Fabrizio Lande
Multimodal-source image generation with deep learning.
Rel. Paolo Garza, Erfan Ghaderey, Ruben Cartuyvels Cartuyvels. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2021
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (18MB) | Preview |
Abstract: |
The focus of this work almost completely carried on during my stay at KU Leuven University as part of my Erasmus project, is to present a new way of synthesizing images starting from a descriptive input text and a reference image by using a model, RaGAN, extensively based on deep learning and generative adversarial network, that could set a base for future experimentation in this hybrid field that is multimodal source image generation. |
---|---|
Relatori: | Paolo Garza, Erfan Ghaderey, Ruben Cartuyvels Cartuyvels |
Anno accademico: | 2021/22 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 80 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Data Science And Engineering |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Ente in cotutela: | KUL - KATHOLIEKE UNIVERSITEIT LEUVEN (BELGIO) |
Aziende collaboratrici: | Ku Leuven |
URI: | http://webthesis.biblio.polito.it/id/eprint/21219 |
Modifica (riservato agli operatori) |