polito.it
Politecnico di Torino (logo)

Carbon Nanoreinforced Concrete

Ivan Prestini

Carbon Nanoreinforced Concrete.

Rel. Giuseppe Ferro, Jean Marc Christian Tulliani. Politecnico di Torino, Corso di laurea specialistica in Architettura, 2011

Abstract:

Il presente lavoro si fecalizza in primo luogo sulla possibilità di implementare le proprietà meccaniche di calcestruzzi con l'addizione di Nanotubi di Carbonio, analizzata e sviluppata al Politecnico di Torino, in una collaborazione pluriennale tra il DISTR (Dipartimento di Ingegneria Strutturale e Geotecnica) e il DISMIC (Dipartimento di Scienza dei Materiali e Ingegneria Chimica); e successivamente sullo studio di quelle che sono le proprietà elettriche di calcestruzzi addizionati con Nanofìbre di Carbonio, finalizzati alla produzione di sensoristica, seguito nei laboratori di Ingegneria Civile ed Ambientale della University Of Houston, Texas.

Fin dalle prime pubblicazioni in merito, datate inizio anni '90, i Nanotubi di Carbonio (CNTs) sono al centro delle attenzioni di molti ricercatori, date le loro straordinarie proprietà meccaniche ed elettriche, infatti pesando solo un sesto dell'acciaio sono quasi cento volte più resistenti a trazione. Le applicazioni studiate finora sono tra le più disparate, partendo dalla nano-elettronica fino ad arrivare a numerose addizioni degli stessi in composti polimerici. Questo campo di ricerca, mosso anche da evidendi esigenze di mercato, sta prendendo largamente piede in edilizia, dove la possibilità di avere materiali con prestazioni sempre più elevate, diminuendo ingombri, consumi e costi, più che uno sfizio per pochi è diventata una vera e propria necessità.

Le Nanofìbre di Carbonio (CNFs), altra forma allotropica del Carbonio, vengono anch'esse in contro alle esigenze dei laboratori di ricerca di tutto il mondo, infatti con proprietà qualitativamente analoghe ai CNTs ma prestazioni e costi decisamente ridotti, possono essere sostituite a questi ultimi nelle prime fasi di studio.

Relatori: Giuseppe Ferro, Jean Marc Christian Tulliani
Tipo di pubblicazione: A stampa
Soggetti: S Scienze e Scienze Applicate > SC Chimica
S Scienze e Scienze Applicate > SG Fisica
T Tecnica e tecnologia delle costruzioni > TE Tecnologia dei materiali
Corso di laurea: Corso di laurea specialistica in Architettura
Classe di laurea: NON SPECIFICATO
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/2402
Capitoli:

Sintesi

1 Materials

1.1 Multiscale Fibro-reinforced Concrete

1.2 Allotropes of carbon

1.3 Chemical functionalization of carbon nanotubes

2 State of the art

2.1 Carbon Nano Tubes

2.2 Carbon Fibers and Nano Fibers.

2.3 Other addictions in CNT/CNF Concrete

3 Experimental program

3.1 Hybrid Concrete added by Fiberglass and Multiwalled CNT

3.2 Nanoreinforced SelfCompacting Concrete (CNTSCC)

3.3 Concrete added by carboxyl-group functionalized MWCNT

3.4 Tensile Strength of high content by weight of CNTs

4 University of Houston

4.1 Electrical resistance of CNFs concrete

4.2 Development of CNFs aggregate concrete damage sensor

4.3 CNFs mortar early-stage hydration monitoring

5 Conclusions

Bibliografia:

[1] Kirn, J.H. and Paulino G. H., Simulation of Crack Propagation in Func-tionally Graded Materials Under Mixed-Mode and Non-Proportional Loading. Internation

[2] al Journal of Mechanics and Materials in Design, 1:63-94, 2004

[3] Axelsen, M. S., Quantitative Description of The Morphology and Mi-crodamages of Composite Materials. Ph.D. Dissertation, Institute of Medianica! Engineering, Aalborg University, Denmark, 1995.

[4] ACI 318. Building Code Requirements for Structural Concrete. Farm-ington Hills, Michigan: American Concrete Institute, 2008.

[5] Broughton, J.Q., Pederson, M.R. - Phys. Rev. Lett. 69, (1992) 2689

[6] Chaipanich A., Nochaiya T., Wongkeo W., Torkittikul P., Compressive strength and microstructure of carbon nanotubes -fly ash cement corn-posites. Materials Science and Engineering A 527 (2010): 1063-1067

[7] Clien, Pu-Woei, and D. D. L. Chung. Concrete as a new strain/stress sensor. Composites Part B: Engineering 27, no. 1 (1996): 11-23.

[8] Chen, Pu-Woei, and D. D. L. Chung. Concrete reinforced with up to 0.2 vol% of short carbon fibres. Composites 24, no. 1 (1993): 33-52.

[9] Chung, D. D. L. Cement-matrix composites for smart structures. Smart Materials and Structures 9, no. 4 (2000): 389-401.

[10] Chung, D. D. L. Dispersion of Short Fibers in Cement. Journal of Materials in Civil Engineering, ASCE 17, no. 4 (2005): 379-383.

[11] Chung, D. D. L. Strain sensors based on thè electrical resistance change accompanying thè reversible pull-out of conducting short fibers in a less conducting matrix. Smart Materials and Structures 4, no. 1 (1995): 59-61.

[12] Coleman J.N., Khan U, Blau W.J., Gun'ko Y.K.. Small but strong: a review of thè mechanical properties of carbon nanotube-polymer composites. Carbon 2006; 44(9): 1624-52.

[13] Craig A., Poland, Carbon nanotubes introduced into thè abdominal cav-ity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology 3, 423 - 428 (2008)

[14] Cwirzen A, Habermehl-Chirzen K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv Cem Res (2008): 65-73.

[15] Cwirzen A, Habermehl-Chirzen K, Nasibulin A.G., Kaupinen E.I., Mudimela P.R., Penttala V. SEM/AFM studìes of cementitious binder modified by MWCNT and nano-sized Fé needles. Mater Charact 2008. doi:10.1016/ j.matchar.2008.11.001.

[16] Cwirzen A, Habermehl-Cwirzen K, Nasibulina LI, Shandakov SD, Nasibulin AG, Kauppinen EI, et al. Cement composite In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J, editors. Nanotechnology in con-struction: proceedings of thè NIC0M3 (3rd international symposium on nanotechnology in construction). Prague, Czech Republic; 2009. p. 181-5.

[17] Gao D., Strum M., and Mo Y. L.. Electrical resistance of carbon-nanofiber concrete. Smart Materials and Structures 18, no. 9 (2009): 1-7.

[18] Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, et al. Carbon nanofibers for composite applications. Carbon 2004; 42(5-6): 1153-8.

[19] Howser, R N, H B Dhonde, and Y L Mo. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading. Smart Materials and Structures 20, no. 8 (2011).

[20] Hughes T,. Fly ash enhanced carbon nanofiber-reinforced high strength cement, Ohio Air Quality. Vers. Final Report. (Dee. 2004)

[21] Kang I., Heung Y.Y., Kim J.H., Lee J.W., Gollapudi R, Subramaniam S, et al. Introduction to carbon nanotube and nanofiber smart materials. Compos B Eng 2006; 37(6): 382-94.

[22] Kostarelos K., The long and short of carbon nanotube toxicity. Nature Biotechnology, volume 26, number 7 ( July 2008): 774-776.

[23] Lau, Kin-Tak, and David Hui. The revolutionary creation of new ad-vanced materials-carbon nanotube composites. Composites: Part B 33, no. 4 (2002): 263-277.

[24] Lau K-t, Gu C, Hui D. A criticai review on nanotube and nanotube/nanoclay related polymer composite materials. Compos B Eng 2006; 37(6): 425-36.

[25] Li, Hui, Hui-gang Xiao, Jie Yuan, and Jinping Ou. Microstrueture of cement mortar with nano-particles. Composites Part B: Engineering 35, no. 2 (March 2004): 185-189.

[26] Li, Hui, Mao-hua Zhang, and Jin-ping Ou. Abrasion resistance on concrete containing nano-particles for pavement. Wear 260, no. 11-12 (2006): 1262-1266.

[27] Li, Hui, Mao-hua Zhang, and Jin-ping Ou. Flexural fatigue performance of concrete containing nano-particles for pavement. International Journal ol Fatigue 29, no. 7 (July 2007): 1292-1301.

[28] Li G.Y., Wang P.M., Zhao X. Medianica! behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon (2005): 1239-45.

[29] Li G.Y., Wang P.M., Zhao X. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites. Ceni Concr Compos 2007; 29(5): 377-82.

[30] Makar J.M., Beaudoin J.J., Carbon nanotubes and their applicaMons in thè construction industry. In: Bartos PJM, Hughes JJ, Trtik P, Zhu W, editors. Nanotechnology in construction, Proceedings of thè lst inter-national symposium on nanotechnology in construction. Royal Society of Chemistry; (2004): 331-41.

[31] Makar J.M., Margeson J, Luh J. Carbon nanotube/cement composites early results and potential applications. In: Proceedings of thè 3rd international conference on construction materials: performance, innovations and structural implications, Vancouver, BC, Canada; (2005): 1-10.

[32] Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P., Carbon nanotubes reinforced concrete. Nanotechnology of concrete: thè next big thing is small, voi. 267, ACI special publications, SP-267-2; (2009): 11-20.

[33] Metaxa Z.S., Konsta-Gdoutos M.S., Shah S.P., Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocornposites, Cement & Concrete Composites 32 (2010): 110-115

[34] Morsy M.S., Alsayed S.H. , Aqel M., Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Construction and Building Materials 25 (2011): 145-149

[35] Musso S., Growth and analysis on carbon nanomaterials (2007)

[36] Musso S, Tulliani J-M, Ferro G, Tagliaferro A. Influence of carbon nanotubes structure on thè mechanical behavior of cement composites. Compos Sci Technol 2009; 69(11-12): 1985-90.

[37] Musso, S., et al, Diamond and Related Materials (2008)

[38] Musso, S., Giorcelli, M., Tagliaferro, A., Adv. Science and Technology 48, (2006) 37

[39] Ngo, Quoc, et al. Characteristics of Aligned Carbon Nanofibers for In-terconnect Via Applications. IEEE Electron Device Letters 27, no. 4 (Aprii 2006): 221-224.

[40] Rakov E.G., The chemistry and application of carbon nanotubes. Rus-sian Chemical Reviews, 70 (2001) 827-863

[41] Saez de Ibarra Y, Gaitero J.J., Erkizia E., Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dis-persions. Phys Status Solidi (a) 2006; 203(6): 1076-81.

[42] Sanchez F, Ince C. Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fumé cernent composites. Compos Sci Teclmol 2009; 69(7-8): 1310-8.

[43] Sanchez F. Carbon nanofiber/cement composites: challenges and promises as structural materials. Inter J Mater Struct Integ 2009;3(2-3):217-26 [Special Issue on Nanotechnology for Structural Materials] .

[44] Shah, S. P. Concrete Made with Carbon Nanotube Reinforcement. Uni-versity of Houston, Houston, 2009.

[45] Shah S.P., Konsta-Gdoutos M.S., Metaxa Z.S., Highly dis-persed carbon nanotube-reinforced cement-based materials, US Patent 2009/0229494A1, (2009).

[46] Shah, S. P., and A. E. Naaman. Mechanical Properties of Glass and Steel Fiber Reinforced Mortar. ACI Journal 73, no. 1 (Jan 1976): 50-53.

[47] Shah S.P., Konsta-Gdoutos M.S., Metaxa Z.S., Mondai P. Nanoscale modification of cementitious 'materials. In: Bittnar Z, Bartos PJM, Ne-mecek ,1, Smilauer V, Zeman J, editors. Nanotechnology in construction. 3. Proceedings of thè third international symposium on nanotechnology in construction. Springer; (2009): 125-30.

[48] Ugarte, D. et al, Science 274, (1996) 1897

[49] Xiao, H., C. Lan, X. Ji, and H. Li. Mechanical and sensing properties of structural materials with nanophase materials. Pacific Sdentine Journal 5 (2003): 11-17.

[50] Xie X-L., Mai Y-W, Zhou X-P. Dispersion and alignment of carbon nan-otubes in polymer matrix: a review. Mater Sci Eng R 2005;49(4):89-112.

Modifica (riservato agli operatori) Modifica (riservato agli operatori)