Francesco Donato
CoTraM: Convolutional Transformer for Multichannel Time-Series Classification.
Rel. Gabriella Olmo. Politecnico di Torino, Corso di laurea magistrale in Ict For Smart Societies (Ict Per La Società Del Futuro), 2023
Abstract: |
The computational analysis of multichannel time series has established its significance in a myriad of domains, spanning satellite data interpretation, environmental monitoring, and financial forecasting, to name a few. With the complexity and significant length of time series data, there arises an exigent need for advanced processing mechanisms. This is where the Convolutional-Transformer Model (CoTraM) makes its mark. Designed primarily for generalized multichannel time series classification, this architecture has a special aptitude for handling extremely lengthy sequences. The research at hand delves deep into CoTraM's adaptability and efficacy across diverse datasets. Of particular note is its efficiency in processing extended clinical sequences, such as Electroencephalograms (EEG) and Polysomnography data. The potential for CoTraM to serve as an instrumental aid to clinicians, who are often faced with the arduous task of analyzing lengthy data for prognostic insights, stands at the forefront of this investigation. |
---|---|
Relatori: | Gabriella Olmo |
Anno accademico: | 2023/24 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 113 |
Informazioni aggiuntive: | Tesi secretata. Fulltext non presente |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ict For Smart Societies (Ict Per La Società Del Futuro) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-27 - INGEGNERIA DELLE TELECOMUNICAZIONI |
Ente in cotutela: | UNIVERSITY OF ILLINOIS AT CHICAGO (STATI UNITI D'AMERICA) |
Aziende collaboratrici: | CNR - IEIIT |
URI: | http://webthesis.biblio.polito.it/id/eprint/29601 |
Modifica (riservato agli operatori) |