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Abstract 
 
Drowsy driving can lead to road accidents. Therefore, it is essential to find methods to 
prevent drowsy driving.  
The aim of this thesis is the implementation of a method for detecting drowsy driving 
using the respiration rate (RR).  
Data have been collected through a dynamic driving simulator. RR data has been 
measured with a thoracic respiratory band for the Polysomnographic test. 
Two real-time algorithms have been developed to detect drowsy driving from the dsRR 
(differential of the standard deviation of the respiration rate) and the dmRR (differential 
of the medium value of the respiration rate) of a certain window of RR signal samples.  
The needed system transfer functions have been identified through the set-membership 
identification approach.  
The algorithms can predict the first falling asleep in most of the cases. 
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Chapter 1 
 

Introduction 
 
One of the most frequent causes of car accidents is drowsiness at the wheel. 
Drowsiness is responsible of decreasing mental alertness, affecting the 
individual’s ability to drive a vehicle safely and increasing the risk of human error 
that could lead to accidents.  
 
This thesis proposes an algorithm for drowsiness detection through the respiration 
rate (RR) signal analysis.  
The required data have been acquired through the Polysomnography (PSG) test 
and the power spectrum analysis of the Photoplethysmogram (PPG) signal.  
 
In this thesis, the following principal chapters will be examined: 
 

❖ State of the art: in this chapter, the influence of sleepiness on road 
accidents and the main methods to contain the problem will be briefly 
presented. The sleep cycle, PSG analysis and PPG signal will also be 
analysed. 
 

❖ Driver drowsiness dataset: in this chapter, the dataset used for the 
identification of the system and finally for the development of the sleep 
prediction algorithm will be presented. 

 
❖ Methodology: in this chapter, the set-membership identification approach 

for system identification will be applied and the development of the 
drowsiness detection algorithm will be explained. 
 

❖ Analysis of the results: in this chapter, the results of the algorithm will be 
analysed in terms of sleep prediction time, sensitivity and specificity. 

  



1  Introduction 
 

2 
 

 



2  State of the art 
2.1 Driver drowsiness and road accident 

3 
 

Chapter 2 
 

State of the art 
 
2.1 Driver drowsiness and road accident 
 

Driver drowsiness is a major case of road accident. Indeed, according to the 
American National Highway Traffic Safety Administration (NHTSA), falling 
asleep is the most influential factor in the fatal single vehicle road crashes, 
followed by other causes such as alcohol use and vehicle speed. Depending on the 
considered country, a percentage between 5% and 25% of fatal road accident 
involved driver sleepiness [1]. 

In addition, according to some studies [2], two hours of continuous nocturnal 
driving produce a driving impairment compatible with a blood alcohol 
concentration of 0.05%.  
Furthermore, drivers with sleep disorders and sleepless are more prone to have 
road accidents. 

An Internet survey [3] regarding traffic incident experiences investigates on the 
psychosomatic states before traffic incidents. The result of this survey is shown in 
the following Figure 2.1. As it can be noticed, the psychosomatic states before 
traffic incident were identified as haste (22%), distraction (21.9%), inexperienced 
driving (7.6%) and drowsy driving (3.8%). Thus, the drowsiness of a driver is one 
of the potential factors that can cause road accidents. 
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Figure 2.1: Psychosomatic state of the driver before road accident [14] 

Therefore, finding methods to prevent drowsy driving and related accidents is 
crucial to improve road safety. 

 

 

2.2 Methods to prevent drowsy driving  
 

In order to reduce road accidents related to driver drowsiness or fatigue, different 
types of measures could be taken. 

An example of practical measures are shelters for sleepy drivers installed on the 
highway in South Korea (Figure 2.2). This rest-stop measure decreased the 
number of accidents by 28% and the number of deaths by 55% [4].  
Nevertheless, the drawback of this countermeasure is that the non-highways are 
not equipped with such rest areas for sleepy drivers. 
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Figure 2.2: Shelters for sleepy drivers 

 

In recent years, measures for accurate drowsiness detection have been subject of 
studies. According to some of these studies [5], such measures include vehicle-
based measures, behavioural measures, and physiological measures. 

• Vehicle-based measures depend on the vehicle velocity, acceleration, 
wheel position, etc.. These measures are non-invasive and relatively 
accurate, but they are highly dependent on driver’s driving skills, road 

conditions, vehicle characteristics. Another drawback is the potential risk 
of taking time for detecting the vehicle motion in real driving scenario. 
PLK Technology developed the first lane departure warning system 
(LDWS), employed for the first time in the world by Hyundai [4]. 
Volvo developed a system able to detect deviations from the driving lane 
using a camera connected to the LDWS (Figure 2.3). 
 

 
Figure 2.3: LDWS working principle 

 

Mercedes-Benz also developed a drowsy driving detection system that 
memorizes each driver’s driving patterns in the first 20 minutes of driving 
and enables operation in the range 80–180 km/h. 
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• Behavioural measures are based on the usage of camera to detect driver’s 

eye state, eye blinking rate, yawning, head movement, etc. (Figure 2.4). 
These measures have the advantage of being easy to use but they are 
sensitive to camera movement, surrounding environment, lighting 
conditions. 
 

  

Figure 2.4: Blink detection [18] 

 
• Physiological measures are an alternative or complement means to 

vehicle-based and behavioural measures. Physiological measures are based 
on biometrical signals such as heart rate, brain activity, respiration. These 
signals are acquired with different sensors: electrocardiogram (ECG), 
electroencephalogram (EEG), photoplethysmogram (PPG), etc. [5].  
 
 

2.3 Recent studies on driver drowsiness detection 
 

The correlation between bio-signals and driver drowsiness has been subject of 
several studies. 

Some studies showed that drowsiness is associated with changes in eye 
movement, heart and respiration rates, and EEG [4]. 

A Korean study [4] confirmed the correlation between the drowsiness and the 
higher frequency of blinks together with the longer duration of eye closure. A 
drowsiness perception system able to judge drowsiness through a vision system 
was developed. The vision system allowed to detect the eye region, the eye 
blinking frequency and the eye closure duration. Finally, a detection algorithm 
was developed to associate these two variables with the drowsiness state. 

Kim et al. [4] analysed the drowsy driving detection through a sensor system 
based on respiration (Figure 2.5). This system was a piezoelectric pressure sensor 
used for the measurement of pressure variations induced by the movement of the 
driver abdomen during breathing. Their analysis results indicated that the 
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respiration peak of a driver in a state of drowsiness is at least 83% lower with 
respect to the one of an alert driver. In addition, the respiration rate is at least 10% 
higher [4]. 

 

Figure 2.5: Experiment setting [4] 

 

Moon et al. [6] implemented an algorithm able to detect drowsy driving based on 
jerking patterns using a steering angle sensor [4]. 

In the following, the characteristics of ECG and PPG signals and their correlation 
with heart activity are discussed. Afterwards, the correlation between bio-signals 
and drowsiness will be analyzed. 

 

 

2.4 Biological background  
 

2.4.1 Heart physiology  
 

The heart is responsible for rhythmically pumping blood in the body, allowing the 
transport of vital nutrients and oxygen to the cells. The heart is divided into four 
chambers with different functions (Figure 2.6). 

The chambers on the right side, the right atrium and right ventricle, are 
responsible for delivering deoxygenated blood through the pulmonary circulation. 
The chambers on the left side, the left atrium and the left ventricle, deliver 
oxygenated blood through the systemic circulation.  

This vital function is accomplished by the cardiac muscle when electrically 
stimulated by the Central Nervous System (CNS). The electrical stimulation 
consists of a wave of electrical current conducted through a complex network of 
cardiac muscle fibres before every heartbeat. This phenomenon produces potential 
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differences on the body surface that can be measured with specific surface 
electrodes and acquisition hardware. The resulting graphical recording of the 
potential difference signals is known as Electrocardiogram (ECG) [7]. 

 

 

Figure 2.6: Heart physiology 

 

In normal condition, the heart is stimulated by the SA node, situated in the right 
atrium at the superior vena cava (Figure 2.7). This node activates the muscular 
cells of the right atrium. Then, this electrical wave propagates also activating the 
rest of the atria.  

The Atrioventricular (AV) node is located at the boundary between the atria and 
ventricles. This node is responsible of propagating the activation wave to the 
ventricles and provides the only path for the electrical waves, since the atria and 
the ventricles are separated by an insulating fibrous barrier. 
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Figure 2.7: Normal ECG shape 

 

Therefore, the SA node acts as the primary pacemaker of the heart and is 
responsible of setting the working frequency of the heart HR. The SA node 
activity is regulated by the CNS, more specifically by the Autonomous Nervous 
System (ANS). The ANS regulates the activity of certain organs (heart, digestive 
tract, lungs, bladder and blood vessels). It is also known as the involuntary motor 
system since most of these functions happen unconsciously. 

The ANS is composed of two subsystems: the sympathetic and parasympathetic 
nervous systems. These two branches are responsible of different and opposite 
tasks. 

The sympathetic nervous system, also known as the “fight or flight” system, is 

activated during physically or mentally stressful situations.  Its activity causes an 
increment of the SA stimulation resulting in an increase of the depolarization 
wave propagation velocity and then of the HR raising. 

The parasympathetic nervous system, also known as the “rest and digest” system, 
aims to slow down the HR. 

As previously discussed, sympathetic and parasympathetic systems have opposite 
tasks. Nevertheless, their interaction is not competing rather than complementary. 
This continuous modulation by the vagal and sympathetic branches is known as 
sympathovagal balance.  

The Heart Rate Variability (HRV) is the oscillation in the interval between 
consecutive heartbeats. Since the HR variations are consequences of the 
sympathovagal balance, the HRV is an important indicator of the ANS activity 
through the SA node. Therefore, the variability in the heartbeat periods is 
connected to the sympathovagal balance. 
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The HRV time series can be obtained through the ECG or PPG recording [7]. This 
will be the subject of the next chapters, but first a general overview of sleep stages 
and their correlation with ANS activity will be given.  

 

 

2.4.2 The sleep cycle 
 

Sleep is an important factor for the health of human organism. Sleeping takes up 
about a third of human existence, representing one of the main activities of a 
human being’s life. It is a state of apparent quietness in which the organism works 
to rest, eliminate toxins and strengthen cognitive functions, including memory. 

Normally, people sleep on average 8 hours. Nevertheless, sleep is not uniform. 
Over the course of the night, the total sleep is made up of several cycles, which 
are composed by the two macro-moments NREM (Non-Rapid Eye Movement) 
and REM (Rapid Eye Movement).  
In a typical night, a person completes on average 5 cycles. Not all sleep cycles 
have the same length, but on average they last about 90 minutes each. However, 
depending on the person, this can vary between 80-120 minutes. 
Therefore, sleep is characterised by a cyclical alternation of about five cycles, 
which are in turn divided into two macro-moments: NREM and REM. NREM has 
3 stages whereas REM has a unique stage. 

During sleep, a person usually progresses through the 3 stages of NREM before 
entering REM sleep. The NREM and REM last approximately 60-70 and 15 
minutes, respectively. However, their duration may vary, as shown in the 
following Table 1: 

 

Table 2.1: NREM and REM stages and durations [8] 
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As previously discussed, the first macro-phase of sleep is the NREM phase, which 
lasts about 75% of the total sleep. It is composed by the following three stages and 
in the transition from one stage to the next one, sleep becomes deeper and deeper 
(Figure 2.8): 

• in the first stage, the body passes from the wakefulness to the sleep state. It 
is characterised by the lowering of body temperature, the partial relaxation 
of muscles (the muscles are not yet fully relaxed) and the slowing of the 
heartbeat. In addition, eye movements are not rapid, a sign that brain 
activity is slowly decreasing. Since it involves light sleep, it is easy to 
wake up. 

• in the second stage, the heart rate continues to slow down, muscles are 
completely relaxed, and breathing is very deep. 

• the third stage is the deep sleep stage. Here, the eye movement is very 
slow and body temperature drops further. This is the NREM phase in 
which the body regenerates and metabolic reserves are restored. There 
could be body movements and it is very difficult to wake up. 

The REM phase is deeper with respect to NREM phases. During REM sleep, the 
eyes begin to move rapidly (for this reason is called Rapid Eye Movement). In 
this stage, dreams occur, accompanied by a gradual but noticeable increase in 
blood flow, respiration, and brain activity. In addition, breathing becomes 
irregular and apnoea episodes can occur. Moreover, one of the characteristics of 
this phase is that the muscles of the legs and arms are paralysed [8], [9], [10].  

 

Figure 2.8: Sleep stages [9] 
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REM and NREM phases are strongly related with ANS activity. Indeed, during 
NREM phase parasympathetic activity is dominant, whereas, during REM phase 
is present a strong sympathetic activity. 

2.5 The electrocardiogram (ECG) 
 

2.5.1 The ECG test 
 

The electrocardiogram (ECG) is a not-invasive test used to check heart’s rhythm 

and electrical activity. Some sensors (electrodes) are attached to the chest, arms, 
and legs. These electrodes detect the electrical currents generated by the heart, 
which are measured and recorded using an electrocardiograph (Figure 2.9).  

 

Figure 2.9: The ECG setting 

 

The result of this process is a voltage over time graph representing the electrical 
activity of the heart (Figure 2.10).  
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Figure 2.10: An example of electrocardiography 

 

There are three types of ECG: 

• resting ECG – performed with the patient in a comfortable position. The 
duration of this test is about 5-10 minutes. Since electrical impulses 
generated by other muscle movements may interfere with those generated 
by the heart, patient cannot move during the test 
 

• ambulatory ECG – electrodes are connected to a small device. This 
device records heart activity for at least 24 hours. Patient can move 
normally during such test. Ambulatory ECG is used for intermittent (start-
stop) symptoms that cannot be evaluated through a resting ECG. Patient 
writes down the episodes in a diary, to compare symptoms with ECG 
 

• exercise stress test (EST) – during this type of ECG, patient uses an 
exercise bike or treadmill. This test lasts about 15 to 30 minutes [11], [12].  
 
 
 

2.5.2 The ECG signal 
 

Therefore, the ECG signal is the graphical representation of the potential 
differences on the thorax surface during the electrical heart activity.  

The most common ECG waveform is shown in Figure 2.11. However, this shape 
can vary among healthy patients and depends on the state of health. This wave is 
divided into three intervals: the P-wave, the QRS complex and the T-wave. Each 
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of these waves corresponds to specific and sequential events along the electrical 
pathway.  

The P-wave represents the depolarization of the atria before the atrial contraction. 
This wave is characterized by a low amplitude due to the small amount of muscle 
in the atria. 

The QRS complex corresponds to the atrial repolarization and the ventricular 
depolarization. 

The T-wave represents the ventricular repolarization. 

The systole period corresponds to the ventricular contraction phase; the diastole 
period corresponds to the time interval between ventricular contractions [62]. 

 

 

Figure 2.11: Normal ECG shape 

 

The HRV time series can be derived from the ECG recording. The R peak of the 
QRS complex can be considered to extrapolate the heartbeats. Consequently, the 
heartbeat period is defined as the time difference between consecutive R peak, as 
shown in Figure 2.12. This interval is known as inter-beat interval, or RR interval. 
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Figure 2.12: RR intervals derivation from ECG 

 

Therefore, the HRV time series are derived, obtaining the interval tachogram 
(Figure 2.13). 

 

Figure 2.13: Interval tachogram 

 

Finally, the RR intervals are interpolated (linear or cubic interpolation), obtaining 
the HRV signal. This interpolation step is essential in the case of frequency 
domain analysis, while is optional for the time domain analysis (Figure 2.14). 

 

 

Figure 2.14: Interpolated RR interval series 
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2.5.3 HRV from ECG drawbacks 
 

The ECG signals are a powerful tool to detect the HRV signal. Nevertheless, there 
are some inconveniences associated with the ECG recording and the signal 
detection. 

Firstly, the ECG recording requires complicated setups, with large dimensions and 
people are generally reluctant to use ECG sensors in real driving situations.  

Another problem is related to the noise and signal artifacts associated with such 
recording [62].  

To overcome these problems, many researchers give as an alternative the use of 
Photoplethysmography (PPG). PPG is a sufficiently precise alternative tool to 
measure HR fluctuations. 

 

 

2.6 The Photoplethysmography (PPG) 
 

2.6.1 The Photoplethysmography (PPG) test 
 

Photoplethysmography (PPG) is an optical technique used to detect blood 
volumetric changes in the microvascular bed of tissue. This technique provides 
information related to the cardiovascular system.  

It is a low-cost and non-invasive method that performs measurements at the 
surface of the skin. A PPG is usually obtained through a pulse oximeter (Figure 
2.15). This device illuminates the skin and measures light absorption changes. 

 

 

Figure 2.15: Pulse oximeter 
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A low-intensity infrared (IR) light travels through biological tissues. This light is 
absorbed by bones, skin pigments and both venous and arterial blood (Figure 
2.16). 
The light is more absorbed by blood with respect to the surrounding tissues. 
Therefore, the changes in blood flow are detected by PPG sensors as changes in 
the intensity of light. Blood flow variations mostly occur in the arteries and not in 
the veins. 
The quantity of blood flowing through the blood vessels is proportional to the 
voltage signal from PPG.  
 

 

Figure 2.16: PPG working principle 

 

2.6.2 The Photoplethysmography (PPG) signal 
 

As previously described, PPG is an optical measurement technique. During each 
cardiac cycle, PPG measures the blood volume changes in a specific part of the 
body (fingertip and earlobe). This technique is based on the optical properties of 
the tissues. When tissues get illuminated by a light with a specific wavelength, 
they absorb or transmit or reflect that light depending on the blood volume in the 
vessels.  

The blood volume is related to the cardiac cycle. The cardiac cycle is 
characterized by two main components: the systole and the diastole. 

During the systole period, the heart contracts and expels the arterial blood. In the 
diastole period, the heart is relaxed and receives blood from veins. 

Therefore, these periods correspond to a different quantity of blood level and, 
consequently, to different levels of light detection.  
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Figure 2.17: PPG waveform and systolic – diastolic phases 

 

The PPG signal is characterized by two components: a small pulsatile AC 
component and a large non-pulsatile DC component, as shown in Figure 2.18. 
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Figure 2.18: Schematic illustration of a photoplethysmogram 

 

The AC component is a consequence of the pulsatile blood, while the DC 
component is due to absorbance in the tissues, bones, venous blood and non-
pulsatile arterial blood. Since sensors have low-pass filters, normally the DC 
component is removed and only the AC component is shown. 

The peaks of the PPG signal correspond to systoles, while the valleys to diastoles, 
as shown in the following Figure 2.19. 

 

Figure 2.19: Systole and diastole periods in PPG signal 
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Since the PPG signal reflects the blood volume variations during each cardiac 
cycle, it may be also correlated with the HRV. Such link between the PPG signal 
and the HRV can be derived considering consecutive systoles (and not 
consecutive R peaks, as it was done in ECG signal). 

Some studies have been carried and confirmed the correlation between the HRV 
parameters simultaneously acquired from ECG and PPG. 

Therefore, an alternative way for HRV derivation is given by PPG signal. This 
measure is less obtrusive and more user friendly with respect to ECG sensor. 
More precisely, PPG sensors represent a small, simple, and low-cost device useful 
to monitor the pulse rate in a non-invasive manner [5]. 

 

 

2.7 Standard of measurements 
 

In the following, the standard methods used in HRV analysis are described. All 
these methods derive from HRV time series. 

There are three different categories: 

• time domain methods 

• frequency domain methods 

• non-linear methods 

 

2.7.1 Time domain methods 
 

Time domain methods are the easiest to be computed since they are taken from 
the RR series interval directly. They can be further classified into statistical and 
geometrical methods. The available geometrical methods cannot be applied to 
evaluate long recordings whereas statistical methods can be applied both for long 
and short recordings. Therefore, statistical methods are more flexible. 

 

2.7.1.1 Statistical methods 
 

In the following, statistical measures indices are described. 
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Mean value of RR intervals 

 
𝑅𝑅̅̅ ̅̅ =

1

𝑁
∑ 𝑅𝑅𝑗

𝑁

𝑗=1

 

 

 

(2.1) 

where: 

➢ 𝑅𝑅𝑗  is the value of j’th RR interval 

➢ 𝑁 is the total number of successive intervals 

 

Mean Heart Rate (bpm) 

  

𝐻𝑅̅̅ ̅̅ =
1

𝑅𝑅̅̅ ̅̅
 

 

(2.2) 

 

SDNN 

SDNN (ms) is the Standard deviation of the RR interval. It indicates the overall 
variation in the RR interval series, in short and long term: 

𝑆𝐷𝑁𝑁 = √
1

𝑁 − 1
∑(𝑅𝑅𝑗 − 𝑅𝑅̅̅ ̅̅ )2

𝑁

𝑗=1

 

 

SDANN 

SDANN (ms) is the Standard deviation of the average of  RR interval in 5 minutes 
of recording.  

𝑆𝐷𝐴𝑁𝑁 = √
1

𝑁 − 1
∑(𝑅𝑅5𝑗 − 𝑅𝑅5

̅̅ ̅̅ ̅)2

𝑁

𝑗=1

 

where: 

➢ 𝑅𝑅5 ̅̅ ̅̅ ̅̅  is the average of all the RR intervals averages in 5 minutes 

➢ 𝑅𝑅5𝑗 is the value of the j’th = 5 RR minutes interval average 

➢ 𝑁 is the total number of the RR intervals in 5 minutes 

 

 

(2.3) 

 

(2.4) 
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SDNN index 

SDNN index (ms) is the mean of the standard deviation of the RR intervals of all 
the 5 minutes segments of the entire 24 hours recording.  

𝑆𝐷𝑁𝑁𝑖𝑛𝑑𝑒𝑥 = √
1

𝑁
∑ 𝑆𝐷𝑁𝑁5𝑗

𝑁

𝑗=1

 

where: 

➢ 𝑆𝐷𝑁𝑁5𝑗 is the standard deviation of the j’th = 5 minutes RR interval 
average 

➢ 𝑁 is the total number of the RR intervals in 5 minutes 

 

SDSD 

SDSD (ms) is the Standard deviation of successive RR interval differences.  

𝑆𝐷𝑆𝐷 = √𝐸{∆𝑅𝑅𝑗
2} − 𝐸{∆𝑅𝑅𝑗}2 

where: 

➢ ∆𝑅𝑅𝑗 = 𝑅𝑅𝑗 − 𝑅𝑅𝑗+1 

 

➢ 𝐸{∆𝑅𝑅𝑗
2} = ∆𝑅𝑅2̅̅ ̅̅ ̅̅ ̅ 

 

➢ 𝐸{∆𝑅𝑅𝑗} = ∆𝑅𝑅̅̅ ̅̅ ̅̅  

 

 

RMSSD 

RMSSD (ms) is the root mean square of successive differences. In stationary RR 
series: 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁 − 1
∑(𝑅𝑅𝑗+1 − 𝑅𝑅𝑗

̅̅ ̅̅ ̅)2

𝑁−1

𝑗=1

 

 

 

(2.5) 

(2.6) 

(2.7) 
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Pnn50 

Pnn50 is the percentage of the number of interval differences of successive RR 
intervals greater than 50 ms (NN50).  

𝑝𝑁𝑁50 =
𝑁𝑁50

𝑁 − 1
× 100% 

 

 

2.7.1.2 Geometrical methods 
 

In the following, also the geometrical measures are described. 

 

HRV triangular index 

HRV triangular index is defined as follows: 

𝐻𝑅𝑉𝑖𝑛𝑑𝑒𝑥 =
∫ 𝐷(𝑡)𝑑𝑡

𝑌
 

 

where: 

➢ 𝐷(𝑡) is the density distribution 

➢ 𝑌 is the maximum of the density distribution 

In the following Figure 2.20, a schematic representation of this concept is given: 

 

Figure 2.20: Representation of the sample density distribution of a series RR interval [7] 

 

 

(2.8) 

(2.9) 
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TINN 

TINN is the triangular interpolation of the NN interval histogram. Referring to the 
Figure above, NN interval corresponds to the base width of the density 
distribution. The N and M points are selected to compute TINN. A multilinear 
function 𝑞 is also required such that 𝑞(𝑡)  =  0 for 𝑡 ≤ 𝑁 and   𝑞(𝑋) = 𝑌 for  𝑡 ≥
𝑀. 𝑞 is introduced in order to obtain the minimum value of the integral 
∫ (𝐷(𝑡) − 𝑞(𝑡))

2
𝑑𝑡

+∞

0
 . 

Therefore, TINN is expressed as: 

𝑇𝐼𝑁𝑁 = 𝑀 − 𝑁 

 

 

2.7.2 Frequency domain methods 
 

The RR intervals variability affects a wide number of time scales. For this reason, 
the tachogram’s spectral analysis is an interesting tool for analysing factors that 
contribute to the different components. 

The most common power spectral estimation technique for HRV analysis is the 
Power Spectral Density (PSD) estimation (Figure 2.21).  

 

 

Figure 2.21: PSD example [7] 

 

(2.10) 
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PSD analysis provides information of how the variance of the power signal as a 
function of frequency is distributed. Two different types of approach can be 
applied: parametric and non-parametric. The results of these approaches are 
similar and non-parametric approach is computationally simpler.  

The non-parametric PSD estimation is based on Fast Fourier Transform (FFT). 
The result of such computation is the power spectrum from which LF and HF 
components will be extrapolated as described in the following sections. 

 

 

2.7.3 Nonlinear methods 
 

Nonlinear methods are based on chaos theory and fractal analysis. They allow to 
describe the heart complexity and the irregular fluctuations of HR. Therefore, 
nonlinear methods are applied to understand the HRV nonlinear phenomena. 

A technique very popular in the scientific community is the Poincaré plot (Figure 
2.22).  

 

 

Figure 2.22: Poincaré plot analysis 

 

 

2.8 Drowsiness detection using HRV 
 
As previously discussed, the autonomic nervous system (ANS) activity can be 
estimated from the HRV signal. More specifically, the HRV signal presents a 
different behaviour during stressful, tiring situations and drowsiness episodes. 



2  State of the art 
2.8 Drowsiness detection using HRV 

26 
 

Thus, these HRV alterations are useful to evaluate autonomic activity and detect 
driver’s drowsiness. 
HRV changes during different sleep stages, showing a predominant 
parasymphatetic activity during non-rapid eye movement sleep and an increased 
sympathetic activity during rapid eye movement sleep.  
 
This difference is more evident considering the following Figure 2.23, where the 
PPG signal pattern of awake (Figure 2.23.a) and drowsy (Figure 2.23.b) states is 
represented. Awake state waveforms have narrow intervals and high amplitude, 
whereas drowsy state waveforms are characterized by broader intervals and lower 
amplitudes. 

 
(a) 

 

 
(b) 

 

Figure 2.23: PPG signal of awake (a) and drowsy state (b) 
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Kim et al. [57] analysed the HRV signals in the time and in the frequency domain. 
The result of this study indicated a significant decrease in the heart rate (in the 
time domain) with the R-R interval of ECG faster in case of driver in drowsy state 
[4]. 
 
As already stated, the HRV signal can be obtained from ECG or PPG. Several 
studies analysed the HRV-drowsiness state correlation. Drowsy driving could be 
detected using the Low Frequency (LF), the High Frequency (HF) measures and 
them ratio LF/HF value of HRV signal. These measures are derived from the 
spectral analysis of the R-R intervals [13]. Figure 2.24 represents the LF and HF 
derivations. Firstly, some stable R-R intervals of the ECG signal is chosen. Then, 
through a spectral analysis of different R-R intervals, LF and HF are extrapolated 
from the power spectrum.  
 

 
 
 
 

 
 
 

 
 

 
 

Figure 2.24: LF and HF derivation (figure modified from [13]) 

 
The spectral analysis produces a power spectrum ranging from 0 to 0.4 Hz. 
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LF and HF intervals are in the 0.04-0.15 Hz and 0.15-0.4 Hz, respectively [71], 
[4].  
These specific frequency intervals are a marker of sympathetic and 
parasympathetic nervous activities. More precisely, HF is a measure of cardiac 
parasympathetic activity in humans. LF is considered to reflect both sympathetic 
and parasympathetic activities even if is not a specific measure of cardiac 
sympathetic activity. Despite this, since LF is easily calculated, it is considered as 
a marker of cardiac sympathetic activity. Their ratio LF/HF is considered as an 
index of the sympathovagal balance [13]. 
 
Certain studies [4] established the connection between these frequency intervals, 
their ratio LF/HF and drowsy driving condition. The outcome of this research is 
summarised by the following Table 2: 
 

 

 
Table 2.2: Drowsy decision criteria [4] 

 
Thus, during drowsy driving LF decreases and HF increases, resulting in 
decreased LF/HF ratio (Figure 2.25.b). Awake driving is characterized by three 
different scenarios: increased LF, HF, and LF/HF values; decreased LF, HF, and 
LF/HF values; and, finally, increased LF, decreased HF and increased LF/HF ratio 
(Figure 2.25.a) [4]. 
 
 

 
 

(a) 
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(b) 
 

Figure 2.25: LF, HF, LF/HF trends for awake (a) and drowsy state (b) [4] 

 
Another study [3] considers only HF and LF/HF values as indices of the 
autonomous nerve activity. In particular, HF indicates the parasympathetic 
nervous activity, whereas LF/HF indicates the sympathetic nervous activity. 
According to this study, during the drowsiness state, LF increases by 57.1% at the 
moment of drowsiness onset and HF increases by 49.2% during drowsy state 
(Figure 2.26). 
Furthermore, as it can be seen in the following Figure 2.27, LF/HF increases by 
105%. 
 
 

 
Figure 2.26: LF, HF trends for awake and drowsy state [4] 
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Figure 2.27: LF/ HF trends for awake and drowsy state [4] 

 

 

2.9 Polysomnography  
 

Polysomnography is a multi-parametric and a non-invasive test used to study 
sleep activity and diagnose sleep disorders. The test result is referred to as 
polysomnogram (PSG) and it is performed while patient is asleep, typically during 
the night. 

This test aims at investigating symptoms that may cause sleep disorders as: 

• sleep apnoea 
• periodic limb movement disorder 
• narcolepsy 
• REM sleep behaviour disorder 
• chronic insomnia  

The PSG is performed in a controlled environment and monitored by qualified 
polysomnography professionals. Before a PSG, patients are invited to avoid the 
consumption of alcohol and caffeine, which may affect the test result. 

A standard polysomnogram procedure starts in the late evening. The first 1-2 
hours are spent putting all the electrodes and channels in the required place. 
Typically, the number of channels of data to efficiently carry out the test is 12. A 
sleep technician is responsible for attaching the electrodes and monitoring the 
patient during the test. 

Different body functions are monitored during the PPG: 

• the eye movements, detected through the electrooculogram EOG 
• the brain waves, recorded with the electroencephalogram EEG 
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• the heart rhythm, measured through the electrocardiogram ECG 
• skeletal muscle activation, recorded through the electromyogram EMG 
• the breathing rate, measured using a peripheral pulse oximetry 
• sounds made while sleeping, through a sound probe. 

 
 

 

Figure 2.28: PSG test 

 

A minimum of three channels are used for the electroencephalogram (EEG). 
Typically, six “exploring” and two “reference” electrodes are used. The 
“exploring” electrodes are placed on the scalp near the frontal, central, and 
occipital portions of the brain through a conductive paste. These electrodes 
provide a readout of the brain activity which corresponds to the REM, NREM and 
wakefulness stages.  

For the electrooculogram (EOG) two electrodes are placed in correspondence of 
the outer canthus of the right and left eyes. These electrodes aim at determining 
the REM phase, characterized by rapid eye movements. Eye activity is detected 
through the electropotential difference between the cornea (more positively 
charged) and the retina. 

The electromyogram (EMG) uses four electrodes. Its purpose is to measure 
muscle activity. Muscle tension and leg movements are monitored through four 
leads. Two leads are placed on the chin to detect the reduction in muscle tension 
typical of the REM phase. Two other leads are placed on the anterior tibial of each 
leg to measure leg movements. 

Two or three electrodes are used for the electrocardiogram (ECG) and are 
positioned at the collarbone. The aim is to monitor cardiac activity in terms of 
contractions and expansions by recording the P wave, QRS complex and T wave. 

The respiration rate and any interruptions in breathing are measured using 
pressure transducers and/or a thermocouple placed near the nostrils. Nasal and 
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oral airflow is observed using belts. Contraction and expansion of the belts 
indicate respiratory effort. 

Sleep apnoea and other respiratory problems are related to changes in blood 
oxygen levels. A pulse oximeter is placed over a fingertip or an earlobe to detect 
changes in blood oxygen levels. 

Snoring could be recorded through a sound probe over the neck. 

 

 

Figure 2.29: PSG test setup 

 

The monitored body functions are recorded, and the collected data are used to 
create a graph. The resulting picture is an indicator of the overall sleep stages and 
quality (Figure 2.30) [15], [16], [17]. 
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Figure 2.30: Typical polysomnogram tracing from [15] 
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Chapter 3 
 

Driver drowsiness dataset 
 

The data required to develop this work were collected using the AVL dynamic 
driving simulator, in Graz.  
Participants were sleep deprived to make them more prone to drowsiness. For the 
measurement, all the subjects were equipped with PSG and they followed a pre-
defined driving route. The driving task consisted of a city night path for the first 
5-10 minutes, and then a straight highway path. 
PSG signals were analysed by the sleep experts to build the ground truth for the 
sleep detection.  
PPG signal was acquired, and the spectral analysis was performed.  
These data have also been processed using a PPG-based sleep prediction 
algorithm able to predict the falling asleep of all the subjects based on HRV signal 
analysis [18]. 
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Chapter 4 
 

Methodology  
 
4.1 System identification 
 

4.1.1 Set-membership identification theory 
 
Set-membership identification theory is a tool for deriving a parametric 
mathematical model of a plant. This model is derived from a set of input-output 
collected data and some a-priori information on the system. 
The system to be identified can be: 

• static (the output at time t0 depends only on the input value at time t0)  
• dynamic (the output at time t0 depends on the input at time t0 and on the 

past inputs) 
 
 
 
4.1.2 Set-membership identification a-priori information 
 
Set-membership identification theory is based on the following three main pieces 
of information. 
 
I.  A-priori information on the system 
 
The system is defined by a function by a function “f” describing the input-output 
mapping. 
 

𝑤(𝑘) = 𝑓(𝜃, 𝑟(𝑘)) 
 
where: 

➢ 𝜃 is the parameter to be identified 
➢ 𝑟(𝑘) is the regressor. It depends on the past values of the input and the 

output and (possibly) on the input at time k 
➢ 𝑓 ∈ 𝐹 and 𝐹 is a model class (i.e., a given class function) to be known a-

priori 
 
For example, a reasonable assumption is to consider the system a linear time-
invariant. 

 

(4.1) 
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A linear time-invariant (LTI) system is a system characterized by an input-output 
relation subject to linearity and time-invariance properties. Therefore, due to the 
linearity property, the input-output relationship is a linear mapping. The time-
invariance property implies that the output does not depend on the time at which 
the input is applied (Figure 4.1). 

 

 

Figure 4.1: LTI system 

For instance, the input-output relationship can be described as follows: 
 

𝑤(𝑡) = −𝛼1𝑤(𝑡 − 1) − ⋯ − 𝛼𝑛𝑤(𝑡 − 𝑛) + 𝛽0𝑢(𝑡) + ⋯ + 𝛽𝑚𝑢(𝑡 − 𝑚)    

∀𝑡 = 1, … , 𝑁        
 
where: 
 

➢ 𝛼1…𝛼𝑛 and 𝛽0…𝛽𝑚 are the system parameters to be identified. 
 

Consequently, the plant can be described by a discrete time transfer function: 
 

𝐺(𝑞−1) =
𝛽0 + 𝛽1𝑞−1 + ⋯ + 𝛽𝑚𝑞−𝑚

1 + 𝛼1𝑞−1 + ⋯ + 𝛼𝑛𝑞−𝑛
 

 
 
II.  A-priori information on the noise affecting the collected data 
 
The a-priori information on the noise is related to the noise amplitude bounds and 
to the noise model structure. 
The noise affecting the data 𝑒(𝑡) is assumed to belong to a given bounded set 𝛥𝑒: 
 

|𝑒(𝑡)| ≤ Δ𝑒, ∀𝑡 = 1, … , 𝑁 
 
 
Noise model structure refers to the way the noise affecting the collected 
experimental data enters the problem. There are three main topologies: 
 

• Equation Error (EE) structure 
In the EE structure, the collected output sequence is corrupted by a noise 
given by applying a signal e(t) through a filter with a numerator equal to 1 
and the same denominator of the system plant (Figure 4.2). 

(4.2) 

(4.3) 

(4.4) 
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Figure 4.2: EE model structure from [19] 

• Output Error (OE) structure 

In the OE structure, the collected output sequence is corrupted by a 
random noise (Figure 4.3). This situation typically occurs when the input 
signal is provided and the output signal is collected by means of a 
measurement device.  
 

 

Figure 4.3: OE structure from [19] 

For example, considering a LTI system: 
 

𝑦(𝑡) = 𝑤(𝑡) +  𝜂(𝑡) 

𝑤(𝑡) = −𝛼1𝑤(𝑡 − 1) − ⋯ − 𝛼𝑛𝑤(𝑡 − 𝑛) + 𝛽0𝑢(𝑡) + ⋯ + 𝛽𝑚𝑢(𝑡 − 𝑚)  

⇓ 

𝑦(𝑡) − 𝜂(𝑡) = −𝛼1𝑦(𝑡 − 1) + 𝛼1𝜂(𝑡 − 1) − ⋯ − 𝛼𝑛𝑦(𝑡 − 𝑛) + 
+𝛼𝑛𝜂(𝑡 − 𝑛) + 𝛽0𝑢(𝑡) + ⋯ + 𝛽𝑚𝑢(𝑡 − 𝑚) 
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where: 

➢ 𝑢(𝑡) is the true input applied to the system 

➢ 𝑤(𝑡) is the true output 

➢ 𝜂(𝑡) is the output measurement error 

➢ 𝑦(𝑡) is the true measured output (affected by noise) 

 

 
• Errors-In-Variables (EIV) structure 

In the EIV structure, both the input and the output are corrupted by 
uncertainties (Figure 4.4). 
This situation typically occurs when the input and the output are 
experimentally collected.  
The input error ε(t) and the output error η(t) are considered as variables 
with unknown behaviour belonging to a given bounded set: 
 
 

|𝜀(𝑡)| ≤ Δ𝜀, ∀𝑡 = 1, … , 𝑁 
|𝜂(𝑡)| ≤ Δ𝜂, ∀𝑡 = 1, … , 𝑁 

△ 𝜀, △ 𝜂 are known bounds. 
 

 

Figure 4.4: EIV structure from [19] 
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For example, considering a LTI system: 
 

 

�̃�(𝑡) = 𝑢(𝑡) +  𝜀(𝑡) 

𝑦(𝑡) = 𝑤(𝑡) +  𝜂(𝑡) 

𝑤(𝑡) = −𝛼1𝑤(𝑡 − 1) − ⋯ − 𝛼𝑛𝑤(𝑡 − 𝑛) + 𝛽0𝑢(𝑡) + ⋯ + 𝛽𝑚𝑢(𝑡 − 𝑚)  

⇓ 

𝑦(𝑡) − 𝜂(𝑡) = −𝛼1𝑦(𝑡 − 1) + 𝛼1𝜂(𝑡 − 1) − ⋯ − 𝛼𝑛𝑦(𝑡 − 𝑛) + 
+𝛼𝑛𝜂(𝑡 − 𝑛) + 𝛽0�̃�(𝑡) − 𝛽0𝜀(𝑡) + ⋯ + 𝛽𝑚�̃�(𝑡 − 𝑚) − 𝛽𝑚𝜀(𝑡 − 𝑚) 

             where: 

➢ 𝑢(𝑡) is the true input applied to the system 

➢ 𝑤(𝑡) is the true output 

➢ 𝜀(𝑡) is the input measurement error 

➢ 𝜂(𝑡) is the output measurement error 

➢ �̃�(𝑡) is the measured input (affected by noise) 

➢ 𝑦(𝑡) is the measured output (affected by noise) 

 

 

III.  A set of input-output collected data 

The input-output data are experimentally collected on the real system. These data 
are affected by noise due to their inherent experimental nature. 

 

 

4.1.3 Polynomial optimization problem for the PUIs computation 
 

In set-membership estimation theory, the feasible solution set (FSS) is the set of 
all the models that are consistent with: 

i. the available a-priori information on the system 
ii. the available a-priori information on the noise 

iii. the collected input-output data 
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If the class of the system 𝐹 is parametrized by a parameter vector θ, the FSS can 

be replaced by the feasible parameter set 𝑫𝜽 (FPS). The FPS is the set of all the 
parameters 𝜃𝑖 that satisfies the equations describing the system for all the 
collected input-output data. 

The extended feasible parameter set 𝑫𝜽,𝜼,𝜺 (EFPS) is the space of the system 
parameters 𝜃𝑖 and the error variables (in the case of EIV structure 𝜂  and 𝜀). The 
EFPS is a reformulation of the problem in a higher space variable. 

For example, considering the EIV structure, the EFPS is defined as follows. 

𝐷𝜃,𝜂,𝜀 = {𝜃 ∈ ℜ2𝑛+1,   𝜂 ∈ ℜ𝑁 ,   𝜀 ∈ ℜ𝑁: 

𝑦(𝑡) − 𝜂(𝑡) = −𝜃1𝑦(𝑡 − 1) + 𝜃1𝜂(𝑡 − 1) + ⋯ + 𝜃2𝑛+1�̃�(𝑡 − 𝑛)

− 𝜃2𝑛+1𝜀(𝑡 − 𝑛)               ∀𝑡 = 𝑛 + 1, … , 𝑁 

|𝜀(𝑡)| ≤ Δ𝜀, ∀𝑡 = 1, … , 𝑁 

    |𝜂(𝑡)| ≤ Δ𝜂, ∀𝑡 = 1, … , 𝑁 }  

The parameter uncertainty intervals (PUIs) are the extreme values (minimum 
and maximum values) of the parameters 𝜃𝑖. For instance, in the EIV problem: 

𝑃𝑈𝐼𝜃𝑗
= [𝜃𝑗  , 𝜃𝑗  ] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑦(𝑡) − 𝜂(𝑡) = −𝜃1𝑦(𝑡 − 1) + 𝜃1𝜂(𝑡 − 1) + ⋯ + 𝜃2𝑛+1�̃�(𝑡 − 𝑛)

− 𝜃2𝑛+1𝜀(𝑡 − 𝑛)               ∀𝑡 = 𝑛 + 1, … , 𝑁 

|𝜀(𝑡)| ≤ 𝛥𝜀, ∀𝑡 = 1, … , 𝑁 

   |𝜂(𝑡)| ≤ 𝛥𝜂, ∀𝑡 = 1, … , 𝑁   

 

 

where: 

➢ 𝜃𝑗 = 𝑚𝑖𝑛 𝜃𝑗  
➢ 𝜃𝑗 = 𝑚𝑎𝑥𝜃𝑗  
➢ 𝜃𝑗 ∈  𝐷𝜃,𝜂,𝜀 
➢ 𝑁  is the number of collected data 

For example, considering the two-dimensional problem in Figure 4.5, the PUIs of 
𝜃1 are 𝜃1 (minimum value) and 𝜃1 (maximum value). 
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Figure 4.5: PUI of θ1 from [19] 

The FPS and the EFPS have a complex shape, difficult to be handled 
mathematically. PUIs computation is preferable since it is simpler and consists of 
an outrebounding approximation on the FPS or the EFPS.  
The PUIs computation requires to compute the global optima solution of the 
following optimization problems: 

1) 𝜃𝑗 = 𝑚𝑖𝑛 𝜃𝑗             ∀𝑗 = 1, … ,2𝑛 + 1 
2) 𝜃𝑗 = 𝑚𝑎𝑥𝜃𝑗             ∀𝑗 = 1, … ,2𝑛 + 1 

As it can be noticed, the following terms in bold are nonlinear terms (more 
specifically, bilinear). Therefore, the problem under consideration is a polynomial 
optimization problem (POPs). 

𝑃𝑈𝐼𝜃𝑗
= [𝜃𝑗  , 𝜃𝑗  ] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑦(𝑡) − 𝜂(𝑡) = −𝜃1𝑦(𝑡 − 1) + 𝜃1𝜂(𝑡 − 1) + ⋯ + 𝜃2𝑛+1�̃�(𝑡 − 𝑛)

− 𝜃2𝑛+1𝜀(𝑡 − 𝑛)               ∀𝑡 = 𝑛 + 1, … , 𝑁 

|𝜀(𝑡)| ≤ Δ𝜀, ∀𝑡 = 1, … , 𝑁 

   |𝜂(𝑡)| ≤ Δ𝜂, ∀𝑡 = 1, … , 𝑁   

 

Typically, POPs are nonlinear and nonconvex optimization problems. Due to 
nonconvex property, POPs could have some local minimum solutions and 
“standard” mathematical tools can trap into local minima. 
Convex relaxation approach is a tool for the computation of global optimal 
solution of a POPs problem. This method allows to compute a convex relaxation 
of the FPS. In particular, the nonconvex FPS is approximated by a convex set 
including the original FPS (Figure 4.6). 
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Figure 4.6: Convex relaxation approximation from [19] 

Convex relaxation solution depends on a parameter referred as order of 
relaxation δ: 

• when 𝛿 → ∞ ,the convex approximation tends to the convex hull (i.e., the 
smallest convex set covering the original nonconvex set) of the FPS 
(Figure 4.7) 
 

 
Figure 4.7: Convex hull from [19] 

• computational complexity grows as δ increases 
• δMIN is the minimum possible order of relaxation that can be considered 

for applying convex relaxation techniques 
 

𝛿𝑀𝐼𝑁 = ⌊ 
max _𝑑𝑒𝑔𝑟𝑒𝑒

2
 ⌋ 

 
where: 

➢ max _𝑑𝑒𝑔𝑟𝑒𝑒 is the higher degree of the polynomial constraints 
➢ ⌊x⌋ is the ceiling operator 

 

(4.5) 
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For this thesis work, SparsePOP Matlab package has been used for finding global 
optimal solution of POPs. The solver used for approximating the global optimal 
solution was SeDuMi. 

 

 

4.1.3 Set-membership identification for drowsiness detection 
application 
 

For this work, the implementation of two system transfer functions have been 
considered: 

• the SISO transfer function G1(z) between dmRR (differential of the 
medium value of the respiration rate, as input) and dHF (differential value 
of HF, as output) 

• the SISO transfer function G2(z) between dsRR (differential of the 
standard deviation, as input) and dlambda (differential value of lambda, as 
output) 

The mathematical model of the plant has been identified on the basis of the 
following informations. 

I.  A-priori information on the system 
 
In both the cases, the system has been assumed to be a LTI system of order  𝑛 =
2.  
Therefore, the system transfer functions are described by the following equation: 
 

𝐺(𝑞−1) =
𝜃3 + 𝜃4𝑞−1 + 𝜃5𝑞−2

1 + 𝜃1𝑞−1 + 𝜃2𝑞−2
 

 
 
 
II.  A-priori information on the noise  
 
The noise is assumed to enter the system as an EIV: 
 

�̃�(𝑡) = 𝑢(𝑡) +  𝜀(𝑡) 
𝑦(𝑡) = 𝑤(𝑡) +  𝜂(𝑡) 

  |𝜀(𝑡)| ≤ 1, ∀𝑡 = 1, … , 𝑁 
    |𝜂(𝑡)| ≤ 1, ∀𝑡 = 1, … , 𝑁   

 
Noise bounds Δ𝜀 and Δ𝜂 are assumed to be equal to 1. 
 

(4.6) 
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III.  A set of input-output collected data 

A set of data has been collected through the PSG test and the power spectrum 
analysis of the PPG signal. 

For the computation of G1(z), the following data have been considered: 

• INPUT: the differential of the medium value of the respiration rate 
(dmRR), from the PSG test.  

• OUTPUT: the differential value of HF (dHF), from the power spectrum 
analysis. 

Both the input and the output have been calculated by examining sliding windows 
of 2048 samples. 

For the computation of G2(z), the following data have been considered: 

• INPUT: differential of the standard deviation, as input (dsRR), from the 
PSG test.  

• OUTPUT: the differential value of lambda (dlambda), from the power 
spectrum analysis. 

Also in this case, the input and the output have been calculated by examining 
sliding windows of 2048 samples. 

 

 

4.1.4 Computation of the PUIs  
 

PUIs has been computed by solving the following optimization problems: 

1)  

𝜃𝑗 = min 𝜃𝑗  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑦(𝑡) − 𝜂(𝑡) = −𝜃1𝑦(𝑡 − 1) + 𝜃1𝜂(𝑡 − 1) − 𝜃2𝑦(𝑡 − 2) + 𝜃2𝜂(𝑡 − 2) + 𝜃3�̃�(𝑡)
+ ⋯ − 𝜃3𝜀(𝑡)+𝜃4�̃�(𝑡 − 1) − 𝜃4𝜀(𝑡 − 1) + 𝜃5�̃�(𝑡 − 2)
− 𝜃5𝜀(𝑡 − 2)           

∀𝑡 = 𝑛 + 1, … , 𝑁 

|𝜀(𝑡)| ≤ 1, ∀𝑡 = 1, … , 𝑁 

   |𝜂(𝑡)| ≤ 1, ∀𝑡 = 1, … , 𝑁   
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2)  

𝜃𝑗  = max 𝜃𝑗 = min(−𝜃𝑗) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑦(𝑡) − 𝜂(𝑡) = −𝜃1𝑦(𝑡 − 1) + 𝜃1𝜂(𝑡 − 1) − 𝜃2𝑦(𝑡 − 2) + 𝜃2𝜂(𝑡 − 2) + 𝜃3�̃�(𝑡)
+ ⋯ − 𝜃3𝜀(𝑡)+𝜃4�̃�(𝑡 − 1) − 𝜃4𝜀(𝑡 − 1) + 𝜃5�̃�(𝑡 − 2)
− 𝜃5𝜀(𝑡 − 2)           

∀𝑡 = 𝑛 + 1, … , 𝑁 

|𝜀(𝑡)| ≤ 1, ∀𝑡 = 1, … , 𝑁 

   |𝜂(𝑡)| ≤ 1, ∀𝑡 = 1, … , 𝑁   

⇓ 

𝑃𝑈𝐼𝜃𝑗
= [𝜃𝑗  , 𝜃𝑗  ] 

 

This problem has been solved on Matlab through SparsePOP package. 

The chosen relaxation order for this computation was the minimum possible: 
𝛿 = 1. 
Finally, the Chebychev centre 𝜃𝑗

𝐶  of the EFPS has been computed to find the 
central estimate of each parameter 𝜃𝑗   : 
 

𝜃𝑗
𝐶 =

𝜃𝑗 +  𝜃𝑗

2
 

 

The resulting transfer functions have been reformulated in state space form to be 
implemented in the drowsiness detection algorithm. 

 

 

4.2. Respiration Rate-based algorithms for drowsiness 
detection  
 

The aim of this thesis is to develop an algorithm able to detect signs of sleepiness 
in drivers.  

Two very similar algorithms have been developed and compared. The real-time 
algorithms have been developed considering the ANS activity correlation with 
some parameters (more specifically, dHF and dlambda) from the spectral analysis 

 

(4.7) 
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of the PPG signal. Indeed, ANS activity is strictly related to the state of driver, as 
previously mentioned. 

The future application will be the implementation on a contactless device, e.g. a 
short-range radar. The operation of short-range radar is based on the 
electromagnetic backscattering phenomena. The backscattering is the reflection of 
waves, particles, signals back to the original direction.  
This technology is implemented in healthcare application for detecting 
physiological movements due to heartbeat and respiration without using any 
sensor attached to the human body. Indeed, they are referred to as “short range” 

since the distance between the radar the target is of few meters or less. 
 
Nevertheless, the PPG signal is not readily available on these devices. These 
devices allow to measure some biometrical parameters such as the respiration rate 
(RR).  
Therefore, it was necessary to find a link between these biometrical parameters 
and the spectral analysis parameters from the PPG signal (and then to the activity 
of ANS).  
The link between the RR and PPG signals has been found through the set-
membership identification theory analysed in the previous chapter. 
More specifically: 
 

I. in the first algorithm (A1), drowsy driving has been detected through a 
calibration parameter related to the differential value of lambda (dlambda).  
An estimation of dlambda has been calculated starting from dsRR 
(differential value of the standard deviation of the RR values within a 
certain window).  
 

II. in the second algorithm (A2), drowsy driving has been detected through a 
calibration parameter related to the differential value of the high frequency 
component of the PPG signal (dHF).  
An estimation of dHF has been calculated starting from dmRR 
(differential value of the avarage of the RR values within a certain 
window).  
 

The algorithms have been developed on Matlab.  
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Figure 4.8: Summary diagram of the sleep detection algorithm 

 

 

4.2.1. Development of the algorithms 
 

As mentioned above, different datasets have been analysed to validate the 
algorithms. The data from the PSG analysis and the PPG signal were organised in 
Excel files. From these Excel files, some information relevant to the algorithm 
have been selected:  

• the PPG signal, acquired with a frequency of 50 Hz. Its power spectral 
analysis has been examined 

• the RR signal from PSG analysis 
• the state of the driver, analysed by the sleep experts to build the ground 

truth for the sleep detection. In particular, the state has been identified as: 
 

{

𝟎, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑢𝑛𝑠𝑢𝑟𝑒
𝟏, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑠𝑙𝑒𝑒𝑝

−𝟏, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑎𝑤𝑎𝑘𝑒
 

 

For the analysis of the data, jumping windows of 2048 data have been considered.  

The spectral analysis of the PPG signal in each window is performed. This allows 
the maximum of the low frequency (LF) and high frequency (HF) contributions of 
the PPG signal to be calculated. As mentioned before, the ratio of these two 
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from a short 
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dsRR, dmRR 

Plant 
(set-membership 

transfer 
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contributions is related to ANS activity and to the possible scenario of drowsy 
driving.  

Therefore, the ratio 𝜆 is calculated in each window: 

𝜆 =
𝐿𝐹

𝐻𝐹
 

 

where: 

➢ LF is the maximum of low frequency contributions in the 0.04-0.15 Hz 
interval 

➢ HF is the maximum of high frequency contributions in the 0.15-0.4 Hz 
interval 

This information is in common and used in the development of both the 
algorithms. The differences between them consist of: 

• the biometric contribution as input (dsRR or dmRR) and the spectral 
variable as output (𝑑𝜆 and 𝑑𝐻𝐹, respectively) 

• the state matrices A, B, C, D from the set-membership identification 
• the considered calibration parameters 𝑑𝜆𝐿𝐼𝑀 and 𝑑𝐻𝐹𝐿𝐼𝑀 

The respiration rate (RR) from PSG analysis has been chosen as parameter to be 
filtered to obtain a relationship with the contributions of the power spectrum of 
the PPG signal. 

Within each window, for the first algorithm A1, the standard deviation of the RR 
values (sRR) has been calculated. 

The 𝑑𝑠𝑅𝑅 (differential value of 𝑠𝑅𝑅) has been calculated as the absolute 
difference between the value of 𝑠𝑅𝑅 in the current window 𝑖 and the value of sRR 
assumed in the previous window 𝑖 − 1. 

 
𝑑𝑠𝑅𝑅(𝑖) = |𝑠𝑅𝑅(𝑖) − 𝑠𝑅𝑅(𝑖 − 1)|   

 
 

In each window i, the predicted value of 𝑑𝜆 (differential value of 𝜆) has been 
computed through the transfer function calculated with the set-membership 
identification theory. This transfer function has been converted into state space 
representation form, obtaining the A, B, C, D matrices for the 𝑑𝜆 computation: 

 

{
�̇� = 𝐴𝑥 + 𝐵𝑑𝑠𝑅𝑅

𝑑𝜆 = 𝐶𝑥 + 𝐷𝑑𝑠𝑅𝑅
 

(4.8) 

(4.9) 
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Figure 4.9: Computation of 𝑑𝜆 in each window 

 

The initial state 𝑥 has been considered as a zero-state vector. 

The calibration parameter 𝑑𝜆𝐿𝐼𝑀 has been calculated considering the values 
assumed by 𝑑𝜆 in the first N windows. More specifically, it has been calculated as 
a linear function of the maximum value assumed by 𝑑𝜆 in these N windows: 

 
𝑑𝜆𝐿𝐼𝑀 =  𝛼 × max (𝑑𝜆) 

 
 

 

 

Figure 4.10: Computation of 𝑑𝜆𝐿𝐼𝑀 

 

The successive values taken by 𝑑𝜆, compared with the calibration parameter 
𝑑𝜆𝐿𝐼𝑀, has been considered as index of the driver’s state. More specifically, the 
values assumed by 𝑑𝜆 have been analysed considering a set of N’ of observation 

windows. Within this number of windows, if more than a certain number N’’ of 

𝑑𝐻𝐹 values is lower than the 𝑑𝜆𝐿𝐼𝑀 calibration value, the subject has been 
considered to be drowsy. 

(4.10) 
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Figure 4.11: Comparison of 𝑑𝜆𝐿𝐼𝑀 - 𝑑𝜆 values on a set of windows 

 

 

Within each window, for the second algorithm A2, the average of the RR values 
(𝑚𝑅𝑅) has been calculated in each window. 

 

The 𝑑𝑚𝑅𝑅 (differential value of 𝑚𝑅𝑅) has been computed as the absolute 
difference between the value of 𝑚𝑅𝑅 in the current window 𝑖 and the value of 
mRR assumed in the previous window 𝑖 − 1. 

 
𝑑𝑚𝑅𝑅(𝑖) = |𝑚𝑅𝑅(𝑖) − 𝑚𝑅𝑅(𝑖 − 1)|   

 
 

In each window i, the predicted value of 𝑑𝐻𝐹 (differential value of the high 
frequency contribution) has been calculated through the transfer function 
calculated with the set-membership identification theory. This transfer function 
has been converted into state space representation form, obtaining the A, B, C, D 
matrices for the 𝑑𝐻𝐹 computation: 

 

(4.11) 
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{
�̇� = 𝐴𝑥 + 𝐵𝑑𝑚𝑅𝑅

𝑑𝐻𝐹 = 𝐶𝑥 + 𝐷𝑑𝑚𝑅𝑅
 

 

 
Figure 4.12: Computation of 𝑑𝐻𝐹 in each window 

 

The initial state 𝑥 has been considered as a zero-state vector. 

The calibration parameter 𝑑𝐻𝐹𝐿𝐼𝑀 has been calculated considering the values 
assumed by 𝑑𝐻𝐹 in the first N windows. More specifically, it has been calculated 
as a linear function of the maximum value assumed by 𝑑𝐻𝐹 in these N windows: 

 
𝑑𝐻𝐹𝐿𝐼𝑀 =  𝛼 × max (𝑑𝐻𝐹) 

 

 
Figure 4.13: Computation of 𝑑𝐻𝐹𝐿𝐼𝑀 

 

The successive values taken by 𝑑𝐻𝐹, compared with the calibration parameter 
𝑑𝐻𝐹𝐿𝐼𝑀, has been considered as index of the driver’s state. More specifically, the 
values assumed by 𝑑𝐻𝐹 have been analysed considering a set of N’ of observation 
windows. Within this number of windows, if more than a certain number N’’ of 

(4.12) 
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𝑑𝐻𝐹 values is lower than the 𝑑𝐻𝐹𝐿𝐼𝑀 calibration value, the subject has been 
considered to be drowsy. 

 
Figure 4.14: Comparison of 𝑑𝐻𝐹𝐿𝐼𝑀 - 𝑑𝐻𝐹 values on a set of windows 
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Chapter 5 
 

Analysis of the results 
 

The results obtained by applying this algorithm to different sets of data are shown 
in the following table: 

Dataset 

Sleep experts’ 

sleep state 
detection 
(state = 1) 

Sleep experts’ 

unsure state 
detection 
(state = 0) 

Algorithm 1 
drowsiness 
detection 

Algorithm 2 
drowsiness 
detection 

a 17:55:57 None 10:47:31 10:48:12 

b 11:49:49 None 11:51:04 11:43:28 

c 13:56:54 None 13:52:22 13:49:54 

d None 16:23:43 16:08:52 16:10:14 

e 17:13:00 None 17:11:55 17:09:11 

f 17:59:43 None 17:57:33 17:56:36 
Table 5.1: Results of algorithm 1 and algorithm 2 in terms of sleep prediction time 

 

This table shows: 

• the falling asleep times noted by sleep medicine experts in the ground truth  
• the predicted first falling asleep of the two algorithms  

It can be noticed that the algorithms anticipate in most of the cases the falling 
asleep. 

In the following, basic notions of sensitivity and specificity are given to better 
analyse the accuracy of the results of the algorithms. 
 
Sensitivity or true positive rate (TPR) describes the algorithm capability to 
identify true positives: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
 
 
 

(5.1) 
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where: 
➢ 𝑃 is the positive condition. It is the number of real positive conditions in 

the data. In this thesis work, 𝑃 corresponds to the sleep state condition 
identified by sleep medicine experts: 𝑠𝑡𝑎𝑡𝑒 = 1 

➢ 𝑇𝑃 stands for true positive. It indicates an algorithm result describing 
properly the presence of a condition.  
In this case, 𝑇𝑃 occurs when the test result correctly indicates the sleep 
state condition. 

➢ 𝐹𝑁 stands for false negative. It indicates an algorithm result describing 
wrongly the absence of a condition. 
In this case, 𝐹𝑁 occurs when the algorithm result wrongly indicates the 
awake and unsure state. 

 
Specificity or true negative rate (TNR) describes the algorithm capability to 
identify true negatives. 

𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

where: 
➢ 𝑁 is the negative condition. It is the number of real negative conditions in 

the data. In this thesis work, N corresponds to the awake and unsure state 
conditions identified by sleep medicine experts: 𝑠𝑡𝑎𝑡𝑒 = −1 and 𝑠𝑡𝑎𝑡𝑒 =

0, respectively 
➢ 𝑇𝑁 stands for true negative. It indicates an algorithm result that properly 

describe the absence of a condition. 
In this case, 𝑇𝑁 occurs when the algorithm result correctly indicates the 
awake and unsure state. 

➢ 𝐹𝑃 indicates an algorithm result that wrongly describe the presence of a 
condition. 
In this case, 𝐹𝑃 occurs when the algorithm result wrongly indicates the 
sleep state. 

 
The results of the two algorithms are shown in the following tables. 
 
 
 
 
 
 
 
 

(5.2) 
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Dataset 

Sleep experts’ 

sleep state 
detection 
(state = 1) 

Sleep experts’ 

unsure state 
detection 
(state = 0) 

Algorithm 
1 

drowsiness 
detection 

Algorithm 1 
results 

a 17:55:57 None 10:47:31 TP-TN 

b 11:49:49 None 11:51:04 FN 

c 13:56:54 None 13:52:22 TP-TN 

d None 16:23:43 16:08:52 FP 

e 17:13:00 None 17:11:55 TP-TN 

f 17:59:43 None 17:57:33 TP-TN 

Table 5.2: Results of algorithm 1 

 

Dataset 

Sleep experts’ 

sleep state 
detection 
(state = 1) 

Sleep experts’ 

unsure state 
detection 
(state = 0) 

Algorithm 
2 

drowsiness 
detection 

Algorithm 2 
results 

a 17:55:57 None 10:48:12 TP-TN 

b 11:49:49 None 11:43:28 TP-TN 

c 13:56:54 None 13:49:54 TP-TN 

d None 16:23:43 16:10:14 FP 

e 17:13:00 None 17:09:11 TP-TN 

f 17:59:43 None 17:56:36 TP-TN 
Table 5.3: Results of algorithm 2  

The TN and TP results of the algorithms are related to the state of the driver until 
the first sleep. Thus, when the driver is awake and the algorithm indicates the 
awake state, the result is TN; when the driver falls asleep and the algorithm 
correctly indicates the sleep state, the result is TP. For this reason, TN and TP 
results are present in the same datasets. 

Therefore, the resulting TPR1 and TNR1 (sensitivity and specificity of the 
algorithm 1) are: 

𝑇𝑃𝑅1 =
4

4 + 1
= 0.8 
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𝑇𝑁𝑅1 =
4

4 + 1
= 0.8 

 

Therefore, the resulting TPR2 and TNR2 (sensitivity and specificity of the 
algorithm 2) are: 

𝑇𝑃𝑅2 =
5

5
= 1 

 

𝑇𝑁𝑅2 =
5

5 + 1
= 0.83̅ 

 

As the entire dataset analysed is rather small, TPR and TNR values should be 
considered as a rough estimate. Therefore, the efficiency of the algorithm needs to 
be confirmed and deepened with further data. 

The FP results of both algorithms are present for the dataset “d”, characterized by 

a state equal to 0 at a certain time. This type of state is referred to as “ensure” 
because it is an ambiguous state (i.e., sleep and awake state have not been 
identified effectively). Therefore, an undefined state was identified instead of the 
sleep state. 
Furthermore, as the dataset available is small, the presence of this single FP 
significantly reduces the TNR for both algorithms. 
 
Finally, it can be seen that the second algorithm provides better results. This is 
due to the fact that the dHF values are in the same frequency range as the dmRR 
values. Therefore, the estimation of dHF is more accurate than the estimation of 
dλ. Consequently, the virtual sensor that allows to estimate dHF (and then the 
sleep state) is more accurate. 
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Chapter 6 
 

Conclusions  
 

The aim of this thesis work was the development of an algorithm able to detect 
the falling asleep from the respiration rate (RR) signal.  

In this application, the RR signal has been obtained from the PSG analysis.  

Two virtual sensors have been built to link this biometrical signal with some 
power spectrum parameters (λ, HF) strictly related to the Autonomous Nervous 

System (ANS) activity and, consequently, to the sleep and awake states.  
The power spectrum parameters used for building the virtual sensors have been 
computed from the power spectrum analysis of the PPG signal. 
In particular, the virtual sensors aim at estimating the power spectrum parameters 
dλ and dHF.  
Subsequently, based on the operation of this sensors, dHFLIM and dλLIM (the 
calibration values of dHF and dλ) have been computed. dHFLIM and dλLIM have 
been employed to allow the identification of sleep state. 
The algorithms anticipated the falling asleep in most of the cases. Nevertheless, 
the results of the algorithm which relates dmRR and dHF were slightly better 
since dmRR and dHF belong to the same frequency band. Consequently, the 
system identification and the virtual sensor were more precise. Therefore, this 
algorithm is more accurate. 
 

As mentioned before, the RR dataset for this application has been obtained 
through the use of a thorax band during the PSG test. The future application of 
this algorithm will be to implement it on a short-range radar able to detect RR 
data. 
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