polito.it
Politecnico di Torino (logo)

Computational search for inhibitors of SOD1 mutant infectivity as potential therapeutics for ALS disease

Marco Carnaroli

Computational search for inhibitors of SOD1 mutant infectivity as potential therapeutics for ALS disease.

Rel. Jacek Adam Tuszynski, Marco Agostino Deriu. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2024

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (7MB) | Preview
Abstract:

Familial amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective degeneration of motor neurons. Among the main genetic causes of ALS, over 200 mutations have been identified in the Cu/Zn superoxide dismutase (SOD1) protein, a dimeric metalloenzyme essential for converting superoxides from cellular respiration into less toxic products. Point mutations in SOD1 monomers can induce protein misfolding, which spreads to wild-type monomers through a prion-like mechanism, leading to dysfunctions that contribute to the development of the disease. Understanding the structural and functional differences between the wild-type protein and its mutated variants, as well as developing drugs capable of inhibiting the propagation of misfolding, is crucial for identifying new therapeutic strategies. In this work, seven SOD1 mutations (A4V, G41D, G41S, D76V, G85R and I104F) were selected, and three-dimensional models of SOD1 dimers composed of one wild-type monomer and one mutated monomer were generated, along with a control dimer consisting solely of wild-type monomers. Molecular dynamics simulations were conducted to investigate conformational differences between the dimers. Additionally, molecular docking was performed using a library of ligands to identify compounds with high affinity for the mutated dimers. The study reveals some differences in the mutated dimers following MD simulations and in the docking of the selected ligands with the various dimers. It provides a solid foundation for future research, paving the way for the inclusion of additional mutations and ligands to better understand the genetic causes of ALS and to develop innovative therapies.

Relatori: Jacek Adam Tuszynski, Marco Agostino Deriu
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 93
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Biomedica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/33986
Modifica (riservato agli operatori) Modifica (riservato agli operatori)