polito.it
Politecnico di Torino (logo)

CoTraM: Convolutional Transformer for Multichannel Time-Series Classification

Francesco Donato

CoTraM: Convolutional Transformer for Multichannel Time-Series Classification.

Rel. Gabriella Olmo. Politecnico di Torino, Corso di laurea magistrale in Ict For Smart Societies (Ict Per La Società Del Futuro), 2023

Abstract:

The computational analysis of multichannel time series has established its significance in a myriad of domains, spanning satellite data interpretation, environmental monitoring, and financial forecasting, to name a few. With the complexity and significant length of time series data, there arises an exigent need for advanced processing mechanisms. This is where the Convolutional-Transformer Model (CoTraM) makes its mark. Designed primarily for generalized multichannel time series classification, this architecture has a special aptitude for handling extremely lengthy sequences. The research at hand delves deep into CoTraM's adaptability and efficacy across diverse datasets. Of particular note is its efficiency in processing extended clinical sequences, such as Electroencephalograms (EEG) and Polysomnography data. The potential for CoTraM to serve as an instrumental aid to clinicians, who are often faced with the arduous task of analyzing lengthy data for prognostic insights, stands at the forefront of this investigation.

Relatori: Gabriella Olmo
Anno accademico: 2023/24
Tipo di pubblicazione: Elettronica
Numero di pagine: 113
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ict For Smart Societies (Ict Per La Società Del Futuro)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-27 - INGEGNERIA DELLE TELECOMUNICAZIONI
Ente in cotutela: UNIVERSITY OF ILLINOIS AT CHICAGO (STATI UNITI D'AMERICA)
Aziende collaboratrici: CNR - IEIIT
URI: http://webthesis.biblio.polito.it/id/eprint/29601
Modifica (riservato agli operatori) Modifica (riservato agli operatori)