Valentina Paoletti
AI-Powered Document Intelligence with Retrieval-Augmented Generation.
Rel. Riccardo Coppola, Luigi Preziosi. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2025
| 
              | 
          
            
PDF (Tesi_di_laurea)
 - Tesi
   Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB)  | 
          
| Abstract: | 
         This thesis presents the design and development of an intelligent agent based on the Retrieval-Augmented Generation (RAG) architecture, integrating a Large Language Model (LLM) to support automated analysis and generation of official resolutions with a fixed structural format. The proposed system addresses the limitations of conventional language models in handling domain-specific, high-precision information by combining neural text generation with targeted knowledge retrieval from structured and unstructured sources. The work includes the implementation of a data ingestion pipeline for indexing resolutions, leveraging semantic embeddings to enable similarity-based retrieval. A carefully engineered prompting strategy, enriched with few-shot examples, guides the LLM in generating contextually accurate responses while preserving non-generative factual elements such as legal references, personal names, and financial data. The evaluation process covers both retrieval performance, measured through vector similarity metrics, and generation quality, assessed via domain-specific accuracy and completeness criteria. Results demonstrate that the RAG-enhanced LLM approach offers factual reliability and contextual relevance. The proposed architecture gives a scalable and adaptable framework for intelligent document processing, with potential applications in public administration, legal tech, and regulatory compliance automation.  | 
    
|---|---|
| Relatori: | Riccardo Coppola, Luigi Preziosi | 
| Anno accademico: | 2025/26 | 
| Tipo di pubblicazione: | Elettronica | 
| Numero di pagine: | 93 | 
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Matematica | 
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA | 
| Aziende collaboratrici: | SANTER Reply S.p.a. | 
| URI: | http://webthesis.biblio.polito.it/id/eprint/37167 | 
![]()  | 
        Modifica (riservato agli operatori) | 
      


Licenza Creative Commons - Attribuzione 3.0 Italia