism with LLMs and Autonomous Agents

Ana Magdalena Pena Rodriguez

AI-Driven Editorial Automation: Enhancing Sports Journalism with LLMs and Autonomous Agents.

Rel. Flavio Giobergia. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025

[img] PDF (Tesi_di_laurea) - Tesi
Accesso riservato a: Solo utenti staff fino al 12 Dicembre 2026 (data di embargo).
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)
Abstract:

AI-Driven Editorial Automation: Enhancing Sports Journalism with LLMs and Autonomous Agents. The digital sports media industry relies on fast, high-quality content creation. This thesis explores how Large Language Models (LLMs) and AI Agents can automate and enhance editorial workflows through FORGE Scribe, an intelligent system integrated into Deltatre’s proprietary CMS (FORGE). The research will begin with assisted article tagging, leveraging natural language processing and semantic similarity to improve editors’ efficiency, consistency, and content searchability. It will then explore the transformation of Scribe from a basic LLM-powered textual analysis tool into an autonomous AI-driven system, integrating multi-agent coordination and real-time adaptability to enable proactive content generation and editorial collaboration. This transition aims to improve data-to-text generation, automated translation, and AI-assisted content refinement.

Relatori: Flavio Giobergia
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 62
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: deltatre s.p.a.
URI: http://webthesis.biblio.polito.it/id/eprint/38665
Modifica (riservato agli operatori) Modifica (riservato agli operatori)