Hengrui Liu
Battery state of health and state of charge estimation with related application.
Rel. Stefano Carabelli. Politecnico di Torino, Corso di laurea magistrale in Automotive Engineering (Ingegneria Dell'Autoveicolo), 2022
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) | Preview |
Abstract: |
The topics covered in this thesis work are related to the field of electric vehicles (EVs) optimization. Thanks to their attractive properties, the majority of EVs adopt lithium-ion batteries as main energy source introducing new challenges in the car manufacturer’s world. In order to guarantee the optimal management and the safety of the operations performed on the battery, a vehicle subsystem, called Battery Management System (BMS), must estimate the state of the battery through two fundamental parameters: the State of Charge (SoC) and the State of Health (SoH). Precisely knowing these quantities in a real driving context is a challenging task and, for the remarkable industrial value, it has become a hot research topic in the last decade |
---|---|
Relatori: | Stefano Carabelli |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 110 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Automotive Engineering (Ingegneria Dell'Autoveicolo) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-33 - INGEGNERIA MECCANICA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/24361 |
Modifica (riservato agli operatori) |