Rebecca Segre
Artificial intelligence-based systems to improve prostate cancer diagnosis using multiparametric magnetic resonance imaging.
Rel. Gabriella Balestra. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2022
Abstract: |
Prostate cancer is the second most common cancer among men. Multiparametric magnetic resonance imaging is a well-established tool for prostate cancer detection and diagnosis. However, image interpretation is complex, time-consuming and subject to high inter-reader variability. In this work, artificial intelligence methods are used to build a computer-aided detection system able to automatically discriminate between healthy and cancer-positive patients. In particular, a deep learning approach based on convolutional neural networks has been developed. The final result shows that the designed model presents good classification performances and is therefore well suited as a decision support tool. This thesis is the result of a seven-month stay at the Norwegian University of Science and Technology (NTNU), Trondheim, under the CIMORe group led by Professor Tone Frost Bathen. |
---|---|
Relatori: | Gabriella Balestra |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 72 |
Informazioni aggiuntive: | Tesi secretata. Fulltext non presente |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Biomedica |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-21 - INGEGNERIA BIOMEDICA |
Aziende collaboratrici: | NTNU |
URI: | http://webthesis.biblio.polito.it/id/eprint/24726 |
Modifica (riservato agli operatori) |