Zhuowei Li
A Graph Neural Network based HLS QoR prediction.
Rel. Luciano Lavagno, Muhammad Usman Jamal. Politecnico di Torino, Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica), 2023
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) | Preview |
Abstract: |
Starting from a C/C++ behavioral-level programming language, High-Level Synthesis (HLS) is a solution for rapid prototyping of application-specific hardware, where designers can apply HLS directives to optimize hardware implementations by trading-off between cost and performance. However, current HLS tools do not provide reliable Quality of Results (QoR) estimations, which prevents quick and precise design-space exploration. Under the background of the widespread use of machine learning (ML) to improve the predictability of EDA tools, this work proposes a Graph Neural Network (GNN) based predictive model that can accurately predict post-route QoR. The experimental results demonstrate that the predictive model not only outperforms state-of-the-art HLS tool in terms of QoR estimation accuracy but also speed. |
---|---|
Relatori: | Luciano Lavagno, Muhammad Usman Jamal |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 64 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-25 - INGEGNERIA DELL'AUTOMAZIONE |
Aziende collaboratrici: | Politecnico di Torino |
URI: | http://webthesis.biblio.polito.it/id/eprint/26675 |
Modifica (riservato agli operatori) |