Fabrizio Santoriello
Machine learning applications to credit risk analysis.
Rel. Patrizia Semeraro. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2022
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (7MB) | Preview |
Abstract: |
The thesis deals with the theme of machine learning applied to credit risk. Starting from a theoretical introduction of the tools that will be used in the course of the work, we get to observe the performance of 5 different algorithms for binary classification : Logistic regression, Naive Bayes, K-Nearest neighbors, Support Vector Machines and Ensemble trees. In particular, two different datasets are used: a synthetic one, and a real one. Then Ensemble Classifiers, which can be intuitively interpreted as a way to combine predictions generated by different algorithms, are introduced. Several ways of mixing prediction are observed, starting from hard- voting, which is simply a majority voting system, and coming up to more sophisticated methods like stacking and blending. Furthermore, an appreciable improvement in several measures of the classification performance is obtained. |
---|---|
Relatori: | Patrizia Semeraro |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 101 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Matematica |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/24056 |
Modifica (riservato agli operatori) |