polito.it
Politecnico di Torino (logo)

Artificial intelligence-based systems to improve prostate cancer diagnosis using multiparametric magnetic resonance imaging

Rebecca Segre

Artificial intelligence-based systems to improve prostate cancer diagnosis using multiparametric magnetic resonance imaging.

Rel. Gabriella Balestra. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2022

Abstract:

Prostate cancer is the second most common cancer among men. Multiparametric magnetic resonance imaging is a well-established tool for prostate cancer detection and diagnosis. However, image interpretation is complex, time-consuming and subject to high inter-reader variability. In this work, artificial intelligence methods are used to build a computer-aided detection system able to automatically discriminate between healthy and cancer-positive patients. In particular, a deep learning approach based on convolutional neural networks has been developed. The final result shows that the designed model presents good classification performances and is therefore well suited as a decision support tool. This thesis is the result of a seven-month stay at the Norwegian University of Science and Technology (NTNU), Trondheim, under the CIMORe group led by Professor Tone Frost Bathen.

Relatori: Gabriella Balestra
Anno accademico: 2022/23
Tipo di pubblicazione: Elettronica
Numero di pagine: 72
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Biomedica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA
Aziende collaboratrici: NTNU
URI: http://webthesis.biblio.polito.it/id/eprint/24726
Modifica (riservato agli operatori) Modifica (riservato agli operatori)