polito.it
Politecnico di Torino (logo)

Synthetic Generation of Air Traffic Trajectories Using Deep Learning

Mattia Milone

Synthetic Generation of Air Traffic Trajectories Using Deep Learning.

Rel. Santa Di Cataldo, Francesco Ponzio. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (5MB) | Preview
Abstract:

This thesis explores the application of deep learning models to generate synthetic air trajectories, represented as sequences of sectors and time spent within each sector. The study compares different neural network architectures, including LSTM and Transformer, trained and evaluated on operational datasets. Additionally, the research investigates the effect of conditioning models with external variables, such as weather conditions, to simulate more realistic flight scenarios. Given the computational cost of training, parameter optimization was conducted using a progressive approach. While the study is exploratory, the results offer a foundation for future developments in air traffic simulation and management, aligning with the objectives of the European SESAR 3 program.

Relatori: Santa Di Cataldo, Francesco Ponzio
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 63
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Ente in cotutela: NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU) (NORVEGIA)
Aziende collaboratrici: NTNU
URI: http://webthesis.biblio.polito.it/id/eprint/35241
Modifica (riservato agli operatori) Modifica (riservato agli operatori)