polito.it
Politecnico di Torino (logo)

Explainable AI

Taha Zafar

Explainable AI.

Rel. Giovanni Squillero, Alberto Paolo Tonda, Pietro Barbiero. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2022

Abstract:

Unsupervised conceptual extraction in Deep Neural Networks. Stemming from the recent advances in Explainable AI (XAI), the work will train deep neural networks to classify well-known paintings according to standard artistic taxonomy (genre, style, ...) to ultimately generate and study the "artificial concepts" that led to a decision. Such "artificial concepts", representing high-level entities such as use of color and strokes, will be autonomously uncovered by the network, thanks to Logic Layers, and later analyzed by an expert.

Relatori: Giovanni Squillero, Alberto Paolo Tonda, Pietro Barbiero
Anno accademico: 2021/22
Tipo di pubblicazione: Elettronica
Numero di pagine: 80
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Ente in cotutela: Pontifícia Universidade Católica do Rio de Janeiro (BRASILE)
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/22688
Modifica (riservato agli operatori) Modifica (riservato agli operatori)