polito.it
Politecnico di Torino (logo)

Reinforcement learning for inventory management of a perishable item

Fabio Bertone

Reinforcement learning for inventory management of a perishable item.

Rel. Edoardo Fadda, Paolo Brandimarte. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2025

[img] PDF (Tesi_di_laurea) - Tesi
Accesso riservato a: Solo utenti staff fino al 14 Marzo 2026 (data di embargo).
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB)
Abstract:

This thesis explores the application of reinforcement learning to perishable inventory management, focusing on optimizing ordering and discounting decisions to enhance profitability and reduce waste. Traditional inventory policies often fail to adapt dynamically to demand fluctuations and product perishability, necessitating more flexible, data-driven approaches. We present a formulation of the problem as a Markov Decision Process and investigate various reinforcement learning techniques, including Least-Squares Policy Iteration and rollout-based methods. Computational experiments demonstrate that rollout-based approaches outperform traditional heuristics, yielding profitability improvements of 0.8% to 5.1% and substantial waste reduction. Notably, waste reduction is particularly effective in cases with low demand variability. The results highlight the potential of reinforcement learning for adaptive decision-making in inventory control. However, computational costs remain a challenge. Future research should focus on improving rollout scalability and practical applicability, as well as extending the approach to a multi-product setting.

Relatori: Edoardo Fadda, Paolo Brandimarte
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 75
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Matematica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA
Aziende collaboratrici: Politecnico di Torino
URI: http://webthesis.biblio.polito.it/id/eprint/34646
Modifica (riservato agli operatori) Modifica (riservato agli operatori)