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Abstract

The objective of this study is to model and simulate the equations of motion for a con-
ceptual prototype of micro-robot powered by four propellers made of rigid helices and of
a cargo head shaped as an ellipsoid. A finite element code has been developed, intended
to simulate the Stokes flow in order to derive the hydrodynamic resistance coefficients by
comparing them with those present in the literature. To achieve this as reliably as possible,
benchmark cases are studied using a sphere and an ellipsoid whose coefficients can be ob-
tained through analytical formulae. The solutions of these two cases allow to compare the
streamlines, the velocity and pressure fields used to validate the code. Finally, the dynam-
ics of the problem was solved using the coefficients calculated with the code to obtain the
solutions that physically represent the translational and rotational velocities of the micro-
robot. Assuming that the angular velocity and the chirality of the propellers are known
and can be prescribed, an analysis was made to investigate how different combinations of
these can affect the translational and rotational velocities of the micro-robot and therefore
the trajectory. This was done with the perspective of being able, in the future, to have a
greater control on these devices and to be capable to use them for different tasks.



Chapter 1

Introduction

In recent decades, robotic research has pushed itself into the world of micro scales. This has
been allowed by an advance in micro-machining and microscopic techniques which allowed
us to mimic the behaviour of some biological organisms with robotic systems.
Micro-robots are expected to be increasingly present in many scientific environments, in
particular a great interest is shown by the biomedical field, for instance for targeted drug
delivery or highly precise microsurgery, which can lead to less invasive operations.
In the same way as in any other engineering context, it is necessary to correctly understand
the physical aspects lying behind the phenomena we wish to analyse, in order to build a
robust mathematical model and then implement it using numerical methods.
In the present dissertation, the problem we are going to deal with is the study of a micro-
robot, sketched in figure 1.1, that moves in a highly viscous fluid. The propulsive force of
this system derives from the screwing of the propellers (shown in red) around their axis.
This choice is not random, but it is rather dictated by the nature of the flow. Indeed, since
the movement of the micro-robot happens in a viscous fluid at a very low Reynolds number,
hence the inertial forces can be neglected, the type of motion needed to generate the required
thrust is not the same as one would intuitively think of in common engineering applications,
such as a reciprocating motion. To sum things up, the screwing of the propellers produces
a rotational and translational velocities that are transmitted to the body of the robot
generating a propulsive force, allowing motion of the device. For more details on phenomena
at low Reynolds number the reader can refer to [1]-[5]. Generally the motion of these devices
is helicoidal, just like that showed in [40]. Our aim is to reduce the wobbling around the
z axis, that is, making the trajectory more like a straight line. In order to do that we
propose a new prototype of micro-swimmer composed by four propellers distanced by an
eccentricity from the longitudinal axis. In chapter 3 we introduce kinematic and dynamic
models able to describe our new micro-robot and in chapter 4 numerical simulations are
performed using such models. Finally in the last section we try to investigate how to reduce
wobbling using different propulsive configurations.
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Let us now briefly describe the microswimmer as composed of two parts: the hull Bhull,
which is the body of the microswimmer, and the propulsive system BPi, made up of rotating
helices. It must be remarked that between the two parts no translation is allowed, therefore
the only possible movement is represented by a relative rotation between the propellers and
the hull with respect to the axis along the unit vector ê3.

Figure 1.1: 3D microrobot model sketch

Below, the details on the composition of the parts are presented. More precisely, the hull is
modelled as a rigid prolate ellipsoid with four rigid arms attached to it and the propulsive
system consists of four rigid corkscrew propellers, distanced from the longitudinal axis,
with unit vector ê3, by an eccentricity due to the arm length,

Figure 1.2: 1) propeller details 2) top view of the total system

Figure 1.2 shows on the left the detailed representation of the i-th propeller (red) connected
by the stiff rod to the hull (green), and on the right we can observe the overall system with,
in red, the four propellers, whose angular velocities must be chosen such that the total
torque acting on the body is zero in view of the null inertia hypothesis.
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Chapter 2

Preliminaries

2.1 Fluid dynamics
In this section we want to illustrate the hypothesis that lead us to use the mathematical
model adopted in Chapter 3. Recalling a formulation for the Navier-Stokes equations

∂
∂tρ+ ∇ · (ρu) = 0

∂
∂tρu + ρ(u · ∇)u + Fvol = −∇p+ µ∆u

(2.1)

It is noticeable that we do not care about boundary conditions in this section.
Assuming ρ constant in space and time, and different from 0, we can divide by ρ both
members of the equation (2.1) obtaining the well-known formulation for incompressible
flow 

∇ · u = 0

∂
∂tu + (u · ∇)u + Fvol

ρ = −∇(pρ) + ν∆u
(2.2)

where u(x, t), p(x, t) are the fields describing the velocity and pressure distributions inside
the fluid volume V , Fvol represents the volume force and ν is the kinematic viscosity.
Given the appropriate scales for the variables and proceeding with normalization

x̃ = x
L ; ũ = u

U ; t̃ = tU
L ; p̃ = pL

µU

one get the normalized Navier-Stokes equations
∇ · ũ = 0

∂
∂t̃

ũ + (ũ · ∇)ũ + F̃vol = −∇p̃+ 1
Re∆ũ

(2.3)

The first assumption regards the stationarity of the flow, in fact, when you’re dealing with
microscale object time variations occur too slowly.
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The second and stronger hypothesis is the negligibility of inertial terms. This is motivated
from the fact that the hydrodynamic regime is identified with low Re number.

∇ · ũ = 0

−∇p̃+ 1
Re∆ũ = 0

(2.4)

2.2 Continuum mechanics
Follow [9] we tried to give a continuum mechanical framework in order to derive an appro-
priate kinematic model for the body which satisfy our expectations.
Considering the entire body as a continuum B(t) in a reference configuration, such that a
point p ∈ B(t) is a material point. Mathematically we can describe the deformation of B(t)
through a map f , invertible and differentiable, which carries each point p in x ∈ B∗(t) that
represents the deformed body configuration

f : B → B∗ | x = f(p) (2.5)

Using the definition of deformation tensor

F = ∇f (2.6)

we focus our attention to the homogeneous deformation, i.e. F constant, and write a generic
deformation as follow

f(p) = f(q) + F(p − q) ∀p,q ∈ B (2.7)

Thanks to polar decomposition theorem is it possible to write F = QU. Hence, we can read
the distortion as composed by a rotation, induced by tensor Q, and a stretching described
by U which is set to the identity tensor for our purpose. Then this deformation lead to this
motion

f(p) = f(q) + Q(p − q) ∀p,q ∈ B (2.8)

and the variation of the lagrangian velocity v(p) = ∂f(p)
∂t is described by

v(p) = v(q) + �(p − q) ∀p,q ∈ B, (2.9)

where � is a skew tensor relates to the orientation of the body in the space which axial
vector is identified by the angular velocity Ω of the body itself; hence we can write the
angular momentum equation:

α =
Ú

B
r × vρ dV (2.10)

Assuming that G, the center of gravity of B = B1 ∪ B2 is aligned on the same vertical
axis passing through both center of the parts , we define r = G1 − G2 where Gi is the
barycenter of the i-th body part, such that r is parallel to Ġ.
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Applying the definition of derivative of a vector in a rotating reference frame and using the
definition of J ∈ R3,3 as the inertial tensor in the body frame, the following balance law is
found:

N = dα

dt

---
Inertial

= α̇+ Ω × α = J Ω̇ + Ω × JΩ (2.11)

Now we want to prove the last equality in (2.11), break up the cross product in (2.10) along
the axis, one can write

r × v = r × (Ġ + Ω × r) = r × (Ω × r)
= r2

2(Ω1ê1 + Ω3ê3) + r2
1(Ω2ê2 + Ω3ê3) + r2

3(Ω1ê1 + Ω2ê2) − r1r2(Ω2ê1 + Ω1ê2)

= [(r2
2 + r2

3)Ω1 − Ω2r2r1 + Ω3r3r1]ê1 + [(r2
1 + r2

3)Ω2 − Ω1 + Ω3r2r3]ê2

+ [(r2
1 + r2

2)Ω3 − Ω2r1r3 + Ω3r3r2]ê3 (2.12)

distinguish the inertial and centrifugal moment we recognize the expression

α =
Ú

Bt

[J1Ω1 − J Í
1Ω2 − J Í

2Ω3]ê1 dV

+
Ú

Bt

[−J Í
1Ω1 + J2Ω2 − J Í

3Ω3]ê2 dV +
Ú

Bt

[−J Í
2Ω1 − J Í

3Ω2 − J3Ω3]ê3dV

α = J Ω (2.13)

Computing the cross product in (2.11)

Ω × α =

-------
ê1 ê2 ê3
Ω1 Ω2 Ω3
J1Ω1 J2Ω2 J3Ω3

-------
= [J3Ω3Ω2 − J2Ω3Ω2]ê1 + [J1Ω1Ω3 − J3Ω3Ω1]ê2 + [J2Ω2Ω1 − J1Ω1Ω2]ê3 (2.14)

and by adding results (2.12) with (2.14), use α̇ = J Ω̇ (J is time-independent) one has:
N1 = J1Ω̇1 + J3Ω3Ω2 − J2Ω2Ω3

N2 = J2Ω̇2 + J1Ω1Ω3 − J3Ω3Ω1

N3 = J3Ω̇3 + J2Ω2Ω1 − J1Ω1Ω2

(2.15)

(2.15) describes the motion of the body induced by the velocity field in (2.9) which can be
expressed in compact vectorial form:

N = J Ω̇ + Ω × α (2.16)
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In order to get the equation governing the translation, it is mandatory to introduce the
linear momentum equation:

l =
Ú

Bt

vρ dV (2.17)

whose balance law is
F = l̇ (2.18)

where F is the resultant of the forces acting on the body which can be identified by two
components: superficial forces, Fsup and volume forces, Fvol.
Then we can write equation (2.18) as followÚ

Bt

v̇ρdV =
Ú
∂Bt

sdA+
Ú

Bt

bdV (2.19)

from Cauchy theorem we know that
s = Tn (2.20)

then applying Gauss theorem one hasÚ
Bt

v̇ρdV =
Ú

Bt

∇ · T + bdV (2.21)

where T is a second order tensor strictly dependent on the fluid properties that in this case
are isotropic and newtonian, which can always be decomposed into

Tij = Tij,eq + Tij,dis = pδij − 2µDij + µ1Dkkδij (2.22)

the first term of (2.22) is isotropic and consider the normal component of the stress tensor,
i.e. the thermodynamic pressure, D ∈ R3,3 represents the deformation velocity tensor,
linear in the velocity gradient and µ, µ1 are called Lamè coefficients which are function of
the fluid composition and temperature and physically represent the viscosities which can
be related through

ηvol = 2
3µ+ µ1 (2.23)

using Stokes hypothesis one can write the stress tensor T as follow

Tij = pδij + 2µ
3

Dij − Dkkδij
3

4
(2.24)

where µ is the viscosity of the fluid and can be obtained experimentally.
For what concern the volume forces, we can assume two types of these: gravity and the
buoyant forces applied onto the submerged object; physically these oppose each other then
we can also assume that these are equal in modulus and get rid of them, having:

F = mr̈ (2.25)
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Chapter 3

Mathematical model of the
microswimmer

3.1 Kinematic model
A rigid body is characterized by the fact that the distance between two points within it
remains constant. Moreover, its motion is composed by a translation, which can be specified
by giving the coordinates of the point of interest, such as the origin G, and a rotation tensor
Q which depicts the body configuration in the Euclidean space.
Let us set an orthogonal coordinate system fixed on the microswimmer, known as "body
frame", whose origin is in O, at the intersection between the hull and the two axes of
symmetry of the propulsion system, as shown in the figure 1.2 b). The basis of this
coordinate system is indicated by the unit vectors {êÍ

1, ê
Í
2, ê

Í
3}. Consider this as a time-

independent coordinate system which moves as one with the body. Now, let us introduce
another orthogonal reference frame, with origin in G called "lab frame", which is time-
dependent, with unit vectors {ê1(t), ê2(t), ê3(t)}. It is important to underline that the
basis vectors of the body frame are parallel to the principal axes of inertia. This means
that we are able to write the inertia tensor in a diagonal form along the microswimmer’s
body frame basis.
Mathematically speaking, we can represent this change of frame by the following relation

êi(t) = Q(α(t))êÍ
i ∀ i = 1, 2, 3 (3.1)

where α(t) = [φ(t), θ(t), ψ(t)] is the vector containing the Euler angles and describes how
the body frame is positioned in the Euclidean space with respect to the lab frame. The
tensor Q must belong to the subgroup of the orthogonal group O(3):

SO(3) := {Q ∈ R3,3 | QQT = QTQ = I, det(Q) = 1}. (3.2)
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The tensor Q is composed of three rotations: first, by an angle φ around the unit vector
êÍ

3, followed by a rotation θ around the unit vector êÍ
1 and finally by ψ around êÍ

3 again.
In literature this choice is indicated as ZXZ convention. By bearing in mind that the
decomposition of tensor Q into three rotation matrices is not a unique choice, we followed
[11] to get

Q(φ, θ, ψ) =

cφcψ − sφcθsψ −cφsψ − sφcθcψ −sφsθ
sφcψ + cφcθsψ −sφsψ + cφcθcψ −cφsθ

sθsψ sθcψ cθ

 (3.3)

where the temporal dependency is omitted to simplify to a shorthand notation.
Furthermore this tensor is function of a scalar value t ∈ R+, hence differentiating with
respect to time, the first condition that characterize the space defined in (3.2), one has

Q̇QT + QQ̇T = O (3.4)

where O is the tensor of zero elements. In (3.4) it is possible to rename the first of the two
matrices product as

� = Q̇QT (3.5)

This is a skew tensor that guarantees for each vector v the following property

�v = Ω × v (3.6)

where Ω = [Ω1,Ω2,Ω3] is the axial vector associated to the matrix � which can be written
as

� =

 0 −Ω3 Ω2
Ω3 0 −Ω1

−Ω2 Ω1 0

 (3.7)

thus, � can be defined by three parameters, called angular velocities of G, which are assumed
to be coincident with Ωhull = [Ωh,1,Ωh,2,Ωh,3]T ∈ R3, i.e. the angular velocities of the hull
system, illustrated in 3.1.
From the knowledge of Ωhull, through (3.5), we can estimate the Euler angles solving the
ordinary differential equation for the rotation of a body

Q̇rÍ
i = Q̇QTQrÍ

i = �QrÍ
i = Ωhull × QrÍ

i (3.8)

where rÍ
i ∈ R3 is the hull’s arm length expressed in the body frame O and showed in

figure 1.2.
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It is convenient to assume that the body frame O coincides with the initial configuration
of B(t) ≡ B(t = 0) and the lab frame is evolving in time with respect to this one through
the map formalized in (2.5). A classical law, valid for rigid body approximation only, is
used in order to describe such unknown function, i.e.

OPi(t) = OG(t) + Q(α(t))rÍ
i ∀i = 1, . . . , 4 (3.9)

Figure 3.1 shows a sketch of the problem: in the kinematic analysis it is possible to neglect
masses and shapes which do not account of the position and velocities of the system, so
the microswimmer is described through stiff rods instead of its real geometry and the con-
siderations that follows are valid with respect to the reference systems described previously.

Figure 3.1: Kinematic model of the swimmer - the green represents Bhull and the red BPi

3.1.1 Hull system kinematic

For ease of notation we rename OPi(t) = pi(t) ∈ R3 the vector that describes the location
of the point located on the hull’s extremity, where pi ∈ Bhull(t) and OG(t) = G(t) ∈ R3 to
identify the position of the center of gravity in the lab frame. Equation (3.9) becomes

pi(t) = G(t) + Q(α(t))rÍ
i ∀i = 1, . . . , 4 (3.10)

For what concerns the center of gravity we want to remark that in the whole thesis it is
assumed to be coincident with the intersection point between the ellipsoid and the four
rods. In reality, this is not true, as a matter of fact the dimensions and orientation of the
propellers influence the position of the center of mass by lowering it along the same axis,
due to the symmetrical setting of the propellers.

G(t) = Ghull(t) +
q4
i=1 GPi(t)

2 ≈ G (3.11)

where Ghull is the hull’s center of mass and GPi is that of the i−th propeller. The reality
is slightly different but in this first approximation we are satisfied with such hypothesis.
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Figure 3.2: Rototranslation of Bhull over a period of time ∆t

The microswimmer kinematics involves angular and translational velocity for all body parts,
then to describe its motion we need to identify both sources. Deriving equation (3.10) we
get the velocity of a point which lies in the hull’s extremity

ṗi(t) = UPi(t) = Ġ(t) + Q̇(α(t))rÍ
i = Ġ(t) + �QrÍ

i = Ġ(t) + Ωhull(t) × QrÍ
i (3.12)

Through this formula it is possible to conclude that the translational velocity of the center of
gravity is Ġ(t), while elements which do not stand along the z−axis also have a contribution
which is directly proportional to their distance from it, related with the angular velocity of
the hull Ωhull. It is pointed out that this latter enrichment is the maximum for the chosen
point pi.

3.1.2 Propellers system kinematic

Since all the propellers are identical, we can restrict our attention to only one of them
and extend the reasoning to the others. The propeller can rotate only along z̃−axis with
angular velocity ω(t) and it moves jointly with the hull because it is connected to the
extremity point pi. Each propeller has its own reference system centered in Op with axes
directed along ẽi and its spatial orientation is fully described by tensor Qp which has the
same properties of Q, but represents only a z̃− rotation. It must be remarked that z̃ and
z are parallel at each time.

ωi(t) = dβi
dt
ẽ3(t) = ωiQpẽ

Í
3 (3.13)

where βi is the angle associated to ωi, which represents the angular velocity from the lab
frame point of view, and it is a model parameter. Finally, the whole kinematics of B(t) is

10



Figure 3.3: Rotation of the propeller over a period of time ∆t

described in the next section for a full comprehension of the kinematics, providing velocities
relations of the individual parts with respect to each other.

3.1.3 Composite kinematics

Choosing a generic point qi on the i−th propeller we can estimate its initial position with
respect to the point pi previously described simply by the vector

r̃i(0) = qi(0) − pi(0) (3.14)

then we have that its position with respect to the center of gravity is given by

qi(t) = pi(t) + QQpr̃i(0) (3.15)

and remembering that the transformation from the initial state to the actual configuration
is made thanks to the application of the rotation tensors Q and Qp. Differentiating with
respect to time (3.15) we get the velocity of a generic point on the propeller

q̇i(t) = ṗi(t) + Q̇Qpr̃(0) + QQ̇pr̃(0) (3.16)

and applying to Q̇p the rule deduced in (3.8) we get the following result

q̇i(t) = ṗi(t) + Ωhull × (qi(t) − pi(t)) + ωi(t) × (qi(t) − pi(t))
11



= ṗi(t) + (Ωhull + ωi) × (qi(t) − pi(t)) (3.17)

where ωi(t) is the axial vector of Q̇pQp described in (3.13). Now, we are finally able to
exploit the total angular velocity of the propeller

Ωi = Ωhull + ωi (3.18)

3.2 Fluid model
The small size of the object and the high viscosity of the fluid in which it moves lead to a
low Reynolds regime, for which the well-known Stokes equations apply.

∇ · u(x) = 0 ∀x ∈ V\B

−∇p(x) + ν∆u(x) = 0 ∀x ∈ V\B

u(x), p(x) → 0 for ëxë → +∞

u(x) = v(q) ∀ x,q ∈ ∂B

(3.19)

where V is the volume of the fluid surrounding the body B, u(x) ∈ R3, p(x) ∈ R are the
velocity and pressure fields of the fluid, respectively, while ν ∈ R represents the viscosity,
v ∈ R3 is the velocity vector field derived in (3.12). Note that (3.19) is a linear system for
which exists a solution and it models the fluid behavior.
Now we will derive a variational formulation for the Stokes system described in (3.19) and
without loss of generality we consider unitary viscosity.
Let V = {v ∈ H1(V) : v|V = 0} and Q = {q ∈ L2(V) : q|V = 0} two Hilbert spaces
containing the test function (v, q), the variational problem can be expressed as follows, find
(u, p) ∈ V ×Q such that: 

Ú
V

∇u · ∇v dx−
Ú

V
(∇ · v)p dx = 0Ú

V
(∇ · u)q dx = 0

(3.20)

or in compact form I
a(u, v) + b(v, p) = 0
b(u, q) = 0

(3.21)

∀(v, q) ∈ V ×Q.
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3.3 Dynamic model
At this point it is mandatory to derive a method in order to compute the force and the
moment (respect to G) that the fluid applies on the body, indicated with F and N. It is
well known that this forces depends linearly from the velocities in view of Stokes hypothesis
and are highly influenced by the geometry of the solid and the fluid properties around it.
The first step is to consider a rigid sphere then, from the literature, we can writeI

F = −6πµrIU
N = −8πµr3IΩ

(3.22)

where µ is the kinematic viscosity of the fluid, r is the radius, I ∈ R3,3 is the identity tensor
applied to U ∈ R3, U = [U1, U2, U3]T the linear velocity and Ω ∈ R3, Ω = [Ω1,Ω2,Ω3]T the
angular one. It is observed that an object which translates and rotates around some axes
is affected by a hydrodynamic resistance in terms of force and torque. Since the governing
equations are linear we can decompose the problem into two simpler challenges: translation
characterized by U and rotation due to Ω. Hence we can write in a general framework the
following equation

F = −µKU (3.23)
where K is a second order symmetric matrix closely dependent from the geometry of the
body; we should call "translation tensor". The torque can be expressed as

N = −µWOΩ (3.24)

where WO is a second order symmetric matrix subsequently called "rotational tensor". The
apex O stands for the origin of the axis of rotation, so this tensor is point-dependent;
furthermore, an interesting property is that the three eigenvectors of K (WO) are parallel
to the principal axis of translational (rotational) resistance.
Real motion of a six-degree of freedom body, which is both translating and rotating, is
given by the following dynamicsI

F = −µKU − µCOΩ
N = −µCOU − µWOΩ

(3.25)

where CO is a second order non symmetric coupling tensor. It is noteworthing that it can
be symmetric in only one specific point called center of hydrodynamic reaction.
The previously discussion has a generic undertone, then we intend to explicitly derive a
representation of these tensors for our specific case and we start with a hull’s description.
The body Bhull is orthotropic i.e. has three mutually perpendicular symmetry planes.
Remembering that point G is the center of gravity of Bhull and that for centrally symmetric
bodies, such as ellipsoid, it coincides with the hydrodynamic reaction point, the tensors for
this body part can be represented as follows

K =

K11 0 0
0 K22 0
0 0 K33

 , WG =

W11 0 0
0 W22 0
0 0 W33

 , CG =

0 0 0
0 0 0
0 0 0

 . (3.26)
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As proposed in [17], to give a numerical value for the coefficients one can use

Kii = 16π 1
χ+a2

iαi
i = 1, 2, 3

W11 = 16
3 π

a2
2+a2

3
a2

2α2+a2
3α3

W22 = 16
3 π

a2
3+a2

1
a2

3α3+a2
1α1

W33 = 16
3 π

a2
1+a2

2
a2

1α1+a2
2α2

(3.27)

in which
αj =

Ú ∞

0

dλ

(a2
j + ∆(λ))

(3.28)

χ =
Ú ∞

0

dλ

∆(λ) (3.29)

where ∆(λ) =
è
(a2

1 + λ)(a2
2 + λ)(a2

3 + λ)
é
and aj stands for the semi-axis length.

Our microswimmer consists, in addition to a hull, of four identical thrusters that have been
designed taking inspiration out of nature, from bacteria’s tail such as E. coli for example,
adopting some simplifying hypothesis such as rigidity.
It is known that screwlike structures, like that of the propellers, exhibits coupling between
translation and rotation, then a reformulation of (3.26) is mandatory for all BPi, following
[18] one can write the tensors as follows

K(i)
p =

Kp,11 0 0
0 Kp,22 0
0 0 K

(i)
p,33

 , WGp,(i)
p =

Wp,11 0 0
0 Wp,22 0
0 0 W

(i)
p,33

 ,

CGpp =

 Cp,11 Cp,12 0
−Cp,21 Cp,22 0

0 0 Cp,33

 . (3.30)

where the subscript p is added in order to identifying the belonging to the propeller.
The differences between these and those described in (3.26) consist in the numerical values
and in the structure of the coupling tensor, that here, is non zero.
In fact these are deduced for bodies which have a helicoidal symmetry about one axis,
coincident with ẽ3(t), and the coupling and rotational dyadic are computed with respect
to the center of gravity of the propeller. As previously specified every body posses a
particular point, called center of hydrodynamic reaction, R, where the coupling tensor
becomes diagonal

CR,(i)p =

Cp,11 0 0
0 Cp,22 0
0 0 Cp,33

 . (3.31)
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The reader is addressed to [20] in order to understand where the formula (3.32) used to
compute such a point comes from

R − G =
Cp,32 − Cp,23

Kp,2 +Kp,3
ẽ1 +

Cp,13 − Cp,31

Kp,1 +Kp,3
ẽ2 +

Cp,21 − Cp,12

Kp,2 +Kp,1
ẽ3 (3.32)

where Ki is the i−th eigenvalue and ẽi represent the associated eigenvectors of K(i)
p , while

Cp,ij are the coefficients of the coupling tensor computed with respect to the center of mass
of the propeller, Gp.

Once we have these coefficients it is possible to solve the dynamics, after understand-
ing how the generalized hydrodynamic forces f , τ are produced by each part of the body.
Consistently with [1] we emphasize the relationship between these and the variables which
define the thrust and the torque using the linear maps f ,n,fp,np

fhull = f
!
K,CG,Q, Ġ,Ωhull

"
τ hull = n

!
WG,CG,Q, Ġ,Ωhull

"
f (i) = fp(K(i)

p ,C
R,(i)
p ,Q, Ġ,Ωhull, r(i),ωi

"
∀i = 1, . . . , 4

τ (i) = np(W
Gp,(i)
p ,CR,(i)p ,Q, Ġ,Ωhull, r(i),ωi

"
∀i = 1, . . . , 4

(3.33)

Combining (3.33) with the set of kinematic equations derived before, one get the formula-
tions for the thrust and the torque in each body part produced by the motion expressed in
(2.8), into the fluid

fhull = KĠ(t) + CGΩhull

τ hull = CGĠ(t) + WGΩhull

f (i) = K(i)
p

1
Ġ(t) + Ωhull × QrÍ

i

2
+ CR,(i)p Ωi ∀i = 1, . . . , 4

τ (i) = CRp
1
Ġ(t) + Ωhull × QrÍ

i

2
+ WGp,(i)

p Ωi ∀i = 1, . . . , 4

(3.34)

where f (i) represents the force exerted by the propeller i−th, τ (i) is the moment computed
with respect to z̃ẽ3 axis passing through G(i)

p ; note that there is a first difference with [22] in
the linear term associated to the translational velocity in both f (i), τ (i) due to the distance
from G of the propellers. The first two equations represent the force and the torque, with
pole in G, exerted only by the hull system.
Now we try to isolate the unknowns in order to solve the system, then calling

Ωhull × QrÍ
i = A(i)ri (3.35)
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and computing L(i)
k = K(i)

p A(i), L(i)
c = CR,(i)p A(i) , it is possible to write more compactly

f (i) = K(i)
p Ġ(t) + L(i)

k Ωhull

translational contribution

+ CR,(i)p
,TΩi

rotational contribution

∀i = 1, . . . , 4

τ (i) = CR,(i)p Ġ(t) + L(i)
c Ωhull

translational contribution

+ WGp,(i)
p Ωi

rotational contribution

∀i = 1, . . . , 4
(3.36)

recovering the equations structure proposed by Puercell in [3] but with a subtle difference
in the term related to linear velocity due to non coaxial position of the propellers.
A compact formulation of (3.34) is then proposed in order to guarantee a decoupling
between the unknowns and the coefficients of the resistance matrices, hence

C
fhull
τ hull

D
=

C
K CG

CG WG

D C
Ġ

Ωhull

D
C
f (i)

τ (i)

D
=

 K(i)
p L(i)

k + CR,T,(i)p

CR,(i)p L(i)
c + WGp,(i)

p

 C
Ġ

Ωhull

D
+

 CR,(i)p

WGp,(i)
p

ωi ∀i = 1, . . . , 4
(3.37)

Since we are working in a low Reynolds regime, the total force F and torque N, acting on
the whole body, B, are zero, this is an approximation due to the fact that inertial terms
are negligible than viscous one, so the second member of the balance laws (2.16),(2.25) can
be overlook leading to the total forces balance on the whole body B

F = fhull +
q4
i=1 f (i) = 0

N = τ hull +
q4
i=1

3
τ (i) + b(i)

4
= 0

(3.38)

where b(i) = r(i) × f (i) is added in order to consider also the contribution to the moment,
respect to G, of the force generated by the i−th propeller; note that r(i) = QrÍ

i represents
the arm length in the lab frame system.
If (3.37) is replaced into (3.38), the equations of motion are obtainedC

K CG

CG WG

D C
Ġ

Ωhull

D
+

4Ø
i=1

 K(i)
p L(i)

k + CR,T,(i)p

CR,(i)p L(i)
c + WGp,(i)

p

 C
Ġ

Ωhull

D
+

 CR,(i)p

WGp,(i)
p

ωi+
C

0
b(i)

D
=

C
0
0

D
(3.39)

and exploiting the vector [0,b(i)]T in (3.39)

0T

∆r(i)
1

I q3
n=1

è!
[K(i)

p ]3,n − [K(i)
p ]2,n

"
Ġn +

!
[L(i)

k ]3,n + [CR,(i)
p ]3,n − [L(i)

k ]2,n − [CR,(i)
p ]2,n

"
Ωh,n +

!
[CR,(i)

p ]3,n − [CR,(i)
p ]2,n

"
ωn

éJ

∆r(i)
2

I q3
n=1

è!
[K(i)

p ]1,n − [K(i)
p ]3,n

"
Ġn +

!
[L(i)

k ]1,n + [CR,(i)
p ]1,n − [L(i)

k ]3,n − [CR,(i)
p ]3,n

"
Ωh,n +

!
[CR,(i)

p ]1,n − [CR,(i)
p ]3,n

"
ωn

éJ

∆r(i)
3

I q3
n=1

è!
[K(i)

p ]2,n − [K(i)
p ]1,n

"
Ġn +

!
[L(i)

k ]2,n + [CR,(i)
p ]2,n − [L(i)

k ]1,n − [CR,(i)
p ]1,n

"
Ωh,n +

!
[CR,(i)

p ]2,n − [CR,(i)
p ]1,n

"
ωn

éJ


(3.40)
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It is necessary to clarify the notation used above, the index i indicate the i−th hull’s
arm and [ · ]m,n stands for the component (m,n) of the generic tensor. Furthermore
∆r(i)

1 = r
(i)
2 − r

(i)
3 , ∆r(i)

2 = r
(i)
3 − r

(i)
1 , ∆r(i)

3 = r
(i)
1 − r

(i)
2 are constant values, so take

advantage of linear algebra is it possible to represent b(i) ∈ R3 as M(i)x + N(i)ωi = b(i).
This allow us to separate the unknowns x = [Ġ,Ω]T ∈ R6 from the coefficients recovering
a formulation similar to (3.37) also for the last term in the first member of (3.39)C

0
b(i)

D
=

C
O O

M(i)
1 M(i)

2

D C
Ġ

Ωhull

D
+

C
O

N(i)

D
ωi (3.41)

where M(i)
1 ∈ R3,3 and M(i)

2 ∈ R3,3 are such that M(i) = [M(i)
1 ,M(i)

2 ]T , N(i) ∈ R3,3 and O ∈ R3,3

is the tensor with all zeros. For a whole comprehension about the role of these matrices,
their full structure is reported below; showing that physically these are function of the
previous tensors and all the components depend on r(i). This is confirmed by the fact that
when r(i) is zero, there is no torque component in this sense, and therefore these dyadics
do not exist. We can highlight the influence of the eccentricity ê = |∆ri| = 40 mm

M(i)
1 = ê


([K(i)

p ]3,1 − [K(i)
p ]2,1) ([K(i)

p ]3,2 − [K(i)
p ]2,2) ([K(i)

p ]3,3 − [K(i)
p ]2,3)

([K(i)
p ]1,1 − [K(i)

p ]3,1) ([K(i)
p ]1,2 − [K(i)

p ]3,2) ([K(i)
p ]1,3 − [K(i)

p ]3,3)

([K(i)
p ]2,1 − [K(i)

p ]1,1) ([K(i)
p ]2,2 − [K(i)

p ]1,2) ([K(i)
p ]2,3 − [K(i)

p ]1,3)

 (3.42)

N(i) = ê


([CR,(i)p ]3,1 − [CR,(i)p ]2,1) ([CR,(i)p ]3,2 − [CR,(i)p ]2,2) ([CR,(i)p ]3,3 − [CR,(i)p ]2,3)

([CR,(i)p ]1,1 − [CR,(i)p ]3,1) ([CR,(i)p ]1,2 − [CR,(i)p ]3,2) ([CR,(i)p ]1,3 − [CR,(i)p ]3,3)

([CR,(i)p ]2,1 − [CR,(i)p ]1,1) ([CR,(i)p ]2,2 − [CR,(i)p ]1,2) ([CR,(i)p ]2,3 − [CR,(i)p ]1,3)


(3.43)

Finally it is possible to rewrite the equations of motion as follows

5
K CG

CG WG

6 C
Ġ

Ωhull

D
Bhull contribution

+
4Ø
i=1

C
K(i)
p L(i)

k + CR,(i)p

CR,(i)p L(i)
c + WGp,(i)

p

D C
Ġ

Ωhull

D
+

 CR,(i)p

WGp,(i)
p

ωi
BP i contribution

+ ê

C
O O

M(i)
1 M(i)

2

D C
Ġ

Ωhull

D
+ ê

C
O

N(i)

D
ωi

eccentricity torque only contribution

=
C
0
0

D
(3.44)

which show the three different contributions to the system dynamics.
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3.3.1 Constrained dynamics

In this section a simplification of the earlier dynamic model is presented, in order to get
a feedback on its validity, it is compared with the model proposed by DeSimone et al. in
[22], where a microrobot with one coaxial propeller is designed. The simplification consists
in a reduction from six degrees of freedom to two due to the application of constraints to
the motion along ê1 and ê2 axes; leading the microswimmer to translate and rotate only
along ê3 axis. The aforementioned hypothesis simplifies a lot (3.44) enabling to find the two
scalar unknowns Ωhull,3 and Ġ3 without numerical computation. We proceed by writing
the equations of motion with respect to the third componentI

(F)3 = (fhull)3 +
q4
i=1(f (i))3 = 0

(N)3 = (τ hull)3 +
q4
i=1(τ (i) + b(i))3 = 0

(3.45)

this can be expanded as done in the previous sectionC
0
0

D
=

C
K33 0

0 W33

D C
Ġ3

Ωh,3

D
+

4Ø
i=1

C
K

(i)
p,33 L

(i)
k,33

+ C
R,(i)
p,33

C
R,(i)
p,33 L

(i)
c,33 +W

(i)
p,33

D C
Ġ3

Ωh,3

D
+

4Ø
i=1

C
C
R,(i)
p,33

W
(i)
p,33

D
ωi,3

+
4Ø
i=1

C
0 0

M
(i)
1,33 M

(i)
2,33

D C
Ġ3

Ωh,3

D
+

4Ø
i=1

C
0

N
(i)
33

D
ωi,3 (3.46)

The solution of system (3.46) is given by
Ġ3 =

q4
i=1 χ

(i)
33 Π(i)

33 −
q4
i=1C

R,(i)
p,33 S

(i)
33 −W33

q4
i=1C

R,(i)
p,33

T
(i)
33 (W33 +

q4
i=1 S

(i)
c,33) −

q4
i=1 χ

(i)
33 Γ(i)

33

q4
i=1 ωi,3

Ωh,3 =
q4
i=1 T

(i)
33 Π(i)

33 −
q4
i=1C

R,(i)
p,33 Γ(i)

33

−T (i)
33 (W33 +

q4
i=1 S

(i)
c,33) +

q4
i=1 χ

(i)
33 Γ(i)

33

q4
i=1 ωi,3

(3.47)

where the below rearrangement of the terms is necessary due to the length of the formula:

χ(i)
33 = L

(i)
k,33

+ CR,(i), Π(i)
33 = W

(i)
p,33 +N

(i)
33 ,

S
(i)
33 = L

(i)
k,33

+W
(i)
p,33 +M

(i)
1,33 +M

(i)
2,33 ,

T
(i)
33 = K33 +

q4
i=1K

(i)
p,33 ,

S
(i)
c,33 = L

(i)
c,33 +W

(i)
p,33 +M

(i)
1,33 +M

(i)
2,33 ,

Γ(i)
33 = C

R,(i)
p,33 +M

(i)
1,33 .
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It is stressed that if we set to zero all the arms r(i) the second line of (3.46) and the
coefficients L(i)

k , L
(i)
c disappear, then the equation becomes similar to that obtained in [22]

for microswimmer with only one coaxial helice.C
0
0

D
=

C
K33 0

0 W33

D C
Ġ3

Ωh,3

D
+

4Ø
i=1

C
K

(i)
p,33 C

R,(i)
p,33

C
R,(i)
p,33 W

(i)
p,33

D C
Ġ3

Ωh,3

D
+

4Ø
i=1

C
C
R,(i)
p,33

W
(i)
p,33

D
ωi,3 (3.48)

the first term represents the contribution of Bhull in terms of translational and rotational
velocities of the hull, the second is the supplement to the translational motion of the
body due to the propellers and the last one refers to them but consists in their rotational
contribution due to angular velocity ωi. The solution of system (3.48) is given by

Ġ3 = −
W33

q4
i=1C

R,(i)
p,33

(K33 +
q4
i=1K

(i)
p,33)(W33 +

q4
i=1W

(i)
p,33) −

q4
i=1C

R,2,(i)
p,33

q4
i=1 ωi,3

Ωh,3 =
(K33 +

q4
i=1K

(i)
p,33)

q4
i=1W

(i)
p,33 −

q4
i=1C

R,2,(i)
p,33

−(K33 +
q4
i=1K

(i)
p,33)(W33 +

q4
i=1W

(i)
p,33) +

q4
i=1C

R,2,(i)
p,33

q4
i=1 ωi,3

(3.49)

and a numerical method in order to derive the coefficients of the previous tensor is proposed
in the next chapter, remembering that here the additivity approximation was used, i.e. we
had sum the resistance coefficients in view of neglecting of interactions hypothesis between
the hull and the propellers.
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Chapter 4

Numerical methods

To solve (3.44), we first need to determine the coefficients of the matrices of the system
itself. For this purpose, we use FEniCSx, a widespread open-source computing platform
that enables the user to solve partial differential equations by quickly translating scientific
models into efficient finite element code [34, 37]. To start off, we developed a FEniCSx script
aimed at simulating a Stokesian flow around the head of the microswimmer, and then on
the propellers, individually, in view of the additivity assumption. The mathematical model
considered in the simulations is the one described by (3.21) and implemented with the mini
elements technique.

4.1 Mini-Elements for Stokes problem
The mini finite element was first introduced by Arnold, Brezzi and Fortin, specifically
conceived for the discretization of the Stokes problem. Let Th = {T ∈ Th : T ⊂ V/B} be
an admissible family of triangulation on the entire domain and let us define the discrete
functional spaces:
Vh = {vh ∈ C0(T ) : vh ∈ P1+3 ∀T ∈ Th} and Qh = {qh ∈ C0(T ) : qh ∈ P1 ∀T ∈ Th}.
It is possible to formulate velocity and pressure functions for the mini-elements as follows
vh = vl + vb, where vl is a piecewise-linear function (P1) and vb is a cubic function (P3);
qh = ql, where ql is piecewise-linear function. It is noteworthy that this enrichment to
the velocity, due to the "bubble" term vb, has a stabilization function and is not properly
aimed at improving the accuracy of the approximation of the real velocity field vl. This
implementation leads to a stable and convergent approximation of the Stokes problem as
demonstrated in [23], with a strong reduction in computational costs.
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4.1.1 Code validation

To test our code, we first simulated a flow in free field with longitudinal inlet velocity,
directed along the z axis, for two different geometries: a sphere and an ellipsoid. Both
geometries can move within the domain, hence our flow field can be written as follows:

U(x) = u(x) + v(x) (4.1)

where u(x) describes the velocity field, assumed to be fully known, and which we refer to
as background flow; v(x) is the disturbance flow due to the moving particle which has the
following affine structure

v(x) = vt + ω × r (4.2)

where vt = (vx, vy, vz), ω = (ωx, ωy, ωz) are the translational and rotational velocity,
respectively.
The table below shows how boundary conditions are imposed in every part of the domain
when the background flow is assumed to be zero:

Inlet velocity Wall conditions Outlet pressure Particle velocity
Case I vt = (0, 0, 0) vt = (0, 0, 0) or p = 0 0 (-1,0,0) & w = 0
Case II vt = (0, 0, 0) vt = (0, 0, 0) or p = 0 0 (0,-1,0) & w = 0
Case III vt = (0, 0, 0) vt = (0, 0, 0) or p = 0 0 (0,0,-1) & w = 0
Case IV vt = (0, 0, 0) vt = (0, 0, 0) or p = 0 0 vt = 0 & wx × r
Case V vt = (0, 0, 0) vt = (0, 0, 0) or p = 0 0 vt = 0 & wy × r
Case VI vt = (0, 0, 0) vt = (0, 0, 0) or p = 0 0 vt = 0 & wz × r

Table 4.1: Boundary conditions: linear and angular velocities are expressed in [m/s] and
[1/s], respectively. Pressure is specified in [Pa]

In order to obtain all velocity fields we have to perform six simulations by referring to the
parameters in table 4.1 above, one for each axis direction and each velocity condition. It is
important to note that the boundary conditions on the wall were first set with zero velocity
and then with zero pressure. This procedure aims to numerically calculate the resistance
coefficients and compare them with known values from literature. It is important to point
out that the values which we refer to are calculated in zero flow conditions throughout the
whole domain, in fact the main aim of the simulation is to make sure that the presence
of the computational domain does not significantly affect the accuracy of the numerical
prediction of viscous forces and torques on the swimmer.
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In view of simulating a free flow without the disturbance induced by the boundaries, a
ratio R/r = 80 is adopted, where R = 4 · 103 mm, r = 50 mm are the radii of the cylinder
and the sphere, respectively. The dimensions of the ellipsoid are a1 = a2 = 50 mm and the
longitudinal semi-axis along ê3 measures a3 =150 mm.

Figure 4.1: Validation domain - Sphere & Ellipsoid

The mesh consists of tetrahedral elements with a much better refinement around the area
adjacent to the particle, in order to better capture the phenomenology in this region, see
figure 4.2. In order to choose an appropriate mesh for the simulations a quick study on the

Figure 4.2: Mesh refinement around the particle

influence of the number of elements is performed on both geometries. The quality check of
the mesh is possible thanks to the interface of GMSH which provides three parameters and
the intervals in which they must lie in order to evaluate its goodness. This procedure is
important in order to obtain a reliable simulation, but it is out of scope for this work, hence
we do not study the influence of these parameters and limit the analysis to the number of
elements. Figure 4.5 shows the comparison between analytical and numerical results with
respect to this number. This analysis, performed on both geometries, gives for the ellipsoid
the best outcome with a finer mesh, while, with regard to the sphere, the simulations
give optimal results for the translational coefficients using a coarser mesh, whereas for the
rotational coefficients a good approximation is obtained with a finer mesh instead.
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Figure 4.3: Convergence vs num of elements for the two different wall boundary conditions

The analytical coefficients are calculated from the formulae below, as exploited in [16],
where Ô =

ò
1 − a1

a3
and the superscripts ”s” and ”e” stand for sphere and ellipsoid, respec-

tively. 

Ks
ii = 6πµr ∀i = 1, 2, 3

W s
ii = 8πµr3 ∀i = 1, 2, 3

Ke
ii = 6πµa3

16
3 Ô

3
5
2Ô+ (3Ô2 − 1)log

11 + Ô

1 − Ô

26−1
∀i = 1, 2

Ke
33 = 6πµa3

8
3Ô

3
5

− 2Ô+ (Ô2 + 1)log
11 + Ô

1 − Ô

26−1

W e
ii = 8πµa3

3
4
3Ô

3(2 − Ô2)
5

− 2Ô+ (1 + Ô2)log
11 + Ô

1 − Ô

26−1
∀i = 1, 2

W e
33 = 8πµa3

3
4
3Ô

3(1 − Ô2)
5
2Ô− (1 − Ô2)log

11 + Ô

1 − Ô

26−1

(4.3)
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Table 4.4 contains the coefficients and the relative error with respect to the analytical data
in the case of a 50Í000 elements mesh, for both the cases of null velocity (third column)
and null pressure (last column) on the wall domain.

Analytical Numerical Error L1 Numerical Error L1

Ks
11 1.404029 1.3494 0.0389 1.316514 0.0623

Ks
22 1.404029 1.3537 0.0358 1.304382 0.0710

Ks
33 1.404029 1.3593 0.0319 1.339157 0.0462

W s
11 4680.97 5190.05 0.1088 5138.41 0.0977

W s
22 4680.97 5191.36 0.1090 5156.52 0.1016

W s
33 4680.97 5188.52 0.1084 5150.36 0.1003

Ke
11 2.42616 2.32016 0.0437 2.24684 0.0739

Ke
22 2.42616 2.31902 0.0442 2.22362 0.0835

Ke
33 1.97237 2.00600 0.0171 1.99163 0.0098

W e
11 32873.3 32298.83 0.0175 32296.25 0.0176

W e
22 32873.3 32300.51 0.0174 32297.26 0.0175

W e
33 10505.5 11026.29 0.0468 12054.58 0.0464

Table 4.2: Resistance coefficients, units: K [kg/s], W [kg·mm2/s] the first numerical result refers to null
velocity condition at the walls while the second to null pressure

From a numerical point of view, the coupling coefficients, which correspond to the entries
of the tensor CR, are less than the other entries, in fact the maximum value reached is
C15 = 1.17[kg · mm/s]. This can be attributed to a use of a quite coarse mesh, because
of the large computational cost of simulations, so we will have to return to this aspect in
the future to clarify this numerical limit. Note that this aspect will affect the calculation
of trajectories. In the following pages the velocity streamlines and pressure contours are
shown (see figures (4.4), (4.5) and (4.6)). These plots provide further confirmation that the
simulations returns sensible values. Moreover, several works are readily available in liter-
ature for both a spherical shape and an ellipsoidal one, where typical velocity streamlines
and pressure contours are examined [38, 39]. By comparing these works with our results,
we found strong correspondences as far as the results shown are concerned. The left side of
figures 4.4, 4.5, 4.6 and 4.7 is relative to the sphere, while on the right we have the results
for the ellipsoid. Both cases refer to the free flow domain and for the standard case flow
past a sphere, with unitary inlet velocity only along z−axis i.e. (0, 0, 1).
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Figure 4.4: Normalized velocity streamlines - translation along x

Figure 4.5: Pressure contours - translation along x

In reference to the free flow condition with zero velocity everywhere, the streamlines have
the typical pattern with recirculating regions, on the other hand when a null pressure is
imposed at the wall no recirculation occurs. For what concerns the pressure contours they
qualitatively found confirmation in literature. Also in a quantitative way we guess a lower
pressure in the ellipsoid rather than the sphere due to its wider section.
Finally, figure (4.7) depicts the typical benchmark case, in which the no-slip condition is
applied on the particle, here, the streamlines around it match what we expect from the
theory. The first thing to note is that for these very small Reynolds numbers the pattern
of the flow is symmetrical front to back.

However, better results in terms of agreement between numerical and analytical results,
i.e. the maximum error was significantly reduced, were achieved by simulating with a mesh
made up of about 350Í000 cells.
Because of the expensive computational cost in terms of simulation time, this arrangement
was initially excluded, and a coarser mesh was preferred instead. For completeness, in table
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Figure 4.6: Normalized velocity contours - translation along x

Figure 4.7: Velocity streamlines & pressure contours - no-slip condition

(4.3) we report the results obtained with the finer mesh only for the ellipsoidal shape.

Analytical Numerical Error
Ke

11 2.42616 2.4317 0.0023
Ke

22 2.42616 2.4282 8 · 10−4

Ke
33 1.97237 2.0246 0.0265

W e
11 32873.3 32360.03 0.0162

W e
22 32873.3 32342.20 0.0174

W e
33 10505.5 10727.87 0.02

Table 4.3: Resistance coefficients, for the ellipsoid with fine mesh with 350’000 elements
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4.1.2 Propeller coefficients computation

In this section we report an experimental study of the flow field and the computations
of the propeller hydrodynamic resistance coefficients. First of all we are interested in
understanding how propulsion can arise using such a type of propeller. An interesting and
useful result which states that a rod dragged along its axis at velocity v feels a resisting
force proportional to −v, that is also directed along the axis.
A rod dragged perpendicular to its axis feels a resistive force also proportional to −v, that
is, directed perpendicular to the axis, but with a larger constant of proportionality [29].
This concept is clarified in a simple manner by the illustration (4.8):

Figure 4.8: Forces acting on a moving rod at low Reynolds, figure taken by [29]

In 1973, H. Berg and R. Anderson argued that bacteria cranked their flagellum at its base
in a rigid rotary motion leading to a propulsive force which pulls (or pushes) their body in
a certain direction. Substantially, the direction of the motion is an information coming a
priori from the propeller chirality. Mathematically, changing the chirality leads to a change
in the sign of the so-called coupling tensor C, which is different from zero for our geometry
due to the fact that the net drag force is not anti-parallel to v. In order to compute
the coefficients of matrix C for a helical propeller, which is not an easy task for complex
geometries such as this one, we develop a program and then compare the generated flow
fields with the ones obtained in [30]. We perform the simulation over both left and right-
handed helix with length 200mm, pitch 53mm and radius 8.5mm. The rotational velocity
is set to a constant value and the computational domain is large enough for the free flow
approximation to be valid, as did in the validation section. A fine mesh with roughly
350Í000 elements is adopted.

Figure 4.9: Helix mesh representation in GMSH
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The coefficients are extrapolated from the knowledge of the fluid field solutions through
the formula below, as reported in [22]:

Ki,j =
Ú

V
Dui ·Duj dx (4.4)

where the subscript i, j are representative for the i, j-th experiments and vary from one to
six while the operator D stands for the symmetric part of the gradient. More explicitly, we
can write the coefficients as follows:

Ki,i =
Ú

V
Dui ·Dui dx ∀i = 1, 2, 3

Wj,j =
Ú

V
Duj ·Duj dx ∀j = 4, 5, 6

Ci,j =
Ú

V
Dui ·Duj dx

(4.5)

highlighting the three different resistive contributions to the motion: translational, rota-
tional and coupling. The matrices below contain the numerical values of this coefficients,
expressed in [kg/s],[kg ·mm2/s] and [kg ·mm/s] for the cases in which the propeller rotates
clockwise and is a left-handed rigid helix (4.6) or a right-handed (4.7):

C
Kp CTp
Cp Wp

D
=



0.8471 0.0026 0.0043 −0.24 −10.51 0.21
0.0026 0.8475 −0.0048 10.08 −0.3729 0.2685
0.0043 −0.0048 0.7483 0.34 −0.7545 0.6887
−0.24 10.08 0.34 4798.98 6.0257 84.15
−10.51 −0.3729 −0.75 6.02 4784.29 138.04

0.21 −0.75 0.6887 84.15 138.04 178.82


. (4.6)

C
Kp CTp
Cp Wp

D
=



0.82222 0.0021 0.0024 0.2958 −8.1475 −0.0749
0.0021 0.82222 0.0058 8.4475 0.3364 0.1592
0.0024 0.0058 0.7250 −0.2595 −0.7023 −0.6924
0.2958 8.4475 −0.2595 4538.20 −29.43 69.45

−8.1475 0.3364 −0.7023 −29.43 4485.53 131.77
−0.0749 0.1592 −0.6924 69.45 131.77 173.37


. (4.7)

The structure of the matrix displays some symmetry properties, as expected, and the sign
of the elements depends on the direction of the angular velocity. We want to investigate
the flow behaviour in order to qualitatively compare the two type of propellers. In the next
page our results are shown choosing the XZ as sectioning plane.
Figure (4.10) shows the streamlines near a left-handed propeller when it rotates in free-flow
condition. They tangle around it, as expected when an object rotates within a viscous fluid.
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Figure 4.10: Velocity streamlines

Figure 4.11: Pressure contours [MPa]

In (4.11) the pressure contours are shown, in both cases of anti-clockwise and clock-wise
direction of angular velocity, highlighting how high and low pressure areas, rightly, alternate
as described in [31]. In figure (4.12) the axial velocity, i.e. the z component, is shown,
demonstrating the downward and upward motion of the fluid as [32] proposes.
In order to have a full comparison with this last article we add to (4.12) other two results,
depicted in (4.17) and (4.14) which illustrate the transverse velocity of the flow, along x-
axis and the vector field around the helix, in anti-clockwise and clockwise cases.
The directions of the arrows in the two cases are graphically the same, but from the legend
it is clear that one has a positive sign and the other is negative. Hence, it can be concluded
that the motion occurs in opposite directions, as rightly predicted by the theory, see [33].
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Figure 4.12: z component of velocity [mm/s]

Figure 4.13: x component of the velocity [mm/s]

In the table below, we compare our numerical results, in terms of velocity and pressure,
with those obtained by [31], where a similar simulation has been performed.

Siva Kumar et al Thesis
ω 1.57 rad/s 1 rad/s

r 22.7 · 10−3 m 8.5 · 10−3 m

L 200 · 10−3 m 220 · 10−3 m

λ 66 mm 53 mm

vz,max 0.0127 m/s 0.0012 m/s

pmax 0.1 MPa 2.1 MPa

Table 4.4: Numerical comparison. ω is the angular velocity, r, L, λ are the helix radius, the length and
the pitch, respectively.
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Figure 4.14: Velocity vector field [mm/s]

Finally, the influence of the chirality of the propellers has been studied. For this purpose,
a right-handed helix was built with the same parameters used in the previous model, and
the same simulations were performed. What emerges is that changing the chirality alters
the direction of the speed and, therefore, also the resulting thrust will induce a motion in
the opposite direction. This is also reflected in the coefficients of the resistance matrix,
which are very close to those of the left-handed helix but with opposite sign.

Figure 4.15: z component of the velocity [mm/s]

Note that we have presented both the cases of anti-clockwise and clockwise rotation. The
velocity fields obtained are opposite to each other, hence if we consider two propellers with
the same chirality which rotates in opposite direction the total sum of the thrust is zero.
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Figure 4.16: x component of the velocity [mm/s]

4.1.3 Hull coefficients computation

As already described in the main introduction, the hull is the head of the microswimmer.
Below, for thoroughness, we report its mesh as previously done for the helix:

Figure 4.17: mesh details for the hull body

C
K CT

C W

D
=



2.3795 0.0283 0.0063 1.4093 17.27 0.0836
0.0283 2.3885 0.0020 −12.95 1.063 0.3433
0.0063 0.00204 2.0421 −0.1791 0.547 −0.0272
1.4093 −12.95 −0.1791 35283.06 54.08 3.2939
17.27 1.0633 0.547 54.08 35398.22 17.01
0.0836 0.3433 −0.027 3.293 17.01 11246.48


. (4.8)

Again, we expect to find a symmetric matrix whose diagonal elements are very close to
those of the ellipsoid, but different from zero elsewhere, albeit always small with respect
to the rotational ones. Now, we have all the elements to solve (3.44) and compute the
velocities of the micro-robot Ġ, Ωhull. In figure 4.18 below, a qualitative view of what
happens in terms of streamlines during a translational and a rotational motion, both along
the z axis, is shown:
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Figure 4.18: Streamlines for translational (left) and rotational velocity along the z-axis
(right)

In order to better investigate the pressure acting on the body, we propose the graphical
visualization of the contours:

Figure 4.19: Pressure contours [MPa]

Basically, from the point of view of the fields u(x) and p(x), the results are very similar to
those obtained for the ellipsoid, as expected.
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Chapter 5

Propellers configurations

The last chapter of this thesis aims to solve the equations of dynamics in order to derive
the values of the unknowns (the linear and angular velocities of the microswimmer) for
different geometrical configurations and velocities of the propellers. We have seen and
demonstrated how the angular velocities and chirality of the propellers affect the motion
of the body by modifying the fluid field around them and thus inducing a thrust. Now, we
want to investigate how this information can be used to reduce wobbling. Python has been
used to solve the dynamics, in particular the numerical libraries NumPy and SciPy were
used to assemble the matrices and solve the compact form of system (3.44), defined as

F = RU + b (5.1)

where F ∈ R6,1 is the vector of the generalized forces which incorporates the three forces
and the three moments, assumed to be zero as previously described, R ∈ R6,6 is the grand
resistance matrix composed by the sum of all resistance matrices for each body part, and
U ∈ R6,1 is the unknown term whose the first three components represent the translational
velocities and the last three stand for the angular ones. The vector b ∈ R6,1 is built
using the propellers angular velocities. We have considered two different directions for the
propeller angular velocity, that isI

ω = [0, 0,+1]T for clockwise direction
ω = [0, 0,−1]T for anti-clockwise direction

(5.2)

The units of ω are [rad/s]. All the velocities values presented in the following pages
are normalized with respect to the body length Rh = 150 mm and angular frequency
f = ω

2π Hz.
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The micro-robot velocities are expressed in the body frame, whose basis is composed by
the time independent unit vectors {êÍ

1, ê
Í
2, ê

Í
3}. The laboratory frame on the other hand has

as basis the time dependent unit vectors {ê1(t), ê2(t), ê3(t)}. The following relations hold:I ˙̂ei = Ωhull × êÍ
i, i = 1, 2, 3

Ġ =
q3
i=1 viê

Í
i, i = 1, 2, 3

(5.3)

The axial vector Ωhull = [Ω1,Ω2,Ω3] can be associated to the skew matrix

� =

 0 −Ω3 Ω2
Ω3 0 −Ω1

−Ω2 Ω1 0

 (5.4)

that allow us to write the first equation in (5.3) as

˙̂ei = �êÍ
i (5.5)

The solution of this equation is given by

êi(t) = M(t)êÍ
i (5.6)

where the exponential matrix M(t) = exp(�t) is defined.
If we assume the body frame is coincident with the laboratory frame at t = 0 [40], we get

ê1(t) = 1
Ω2

 Ω2
1 + (Ω2

2 + Ω2
3)cosΩt

Ω1Ω2(1 − cosΩt) + Ω3ΩsinΩt
Ω1Ω3(1 − cosΩt) − Ω2ΩsinΩt

 (5.7)

ê2(t) = 1
Ω2

Ω1Ω2(1 − cosΩt) + Ω3ΩsinΩt
Ω2

2 + (Ω2
1 + Ω2

3)cosΩt
Ω2Ω3(1 − cosΩt) − Ω1ΩsinΩt

 (5.8)

ê3(t) = 1
Ω2

Ω1Ω3(1 − cosΩt) + Ω2ΩsinΩt
Ω2Ω3(1 − cosΩt) − Ω1ΩsinΩt

Ω2
3 + (Ω2

1 + Ω2
2)cosΩt

 (5.9)

and integrating the second equation in (5.3) we get the position of the center of gravity

G(t) = Ġtcos(ψ)Ω̂ + Ġ

Ωh
sin(ψ)

1
cos(Ωht)Û + sin(Ωht)

2
Ŵ (5.10)

where G,Ωh are the L2 norm of the two velocity vectors Ġ and Ωhull, arcos(ψ) = G · Ωhull

GΩh

is the inverse cosine of the angle ψ between Ġ and Ωhull. The triplet {Ω̂, Û , Ŵ} is an
orthonormal basis.
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5.0.1 First experiment

Now, based on the previous qualitative analysis on the flow direction and, consequently,
on the thrust direction, which is affected by the different geometry and/or angular velocity
orientation, we try to solve the dynamics considering four propellers disposed as shown in
the figure 5.1.

Figure 5.1: XY plane for the propulsive system

The first setup, left side of figure 5.1, represents the condition in which the propellers gen-
erate a propulsion with the highest values of the velocity components on the XY plane.
This is due to their different chirality, which allows motion even when the propulsion along
the z-axis is reduced because of the different directions and magnitudes of the thrusts. This
leads to a trajectory characterized by a large radius of curvature, which is not good for our
purposes. On the other hand, in the next configuration, the micro-robot does not move,
because the propellers with the same chirality (red & blue) rotate in opposite directions
and so the thrust are opposite to each other and of equal magnitude. The helicoidal path
of the micro-robot is shown below in figure 5.2. The blue line represents the first setup and
the red diamond the second one which does not evolve in time.

Figure 5.2: First experiment - 3D trajectory (left) and its projection on the XY plane
(right).
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5.0.2 Second experiment

Here, we want to compare two situations: first, the case in which all the propellers rotate
anti-clockwise, and have the same chirality, for example right-handed and second when two
of four propellers are switched off.

Figure 5.3: XY plane for the propulsive system

The velocities for both cases are here summarized. In figure 5.4 the trajectories are shown.
Note that the first micro-robot configuration ensures higher velocity along the direction
of motion z, and this is correct since it has two more contributions in terms of thrust
with respect to the other case. Furthermore, the fact that two propellers are switched
off does not mean that they do not oppose resistance to the motion, indeed the micro-
robot follows the same trajectories in both cases, with only different axial velocity. These
two configurations are pretty similar and they both reduce the wobbling by one order of
magnitude with respect to the first experiment.

vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



7.5 · 10−4

−1.3 · 10−3

3.5 · 10−3

9 · 10−4

1.3 · 10−3

9.1 · 10−3


,



vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



4 · 10−4

−6.4 · 10−4

1.7 · 10−3

4 · 10−4

7.4 · 10−4

4.5 · 10−3


(5.11)

Figure 5.4: Second experiment - 3D trajectory (left) and its projection on the XY plane
(right).
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5.0.3 Third experiment

In the third experiment we investigate the effects of a propeller rotating in the opposite
direction to all the others, whether it possesses the same chirality (left), or it does not(right).

Figure 5.5: XY plane for the propulsive system

It is evident that when the chirality of the propeller is changed, wobbling worsens resulting
in a wider trajectory depicted in red in figure 5.6. We can also check this behaviour
numerically from the vectors looking at the order of magnitude of the XY velocities:

vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



3.7 · 10−4

−6.6 · 10−4

1.7 · 10−3

4.5 · 10−4

6.6 · 10−4

4.5 · 10−3


,



vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



1 · 10−3

−2.2 · 10−3

1.7 · 10−3

1 · 10−3

1.4 · 10−3

4.5 · 10−3


(5.12)

Figure 5.6: Third experiment - 3D trajectory (left) and its projection on the XY plane
(right).
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5.0.4 Fourth experiment

In this experiment we want to verify the wobbling when a propeller is detached from the hull.
This is in an asymmetric situation which eventually can lead to less desired trajectories.
Moreover, we can compare this setup with the one in which one propeller is switched off
but not detached.

Figure 5.7: XY plane for the propulsive system

The first trajectory (in blue) clearly exhibits more wobbling than the second one, and at
the same time it reaches greater distances, due to the lower resistance encountered during
the motion ascribed to the lack of one propeller. The second configuration allows the robot
to stay closer to the longitudinal axis but losing velocity. Due to the asymmetry of the
problem, both trajectories are not parallel to the z-axis, as displayed in 5.8 left.

vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



6.8 · 10−4

−1 · 10−3

3.1 · 10−3

6.7 · 10−4

1.2 · 10−3

6.9 · 10−3


,



vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



5.6 · 10−4

−8.9 · 10−4

2.6 · 10−3

6.7 · 10−4

9.9 · 10−4

6.8 · 10−3


(5.13)

Figure 5.8: Experiment 4 - XZ section plane (left) and 3D trajectory (right)
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5.0.5 Fifth experiment

Here, we want to compare the trajectories of the left configuration presented in experiment
three with the micro-robot we were inspired by, that is the one presented by De Simone et
al. [22] which is composed by one co-axial propeller only.

Figure 5.9: XY plane for the propulsive system

It is evident how the propellers arrangement in figure 5.9 (left) enables to reduce the
wobbling with respect to the other case(red trajectory), therefore to achieve greater con-
trollability. 

vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



3.7 · 10−4

−6.6 · 10−4

1.7 · 10−3

4.5 · 10−4

6.6 · 10−4

4.5 · 10−3


,



vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



2.9 · 10−4

−4.7 · 10−4

1.6 · 10−3

3 · 10−4

5.2 · 10−4

2.4 · 10−3


(5.14)

Figure 5.10: Experiment 6 - 3D trajectory & XY section plane
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5.0.6 Sixth experiment

To further reduce wobbling by using the set up exploited in figure 5.9 left, one of the three
anti-clockwise rotors can be switched off, as the configuration on the right side of figure
5.11 depicts

Figure 5.11: XY plane for the propulsive system

As reported in the velocity fields below, a reduction by almost half of the hull’s rotational
velocity is obtained. Also translational velocities are reduced.

vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



3.7 · 10−4

−6.6 · 10−4

1.7 · 10−3

4.5 · 10−4

6.6 · 10−4

4.5 · 10−3


,



vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



1.8 · 10−4

−2.5 · 10−4

8.8 · 10−4

2.2 · 10−4

3.2 · 10−4

2.2 · 10−3


(5.15)

Figure 5.12: Experiment 7 - 3D trajectory(left) and its projection on the XY plane (right).

Figure 5.13 qualitatively describes, from the laboratory frame perspective, the behavior of
the orthonormal triplet integral with the body during the translation of the micro-robot
for a simulation time t = 2500. It is possible to note that the second configuration in figure
5.11 leads to a straighter trajectory(red), especially along the main translational axis.
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Figure 5.13: Orthonormal basis evolution along the section plane XZ

5.0.7 Seventh experiment

Finally, we want to compare our best configuration with the one proposed by De Simone
et al in [22], showing the trajectories and the triplet, in order to understand which of the
two configurations lead to less wobbling and less rotational velocity.

Figure 5.14: XY plane for the propulsive system

The configuration depicted in 5.14 (left) gives the blue trajectory while the other is showed
in red. We can see how much the radius of curvature is reduced in figure 5.15 when adopting
our micro-robot with respect to the one with only one co-axial helix. Furthermore, we also
managed to reduce the magintude of the angular velocity, and this is highlighted in the
numerical values of the last three components of the velocity vectors.

vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



1.8 · 10−4

−2.5 · 10−4

8.8 · 10−4

2.2 · 10−4

3.2 · 10−4

2.2 · 10−3


,



vx
vy
vz

Ωhull,x

Ωhull,y

Ωhull,z


=



2.9 · 10−4

−4.7 · 10−4

1.6 · 10−3

3 · 10−4

5.2 · 10−4

2.4 · 10−3


(5.16)
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Figure 5.15: Experiment 7 - 3D trajectory(left) and its projection on the XY plane (right).

This last picture qualitatively shows the behaviour of the orthonormal triplet fixed on
the body from the lab frame viewpoint during the translation of the micro-robot for a
simulation time t = 2000. The triplets are only displayed for some time instants: ti =
1, 250, 500, 750, 1000, 1250, 1500 and 1750.

Figure 5.16: Orthonormal basis evolution along the section plane XZ

In conclusion, we deduced that the micro-robot with four propeller is more stable, i.e. has a
minor radius of curvature, hence its trajectory is more in line with the z-axis and also its hull
angular velocity is reduced. Given the symmetry of the problem we can avoid simulating
the test cases which involves all the presented configurations with opposite direction of the
angular velocity.
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Chapter 6

Conclusions
In this thesis it was argued how the angular velocity and geometry of propellers can affect
the motion of the micro-robot. It has been shown that certain configurations are more suit-
able than others to reduce wobbling with respect to the classical micro-robot presented in
[22]. Furthermore it is made an overview of the other possible scenario to be encountered
such as the loss of a propeller. A mathematical model of the hypothetical bio-inspired
micro-robot was developed in order to understand the main aspects of kinematics and dy-
namics. The fluid dynamics around the geometry has been solved in Python with the open
source computing platform FEniCSx. Two benchmark cases were used to validate this code:
a sphere and an ellipsoid, whose coefficients can be calculated using analytical formulas.
The results were encouraging, in fact a maximum error on certain resistance coefficients
of 10% was obtained, although a coarse mesh was used, due to the limited computational
resources. In addition, one more simulation was performed with a finer mesh, resulting
in an error reduction of up to a maximum 2.5% on the same values. Once the code was
validated, we obtained the coefficients of resistance for the propulsive system, composed of
four propellers, and for the cargo, called hull. Thus, the matrices were assembled and their
structure was similar as expected from the theory. The terms expected to be zero presented
non zero values, still they were three orders of magnitude less than the other coefficients.
This can also be attributed to the fact that the analytical values and the structures of
the matrices are computed for the situation in which the flow is not confined, while we
had to simulate on a computational domain, expressly chosen 80 times the maximum body
size. Once the dynamics was solved we were able to obtain the translational and rotational
velocities of the hull, therefore we can represent its trajectory for different input velocities
and chirality of the propellers, finding the best configuration in order to reduce wobbling.
This work has been done with the purpose of providing both theoretical and practical sup-
port through the model and simulations. The hope is being able to build such technologies
in the near future, especially in biomedical contexts such as drug delivery or microsurgery.
The field of research is very recent and the potentialities of improvement are many and
touch various sectors, for example it would be interesting to equip the micro-robot with a
camera able to do "image-detection" and an automatic control system capable to track a
trajectory.
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