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2 Introduction  

 

2.1 Cable transport systems and State of art 

Cable Transport is a wide means of transportation characterized by one or more cables. They often utilize 

vehicles called cable cars to transport passengers and goods while the cable may be of different types 

driven or passive. A cable car (U.K., Europe), similarly called an aerial lift (U.S.), is one type of cable 

transport mechanism that hauls cabins, cars, gondolas, or open chairs above the ground through several 

cables. Aerial lift systems have been extensively adopted in places where building roads are not convenient 

such as mountainous territories and even mining sites. Unfortunately, despite maximum care, which is 

being taken within their missions, there are still accidents happening every year. Although some of them 

are due to human mistakes, yet a great deal of them occurs owing to a combination of poor engineering 

design and operational conditions.                                                                           

 

A gondola lift is a type of cable car which is made up 

of only one wire rope generally of steel material. The 

cable is circulated and strung between two stations and 

usually passing over multiple intermediate-supporting 

towers. An engine or electric motor is utilized to drive 

the cable with a constant line speed through a bull 

wheel in a terminal to provide propulsion within the 

operation. 

 

 

                                                                     

 

               

 

                                                                               

 

                                                                                              
                                                                                                      

Figure 2.1 _ Gondola lift 
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Another kind of cable car is a ropeway (even known as an aerial 

tramway, sky tram, or aerial tram), characterized by using one or two 

stationary ropes (track cables) as supports for passenger or cargo 

cabins. These cabins are rigidly connected to a set of wheels named 

the truck rolling on the track cables. Additionally, another moving 

rope is implemented so that provides propulsion (haulage rope). 

Within this type of system, an aerial tramway cabin’s grip is fixed 

onto the haulage rope that is driven by an electric motor throughout 

the operation. 

  

 

 

                                                                                            

 
 

 

In a gondola lift, moving cable carries loads and masses fixed to the cable itself and according to previous 

work, we can analyze it as a fixed cable subjected to moving loads and masses with minor and negligible 

error. Speaking of ropeways, ignoring the interaction of moving rope on the track cable (stationary one), 

which is a negligible effect, we can adopt the same consideration to study the behavior of the track cable. 

In conclusion, our simulation holds for the two system configurations. 

The cable in gondola lifts and the track cables in ropeways are subjected to various loading conditions in 

both vertical (parallel to the field of gravity) and lateral direction (orthogonal to the field of gravity) such 

as the weight of multiple moving mass in the vertical and wind in the lateral direction. Each one of these 

loadings may contribute to severe conditions that eventually end up in strand fatigue failure usually taking 

place at points where the cable motion is constrained against transverse vibration, such as at suspensions 

and boundaries. As a result, it is necessary to analyze the dynamic behavior of the system under these 

Figure 2.2 _ An illustrative 3D model of a gondola lift with two spans 

Figure 2.3 _ Aerial Tramway 



6 

 

situations. Owing to difficulties in operating measurements on the field, studying the system dynamic 

response mostly relies on numerical analysis. 

Since there are not many published works in this regard, this work is dedicated to deal with the above 

issues and address the challenges we face when simulating the track cable. The main objective that 

concerns this work is initially developing FE-code in MATLAB to perform a three-dimensional simulation 

of a multi-span beam as a (track) cable having each span with different lengths and orientations in space. 

In this case, the system has been discretized by adopting a 1D Euler-Bernoulli beam element. Euler-

Bernoulli beam element has two nodes on which the inertia, damping, and stiffness properties are lumped, 

and six degrees of freedom are associated with each node. Afterward, having a global mass matrix and 

global stiffness matrix of the entire structure, modal analysis of the system was carried out to extract the 

mode shapes associated with the first five smallest natural frequencies of the system which can be 

considered as the most important ones among the others. 

 

2.2 Work organization 

 

Validation of the developed MATLAB model is an essential step to proceed with this project's remaining 

tasks, which mainly involves analysis of the dynamic behavior of the system. Consequently, validation 

has been carried out firstly by using commercial FEM software (ABAQUS) to perform modal analysis. 

Within ABAQUS simulation, the B33 element type was adopted which represents quadratic E-B beam 

element in space. Subsequently, further assessment of the MATLAB FE-model accomplished through 

successfully generating the correct results and mode shapes for a multi-span Euler-Bernoulli beam 

carrying several various concentrated elements including point masses, rotary inertias, linear springs, 

rotational springs, and spring-mass systems. This system is investigated in a paper. 

To study the dynamic behavior of the system, initially, as the real system is subjected to various loadings, 

it is necessary to analyze a different kind of forced responses of the system. Accordingly, step response, 

harmonic response, and the response of the system to multiple moving loads and even multiple moving 

masses have been investigated in the current work, in which the latter represents several cargo cabins 

passing through the (track) cable in the vertical plane. On the other side, wind pressure over the moving 

cabins has been studied which simply means excitation in the lateral plane. In order to perform these 

analyses, the Newmark algorithm has been adopted in this work, which is an implicit time integration 

scheme to discretize second-order time systems and widely used for structural dynamic analysis. 
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2.3 Literature review  
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3 Modelling and Simulation approach 

 

The finite element method has been utilized in this work which either is one of the most widely adopted 

techniques to discretize systems. The possibility of using this approach for a vast variety of problems and 

more importantly the increasing power of computing machines available, has made this method reliable 

and more successful. Usually, the systems modeled using this method end up with a large number 

(hundreds, thousands, or even millions) of degrees of freedom, although the obtained ODEs can be easily 

implemented in both time-domain and frequency-domain computations. 

 

3.1 Introduction to the adopted Finite element approach and formulation 

3.1.1 Euler-Bernoulli element and formulation (G.Genta, 2008) 
 

Among different approaches in finite element, the beam element is one of the most frequently adopted 

elements and is available in all software and computer codes. There are numbers of beam formulations 

developed which differ based on the number of nodes and degrees of freedom on each element and the 

theoretical formulation.  

Euler-Bernoulli element is a prismatic homogeneous beam that does not consider the shear deformation 

and has been utilized in this work. In 3D configuration, the element includes one node of six DOFs at each 

end and, three translational displacements, and three rotations ending up with 12 DOFs per element. The 

nodal displacement vector will be: 

 

                 {q} = {𝑢𝑧1  𝑢𝑥1  𝑢𝑦1  𝜃𝑧1  𝜃𝑥1  𝜃𝑦1  𝑢𝑧2  𝑢𝑥2  𝑢𝑦2  𝜃𝑧2  𝜃𝑥2  𝜃𝑦2}′1×12 

 

 

 

 

 

 

  

  

                                                                             Figure 3.1 _ Beam element and reference frame 
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Axial behavior – z direction 
 

 

 

 

 

 

 

 

                                                   

 

 

In this case, the beam can be conceived as a bar, and there is only one degree of freedom at each point 

which is axial translational displacement along the z axis (𝑢𝑧), the nodal displacement vector qA has two 

rows and one column. Either the shape function matrix NA corresponding to the axial behavior is a matrix 

of one row and two columns (there are only two DOFs in the element). 

 

                             {qA} = {
𝑢𝑧1
𝑢𝑧2

}                                             NA = [1 − ζ 𝜁] 

 

Which ζ = z/𝑙, and 𝑙 is the length of element. 

 

The matrices of the element in the axial behavior would be as the following: 

 

                                               KA = 
𝐸𝐴

𝑙
 [
1 −1
−1 1

] 

                                                 

                                      MA = 
𝜌𝐴𝑙

6
 [
2 1
1 2

] 

 

 

Figure 3.2  _ Euler-Bernoulli beam element and axial degrees of freedom 
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Torsional behavior  
 

 

 

 

 

 

 

 

                                                        

 

 

As what has been discussed in axial behavior, the equation of motion concerning the torsional behavior 

of the Euler-Bernoulli element is identical to those of axial behavior; except for the fact that the degrees 

of freedom, in this case, is rotation in z axis  (𝜃𝑧). The shape function matrix NT and the nodal 

displacement vector qT are either of the same dimension: 

 

                             {qT} = {
𝜽𝒛𝟏
𝜽𝒛𝟐

}                                             NT = [𝟏 − 𝛇 𝜻] 

Which ζ = z/𝑙, and 𝑙 is the length of element. 

And the expression of the matrices is: 

 

                                               KT = 
𝑮𝑰𝒑
′ 𝒍

𝒍
 [
𝟏 −𝟏
−𝟏 𝟏

] 

                                                 

                                     MT = 
𝝆𝑰𝒑𝒍

𝟔
 [
𝟐 𝟏
𝟏 𝟐

] 

 

 

 

Figure 3.3 _ Euler-Bernoulli beam element and torsional degrees of freedom 



11 

 

 

Flexural behavior – xz plane 
 

 

 

 

 

 

 

 

                            

 

 

To each node are associated two DoFs, a translational one along the x axis (𝑢𝑥) and a rotational one around 

the y axis (𝜃𝑦). This means that the mass, stiffness, and damping matrices associated to this discretized 

element have a 4×4 size. 

in this case, the shape function matrix NF1 and the nodal displacement vector qF1 are as the following: 

 

  {qF1} = {𝑢𝑥1  𝜃𝑦1  𝑢𝑥2  𝜃𝑦2}′1×4                             NF1 = [
𝑁11 𝑁12 𝑁13 𝑁14
𝑁21 𝑁22 𝑁23 𝑁24

] 

 

Which: 

 

   𝑁11 = 1 − 3𝜁2 + 2𝜁3                                           𝑁21 = 
6𝜁

𝑙
(𝜁 − 1)   

  𝑁12 = 𝑙𝜁(1 − 2𝜁 + 𝜁2)                                        𝑁22 = (1 − 4𝜁 + 3𝜁2) 

  𝑁13 = ζ(3ζ − 2ζ2)                                                         𝑁21 = 
−6ζ

𝑙
(ζ − 1)   

  𝑁14 = 𝑙ζ(−ζ + ζ2)                                                       𝑁24 = −2ζ + 3ζ2)   

 

Figure 3.4 _ Euler-Bernoulli beam element and flexural degrees of freedom within xz plane 
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For each element the stiffness matrix is: 

 

 

𝑲𝑿𝒁 =
𝐸𝐼

𝐿3
[

12 6𝐿
6𝐿 4𝐿2

−12 6𝐿
−6𝐿 2𝐿2

−12 −6𝐿
6𝐿 2𝐿2

12 −6𝐿
−6𝐿 4𝐿2

] 

 

While the mass matrix, since we adopted a consistent mass matrix approach, is given by: 

 

 

𝑴𝑥𝑧 =
𝜌𝐴𝐿

420
[
 
 
 
𝑚1 𝐿𝑚2

𝐿𝑚2 𝐿2𝑚5

𝑚3 −𝐿𝑚4

𝐿𝑚4 −𝐿2𝑚6

𝑚3 𝐿𝑚4

−𝐿𝑚4 −𝐿2𝑚6

𝑚1 −𝐿𝑚2

−𝐿𝑚2 𝐿2𝑚5 ]
 
 
 
+
𝜌𝐼𝑦
30L

[
 
 
 
𝑚7 𝐿𝑚-8
𝐿𝑚8 𝐿2𝑚9

−𝑚7 𝐿𝑚8

−𝐿𝑚8 𝐿2𝑚10

−𝑚7 −𝐿𝑚8

𝐿𝑚8 𝐿2𝑚10

𝑚7 −𝐿𝑚8

−𝐿𝑚8 𝐿2𝑚9 ]
 
 
 
 

 

Where the coefficients of the mass matrix are obtained substituting the expression of the shape function 

into kinetic energy and integrating it the m values for Euler-Bernoulli beam. 

The mass coefficient expressions are: 

 

                                   𝑚1 = 156                                                 𝑚6 = 3 

                                𝑚2 = 22                                                    𝑚7 = 36 

                                𝑚3 = 54                                                    𝑚8 = 3 

                                𝑚4 = 13                                                    𝑚9 = 4 

                                𝑚5 = 4                                                       𝑚10 = 1 
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The load vector due to distributed shear force fx(t) and bending moment my(t) would be: 

 

                                    f(t)F1 = 
𝑙𝑓𝑥(𝑡)

12
{

6
𝑙
6
−𝑙

} +𝑚𝑦(𝑡){

−𝑙
0
𝑙
0

} 

 

 

Flexural behavior – yz plane 
 

 

 

 

 

 

 

 

                                              

                                      

                                 

                                           

 

 

In this case, as what has been discussed about flexural behavior in the xz-plane, to each node are associated 

two DoFs a translational one along the y axis (𝑢𝑦) and a rotational one around the x axis (𝜃𝑥). This means 

that the mass, stiffness, and damping matrices associated with this discretized element have a 4×4 size. 

Due to different signs of rotations, we need to use equations different from those in the xz-plane. 

The matrices, in this case, could easily be obtained from those achieved for xz-plane by a simple change 

of signs of elements with subscripts 12, 14, 21, and 23 in shape function matrix NF1 and either the elements 

with subscripts 12, 14, 23, and 34 and their symmetrical ones in mass and stiffness matrices. With respect 

Figure 3.5  _ Euler-Bernoulli beam element and flexural degrees of freedom within yz plane 
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to external force vector, and external moments, we only need to change the signs of elements 2 and 4 or 

1 and 3. 

 

{qF2} = {𝑢𝑦1  𝜃𝑥1  𝑢y2  𝜃x2}′1×4                  NF2 = [
𝑁11 −𝑁12 𝑁13 −𝑁14
−𝑁21 𝑁22 −𝑁23 𝑁24

] 

 

For each element the stiffness matrix is: 

 

𝑲𝑦𝑧 =
𝐸𝐼

𝐿3
[

12 −6𝐿
−6𝐿 4𝐿2

−12 −6𝐿
6𝐿 2𝐿2

−12 6𝐿
−6𝐿 2𝐿2

12 6𝐿
6𝐿 4𝐿2

] 

 

While the mass matrix, since we adopted a consistent mass matrix approach, is given by: 

 

 

𝑴𝑦𝑧 =
𝜌𝐴𝐿

420
[
 
 
 
𝑚1 −𝐿𝑚2

−𝐿𝑚2 𝐿2𝑚5

𝑚3 𝐿𝑚4

−𝐿𝑚4 −𝐿2𝑚6

𝑚3 −𝐿𝑚4

𝐿𝑚4 −𝐿2𝑚6

𝑚1 𝐿𝑚2

𝐿𝑚2 𝐿2𝑚5 ]
 
 
 

+
𝜌𝐼𝑥
30L

[
 
 
 
𝑚7 −𝐿𝑚-8
−𝐿𝑚8 𝐿2𝑚9

−𝑚7 −𝐿𝑚8

𝐿𝑚8 𝐿2𝑚10

−𝑚7 𝐿𝑚8

−𝐿𝑚8 𝐿2𝑚10

𝑚7 𝐿𝑚8

𝐿𝑚8 𝐿2𝑚9 ]
 
 
 

 

 

 

The load vector due to distributed shear force fy(t) and bending moment mx(t) would be: 

 

                                       f(t)F2 = 
𝑙𝑓𝑦(𝑡)

12
{

6
−𝑙
6
𝑙

} +𝑚𝑥(𝑡) {

−𝑙
0
𝑙
0

} 
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3.1.2 Effect of axial force on flexural behavior 
 

 

 

 

 

 

 

 

                                                                                                    

 

 

The interaction between flexural behavior and axial force in a beam causes geometric nonlinearity. To 

avoid this nonlinearity, in the case of constant axial load, it is possible to linearize the interaction. 

Considering the flexural behavior of the Euler-Bernoulli beam on for example xz-plane, and a constant 

axial tensile load T is applied on it, it can be simply proven that the tension increases the stiffness. This 

incremented stiffness can be calculated by the following matrix: 

 

𝑲𝒈 =
𝑇

30𝑙
[
 
 
 
𝑘1 𝑙𝑘2 −𝑘1 𝑙𝑘2
𝑙𝑘2 𝑙2𝑘3 −𝑙𝑘2 −𝑙2𝑘4
−𝑘1 −𝑙𝑘2 𝑘1 −𝑙𝑘2
𝑙𝑘2 −𝑙2𝑘4 −𝑙𝑘2 𝑙2𝑘3 ]

 
 
 

 

 

                                                          𝑘1 = 36                                  𝑘2 = 3 

                                                         𝑘3 = 4                                    𝑘4 = 1 

  

Simply by adding this matrix to the stiffness of the element, we discussed earlier, the total stiffness of the 

matrix will be achieved. 

  

Figure 3.6 _ Euler-Bernoulli beam element with axial force T 
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3.1.3 Reference frames and rotation matrix 
 

The conventional reference frame for similar systems and what is adopted 
 

So far, we have discussed the beam element with respect to a local right-handed coordinate system so that 

the z-axis is oriented along the beam axial direction and the field of gravity is toward the negative side of 

the x-axis. On the contrary, in many pieces of literature and papers, the right-handed coordinate system 

with x-axis elongated in the axial direction of the beam is more conventional. 

 

 

Axial behavior – x direction 
 

 

 

 

 

 

 

 

                                        

 

 In this case, the axial degrees of freedom of the element are as follow: 

 

                                                    {qA} = {
𝑢𝑥1
𝑢𝑥2

}                                              

 

While the other vector and matrices as shape function, stiffness, and mass matrix, and nodal force vector 

of the element are identical to those we have seen in the previous form of coordinate system concerning 

axial behavior. 

 

 

Figure 3.7 _ Euler-Bernoulli beam element and axial degrees of freedom along x direction 
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Torsional behavior  
 

 

 

 

 

 

 

                                                             

 

In this case, the torsional degrees of freedom of the element are as follow: 

 

                                                    {qT} = {
𝜃𝑥1
𝜃𝑥2

}                                              

 

While the other vector and matrices as shape function, stiffness, and mass matrix, and nodal force vector 

of the element are identical to those we have seen in the previous form of coordinate system concerning 

torsional behavior. 

 

  

Figure 3.8 _ Euler-Bernoulli beam element and torsional degrees of freedom along x direction 
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Flexural behavior – yx plane 

 

 

 

 

 

 

 

                                    

 

Degrees of freedom of flexural behavior in yx plane is: 

 

                                {𝐪F1}  =  {𝑢𝑦1  𝜃𝑧1  𝑢𝑦2  𝜃𝑧2}′1×4    

 

The nodal force vector and shape function, stiffness, and mass matrices are equivalent to those of behavior 

in xz plane with respect to previous form of coordinate system. 

 

Flexural behavior – zx plane 
 

 

 

 

 

 

 

 

                                             

 

Figure 3.9 _ Euler-Bernoulli beam element and flexural degrees of freedom in yx plane 

Figure 3.10 _ Euler-Bernoulli beam element and flexural degrees of freedom in zx plane 
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Degrees of freedom of flexural behavior in zx plane is: 

 

                                             {𝐪F2}  =  {𝑢𝑧1  𝜃𝑦1  𝑢𝑧2  𝜃𝑦2}′1×4                              

 

The nodal force vector and shape function, stiffness, and mass matrices are equivalent to those of behavior 

in yz plane with respect to previous form of coordinate system. 

Following this logic for comparing the different orientations of the coordinate system, the global 

expression of stiffness and mass matrices with respect to the conventional coordinate system would be 

identical to what we have seen with respect to the previous one. While the nodal displacement vector will 

be:                 

                 

 

                 {𝐪}  =  {𝑢𝑥1  𝑢𝑦1  𝑢𝑧1  𝜃𝑥1  𝜃𝑦1  𝜃𝑧1  𝑢𝑥2  𝑢𝑦2  𝑢𝑧2  𝜃𝑥2  𝜃𝑦2  𝜃𝑧2}′1×12 
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3.2 Time Integration: Newmark Scheme for dynamic study 

 

Newmark is a second order accurate scheme to discretize a second order time system and perform 

integration in discrete time. It is applied to the following problem: 

 

                                              {
𝑴𝑞̈ + 𝑪𝑞̇ + 𝑲𝑞 = 𝑓(𝑡)

𝑞0, 𝑞0̇          𝑔𝑖𝑣𝑒𝑛
                                                              (3.1)                              

 

According to (M. Géradin, D. Rixen , 1997), we have the approximation formulas as: 

 

                           
𝒒̇𝑛+1 = 𝒒̇𝑛 + (1 − 𝛾)ℎ𝒒̈𝑛 + 𝛾ℎ𝒒̈𝑛+1

𝒒𝑛+1 = 𝒒𝑛 + ℎ𝒒̇𝑛 + ℎ
2 (

1

2
− 𝛽) 𝒒̈𝑛 + ℎ

2𝛽𝒒̈𝑛+1
                                 (3.2)                              

 

While ℎ is time step, and 𝛽 and 𝛾 are parameters for which to ensure the stability we assign the following 

values: 

𝛽 =
1

4
       &     𝛾 =

1

2
 

In case, the dynamic equations (3.1) are linear, by introducing the scheme (3.2) in the equation of motion 

at time tn+1 we will have: 

 

         [𝑴 + 𝛾ℎ𝑪 + 𝛽ℎ2𝑲]𝒒̈𝑛+1 = 𝒇𝑛+1 − 𝑪[𝒒̇𝑛 + (1 − 𝛾)ℎ𝒒̈𝑛] 

                                                                      −𝑲 [𝒒𝑛 + ℎ𝒒̇𝑛 + (
1

2
− 𝛽)ℎ2𝒒̈𝑛]      (3.3) 

 

The matrix [𝑴 + 𝛾ℎ𝑪 + 𝛽ℎ2𝑲] is iteration matrix, which due to properties of matrices M, K, and 

C, the iteration matrix is positive definite and symmetric. 
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A summary of the Newmark scheme for time integration of equation (3.1) is represented here as a 

flowchart. In prior, in the sake of more efficiency, we introduce the predictors 𝑞̇𝑛+1
∗  𝑎𝑛𝑑 𝑞𝑛+1

∗ as: 

 

                                                                            
       𝒒̇𝑛+1

∗ = 𝒒̇𝑛 + (1 − 𝛾)ℎ𝒒̈𝑛

                     𝒒𝑛+1
∗ = 𝒒𝑛 + ℎ𝒒̇𝑛 + ℎ

2(
1

2
− 𝛽)𝒒̈𝑛

 

                                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

M, K, C                   𝑞0, 𝑞0̇ 

Compute initial accelerations: 

𝑞̈0 = 𝑀
−1(𝑓0 − 𝐶𝑞̇0 − 𝐾𝑞0) 

Time incrementation: 

𝑡𝑛+1 = 𝑡𝑛 + ℎ 

Prediction: 

𝑞̇𝑛+1
∗ = 𝑞̇𝑛 + (1 − 𝛾)ℎ𝑞̈𝑛

      𝑞𝑛+1
∗ = 𝑞𝑛 + ℎ𝑞̇𝑛 + ℎ

2(
1

2
− 𝛽)𝑞̈𝑛

 

 

Evaluation of acceleration: 

𝑆 = 𝑀 + 𝛾ℎ𝐶 + 𝛽ℎ2𝐾
𝑆𝑞̈𝑛+1 = 𝑓𝑛+1 − 𝐶𝑞̇𝑛+1

∗ − 𝐾𝑞𝑛+1
∗  

Correction: 

𝑞̇𝑛+1 = 𝑞̇𝑛+1
∗ + 𝛾ℎ𝑞̈𝑛+1

𝑞𝑛+1 = 𝑞𝑛+1
∗ + 𝛽ℎ2𝑞̈𝑛+1

 

Energy balance 

(Optional) 

Figure 3.11 _ Flowchart – Newmark integration for linear systems 
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4 1st Configuration: Single-Span cable 

 

The reference system we are going to simulate and study in this chapter is a single-span cable taut with a 

tensile load of T (pretension) and clamped at the two sides. But to prevent singularity in matrices, the axial 

displacement at the right-end side is free. The study consists of modal analysis, step response, harmonic 

response, and response to moving load. In the following the table 4.1 reports the geometrical data and 

some other properties of the systems. 

 

                  Table 4.1 _ Geometrical data and parameters of the system 

Density   ρ      8940 kg/m3 mass per unit of length      𝜇 = 𝜌 ∗ 𝜋𝑅2 

Elastic modulus   E     120 GP a Span length   𝑙     6 m 

Radius   R    1.6 · 10−2 m Force amplitude   f0     20 kN 

Pretension   T     100 kN Speed of the load   v0     2 m/s 

 

 

4.1 Implementation of E-B element  

4.1.1 Global behavior of the beam 
 

Now we are considering a beam with general orientation in space. In this case, we define a global reference 

of frame O (XYZ) so that the gravity field is directed toward the negative sign of the X-axis. In figure 4.1, 

a general beam with its local reference frame 𝑂́ and global reference frame 𝑂 Is depicted. 

 

 

 

 

 

 

 

 

 
Figure 4.1 _ General E-B beam element with local and global reference frame respectively O and O' 

𝜑 

𝑶 
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We defined the global reference frame 𝑂 (XYZ) and the local reference frame 𝑂́ (𝑥𝑦𝑧) so that the beam 

locates on the XZ plane of the frame 𝑂, and the 𝑦-axis of frame 𝑂́ has the same direction as Y-axis in 𝑂 

frame. In this way, the beam has an inclination of angle 𝜑 with respect to axis Y. This logic will help us 

to drive the equation of motion of the beam with respect to the global reference frame. 

The total expression of the mass and stiffness matrices associated with the adopted discretized element 

have a 12×12 size and will be as following: 

 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑚𝑎1,1 0 0 0 0 0 𝑚𝑎1,2 0 0 0 0 0

0 𝑚𝑓𝑥1,1 0 0 0 𝑚𝑓𝑥1,2 0 𝑚𝑓𝑥1,3 0 0 0 𝑚𝑓𝑥1,4
0 0 𝑚𝑓𝑦1,1 0 𝑚𝑓𝑦1,2 0 0 0 𝑚𝑓𝑦1,3 0 𝑚𝑓𝑦1,4 0

0 0 0 𝑚𝑡1,1 0 0 0 0 0 𝑚𝑡1,2 0 0

0 0 𝑚𝑓𝑦2,1 0 𝑚𝑓𝑦2,2 0 0 0 𝑚𝑓𝑦2,3 0 𝑚𝑓𝑦2,4 0

0 𝑚𝑓𝑥2,1 0 0 0 𝑚𝑓𝑥2,2 0 𝑚𝑓𝑥2,3 0 0 0 𝑚𝑓𝑥2,4
𝑚𝑎2,1 0 0 0 0 0 𝑚𝑎2,2 0 0 0 0 0

0 𝑚𝑓𝑥3,1 0 0 0 𝑚𝑓𝑥3,2 0 𝑚𝑓𝑥3,3 0 0 0 𝑚𝑓𝑥3,4
0 0 𝑚𝑓𝑦3,1 0 𝑚𝑓𝑦3,2 0 0 0 𝑚𝑓𝑦3,3 0 𝑚𝑓𝑦3,4 0

0 0 0 𝑚𝑡2,1 0 0 0 0 0 𝑚𝑡2,2 0 0

0 0 𝑚𝑓𝑦4,1 0 𝑚𝑓𝑦4,2 0 0 0 𝑚𝑓𝑦4,3 0 𝑚𝑓𝑦4,4 0

0 𝑚𝑓𝑥4,1 0 0 0 𝑚𝑓𝑥4,2 0 𝑚𝑓𝑥4,3 0 0 0 𝑚𝑓𝑥4,4]
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑢𝑧1
𝑢𝑥1
𝑢𝑦1
𝜃𝑧1
𝜃𝑥1
 𝜃𝑦1
𝑢𝑧2
𝑢𝑥2
𝑢𝑦2
𝜃𝑧2
𝜃𝑥2
𝜃𝑦2}

 
 
 
 
 
 

 
 
 
 
 
 

  

 

                {𝑞} = {𝑢𝑧1  𝑢𝑥1  𝑢𝑦1  𝜃𝑧1  𝜃𝑥1  𝜃𝑦1  𝑢𝑧2  𝑢𝑥2  𝑢𝑦2  𝜃𝑧2  𝜃𝑥2  𝜃𝑦2}1×12
′

 

 

In which man,m stands for elements in the MA, mtn,m stands for elements in MT, mfxn,m for elements in the 

Mxz, and mfyn,m for elements in Myz. 

Here is the complete mass matrix of the element is expressed and the same configuration holds for the 

total stiffness matrix of the element. 

The complete expression for the nodal force vector for an inclined single beam element with respect to its 

local reference frame under pretension 𝑇 is: 

 

𝒇

= {(−𝑇 −
𝑝𝑙

2
sin 𝜑)

𝑝𝑙

2
cos𝜑 0 0 0

𝑝𝑙2

12
cos𝜑 (𝑇 −

𝑝𝑙

2
sin𝜑)

𝑝𝑙

2
cos𝜑 0 0 0 −

𝑝𝑙2

12
cos𝜑} ′1×12 
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Where 𝑇 is the tensile load, 𝑝 = 𝜇𝑔 is the weight per unit length of the beam, and 𝑙 is the length of the 

element. 

As a result, the equation of motion of the element with respect to its local reference frame is as: 

 

                                               𝑴𝑙𝒒̈𝑙 +𝑲𝑙𝒒𝑙 = 𝒇𝑙(𝑡)                                                              (4.1) 

 

And 𝑴𝑙 , 𝑪𝑙 , and 𝑲𝑙 are the mass, damping, and stiffness matrices of the element with respect to the local 

reference frame. 

 

 

 

4.1.2 From local to global reference frame and rotation matrices 
 

We can express the orientation of the local reference frame with respect to the global one by an appropriate 

rotation matrix, so that we can link the displacement vectors 𝑞𝑖𝑔and 𝑞𝑖𝑙 which are respectively the 

displacement vector of the 𝑖th node in the global and local reference frames using coordinate 

transformation. 

According to figure 4.1, the rotation matrix representing orientation local reference frame with respect to 

the global one is: 

                                       

                                                       𝑹 = [
cos𝜑 sin𝜑 0
− sin𝜑 cos𝜑 0
0 0 1

] 

 

The transformation can be expressed as: 

 

                                                                           𝒒𝑖𝑙 = 𝑹𝒒𝑖𝑔                                                               (4.2) 
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In order to transfer the displacement vector of the element which has a dimension of 12 × 1, the expanded 

rotation matrix 𝑹′ with a similar transformation is used. The expanded rotation matrix 𝑹′ has a structure 

as the following: 

 

𝑹′ =

[
 
 
 
[𝑹3×3] [𝟎3×3] [𝟎3×3] [𝟎3×3]

[𝟎3×3] [𝑹3×3] [𝟎3×3] [𝟎3×3]

[𝟎3×3] [𝟎3×3] [𝑹3×3] [𝟎3×3]

[𝟎3×3] [𝟎3×3] [𝟎3×3] [𝑹3×3]]
 
 
 

12×12

 

 

To write the equation of the motion with respect to the global reference frame, we start from equation 4.1 

which describes the behavior of the structure in the local reference frame. By implementing the 

transformation equation 4.2, we get: 

 

                                                               𝑹′−1𝑴𝑹′𝒒̈𝑔 + 𝑹
′−1𝑲𝑹′𝒒𝑔 = 𝒇𝑔                                          (4.3) 

 

As the inverse of a rotation matrix is identical to its transpose, the global force vector, as well as the global 

mass and stiffness matrices can be expressed as: 

 

                                                                           𝑴𝑔 = 𝑹′
𝑇𝑴𝑙𝑹′   

                                                                𝑲𝑔 = 𝑹′
𝑇𝑲𝑙𝑹′                                                                (4.4) 

                                                                 𝒇𝑔 = 𝑹′
𝑇𝒇𝑙 
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4.1.3 Assembling and mapping matrices 
 

After defining the elements mass and stiffness matrices in the local reference frame of the element, the 

global matrices must be assembled. The beam shown in the figure 4.1 has two symmetry planes in XZ 

and YZ plane and motion is supposed to be decoupled in XZ plane, YZ plane, axial displacement, and 

rotation along Z-axis. 

In order to be able to illustrate more clearly, the beam, for example, can be discretized into three elements 

(1,2,3) and four nodes (1,2,3,4). The correct number of elements in the MATLAB code is much higher so 

that the global matrices’ dimension will be of thousands.  

 

                                                   

                                            

 

As it was discussed already, to each node are associated six DoFs. This means that the mass, stiffness and 

damping matrices associated to each discretized element have a 12×12 size while the global matrix of 

whole structure has a 24×24 size. The DoF arrangement will be: 

 

               {𝑞} = {𝑢𝑧1  𝑢𝑥1  𝑢𝑦1  𝜃𝑧1  𝜃𝑥1  𝜃𝑦1… 𝑢𝑧4  𝑢𝑥4  𝑢𝑦4  𝜃𝑧4  𝜃𝑥4  𝜃𝑦4}′1×24 

 

In general, a so-called Map Matrix that helps to move from elements to the whole structure. In our example 

with only three elements the map matrix would be the following: 

  

Figure 4.2 _ single-span cable modelled as a beam of N E-B elements 
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        Table 4.2 _ Assembling three elements of a single-span beam 

 
𝑢𝑧1 

1 

𝑢𝑥1 

2 

𝑢𝑦1 

3 

𝜃𝑧1 

4 

𝜃𝑥1 

5 

𝜃𝑦1 

6 

𝑢𝑧2 

7 

𝑢𝑥2 

8 

𝑢𝑦2 

9 

𝜃𝑧2 

10 

𝜃𝑥2 

11 

𝜃𝑦2 

12 

𝑢𝑧3 

13 

𝑢𝑥3 

14 

𝑢𝑦3 

15 

𝜃𝑧3 

16 
𝜃𝑥3 

17 
𝜃𝑦3 

18 … 
𝜃𝑥4 

23 

𝜃𝑦4 

24 

1 
𝑢𝑧1 

1 

𝑢𝑥1 

2 

𝑢𝑦1 

3 

𝜃𝑧1 

4 

𝜃𝑥1 

5 

𝜃𝑦1 

6 

𝑢𝑧2 

7 

𝑢𝑥2 

8 

𝑢𝑦2 

9 

𝜃𝑧2 

10 

𝜃𝑥2 

11 

𝜃𝑦2 

12 

 
  

   
… 

  

2       
𝑢𝑧2 

1 

𝑢𝑥2 

2 

𝑢𝑦2 

3 

𝜃𝑧2 

3 

𝜃𝑥2 

4 

𝜃𝑦2 

5 

𝑢𝑧3 

6 

𝑢𝑥3 

7 

𝑢𝑦3 

8 

𝜃𝑧3 

9 

𝜃𝑥3 

10 

𝜃𝑦3 

11 
… 

  

3             
𝑢𝑧3 

1 

𝑢𝑥3 

2 

𝑢𝑦3 

3 

𝜃𝑧3 

4 

𝜃𝑥3 

5 

𝜃𝑦3 

6 
… 

𝜃𝑥4 

11 

𝜃𝑦4 

12 

                              
                                                  

 

Once the mapping is done the global mass and stiffness matrix, in our example, can be built as: 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ 0 0 0 ⋯
⋯ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ 0 0 0 ⋯
⋯ ◼ ◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼ ◼ ◼ ⋯
⋯ ◼ ◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼ ◼ ◼ ⋯
⋯ ◼ ◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼ ◼ ◼ ⋯
⋯ ◼ ◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼ ◼ ◼ ⋯
⋯ ◼ ◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼ ◼ ◼ ⋯
⋯ ◼ ◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼+◼ ◼ ◼ ◼ ⋯
⋯ 0 0 ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ⋯
⋯ 0 0 ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ⋯
⋯ 0 0 ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ⋯
⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱]

 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 
 

 
 
 
 
 
 
⋮
𝜃𝑥1
 𝜃𝑦1
𝑢𝑧2
𝑢𝑥2
𝑢𝑦2
𝜃𝑧2
𝜃𝑥2
𝜃𝑦2
𝑢𝑧3
𝑢𝑥3
𝑢𝑦3
⋮ }
 
 
 
 
 
 

 
 
 
 
 
 

  

 

Where: 

: Represent certain entry at that position. 

+ : Represents the additions to the matrix entries when the sub matrices overlap. 
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The global mass and stiffness matrices of the whole structure 𝑴𝑇 and 𝑲𝑇 and the global nodal force vector 

𝒇𝑇(𝑡) are achieved by this assembling approach. In the picture below, the final structure of the total 

stiffness matrix of the structure is depicted which is identical to that of the total mass matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, the global equation of motion of the entire structure is: 

 

                                                                   𝑴𝑇𝒒̈ + 𝑲𝑇𝒒 = 𝒇𝑇(𝑡)                                                          (4.5) 

 

From this moment on, vector 𝒒 represents the global nodal displacement vector of the whole structure. 

 

 

 

  

Figure 4.3 _ Total stiffness matrix of the structure configuration 
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Now that we have written the equation of motion and mass and stiffness matrices of the whole structure 

with respect to the global reference frame, the possibility of introducing damping effect can be considered 

adopting the proportional damping matrix 𝑪𝑇 as following: 

 

                                        𝑪𝑇 = 𝛼𝑴𝑇 + 𝛽𝑲𝑇                                                                                    (4.6) 

 

Then the equation of motion will become: 

 

                                        𝑴𝑇𝒒̈ + 𝑪𝑇𝒒̇ + 𝑲𝑇𝒒 = 𝒇𝑇(𝑡)                                                                           (4.7) 

 

 

4.2 Boundary Conditions and Static equilibrium 

Due to the presence of the clamped constraint at the starting node and blocking all the degrees of freedom 

except for the axial displacement at the ending node for the sake of preventing singular matrices, as a 

result, almost null displacement and rotation occur at those DoF’s. In our example: 

 

{𝑞1} =  

{
 
 

 
 
𝑢𝑧1
 𝑢𝑥1
𝑢𝑦1
𝜃𝑧1
𝜃𝑥1
𝜃𝑦1}
 
 

 
 

  = 

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

                                         {𝑞4} =  

{
 
 

 
 
𝑢𝑧1
 𝑢𝑥1
𝑢𝑦1
𝜃𝑧1
𝜃𝑥1
𝜃𝑦1}
 
 

 
 

  = 

{
 
 

 
 
𝑢𝑧1
0
0
0
0
0 }
 
 

 
 

 

 

There are two approaches to implement the constraints. The first solution is to reduce the dimension of 

both global mass and global stiffness matrices of the structure by cancelling the corresponding rows and 

columns of the constrained degrees of freedom. Advantage of this approach is a quick and easy numerical 

simulation, but on the other hand it could not represent the reality of the constraints. Since, however a 

constraint blocks a DoF, but that DoF would still have a small displacement. 

The second solution enables the simulation to be closer to the reality. In this approach, instead of 

cancelling any DoFs, we introduce strong relevant stiffness at that DoF. The selected value for this 

additional stiffness must represent infinity compared to other related stiffness values. This method still 

has its own disadvantages.  
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By adding high values of stiffnesses, practically we introduce very high values of frequencies to the 

system, numerically point of view, time step will be extremely small, and this makes very expensive 

simulation in the matter of time. 

 

Adopting the second solution, 𝑘 and χ are nomination for added stiffnesses implementing respectively on 

translational and rotational DoFs. For instance, χ𝑧1 is the added translational stiffness to the torsion about 

𝑧 direction (the axis of the beam) at the first node. As a result, all the additional stiffnesses are as the 

following: 

 

                                {𝑘𝑧1  𝑘𝑥1  𝑘𝑦1  χ𝑧1  χ𝑥1  χ𝑦1  𝑘𝑥4  𝑘𝑦4  χ𝑧4  χ𝑥4  χ𝑦4} 

 

Incrementation of potential energy due to additional stiffnesses is: 

 

∆𝑈 = 
1

2
𝑘𝑧1(𝑢𝑧1)

2 + 
1

2
𝑘𝑥1(𝑢𝑥1)

2 + 
1

2
𝑘𝑦1(𝑢𝑦1)

2
+ 
1

2
𝜒𝑧1(𝜃𝑧1)

2 + 
1

2
𝜒𝑥1(𝜃𝑥1)

2 +
1

2
𝜒𝑦1(𝜃𝑦1)

2
+⋯ 

               …+ 
1

2
𝑘𝑥4(𝑢𝑥4)

2 + 
1

2
𝑘𝑦4(𝑢𝑦4)

2
+ 

1

2
𝜒𝑧4(𝜃𝑧4)

2 + 
1

2
𝜒𝑥4(𝜃𝑥4)

2 + 
1

2
𝜒𝑦4(𝜃𝑦4)

2
 

 

The stiffnesses representing the boundary conditions will modify global stiffness matrix: 

 

          
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑧1
) = 𝑘𝑧1𝑢𝑧1                                            

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑧4
) = 𝑘𝑧4𝑢𝑧4          

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑥1
) = 𝑘𝑥1𝑢𝑥1                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑦4
) = 𝑘𝑦4𝑢𝑦4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑦1
) = 𝑘𝑦1𝑢𝑦1                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑧4
) = 𝜒𝑧4𝜃𝑧4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑧1
) = 𝜒𝑧1𝜃𝑧1                                           

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑥4
) = 𝜒𝑥4𝜃𝑥4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑥1
) = 𝜒𝑥1𝜃𝑥1                                           

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑦4
) = 𝜒𝑦4𝜃𝑦4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑦1
) = 𝜒𝑦1𝜃𝑦1  
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Since in our case the added stiffnesses link the corresponding DoFs to the ground not another DoFs, these 

values are added to the relative array on the main diagonal of stiffness matrix: 

 

[
 
 
 
 
 
 
 
 
 
◼ + 𝑘𝑧1 ◼ ◼ ◼ ◼ ◼ ⋯ 0 0
◼ ◼+ 𝑘𝑥1 ◼ ◼ ◼ ◼ ⋯ 0 0
◼ ◼ ◼+ 𝑘𝑦1 ◼ ◼ ◼ ⋯ 0 0

◼ ◼ ◼ ◼+ 𝜒𝑧1 ◼ ◼ ⋯ 0 0
◼ ◼ ◼ ◼ ◼+ 𝜒𝑥1 ◼ ⋯ 0 0
◼ ◼ ◼ ◼ ◼ ◼+ 𝜒𝑦1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 0 ⋯ ◼+ 𝜒𝑥4 ◼
0 0 0 0 0 0 ⋯ ◼ ◼+ 𝜒𝑦4]

 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑢𝑧1
𝑢𝑥1
𝑢𝑦1 

𝜃𝑧1
𝜃𝑥1
𝜃𝑦1
⋮

𝜃𝑥24
𝜃𝑦24}

 
 
 
 

 
 
 
 

  

 

 

 

 

 

 

 

4.2.1 Calculation of Static equilibrium and Reaction Forces  
 

The static displacement of the system due to weight of the cable can easily be calculated by solving: 

  

                                           𝑲𝑇𝒒𝑠 = 𝒇𝑇                    →                  𝒒𝑠 = 𝑲𝑇
−1𝒇𝑇                     (4.8) 

 

The displacement calculated using this approach, matches perfectly the one which achieved adopting the 

continuous method in previous works. Figure 4.4 below represents the static equilibrium obtained in this 

way. 
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Reaction forces at the boundaries: 
 

To calculate reaction forces at boundaries, there are two approaches that rely on the method which has 

been implemented to introduce the boundary conditions: 

As the first approach, if the constraints have been introduced by canceling the corresponding rows and 

columns, we can obtain the reaction forces simply by following these steps: 

By canceling only the columns and not the rows of the stiffness matrix corresponding to those DOFs that 

have been constrained and eliminating the displacement of those DOFs from the displacement vector, 

since they are equal to zero, and finally by multiplying the remaining sub-matrix of the stiffness matrix to 

the remaining sub-vector of the displacement vector, we can obtain our result.  

As we have defined the constrained DOFs by adding strong relevant stiffness values to the corresponding 

elements of the stiffness matrix, The second approach is implemented as follow: 

Since in this case, although the concerned DOFs are constrained but still have small displacements, so by 

multiplying these small displacements to their corresponding stiffness values, we can calculate the 

reaction forces. This method is adopted in this work. 

 

Figure 4.4 _ Static equilibrium 
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With respect to our example described so far, we have: 

 

𝐹𝑧1 = 𝑘𝑧1𝑢𝑧1                                        𝐹𝑥2 = 𝑘𝑥2𝑢𝑥2 

𝐹𝑥1 = 𝑘𝑥1𝑢𝑥1                                       𝐹𝑦2 = 𝑘𝑦2𝑢𝑦2 

𝐹𝑦1 = 𝑘𝑦1𝑢𝑦1                                      𝑀𝑧2 = 𝜒𝑧2𝜃𝑧2 

𝑀𝑧1 = 𝜒𝑧1𝜃𝑧1                                      𝑀𝑥2 = 𝜒𝑥2𝜃𝑥2  

𝑀𝑥1 = 𝜒𝑥1𝜃𝑥1                                     𝑀𝑦2 = 𝜒𝑦2𝜃𝑦2 

𝑀𝑦1 = 𝜒𝑦1𝜃𝑦1 

 

The displacement vector can be either static configuration or dynamic behavior. Later we will see by 

imposing the excitation loads to the system, by using this logic we can calculate the variation of reaction 

forces over time. 
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4.3 Modal analysis of the system and validation 

 

In the following, the figures depict the first five modes of the system in the vertical direction. 

 

 

 

 

 

 

 

Figure 4.8 _ 1st vertical mode shape Figure 4.7 _ 2nd vertical mode shape 

Figure 4.6 _ 3rd vertical mode shape Figure 4.5 _ 4th vertical mode shape 

Figure 4.9 _ 5th vertical mode shape Figure 4.10 _ The first 3 vertical modes in 3D space 
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As we can see from the table 4.3 and figure 4.11, the modes in lateral direction (Y-axis) are identical to 

those in vertical direction (X-axis) and that is because the beam element is axisymmetric, prismatic 

homogeneous. 

 

 

Table 4.3 _ Natural frequency values (Hz) 

Direction First mode (Hz) Second mode 

(Hz) 

Third mode (Hz) Forth mode (Hz) Fifth mode (Hz) 

Vertical – along 

X 

10.8062 22.1464 34.5003 48.2619 63.7342 

Lateral – along Y 10.8062 22.1464 34.5003 48.2619 63.7342 

 

 

 

 

 

Figure 4.11 _ The first five modes in lateral direction 
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4.4 Dynamic responses of the system 

 

The equation of motion which represents the dynamic behavior of the system is: 

 

                                        𝑴𝑇𝒒̈ + 𝑪𝑇𝒒̇ + 𝑲𝑇𝒒 = 𝒇𝑇(𝑡)                                                          (4.7) 

 

In which we have considered the proportional damping effect: 

 

                                        𝑪𝑇 = 𝛼𝑴𝑇 + 𝛽𝑲𝑇                                                                           (4.6) 

 

In order to introduce the effect of damping to the response of the system, we need to set parameters 𝛼 and 

𝛽 different from zero. As a result, our dynamic simulations have been performed with 𝛼 = 0 and 𝛽 = 1𝑒−4. 

In this way, we can see that intension of the system over time is to settle on the static equilibrium. 

The dynamic study is performed in a discrete time manner, and in this regard, we set the time step 𝑑𝑡 =

0.5𝑒−3𝑠. 

With respect to time integration, as it was discussed earlier, we adopt Newmark scheme. Since we study 

the dynamic behavior of the system with respect to static equilibrium, as the initial condition to the 

Newmark method 𝑞0, 𝑞̇0, we set: 

 

                                                           𝒒0 = 𝒒𝑠      &     𝒒̇0 = {𝟎} 

In which 𝒒𝑠 is the static equilibrium we obtained by equation 4.7 
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4.4.1 Step Response 
 

In this case, the excitation force is a step function along with the negative sign of the X-axis, which acts 

on the system at 𝑡 = 0𝑠 and vanishes at time 𝑡 = 2𝑠 as below:  

 

𝑓(𝑡) = {
0, 𝑡 < 0
𝐹0, 0 ≤ 𝑡 ≤ 2
0,        𝑡 ≥ 2       

 

 

In which 𝐹0 = −20 𝑘𝑁 and the load is applied on the cable at a node which is located on 𝑧 = 4𝑚. 

The nodal force vector of the node which is subjected to the load would be expressed as the following 

vector: 

 

𝒇𝑛 = {0 𝑓(𝑡) 0 0 0 0} 
 

Step excitation is like an act of changing the static equilibrium to a new one at time 𝑡, and the response is 

a kind of transient free response about the new equilibrium condition.  

 

 

 

 

 

 

 

 

 

 

                                                                                                                        

 

 

Figure 4.12 _ The response of the system to step function 
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Figure .12 depicts the time history of displacements of two points which are located at 𝑍 = 2𝑚 and 𝑍 = 3𝑚. 

As well as figure 4.13 displays the time history of variation of the constraint reaction alongside the vertical 

direction.                                                              

                                                                           

4.4.2 Harmonic Response 
 

To study the harmonic response of the system, we have excited the system by imposing harmonic load on 

a specific node located at 𝑍 = 4𝑚. 

 

𝑓(𝑡) =  𝐹0 sin(2𝜋𝜑𝑡) 

In which 𝐹0 = 20 𝑘𝑁, and 𝜑 is the frequency in 𝐻𝑧. 

As what we have seen, the nodal force vector of the node which is subjected to the load would be expressed 

as the following vector: 

 

𝒇𝑛 = {0 𝑓(𝑡) 0 0 0 0} 

The first natural frequency of the system is 𝜑1 =10.8062 Hz, and the frequency of the harmonic load is 

set close to it, 𝜑 = 10 𝐻𝑧.  

Figure 4.13 _ The vertical reaction forces of the constraints 
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Since the frequency of excitation is close the natural frequency, the so-called beating effect occurs which 

can be noticed in figure 4.14 which displays the time history of displacements of two nodes of the cable 

at 𝑍 = 2𝑚 and 𝑍 = 3𝑚.   

 

 

 

 

 

 

 

                                                                                  

Figure 4.14 _ Harmonic response of the system at two points 

Figure 4.15 _ The vertical reaction forces of the constraints due to harmonic excitation 
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Figure 4.16 _ Scheme of the system under analysis 

4.4.3 Response to moving load 
 

The first challenge to simulate a ropeway is to model a moving load as a representative to the cabin passing 

through the cable. We can model a moving ropeway carrying cabins attached to it, by considering a fixed 

and stationary cable subjected to a moving load. 

 

 

 

                                        

 

 

 

 

 

In this case, a very important point to consider is that since the load position changes in each time 

increment, as a result, in order to have a smooth movement of load through the entire cable and not only 

on the nodes, it is possible to consider the distribution of the load on each element using shape function 

matrix [𝑁] which is a function of space (𝜁 =
𝑧

𝑙
). 

 

                                                                         𝒇 = [𝑁]𝑇𝑓0                                                                     (4.9) 

 

With respect to Euler-Bernoulli beam element, the shape function matrix is: 

 

[𝑁] =

[
 
 
 
 
 
 
 
𝑁𝑎1 0 0 0 0 0 𝑁𝑎2 0 0 0 0 0
0 𝑁𝑓1,1 0 0 0 𝑁𝑓1,2 0 𝑁𝑓1,3 0 0 0 𝑁𝑓1,4

0 0 𝑁𝑓1,1 0 −𝑁𝑓1,2 0 0 0 𝑁𝑓1,3 0 −𝑁𝑓1,4 0

0 0 0 𝑁𝑡1 0 0 0 0 0 𝑁𝑡2 0 0
0 0 −𝑁𝑓2,1 0 𝑁𝑓2,2 0 0 0 −𝑁𝑓2,3 0 𝑁𝑓2,4 0

0 𝑁𝑓2,1 0 0 0 𝑁𝑓2,2 0 𝑁𝑓2,3 0 0 0 𝑁𝑓2,4]
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In which 𝑁𝑎, 𝑁𝑓 , 𝑎𝑛𝑑 𝑁𝑡 are elements of shape function matrices in respectively axial, flexural, and 

torsional behavior that we already introduced them on chapter 3.1.1, and they are functions of (𝜁 =
𝑧

𝑙
). 

At each time increment dt, these shape functions must be evaluated at the exact position at time 𝑡 where 

the load is located. In this regard, we substitute the value: 

                                             

                                                 𝑧 = 𝑣0𝑡               →              𝜁 =
𝑣0𝑡

𝑙
   

In the equation (4.9). 

 

Results 
 

 

 

 

 

 

 

 

Figure 4.17 _ Time history of displacement at two points 
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Figure 4.18 _ Deformation of the cable with correspondence of the load 

Figure 4.19 _ The variation of the vertical reaction forces over time 
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Considering a time integration intervals five time larger than what is takes for load to pass through the 

entire span, i.e. 0 ≤ 𝑡 ≤ 5𝐿/𝑣0, we will have the possibility to analyze also the transient deformation of 

the cable toward the static equilibrium after the reaches the ending point. 

Plotting the time history of the displacement of some points (figure 4.17) would be helpful to observe how 

the cable oscillates.  

The damped oscillations displayed so far, are in accordance with our expectation approve the reliability 

and correctness of the model. 
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5 2nd Configuration: Multi-Span cable 

The discretization Euler-Bernoulli beam element and the Newmark scheme have been used successfully 

to model single-span beam. To advance our simulation, these methods are utilized to study the multi-span 

cable. We start with a two-span beam with the following information: 

 

 

               Table 5.1 _ Geometrical data and parameters of the system 

Density   ρ      8940 kg/m3 mass per unit of length      𝜇 = 𝜌 ∗ 𝜋𝑅2 

Elastic modulus   E     120 GP a Span length 1  𝑙     10 m 

Radius   R    1.6 · 10−2 m Span length 2 𝑙     8 m 

Force amplitude   f0     2 kN Speed of the load   v0     2 m/s 

 

In this case, pretention 𝑇 = 0. 

 

5.1 Implementation of E-B element,  

5.1.1 From local to global reference frame and rotation matrices 
 

 

 

 

 

 

 

 

 

 

  

Figure 5.1_ General orientation of beam in space 
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In figure 5.1, a two-span beam with general orientations in space is displayed. In this case, similarly, the 

global reference of frame 𝑂 (XYZ) is defined so that the gravity field is directed toward the negative sign 

of the X-axis and the first span of the beam is in the XZ plane. 

On the second beam, an intermediate reference frame 𝑂′ (𝑋′𝑌′𝑍′) is introduced so that the beam locates 

on the 𝑋′𝑍′ plane of the frame 𝑂′, and the 𝑋′-axis of frame 𝑂′ has the same direction as X-axis in the 𝑂 

frame. In this way, the beam has an inclination of angle 𝜑 with respect to axis 𝑌′ and angle 𝛾 with respect 

to axis X. This logic will help us to drive the equation of motion of the beam with respect to the global 

reference frame using an adequate two-step transformation equation. 

To link the displacement vectors 𝑞𝑖𝑔and 𝑞𝑖𝑙 which are respectively the displacement vector of the 𝑖th node 

with respect to the global and local reference frames, first we need to introduce a coordinate transformation 

from intermediate frame to local one, and then from global to intermediate reference frame. Considering 

the fact that the local reference frame is the one with respect to which, we derived the matrices and the 

𝑧 − 𝑎𝑥𝑖𝑠 coincides with the axial direction of the beam. 

 

1𝑠𝑡: Transformation from intermediate reference frame 𝑂′ to the local one: 

 

                                                       𝑹𝜑 = [
cos𝜑 sin𝜑 0
−sin𝜑 cos𝜑 0
0 0 1

] 

 

The corresponding transformation can be expressed as: 

 

                                                                           𝒒𝑖𝑙 = 𝑹𝜑𝒒𝑖𝑖𝑛𝑡                                                        (5.1) 

 

 

 

 

2𝑛𝑑: Transformation from global reference frame 𝑂 to the intermediate one 𝑂′: 

 

                                                      𝑹𝛾 = [
cos 𝛾 0 − sin 𝛾
0 1 0

sin 𝛾 0 cos 𝛾
] 
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And the corresponding transformation can be expressed as: 

 

                                                                         𝒒𝑖𝑖𝑛𝑡 = 𝑹𝛾𝒒𝑖𝑔                                                       (5.2) 

 

As a result, the direct transformation from global to local reference frame is conducted by the following 

rotation matrix and transformation expression: 

 

                            𝑹 = 𝑹𝜑 × 𝑹𝛾                      →              𝒒𝑖𝑙 = 𝑹𝒒𝑖𝑔                                (5.3) 

 

Again, the expanded rotation matrix 𝑹′ would be: 

 

𝑹′ =

[
 
 
 
[𝑹3×3] [𝟎3×3] [𝟎3×3] [𝟎3×3]

[𝟎3×3] [𝑹3×3] [𝟎3×3] [𝟎3×3]

[𝟎3×3] [𝟎3×3] [𝑹3×3] [𝟎3×3]

[𝟎3×3] [𝟎3×3] [𝟎3×3] [𝑹3×3]]
 
 
 

12×12

 

 

As what we have seen in section 4.1.2, the equation of the motion with respect to the global reference 

frame is: 

 

                                                 𝑹′𝑇𝑴𝑹′𝒒̈𝑔 + 𝑹
′𝑇𝑲𝑹′𝒒𝑔 = 𝒇𝑔                                          (5.4) 

And the global matrices and vector associated with one element is: 

 

                                                       𝑴𝑔 = 𝑹′𝑇𝑴𝑙𝑹′   

                                                                𝑲𝑔 = 𝑹′
𝑇𝑲𝑙𝑹′                                                                (5.5) 

                                                                 𝒇𝑔 = 𝑹′
𝑇𝒇𝑙 
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5.1.2 Assembling and mapping matrices 
 

 

 

 

 

 

 

 

 

 

 

As it was discussed for one-span beam, procedure to assemble elements the elements of multi-span beam 

follow the same logic. After obtaining the global matrices and global nodal force vector, since all elements, 

displacements, and forces are expressed with respect to the same reference frame (global), the map matrix 

can be developed without considering the constraints at this stage. 

 

                 {𝑞} = {𝑢𝑧1  𝑢𝑥1  𝑢𝑦1  𝜃𝑧1  𝜃𝑥1  𝜃𝑦1… 𝑢𝑧4  𝑢𝑥4  𝑢𝑦4  𝜃𝑧4  𝜃𝑥4  𝜃𝑦4}′1×24 

 

        Table 5.2 _ Assembling table 

 
𝑢𝑧1 

1 

𝑢𝑥1 

2 

𝑢𝑦1 

3 

𝜃𝑧1 

4 

𝜃𝑥1 

5 

𝜃𝑦1 

6 

𝑢𝑧2 

7 

𝑢𝑥2 

8 

𝑢𝑦2 

9 

𝜃𝑧2 

10 

𝜃𝑥2 

11 

𝜃𝑦2 

12 

𝑢𝑧3 

13 

𝑢𝑥3 

14 

𝑢𝑦3 

15 

𝜃𝑧3 

16 
𝜃𝑥3 

17 
𝜃𝑦3 

18 … 
𝜃𝑥4 

23 

𝜃𝑦4 

24 

1 
𝑢𝑧1 

1 

𝑢𝑥1 

2 

𝑢𝑦1 

3 

𝜃𝑧1 

4 

𝜃𝑥1 

5 

𝜃𝑦1 

6 

𝑢𝑧2 

7 

𝑢𝑥2 

8 

𝑢𝑦2 

9 

𝜃𝑧2 

10 

𝜃𝑥2 

11 

𝜃𝑦2 

12 

 
  

   
… 

  

2       
𝑢𝑧2 

1 

𝑢𝑥2 

2 

𝑢𝑦2 

3 

𝜃𝑧2 

3 

𝜃𝑥2 

4 

𝜃𝑦2 

5 

𝑢𝑧3 

6 

𝑢𝑥3 

7 

𝑢𝑦3 

8 

𝜃𝑧3 

9 

𝜃𝑥3 

10 

𝜃𝑦3 

11 
… 

  

3             
𝑢𝑧3 

1 

𝑢𝑥3 

2 

𝑢𝑦3 

3 

𝜃𝑧3 

4 

𝜃𝑥3 

5 

𝜃𝑦3 

6 
… 

𝜃𝑥4 

11 

𝜃𝑦4 

12 

 

Once the mapping is done the global mass and stiffness matrices will be of the structure as what we have 

seen in single-span beam. 

 

Figure 5.2 _ Two-span beam with one intermediate constraint 
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the global equation of motion of the entire structure with proportional damping is: 

 

                                          𝑴𝑇𝒒̈ + 𝑪𝑇𝒒̇ + 𝑲𝑇𝒒 = 𝒇𝑇(𝑡)                                                                           (5.6) 

 

 

 

 

5.2 Boundary Conditions and Static equilibrium 

 

Within a multi-span beam, the intermediate support, in our case, which is usually a pulley on which the 

cable passes, constraints only the vertical and lateral degrees of freedom (𝑢𝑋𝑖 , 𝑢𝑌𝑖) on the node 𝑖 which is 

in the surface contact of the pulley. As a result, the pulley can simply be modeled by adding only two 

strong translational stiffness (𝑘𝑖, 𝜒𝑖) at the corresponding DOFs within the global stiffness matrix of the 

whole structure. 

Considering the same small example, we discussed in section 4.1.3, but this time, the third node is 

constrained by the pulley, with a similar boundary condition at left and right end sides. Therefore, the 

displacement vectors of the constraint nodes would be as: 

{𝑞1} =  

{
 
 

 
 
𝑢𝑧1
 𝑢𝑋1
𝑢𝑌1
𝜃𝑧1
𝜃𝑋1
𝜃𝑌1}

 
 

 
 

  = 

{
 
 

 
 
0
0
0
0
0
0}
 
 

 
 

,   {𝑞3} =  

{
 
 

 
 
𝑢𝑧3
 𝑢𝑋3
𝑢𝑌3
𝜃𝑧3
𝜃𝑋3
𝜃𝑌3}

 
 

 
 

  =  

{
 
 

 
 
𝑢𝑧3
0
0
𝜃𝑧3
𝜃𝑋3
𝜃𝑌3}
 
 

 
 

,  {𝑞4} =  

{
 
 

 
 
𝑢𝑧1
 𝑢𝑋1
𝑢𝑌1
𝜃𝑧1
𝜃𝑋1
𝜃𝑌1}

 
 

 
 

  = 

{
 
 

 
 
𝑢𝑧1
0
0
0
0
0 }
 
 

 
 

 

 

Adopting the same solution, 𝑘 and χ are the relevant stiffnesses that are to be added to global stiffness 

matrix implementing respectively on translational and rotational DOFs. The additional stiffnesses are as 

the following: 

 

                              {𝑘𝑧1  𝑘𝑋1  𝑘𝑌1  χ𝑧1  χ𝑋1  χ𝑌1  𝑘𝑋3  𝑘𝑌3  𝑘𝑋4  𝑘𝑌4  χ𝑧4  χ𝑋4  χ𝑌4} 
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Incrementation of potential energy due to additional stiffnesses is: 

 

∆𝑈 = 
1

2
𝑘𝑧1(𝑢𝑧1)

2 +
1

2
𝑘𝑋1(𝑢𝑋1)

2 +
1

2
𝑘𝑌1(𝑢𝑌1)

2 +
1

2
𝜒𝑧1(𝜃𝑧1)

2 +
1

2
𝜒𝑋1(𝜃𝑋1)

2 +
1

2
𝜒𝑌1(𝜃𝑌1)

2 +⋯ 

                 …+
1

2
𝑘𝑋3(𝑢𝑋3)

2 +
1

2
𝑘𝑌3(𝑢𝑌3)

2 +
1

2
𝑘𝑋4(𝑢𝑋4)

2 +
1

2
𝑘𝑌4(𝑢𝑌4)

2 +
1

2
𝜒𝑧4(𝜃𝑧4)

2 +
1

2
𝜒𝑋4(𝜃𝑋4)

2 +

                 ⋯+
1

2
𝜒𝑌4(𝜃𝑌4)

2 

 

          
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑧1
) = 𝑘𝑧1𝑢𝑧1                                            

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑋4
) = 𝑘𝑋4𝑢𝑋4          

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑋1
) = 𝑘𝑋1𝑢𝑋1                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑌4
) = 𝑘𝑌4𝑢𝑌4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑌1
) = 𝑘𝑌1𝑢𝑌1                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑧4
) = 𝜒𝑧4𝜃𝑧4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑧1
) = 𝜒𝑧1𝜃𝑧1                                           

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑥4
) = 𝜒𝑥4𝜃𝑥4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑋1
) = 𝜒𝑋1𝜃𝑋1                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑌4
) = 𝜒𝑌4𝜃𝑌4  

         
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝜃𝑦1
) = 𝜒𝑌1𝜃𝑌1                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑋3
) = 𝑘𝑋3𝑢𝑋3       

                                                                                               
𝑑

𝑑𝑡
(
𝜕∆𝑈

𝜕𝑢𝑌3
) = 𝑘𝑌3𝑢𝑌3 

 

 

[
 
 
 
 
 
 
 
 
◼ + 𝑘𝑧1 ◼ ◼ ⋯ 0 0 ⋯ 0 0
◼ ◼+ 𝑘𝑥1 ◼ ⋯ 0 0 ⋯ 0 0
◼ ◼ ◼+ 𝑘𝑦1 ⋯ 0 0 ⋯ 0 0

◼ ◼ ◼ ⋱ ⋮ ⋮ ⋯ 0 0
◼ ◼ ◼ ⋯ ◼+ 𝜒𝑋3 ◼ ⋯ 0 0
◼ ◼ ◼ ⋯ ◼ ◼+ 𝜒𝑌3 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 0 ⋯ ◼+ 𝜒𝑋4 ◼
0 0 0 0 0 0 ⋯ ◼ ◼+ 𝜒𝑌4]

 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑢𝑧1
𝑢𝑋1
𝑢𝑌1 
⋮
𝑢𝑋3
𝑢𝑌3
⋮

𝜃𝑋24
𝜃𝑌24}
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5.2.1 Calculation of Static equilibrium and Reaction Forces 
 

The static displacement of the system due to the weight of the cable: 

  

                                   𝑲𝑇𝒒𝑠 = 𝒇𝑇                    →                  𝒒𝑠 = 𝑲𝑇
−1𝒇𝑇                          (5.7) 

 

 

 

 

 

 

 

  

Figure 5.3 _ Static equilibrium 
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To calculate the reaction forces on pulley, we adopt the same logic used for boundary reaction forces 

 

𝐹𝑧1 = 𝑘𝑧1𝑢𝑧1                                        𝐹𝑋2 = 𝑘𝑋2𝑢𝑋2 

𝐹𝑋1 = 𝑘𝑋1𝑢𝑋1                                       𝐹𝑌2 = 𝑘𝑌2𝑢𝑌2 

𝐹𝑌1 = 𝑘𝑌1𝑢𝑌1                                      𝑀𝑧2 = 𝜒𝑧2𝜃𝑧2 

𝑀𝑧1 = 𝜒𝑧1𝜃𝑧1                                      𝑀𝑋2 = 𝜒𝑋2𝜃𝑋2  

𝑀𝑋1 = 𝜒𝑋1𝜃𝑋1                                     𝑀𝑌2 = 𝜒𝑌2𝜃𝑌2 

𝑀𝑌1 = 𝜒𝑌1𝜃𝑌1                                     𝐹𝑋3 = 𝑘𝑋3𝑢𝑋3 

                                                                      𝐹𝑌3 = 𝑘𝑌3𝑢𝑌3 
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5.3 Modal analysis of the system and validation 

 

 

 

 

 

 

 

Figure 5.5 _ The 1st vertical mode Figure 5.4 _ The 2nd vertical mode 

Figure 5.7 _ The 3rd vertical mode Figure 5.6 _ The 4th vertical mode 

Figure 5.9 _ The 5th vertical mode 
Figure 5.8 _ The first 3 modes in 3D space 
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As we set the pretention 𝑇 equal to zero, we would not have anymore stiffening effect caused by axial 

load, therefore we the range of frequencies are low. According to the different validation which have 

performed, these are promising and reliable. 

 

Table 5.3 _ Natural frequency values (Hz) 

Direction First mode (Hz) Second mode 

(Hz) 

Third mode (Hz) Forth mode (Hz) Fifth mode (Hz) 

Vertical – along 

X 

0.82207 1.4151 2.5889 4.0112 5.3322 

Lateral – along Y 0.82207 1.4151 2.5889 4.0112 5.3322 

 

 

 

 

 

 

 

 

 

Figure 5.10 _ The first five modes in lateral direction 
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5.4 Dynamic responses of the system 

 

To study the dynamic equation: 

 

                                        𝑴𝑇𝒒̈ + 𝑪𝑇𝒒̇ + 𝑲𝑇𝒒 = 𝒇𝑇(𝑡)                                                          (5.8) 

With proportional damping parameters 𝛼 and 𝛽 the same as previous case of study, respectively 0 and 
1

4
, 

the same consideration about initial conditions 𝑞0, 𝑞̇0, time step 𝑑𝑡, and time integration scheme have been 

adopted: 

                         𝒒0 = 𝒒𝑠      &     𝒒̇0 = {𝟎}       &         𝑑𝑡 = 0.5𝑒−3𝑠 

 

 

5.4.1 Step Response 
 

The same step function excites the system acting on a node located at 𝑧 = 7𝑚 starting at 𝑡 = 0 and lasts 

for 2 seconds: 

 

                                     𝑓(𝑡) = {
0, 𝑡 < 0
𝐹0, 0 ≤ 𝑡 ≤ 2
0,        𝑡 ≥ 2       

            &             𝐹0 = −2 𝑘𝑁  

The nodal force vector of the node which is subjected to the load: 

 

𝒇𝑛 = {0 𝑓(𝑡) 0 0 0 0} 

 

 

Results 
 

In figure 5.11, time history of the displacement of two nodes (one node at each span) is depicted, and 

figure 5.12, displays the reaction forces due to step response of the system.  

The natural frequencies are low, and since step response is kind of free response over new equilibrium, 

we can see the response takes place at a very low speed over time. 
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Figure 5.11_ Step response of two nodes at 5m & 14m 

Figure 5.12 _ Variation of reaction forces over time 
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5.4.2 Harmonic Response 
 

Here the aim is to study of the two-span beam response to a harmonic load with frequency 𝜑 = 1 𝐻𝑧 

(close to first natural frequency). 

𝑓(𝑡) =  𝐹0 sin(2𝜋𝜑𝑡) 

 

The nodal force vector of the node on which the load acts: 

 

𝒇𝑛 = {0 𝑓(𝑡) 0 0 0 0} 

The first natural frequency of the system is 𝜑1 = 0.82207𝐻𝑧, and the frequency of the harmonic load is 

set close to it, 𝜑 = 1 𝐻𝑧. Since the exciting frequency is close to one of the natural frequencies beating 

kind of behavior can be detected. The load is applied on a node at 𝑧 = 4𝑚. 

 

Result 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 _ Harmonic response of two nodes at 5m & 14m 
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5.4.3 Response to moving load 
 

 

  

Figure 5.14 _ Variation of reaction forces over time 
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6 3rd Configuration: Multi-Span beam carrying multiple 

lumped elements and a lumped system 

 

 

To prove the accuracy and reliability of our simulation, we went with validation through a paper on 

“Journal of Sounds and Vibration”. 

This paper introduced a numerical assembly method (NAM) to find the correct values of natural 

frequencies and mode shapes of a multi-span Timoshenko beam. The mentioned beam carries multiple 

lumped elements and a seismic lumped system. 

The configuration that we adopt to simulate and validate our work, is a pinned-pinned beam with an 

intermediate pin support which is depicted in figure 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 _ Sketch for a uniform Timoshenko beam supported by r intermediate pins, carrying u spring–mass systems and v 

various 
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                 Table 6.1 _ Geometric data and parameters of the system 

Density   ρ                   7.835𝑒3 kg/m3 Rectangular cross section 

Elastic modulus   E     2.069𝑒11𝑁 𝑚2⁄  Width     𝑏𝐼            0.05m 

Shear coefficient  𝑘’     5 6⁄  Height     ℎ𝐼           0.06m 

Poisson ratio   𝑣            0.3 length         𝑙           1 m 

Shear modulus    G         7.9577𝑒10𝑁 𝑚2⁄  

 

 

All the elements and there corresponding values are expressed in table 6.1: 

 

Table 6.2 _ Elements' values 

 𝑚1 

(𝑘𝑔) 

𝑚4 

(𝑘𝑔) 

𝑚6 

(𝑘𝑔) 
𝐽1 

(𝑘𝑔𝑚2) 
𝐽6 

(𝑘𝑔𝑚2) 
𝑘𝑇3 

(
𝑁

𝑚
) 

𝑘𝑇4 

(
𝑁

𝑚
) 

𝑘𝑅3 

(𝑁𝑚) 
𝑚𝑒7 

(𝑘𝑔) 
𝑘𝑒7 

(
𝑁

𝑚
) 

vlaues 4.701 4.701 9.402 0.04701 0.14103 1.86210𝑒6 2.79315𝑒6 9.3105𝑒5 4.701 5.5863𝑒5 

location 𝑥1 𝑥4 𝑥6 𝑥1 𝑥6 𝑥3 𝑥4 𝑥3 𝑥7 𝑥7 

 

And 𝑥1 = 0.2𝑚,  𝑥3 = 0.4𝑚,  𝑥4 = 0.6𝑚, 𝑥6 = 0.8𝑚, 𝑥7 = 0.9𝑚. 

 

 

 
 

 

6.1 Introducing lumped elements to the system 

 

To introduce the elements, we adopt the same approach we used to introduce constraints, but this time 

since there are masses and inertias, since they are associated with the kinetic energy, their presence in the 

system lead to the increment in kinetic energy: 
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Incrementation of kinetic energy (∆𝑇) in correspondence of for example, lumped mass 𝑚1 and lumped 

inertia 𝐽1 is: 

 

∆𝑇𝑚1
=
1

2
𝑚1(𝑢̇𝑥𝑥1)

2
+
1

2
𝑚1(𝑢̇𝑦𝑥1)

2
+
1

2
𝑚1(𝑢̇𝑧𝑥1)

2
 

∆𝑇𝐽1 =
1

2
𝐽1(𝜃̇𝑥𝑥1)

2
+
1

2
𝐽1(𝜃̇𝑦𝑥1)

2
+
1

2
𝐽1(𝜃̇𝑧𝑥1)

2
 

 

In which the indices 𝑥1 below each DOF, indicates that degree of freedom is associated with node which 

located at 𝑥 = 𝑥1. 

Then: 

 

          
𝑑

𝑑𝑡
(
𝜕∆𝑇𝑚1

𝜕𝑢̇𝑥𝑥1
) = 𝑚1𝑢̇𝑥𝑥1                                            

𝑑

𝑑𝑡
(
𝜕∆𝑇𝐽1

𝜕𝜃̇𝑥𝑥1
) = 𝐽

1
𝜃̇𝑥𝑥1          

         
𝑑

𝑑𝑡
(
𝜕∆𝑇𝑚1

𝜕𝑢̇𝑦𝑥1
) = 𝑚1𝑢̇𝑦𝑥1

                                          
𝑑

𝑑𝑡
(
𝜕∆𝑇𝐽1

𝜕𝜃̇𝑦𝑥1
) = 𝐽

1
𝜃̇𝑦𝑥1

  

         
𝑑

𝑑𝑡
(
𝜕∆𝑇𝑚1

𝜕𝑢̇𝑧𝑥1
) = 𝑚1𝑢̇𝑧𝑥1                                           

𝑑

𝑑𝑡
(
𝜕∆𝑇𝐽1

𝜕𝜃̇𝑧𝑥1
) = 𝐽

1
𝜃̇𝑧𝑥1  

 

Then, in the global mass matrix of the system, the value 𝑚1will be added to any translational DOFs 

associated with node on which 𝑚1 is added, and in the same way, the value 𝐽1will be added to any 

rotational DOFs associated with node on which 𝐽1 is added. 
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6.2 Introducing lumped system (dynamic shock absorber) to the system 

 

  

 

 

 

 

 

 

 

 

As we can see from figure 6.2, the seismic system adds an additional degree of freedom (𝑢𝑦𝑚𝑒7) to the 

node to which it is attached. In order to introduce the spring-mass system to the global mass and stiffness 

matrices, initially we add this DOF to global displacement vector, and by following similar procedure, the 

correspondence elements of matrices will be obtained: 

 

∆𝑇𝑚𝑒7
=
1

2
𝑚𝑒7 (𝑢̇𝑦𝑖 − 𝑢̇𝑦𝑚𝑒7)

2

 

∆𝑈𝑘𝑒7 =
1

2
𝑘𝑒7 (𝑢𝑦𝑖 − 𝑢𝑦𝑚𝑒7)

2

 

 

𝑑

𝑑𝑡
(
𝜕∆𝑇𝑚𝑒7

𝜕𝑢̇𝑦𝑖
) = 𝑚𝑒7 (𝑢̇𝑦𝑖 − 𝑢̇𝑦𝑚𝑒7)                                                   

𝑑

𝑑𝑡
(
𝜕∆𝑈𝑘𝑒7

𝜕𝑢𝑦𝑖
) = 𝑘𝑒7 (𝑢𝑦𝑖 − 𝑢𝑦𝑚𝑒7) 

𝑑

𝑑𝑡
(
𝜕∆𝑇𝑚𝑒7

𝜕𝑢̇𝑦𝑚𝑒7
) = 𝑚𝑒7 (−𝑢̇𝑦𝑖 + 𝑢̇𝑦𝑚𝑒7)                                          

𝑑

𝑑𝑡
(
𝜕∆𝑈𝑘𝑒7

𝜕𝑢𝑦𝑚𝑒7
) = 𝑘𝑒7 (−𝑢𝑦𝑖 + 𝑢𝑦𝑚𝑒7) 

 

 

 

 

 

Figure 6.2 _ The seismic system attached to the beam at node i 
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Then the matrices will have additional elements as: 

With respect to the stiffness matrix: 

[
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋰
⋯ ∎+ 𝑘𝑒7 ⋯ 0 − 𝑘𝑒7 ⋯
⋮ ⋮ ⋱ ⋮ ⋯
⋯ 0 − 𝑘𝑒7 ⋯ 0 + 𝑘𝑒7 ⋯
⋰ ⋮ ⋮ ⋮ ⋱]

 
 
 
 

{
 
 

 
 

⋮
𝑢𝑦𝑖
⋮

𝑢𝑦𝑚𝑒7
⋮ }

 
 

 
 

 

 

With respect to the mass matrix: 

[
 
 
 
 
⋱ ⋮ ⋮ ⋮ ⋰
⋯ ∎+𝑚𝑒7 ⋯ 0 −𝑚𝑒7 ⋯
⋮ ⋮ ⋱ ⋮ ⋯
⋯ 0 −𝑚𝑒7 ⋯ 0 +𝑚𝑒7 ⋯
⋰ ⋮ ⋮ ⋮ ⋱]

 
 
 
 

{
 
 

 
 

⋮
𝑢𝑦𝑖
⋮

𝑢𝑦𝑚𝑒7
⋮ }

 
 

 
 

 

 

 

6.3 Results 

The results have been compatible with those presented in the paper. In the following figure 6.3, depicts 

the first five modes from the paper for a Timoshenko beam, and figure 6.4, presents the corresponding 

results of our simulation: 

 

 

 

 

 

 

 

 

 

 

 

                                                                                        

Figure 6.3 _ The lowest five mode shapes of the two-span pinned–pinned (P–P) 

Timoshenko beam carrying three point masses, two rotary 
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Table 6.3 _ The lowest five natural frequencies of the two-span beam 

Type of beam Methods 𝜔1 (rad/s) 𝜔2 (rad/s) 𝜔3 (rad/s) 𝜔4 (rad/s) 𝜔5 (rad/s) 

Timoshenko 

beam 

(NAM) paper 344.0505 1630.4214 4666.1223 6410.2455 7724.3333 

Euler–

Bernoulli 

beam 

(NAM) paper 344.0948 1667.1936 4849.1637 6700.1525 8301.3915 

Euler–

Bernoulli 

beam 

Present work 344.09492 1665.0539 4830.9236 6665.6287 8258.14171 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 _ First five vertical mode shapes 
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7 Conclusion 
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