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Summary

Resource Selection Functions allow knowing which habitat characteristics are preferred
by a species. Two types of locations are considered: a set of locations in which the animal
has been recorded (usually through GPS), which are called “used locations”, and a set of
“available locations” where the individual has not been observed. The latter are usually
sampled uniformly over the animal home range.

The thesis aims to construct Bayesian hierarchical models for use-availability data of
two animals that are modeled jointly. We formalized four models and, through a simula-
tion study, we evaluated the identifiability of the parameters and the convergence of the
model with respect to the number of available locations. The models are then estimated
on a real dataset of GPS locations of bears and wolves, collected in the PNALM area
(National Park of Abruzzo, Lazio, and Molise). We fit a different model for each of the
four time-windows where the data are recorded (spring, early summer, late summer, au-
tumn), using environmental data as model covariates. Results obtained are interpretable
and give insights on how the animals interact and choose the resources.
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Chapter 1

Introduction

Studying where large animals move within an area allows seeing which habitat characteris-
tics are preferred by a species and detecting interactions between different species. In this
thesis, species of interest are the Marsican bear (Ursus arctos marsicanus) and the wolf
(Canis lupus) in the National Park of Abruzzo, Lazio, and Molise. The latter constitutes
the only area in the mountain range of the Apennines where these two species live in con-
ditions of sympatry. There are several studies on the interaction between different animals
that have a dominant/subordinate relationship, but relatively few on the relationship be-
tween large dominant species [Milleret et al., 2018, Darnell et al., 2014, Belant et al., 2010],
as bears and wolves. Milleret et al. [2018] studied habitat segregation between bears and
wolves in a human-dominated landscape in Sweden; also in the National Park of Abruzzo,
Lazio, and Molise, there is a human presence. The coexistence between bears and wolves
is also characterized by common prey. This could lead to kleptoparasitism: one species
captures prey and the other species takes advantage of that booty, either by stealing it
or by eating its leftover carcasses. Milleret et al. [2018] divide the interactions between
wolves and bears in two types: a consumer-resource interaction, where the bear benefits
from the presence of the wolf, for instance through kleptoparasitism and the wolf has a
disadvantage, or an exploitative competition, where both the species are disadvantaged
by their interaction.

This thesis aims to create four Bayesian hierarchical models for spatial locations of
bears and wolves, taking into account environmental covariates (to see which habitat com-
ponents are preferred by the species) and possible interaction between the two species. In
Chapter 2, Resource selection functions are presented, focusing on a logistic regression ap-
proach, in which two types of animal locations are considered: locations of presence, where
the individual has been observed (for example through GPS), and locations of availability,
that are sampled in the individual home range. The different orders of selection of Johnson
[1980] are described, and a definition and a mathematical way to estimate the home range
are presented. Then, theoretical insights about Bayesian inference, hierarchical models
and Markov Chain Monte Carlo are given. In Chapter 3 data is described, divided into
four time-windows. In Chapter 4 four different hierarchical models are presented. The
first one considers that the probability of finding the bear in a location depends only on
the environment in that location, while the probability of finding the wolf depends on the
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Introduction

presence of the bear beside environmental covariates; the second one vice versa. The third
one considers that if a species is present in a location, the other has a constant probability
of being present, that is equal in each location where the other species is present; other-
wise, the probability of finding it depends only on the environmental characteristics of the
considered location. The fourth model takes into consideration also a possible attractive
or repulsive effect between the two species, with different strengths. In Chapter 5 a simu-
lation study is presented, in which two different aspects are considered: the identifiability
of the models, and a check on the number of available locations for each model and each
dataset taken into consideration. Finally, in Chapter 6 results obtained on real datasets
and a comparison between the different models are shown.

1.1 Notations
In this section, some useful notations that are used in the thesis are presented.

• E[X]: expected value of the random variable X.

• X ⊥⊥ Y : the random variables X and Y are independent.

• B(X ): Borel sigma-algebra of the space X .

•
∫
f(x)P (dx): Lebesgue integral with respect to the measure P .

• Bold symbols (e.g. x) denote vectors, which are columns by default. The transposed
version of x is x′, so that x′ · y denotes scalar product.

• X ∼ P : the random variable X is distributed according to P .

• Subscripts denote vector element, while superscripts denote sample index.
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Chapter 2

Methods

2.1 Resource selection functions
Resource Selection Functions (RSFs), consist in a class of functions that allow knowing
which habitat characteristics are preferred by a species. A RSF is usually proportional to
the probability that a unit of habitat is used by an animal [Mark S. Boyce, 1999, Manly
et al., 2002]. In particular, RSFs link species choices to the resources available in a given
unit of habitat [Hooten et al., 2017].

A possibility is to write the RSF as the product of two non-negative functions represent-
ing the selection process (with which the animal chooses the location) and the availability
of resources [Hooten et al., 2017]. This product is normalized, in order to find a proba-
bility density function. Let us denote a spatial location by µi, the resources at a given
spatial location as x(µi). If you consider the locations to be independent, the RSF can
be written as:

p
(
µi|β,θ

)
= g

(
x
(
µi
)
,β
)
f
(
µi,θ

)∫
g(x(µ),β)f(µ,θ)dµ ,

(2.1)

where g represents the selection process function which depends on the selection coeffi-
cients β and the resources x(µi), while the availability function f depends on the availabil-
ity coefficients θ. In theory, availability and selection functions can assume any possible
form; however, if we suppose that the individual can go anywhere in the considered re-
gion with equal probability, the availability function is uniform: in this case, availability
coefficients disappear and only the selection coefficients β are present [Hooten et al., 2017].

Eq. (2.1) represents a Point process model, that describes a RSF considering only
locations µi chosen by an animal. However, there are also other alternative methods
to fit RSF models (for more details see Hooten et al. 2017); here, we will focus on a
logistic regression approach. In the latter, two types of locations are considered: a set of
locations in which the animal has been recorded (usually through GPS, Global Positioning
System, or similar methods), that are called used locations, and a set of available
locations where the individual has not been observed but is free to go. The latter are
not locations where the individual has never passed through, but simply it has never been
recorded there. These are usually sampled in a domain of availability [Manly et al.,

11



Methods

2002, Forester et al., 2009] where the animal moves. The available locations are used to
understand the distribution of the resources in the domain of availability and to compare
those with the resource distribution in the used locations; in this way, it is possible to
understand in which measure each resource impacts where the animal goes.

A target variable yi is assigned to each location µi and it is equal to 1 if the considered
location is used, 0 if it is available. A logistic regression model is the following:

yi ∼ Bernoulli(πi)
logit(πi) = β1 + x(µi)′ · β for i = 1, ..., Ntot,

(2.2)

where πi is the probability that the individual has been present in location µi, Ntot is the
total number of observations, and β = (β2, ..., βn+1) are the selection coefficients. n is
equal to the number of resources taken into consideration, and β1 is the intercept. This
is the simplest logistic regression model for RSFs and considers only the dependence on
resources.

An RSF estimates the effect of a resource on a species [Michelot et al., 2019]. In Eq
(2.2), the coefficient βj represents the effect of the jth covariate xj on the species. βj > 0
represents a preference of positive values of the covariate by the animal, while if βj = 0
there is indifference, and if βj < 0 there is avoidance of positive values of the covariate
[Michelot et al., 2019].

It is now important to describe how available locations can be obtained. If used lo-
cations are the ones recorded through GPS or similar methods, available locations are
usually sampled from the domain of availability, that can be different based on the granu-
larity of the study. Johnson [1980] individuates different scales at which individuals select
resources:

1. First-order selection: the species selects a geographical area;

2. Second-order selection: represents the home range of an individual or a social group;

3. Third-order selection: the species selects different components of habitat within the
home range;

4. Fourth-order selection: the species selects food.

Understanding in which scale of selection the analysis happens is fundamental in order
to obtain a good interpretation of the model [Johnson, 1980]. In our case, the region of
interest is the home range (Third-order selection). It is important to clarify what is the
home range and how it can be mathematically estimated.

2.1.1 Estimating the home range
There are different ways to define the home range for an animal. The most common
definition of home range is the one in Burt [1943], that defines the home range as the
area occupied by an individual in its normal activities of food gathering, mating, and
taking care of offspring; the individual can sometimes go outside this area for explorations
or other reasons, but these territories should not be considered part of the home range.
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2.2 – The Bayesian approach

Estimating the home range is difficult. In fact, as Powell and Mitchell [2012] argue, most
works use heuristic estimates of the home range rather than information and data on
habitat and resources and rather than understanding what really is home range for the
considered species.

The choice of the home range for an animal can be seen as "a product of decision-
making processes shaped by natural selection" in order to increase its fitness [Powell and
Mitchell, 2012]. Mitchell et al. [2012] propose different economical models in which ani-
mals, in choosing their home ranges, try to maximize their benefits over the costs: more
specifically, they maximize resources while minimizing their home range area (in order to
avoid dangers). Finally, Powell and Mitchell [2012] argue that home ranges are different
among animals of different species and possibly also among individuals of the same species
and for a single individual over time.

In Hooten et al. [2017], we can find another definition for the home range: "non
linear feature in the multidimensional space that serves as a semi-permeable boundary to
movement". There are two common techniques used for mathematically estimating the
home range:

• isopleth of the Kernel Density Estimate; a probability density in the space is
obtained from the observed animal locations via Kernel Density Estimate, and then
a contour line or isopleth (a line drawn through all the points on the surface with
same density value) is used. For instance, if we consider the 95% isopleth, the home
range will contain 95% of the total density in the considered region.

• convex hull: the smallest convex polygon containing all the observed locations is
used as home range. This method is less subjective than the previous one, even if
also in this case it is possible to choose a percentage of points to be used for the
creation of the convex polygon.

Once the home range is estimated, available locations are sampled within it and used
to fit the RSFs. The aim is to find the selection coefficients β in order to estimate,
for each possible location µi, if it is an used location or an available one. Here, we
adopt a Bayesian approach, which implies choosing a prior for β and finding a posterior
distribution for

[
β | µ1, . . . ,µNtot

]
.

2.2 The Bayesian approach
In this section, an historical description of the different definitions of probability is pre-
sented. Then, the focus will be on Bayesian statistics.

2.2.1 Different definitions of probability
Different definitions of probability are possible (for example, see Regis 2020): classical,
frequentist and Bayesian.

For the classical definition, let us consider a space of events Σ and let us suppose
that these events are equiprobable. Then, the probability of an event is given by the ratio
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between the number of favorable cases and the number of possible cases [Stigler, 2005].
Mathematically, if N is the number of possible cases and NE is the number of favorable
cases for an event E ⊆ Σ, the probability of the event E is:

PE = NE

N
.

This definition is based on a finite number of discrete events, so it is not easily extendible
to the case of continuous variables. Moreover, another weakness of this definition is that
equiprobability between events is supposed before defining the notion of probability itself,
resulting in a problem of circularity in the definition [Regis, 2020].

The frequentist definition is given by Von Mises [1939]. If you perform an experiment
N times and the event E occurs NE times, the probability of E is the limit of the relative
frequency NE(N)/N for N →∞ [Regis, 2020]:

PE = lim
N→∞

NE(N)
N

.

In this case it is not necessary to know the space of the events before giving the definition
and it is not necessary to have equiprobability of events, but we have to assume that the
experiment is ideally repeatable an infinite number of times under the same conditions
[Regis, 2020]. This can be a problem since it could be not possible to ensure that all the
experiments are repeatable many times without changing some conditions.

The Bayesian definition considers the probability as a measure in [0,1] of the degree
of plausibility of a proposition [Regis, 2020]. This definition can be applied to every pos-
sible proposition, as complex propositions can be seen as combination of simpler propo-
sitions through logic operators (like and, or, not). Personal considerations are used to
assign a probability to a given event before conducting an experiment [Regis, 2020]. This
probability is called prior probability. Then, once finished the experiment, a new proba-
bility is computed based on results of the experiment: this is called posterior probability
and is not absolute, since always conditioned to previous knowledge. To summarize, we
start from a given prior belief and then we update that belief using new observations when
they arrive.

2.2.2 Bayesian inference
In Bayesian inference, a model described by some parameters θ is assumed true and a
prior distribution is assigned to θ. Then, a posterior distribution of θ is obtained after
the observation of data x [Regis, 2020] via Bayes theorem:

Theorem 1 (Bayes theorem). The posterior distribution f(θ|x) can be obtained by:

f(θ|x) = f(x|θ)f(θ)
f(x) ,

where f(x|θ) is called likelihood, f(x) is called marginal probability and f(θ) is the prior
probability.

14



2.2 – The Bayesian approach

Bayesian statistics differs from frequentist statistics, due to putting a prior distribution
on θ and considering θ to be a random variable; in contrast, frequentist statistics considers
θ to be a fixed quantity.

Example 1. Let us now show an example that clarifies these concepts. Let us consider a
linear model of the type:

xi = β1 + β2ti + εi ∀ i ∈ I,
where εi ∼ Normal(0, σ2) and I = (1,2, ..., Ntot) with Ntot being the total number of
observations, and ti ∈ R. Moreover, let us suppose that ∀i /= j ∈ I xi ⊥⊥ xj. Parameters
of interest are in this case θ = (σ2, β1, β2).

The frequentist approach considers the set of parameters as fixed and uses the maximum
likelihood estimator

arg max
θ

n∑
i=1

f(xi|θ)

to find them (where f(xi|θ) is the conditional probability distribution of xi given θ).
In the Bayesian approach, a prior distribution f(θ) is initially chosen, then a sample

(t,x) is observed and finally a posterior distribution for θ is computed through Bayes
theorem.

The arbitrariness in the choice of the prior is the most criticized aspect of Bayesian
statistics. There are two possibilities for the choice of the prior distribution:

• to choose a non-informative prior; this means to consider a distribution that does
not give information. This strategy of complete ignorance is usually pursued when
it is not possible to have any information on the parameters. For instance, in the
case of a parameter representing a probability, a non-informative prior could be an
Uniform(0,1) (this is called flat prior);

• to choose an informative prior, that means to choose a prior distribution based
on past experiments or theoretical assumptions.

Note that with particular choices of the prior distribution, it is possible to analytically
compute posterior distribution f(θ|x). If prior and posterior belong to the same family
of distributions, they are said to be conjugate.

Point estimators of parameters values can be obtained from the posterior; it is common
to use the mean of the posterior distribution [Regis, 2020]:

E[θ] =
∫
θ f(θ|x) dθ.

Alternatively, the maximum of the posterior can be used. Moreover, it is possible to
compute the credible intervals (also called intervals of credibility) of the parameters: a
credible interval of amplitude α is indicated with Cα and defined as:∫

Cα

f(θ|x) dθ = α.

Bayesian statistics can be applied to particular types of models called hierarchical
models, which we discuss next.
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fixed hyperparameters

shared parameters

parameters 
per group

response 
variables 
Figure 2.1. Structure of a generic hierarchical model.

2.3 Hierarchical models
Hierarchical models are used when the data presents a multi-level structure. A generic hi-
erarchical model is represented in Figure 2.1, where the following components are present:

• fixed hyperparameters: are chosen a priori and are fixed. Fixed hyperparameters
are for instance the parameters of the prior distributions. In Figure 2.1, this is
represented by violet oval blocks.

• shared parameters: parameters common to different groups, represented by a light
blue rectangular block.

• parameters per group: they are different for each group taken into consideration and
are represented by white circles.

• response variables: each group has the correspondent response variable, represented
into pink circles.

A hierarchical model has a conditional structure: lines between blocks represents condi-
tionality between random variables, while blocks not connected by lines are independent
conditioned on the value of the other blocks. Thus, it is natural to apply Bayes theorem

16



2.4 – Sampling from the posterior distribution

in hierarchical models: by observing the response variables, you can recursively infer the
posterior distribution for the other levels.

Note that Figure 2.1 is only an explicative example, but, in practise, hierarchical
models can have more complex structures.

2.4 Sampling from the posterior distribution
Let us consider the posterior distribution f(θ|x) and let us suppose we want to compute
the expected value of a function g(θ) with respect to it:

E[g(θ)] =
∫
g(θ)f(θ|x)dθ.

If it is not possible to compute the integral, we can approximate its value with a
Monte Carlo estimate, which requires to sample from the posterior distribution and use
these samples to build an empirical estimate of the integral. Say that we have b different
samples θ1, ...,θb from f(θ|x). Thus,

1
b

b∑
j=1

g(θj) ≈ E[g(θ)] =
∫
g(θ)f(θ|x)dθ.

If it is not possible to directly sample from f(θ|x), iterative methods can be used to
obtain approximate samples. To this aim, we will now introduce Markov chains over a
general measurable state space.

2.4.1 Markov chains
First, let us consider a state space Σ, and let us denote by B(Σ) the Borel sigma-algebra
on Σ.

Definition 1. A Markov kernel or transition kernel is a function K defined on Σ×
B(Σ) such that [Robert, 1999]:

• ∀s ∈ Σ, K(s, ·) is a probability measure;

• ∀A ∈ B(Σ), K(·, A) is measurable.

We are now ready to define a Markov chain.

Definition 2. Given a transition kernel K, a discrete time Markov chain in measur-
able space is a sequence of random variables X0, X1, ..., Xn denoted as (Xn)n such that
∀k the conditional distribution ofXk+1 given xk, xk−1, ..., x0 is the same as the distribution
of Xk+1 given xk [Robert, 1999]:

P
(
Xk+1 ∈ A | x0, x1, ..., xk

)
= P

(
Xk+1 ∈ A | xk

)
=
∫
A
K(xk, dx).
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When the state space Σ is discrete (namely finite or countably infinite), the transition
kernel K coincides with the matrix of transition probabilities:

p(i,j) = P
(
Xk+1 = j | Xk = i

)
∀i, j ∈ Σ.

In the continuous case, the transition probability can be obtained via integration of the
transition kernel [Robert, 1999]:

P (X ∈ A | x) =
∫
A
K(x, dx̃).

By denoting K1(x,A) = K(x,A), if we take into consideration n > 1 transitions, the
n-steps kernel can be obtained as1:

Kn(x,A) =
∫

Σ
Kn−1(y, A) K(x, dy).

This allows to define the Chapman-Kolmogorov equations:

∀(m,n) ∈ N2, x ∈ Σ, A ∈ B(Σ),

Km+n(x,A) =
∫

Σ
Kn(y, A) Km(x, dy).

This means that to get from x to A in m + n steps it is necessary to pass through some
y on the nth step [Robert, 1999].

Definition 3. Let A ∈ B(Σ). The stopping time at A is

τA = infn≥1{Xn ∈ A}

and represents the first step n at which the chain enters in A. If Xn /∈ A ∀n, by convention
τA =∞ [Robert, 1999].

Now, we define two useful notions for characterizing Markov Chains, those of irre-
ducibility and recurrence.

Definition 4. In the case of discrete state space, a chain is irreducible if from each state
of the chain you can go to any other state, that means that all the states communicate.
Mathematically, this can be written as:

Px(τy <∞) > 0 ∀x, y ∈ Σ,

where Px indicates the probability starting from the point x [Robert, 1999].

In the case of continuous state space, in order to define the irreducibility of a chain, it
is necessary to consider a measure φ and a transition kernel K(·, ·).

1For K superscripts indicate power.
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Definition 5. A Markov chain (Xn)n with transition kernel K is φ-irreducible if ∀A ∈
B(Σ) such that φ(A) > 0, there exists n > 0 such that Kn(x,A) > 0 ∀x ∈ Σ. This is
equivalent to Px(τA <∞) > 0 [Robert, 1999].

Definition 6. A set C is small if there exists m ∈ N and there exists a non-zero measure
νm such that [Robert, 1999]:

Km(x,A) ≥ νm(A) ∀x ∈ C, ∀A ∈ B(Σ).

Definition 7. A chain (Xn)n that is φ-irreducible is recurrent if there exists a small set
C with φ(C) > 0 such that Px(τC <∞) = 1 ∀x ∈ C [Robert, 1999].

Some Markov Chains can be associated to an invariant probability measure:

Definition 8. A probability measure π is invariant for the transitional kernel K(·, ·)
[Robert, 1999] if

π(B) =
∫

Σ
K(x,B) π(dx) ∀B ∈ B(Σ).

The invariant distribution is also called stationary distribution. In fact, if π is an
invariant probability measure, X0 ∼ π =⇒ Xn ∼ π ∀n that means that the chain
is stationary in distribution [Robert, 1999]. For a recurrent chain, there exists a unique
invariant probability measure π [Robert, 1999].

Definition 9. A stationary Markov chain is reversible if the distribution of Xn+1 given
Xn+2 = x is the same as the distribution of Xn+1 given Xn = x

In other words, the direction of time does not change the dynamics of a reversible chain
[Robert, 1999].

Definition 10. A Markov chain with a kernel K satisfies the detailed balance condi-
tion if there exists a function g satisfying:

K(y, x) g(y) = K(x, y) g(x) ∀x, y.

Theorem 2. If a Markov chain with transition kernel K satisfies the detailed balance
condition for g = π being a probability density function, then the following two results
hold [Robert, 1999]:

1. π is the invariant distribution of the chain;

2. the chain is reversible.

Theorem 2 is an essential building block to develop Markov Chains with a specific
invariant distribution, by specifying a suitable transition kernel. However, Markov Chains
with invariant distribution without detailed balance condition also exist.
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2.4.2 Markov Chain Monte Carlo
Coming back to Bayesian inference, it is possible to consider a discrete time Markov
chain in continuous space having as invariant (or target) distribution the posterior
f(θ|x). The realizations of the chain can be considered as approximate posterior samples
from f(θ|x). Those can be used to compute, for example, the expected value of some
function through Monte Carlo approximation, or to obtain estimates of the posterior
distribution. This procedure is called Markov Chain Monte Carlo (MCMC).

The most common MCMC algorithms use a kernel satisfying the detailed balance
condition in order to ensure the correct invariant distribution. Here two of them are
presented: Metropolis-Hastings algorithm and Gibbs sampling.

In Metropolis-Hastings algorithm, a kernel satisfying the balance detailed condi-
tion is defined by the product of a proposal distribution and an acceptance rate (rep-
resenting the probability of accepting a new proposal). Metropolis-Hastings algorithm
(Algorithm 1) requires us to fix an initial value for the parameters θ0 and to choose a
proposal distribution Q(·) with density q(·).

Algorithm 1 Metropolis-Hastings
1: for j = 1, ..., b do
2: Choose a value θ∗ near to θj−1 with density q(θ∗|θj−1)
3: Compute the acceptance rate α = min

[
1, f(θ∗|x)q(θj−1|θ∗)

f(θj−1|x)q(θ∗|θj−1)

]
4: Generate u ∼ Uniform(0,1)
5: if u ≤ α then
6: θj = θ∗ (acceptance step)
7: else
8: θj = θj−1 (refusal step)
9: end if

10: end for

Gibbs sampling is used in the case of multivariate distributions, when one or more of
the marginal distributions for θi, i = 1, . . . , N is unknown, when they are known but sam-
pling from them is difficult or when sampling from the joint distribution f(θ1, θ2, ..., θN )
is not possible. In these cases, sampling from conditional distributions can be easier.
Through Gibbs sampling, the ith sample at step j is sampled from:

f
(
θji | θ

j
1, . . . , θ

j
i−1, θ

j−1
i+1 , . . . , θ

j−1
N ,x

)
.

An example of Gibbs sampling can be found in Algorithm 2 for the case θ = (θ1, θ2, θ3);
Gibbs sampling requires to choose an initial value for the parameters θ0.

Gibbs sampling is particularly useful for hierarchical models [Robert, 1999], where a
conditional structure is present.

Note that with MCMC there is no need to write the full posterior explicitly: in the
Metropolis acceptance rate, the marginal f(x) cancels, such that you do not need to
normalize the posterior with respect to θ; with Gibbs, you only need the full conditionals.

The obtained sequence θ1, ...,θb contains b dependent samples, since each sample de-
pends in some ways on the precedent. Therefore, it is important to adopt some procedures
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2.4 – Sampling from the posterior distribution

Algorithm 2 Gibbs
1: for j = 1, ..., b do
2: Sample θj1 from f

(
θ1| θj−1

2 , θj−1
3 ,x

)
3: Sample θj2 from f

(
θ2| θj1, θ

j−1
3 ,x

)
4: Sample θj3 from f

(
θ3| θj1, θ

j
2,x

)
5: end for

in order to obtain posterior samples that are less correlated and more independent from
the initial choice of θ0. When steps of the chain increase, the distribution is better ap-
proximated. However, at the beginning the distribution can be very different from the
invariant distribution. The period necessary to converge to the invariant distribution is
called burn-in. Thus, in order to avoid high dependence on the choice of the initial value
θ0, the initial samples are not considered, in a number that can vary. This procedure is
called burn-in. Moreover, the procedure of thinning can be adopted: it consists in tak-
ing into consideration only 1 sample every K samples, where K represents the parameter
of thinning. It is also useful to consider more than one chain for each parameter, in order
to see if the different chains have similar behaviours and converge to the same target.

2.4.3 Measures of MCMC performance
Statistics can be computed after obtaining the posterior samples, and some measures can
be considered in order to evaluate the MCMC performance.

The first one is the autocorrelation (AC) of samples, that can be computed at a
chosen distance (called lag) and is defined as follows:
Definition 11. The autocorrelation of a sample Xn at lag k (AC.k) is given by [Venables
and Ripley, 2002]:

ρ(k) = c(k)
c(0) ,

where

c(k) = 1
N

min(N−k,N)∑
n=max(1,−k)

[
Xn+k − E[X]

]
[Xn − E[X]] .

For instance, AC.10 represents the autocorrelation at lag 10.
Another measure of interest is the effective sample size. To this aim, let us consider

a sample of N independent scalar observations θ1, . . . , θN that are identically distributed
with mean µ and variance σ2; in this case, the mean of the distribution is estimated by
the mean of the sample:

µ̂ = 1
N

N∑
i=1

θi

and the variance of µ̂ is the following:

Var(µ̂) = σ2

N
.
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On the contrary, if the observations are correlated to each other, Var(µ̂) is higher:

Var(µ̂) = σ2

neff
,

where neff < N represents the effective sample size (SSeff) [Freeman, 1966] and indi-
cates how many independent samples correspond to the dependent samples set.

Definition 12. In the case of MCMC samples, SSeff can be defined as:

SSeff = N

1 + 2
∑∞
k=1 ρ(k) ,

where ρ(k) is the autocorrelation of samples at distance k [Kass et al., 1998, Ripley, 1987].

If the observations are independent, they are uncorrelated, so SSeff is equal to the
number of observations. If the correlation decreases slowly with respect to the lag k, SSeff
is smaller. SSeff is usually between 0 and N [Kass et al., 1998]. Let us consider a number
of samples equal to N after burn-in and thinning and let n0 be the minimum distance at
which θt and θt+n0 are approximately independent ∀t (where θ is one of the parameters
to be estimated). Then, SSeff can be heuristically approximated as N

n0
. If SSeff is low,

the posterior estimated mean of parameters is not good, because samples are correlated.
Thus, higher values of SSeff are preferred. If we fix the number of samples N , the slower
the decay of autocorrelation is, the larger n0, and the smaller SSeff is.

Other two parameters of interest are Naive SE and Time-series SE. These are two
ways to compute posterior samples standard error: Naive SE assumes independent sam-
ples, while Time-series SE assumes that samples can be dependent. If the observations
are effectively independent, these two error measures should be equal.
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Chapter 3

Data

Data has been collected in the National Park of Abruzzo, Lazio, and Molise (PNALM),
in Italy, from 2005 to 2010 and has been analyzed previously (for instance, by Parrac-
ciani 2020). The study area is 1800 km2 and is covered for about 60% by deciduous
forests, followed by pastures and grasslands and agricultural areas. Primary and sec-
ondary roads are present in density of 1.1/ km. More details about the configuration of
the park and species that populate it can be found in Parracciani [2020]. We only con-
centrate on the two species of interest for the thesis: bear and wolf. The latter populate
the PNALM area with high densities: for the wolves 5 individuals/100 km2, for the bears
40 individuals/1000 km2 are present. Biologists estimate the presence of 8 different packs
of wolves that are distributed in different zones of the park, while bears are concentrated
in a restricted area [Parracciani, 2020, Ciucci et al., 2015, Mancinelli et al., 2018].

In our work, we use individual locations of bears and wolves, recorded through GPS
(Global Positioning System) collars. In particular, for the bear 19 individuals have been
recorded, whose 11 were females and 8 males; for the wolf 7 individuals, whose 3 were
females and 4 males and attributable to 6 different packs. Different bears and different
packs of wolves are identified by an identification code; for the bears, this contains the
letter F if the individual is a female and the letter M if it is a male. If an individual has
been recorded for two years, it is considered as two different individuals. Moreover, bears
and wolves locations are divided into four time-windows: spring (containing locations
from March to May), early summer (from June to July), late summer (from August to
September), and autumn (from October to December).

Since GPS locations have been originally recorded in different temporal intervals for the
two species, they have been filtered in order to obtain a location every 3 hours for both the
species, namely 8 locations per day. For each location, the GPS coordinates (latitude and
longitude) and the values of some environmental covariates have been recorded. Moreover,
the environmental covariates are divided into different categories by Parracciani [2020],
as shown in Table 3.1. The distance to the forest edge can assume positive or negative
values, where positive ones indicate that the animal is out of the forest, negative ones that
it is inside the forest.

Besides locations recorded with GPS collars, in our analysis we consider also available
locations. These are obtained by sampling in the home range; thus, we conduct our
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ENVIRONMENTAL COVARIATES

CATEGORY VARIABLE

Soil cover Percentage of agriculture areas
Percentage of non-vegetated rocky areas
Percentage of shrubland
Percentage of pastures and grasslands

Forest structure Distance to forest edge
Average density of trees in beech forest
Average density of trees in oak and hop-hornbeam forest

Anthropogenic variables Distance in metres from urban centres and primary roads
Distance in metres from urban centres and secondary roads

Orographic variables Terrain ruggedness index
Hillshade

Table 3.1. Environmental covariates present in the dataset, divided in different
categories by Parracciani [2020].

analysis at the Third-order selection of Johnson [1980]. In our case, the home range for
each bear and each pack of wolves has been computed by taking the convex hull with
100% of the used points. The average dimension of home ranges is 150 km2 [Mancinelli
et al., 2018].
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Figure 3.1. Bears and wolves: histograms of number of occurrences; presence locations
(used locations) in blue and available locations in red.
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Late Summer

Spring

Autumn

Early SummerBEAR WOLF

Figure 3.2. Home ranges representation for bears (red) and wolves (blue) in the four
time-windows: used locations (right) and sampled available locations (left).

We represent in Figure 3.2 home ranges of bears and wolves, focusing on used and
available locations in the four time-windows, where it can be seen that home ranges of
bears and wolves sometimes overlap. From the pictures, it is evident that the number of
used locations is less than the number of available locations, for both bears and wolves
in all the time-windows. We represent in Figure 3.1 some histograms showing the distri-
bution of locations with response variable equal to 1 (used locations, in blue) and equal
to 0 (available locations, in red) for both the species and for each time-window. Other
histograms representing the number of occurrences of each bear and each pack of wolves
can be found in Appendix A.
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Chapter 4

Models

In this Chapter, we present the implementation of four different models of resource se-
lection functions for bears and wolves considering not only resources but also interaction
between the two species.

First, we consider two uni-lateral models: in the first one, we model the presence of the
bear considering only resources, and the presence of the wolf considering both resources
and the presence of the bear; on the contrary, in the second one, we model the presence of
the wolf considering only resources, and the presence of the bear considering the presence
of the wolf beside the resources.

Then, we model the interaction between bear and wolf in the two directions (bear ↔
wolf) considering two other models. The first of them models the presence of a species
in a location considering only resources if the other species is not present, or with con-
stant probability otherwise. The second one takes into consideration attractiveness or
repulsiveness with different intensities on a species if the other species is present.

These models are all hierarchical since they include interactions between species and
a multi-level structure is present. Resources are in this case represented by the environ-
mental covariates presented in Section 3; their values are standardized, in order to obtain
comparable results.

We use a binary response variable (called Presence), that assumes value 1 if it is
referred to a used point (that is one of the locations recorded through GPS, called also
real location, or location of presence) and value 0 if it is referred to an available point
(sampled in the home range). These models remember logistic regression models, where
the response variable is binary; however, in this case, the binary response variable does
not represent a presence/absence variable: Presence = 0 does not mean that the animal
is not present in the considered location, but it indicates an available position, namely the
animal has never been observed in that location, but we can not exclude that it has passed
through that location, since this belongs to its home range. For this reason, locations with
response variable equal to 0 are called pseudo-zeros. Data involving response variables of
this type are called use-availability data.

In general, in all models a parameter is associated to each environmental covariate for
both the wolf and the bear: sets of parameters associated to environmental covariates are
indicated with βwolf and βbear respectively. Table 4.1 shows the association between an
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PARAMETER ENVIRONMENTAL COVARIATE

β2 Percentage of shrubland

β3 Percentage of pastures and grasslands

β4 Percentage of agricultural areas

β5 Distance to forest edges

β6 Average density of trees in beech forest

β7 Average density of trees in oak and hop-hornbeam forest

β8 Distance from urban centres and primary roads

β9 Distance from secondary roads

β10 Terrain ruggedness index

β11 Hillshade

β12 Percentage of non-vegetated rocky areas

Table 4.1. Association of a parameter to each environmental covariate.

environmental covariate and a parameter. Note that β can indicate both βwolf and βbear.
Moreover, the first component β1 is associated to the intercept of the models.

The particular response variable for use-availability data has led to difficulties in the
interpretation of the parameters. Fieberg et al. [2021] give a guide for the interpretation of
parameters in resource selection analysis when we have use-availability data. In particular,
Fieberg et al. [2021] argue that the confusion in the interpretation of the parameters is
due to using logistic regression in a non-standard way. Binary response variables obtained
in the logistic regression approach are usually associated with something that happens
(when the response variable is equal to 1) or does not happen (if it is equal to 0), so
it is natural to associate a response variable equal to 1 to a presence location and a
response variable equal to 0 to an absence location. In resource selection analysis with a
logistic regression approach, however, a response variable equal to 0 indicates a pseudo-
zero location, namely an available location, as explained above. According to Fieberg
et al. [2021], applying logistic regression to use-availability data can be seen as a simple
way to estimate the coefficients β of a resource selection function. In fact, if the number of
pseudo-zero locations is high, the logistic regression parameters converge to ones obtained
with a Point Process model [Warton and Shepherd, 2010], which is an exact model, since it
is constructed considering only presence data, namely only locations in which the animal
has been observed.

Models are run in JAGS (Just Another Gibbs Sampler), an R package that allows
analyzing Bayesian hierarchical models through MCMC simulation (in particular, by using
Gibbs sampling). In JAGS, different settings are possible; first, we always consider more
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4.1 – First model: presence of the wolf dependent on presence of the bear

than a single chain to see if the different chains have similar behaviors and converge to the
same target. Then, we set a burn-in phase and thinning. Finally, it is usually preferable
to allow JAGS with an adaptive phase, during which samplers are optimized. Samples
obtained in this phase are not considered, since they do not form a Markov chain. The
number of adaptation represents the length of the adaptive phase.

4.1 First model: presence of the wolf dependent on
presence of the bear

In the First model, we start by modeling the probability of finding the bear in a location
considering only environmental covariates, then we model the probability of finding the
wolf given the presence of the bear beside the environmental covariates. To this aim, we
consider two matrices Xbear and Xwolf containing the standardized values of the environ-
mental covariates, for the bear and the wolf respectively. Components of vectors βbear and
βwolf represent a measure of the effect of the correspondent environmental covariate on
the probability of finding the animal. Moreover, we consider a parameter γ representing
the effect of the presence of the bear on the presence of the wolf, two vectors πbear and
πwolf (representing the probability of finding the bear and the wolf in each location), and
the vectors ybear and ywolf (containing response variables for the bear and the wolf in
each location).

The first model is defined by, for i = 1, ..., Nbear:

ybeari ∼ Bernoulli(πbeari ),

logit(πbeari ) = Xbear
i βbear

and, for j = 1, ..., Nwolf :
ywolfj ∼ Bernoulli(πwolfj ),

logit(πwolfj ) = Xwolf
j βwolf + γ logit−1(Xwolf

j βbear).

In particular, the matrices Xbear and Xwolf have a number of columns equal to the
number of covariates taken into consideration plus 1 since we add a column of ones used
for the intercept in the logistic regression, and have a number of rows equal to the number
of observations in the considered dataset. βbear and βwolf are vectors of dimension equal
to the number of covariates taken into consideration for the bear and the wolf plus 1, since
βbear1 and βwolf1 are the respective intercepts. Together with with γ, βbear and βwolf are the
parameters of the model to be estimated. πbear and πwolf are vectors of dimension equal
to the number of locations of the bear and the wolf respectively. πbeari is the probability
of finding the bear in location i. ybear and ywolf are binary vectors of dimension equal to
πbear and πwolf . ybeari is equal to 1 if the ith location is a presence location (used location);
it is equal to 0 if it is an available location. The same happens for ywolfj . The above model
is thus very similar to a standard logistic model, but contains in addition an interaction
term between the two species. Its hierarchical structure is represented in Figure 4.1.

29



Models

wolfπ 

mean and
variance of

mean and
variance of

mean and
variance of

𝛾

βbear𝛾 βwolf

ywolf ybear

βwolf βbear

[j]
bearπ[i]

[j] [i]

Figure 4.1. First model: representation of the hierarchical structure. i indicates a bear
location (i = 1, ..., Nbear), j indicates a wolf location (j = 1, ..., Nwolf ).

4.2 Second model: presence of the bear dependent
on presence of the wolf

In the Second model, the probability of finding the wolf in a location depends only on
environmental covariates, while the probability of finding the bear depends on the presence
of the wolf besides the environmental covariates. As for the First model, we consider
matrices Xwolf and Xbear, vectors πbear, πwolf , ybear and ywolf , that have the same
role assumed in the First model. βbear and βwolf are the parameters associated to the
environmental covariates as in the previous model, while in this case the parameter γ
represents the effect of the presence of the wolf on the presence of the bear. βbear, βwolf
and γ are the parameters to be estimated through the Bayesian model.

The model can be written as, for i = 1, ..., Nwolf :

ywolfi ∼ Bernoulli(πwolfi ),

logit(πwolfi ) = Xwolf
i βwolf

and, for j = 1, ..., Nbear:
ybearj ∼ Bernoulli(πbearj ),

logit(πbearj ) = Xbear
j βbear + γ logit−1(Xbear

j βwolf ).

Its hierarchical structure is represented in Figure 4.2.
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Figure 4.2. Second model: representation of the hierarchical structure. i indicates a wolf
location (i = 1, ..., Nwolf ), j indicates a bear location (j = 1, ..., Nbear).

4.3 Third model: mixture model with constant prob-
ability of presence of a species if the other species
is present

In the Third model, the probability of finding the bear in a location depends on the
presence of the wolf, and vice versa the probability of finding the wolf in a location depends
on the presence of the bear. In particular, if the wolf is not present in a considered location,
the probability of finding the bear depends only on the environmental covariates in that
location, while if the wolf is present, the probability of finding the bear does not depend
on the environmental covariates and is a fixed value common to all bear locations in which
the wolf is present. The wolf is modelled in a similar fashion.

As for the previous models, matrices Xbear and Xwolf , vectors πbear, πwolf , ybear and
ywolf are considered. The parameters to be estimated are, besides βbear and βwolf defined
as before, γbear, that represents the probability of finding the bear in any location in which
the wolf is present, and γwolf , that represents the probability of finding the wolf in any
location in which the bear is present.
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Figure 4.3. Third model: representation of the hierarchical structure. i indicates a bear
location (i = 1, ..., Nbear), j indicates a wolf location (j = Nbear + 1, ..., Nbear +Nwolf ).

The model is, for i = 1, ..., Nbear:

ybeari ∼ Bernoulli((1− ywolfi )πbeari + ywolfi γbear),

logit(πbeari ) = Xbear
i βbear,

ywolfi ∼ Bernoulli(πwolfi ),

logit(πwolfi ) = Xbear
i βwolf .

For j = Nbear + 1, ..., Nbear +Nwolf , instead:

ywolfj ∼ Bernoulli((1− ybearj )πwolfj + ybearj γwolf ),

logit(πwolfj ) = Xwolf
j βwolf ,

ybearj ∼ Bernoulli(πbearj ),

logit(πbearj ) = Xwolf
j βbear.

In this case, ybear, ywolf , πbear and πwolf are vectors of dimension Nwolf +Nbear; their
first Nbear entries are referred to locations of the bear, the others to locations of the wolf.
As for the previous ones, the Third model is hierarchical, as Figure 4.3 shows.
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Figure 4.4. Fourth model: representation of the hierarchical structure. i indicates a bear
location (i = 1, ..., Nbear), j indicates a wolf location (j = Nbear + 1, ..., Nbear +Nwolf ).

4.4 Fourth model: mixture model with attractive-
ness or repulsiveness between the two species

Finally, we model the probability of finding the bear in a location considering also the
presence of the wolf besides the environmental covariates, and vice-versa, as follows: if
the wolf is not present in a location, the probability of finding the bear depends only on
the environmental covariates; on the contrary, if the wolf is present, there are two possible
cases represented by a binary parameter δbear:

1. δbear = 1: the presence of the wolf increases the probability of finding the bear.
To this aim, we introduce a parameter γbear ∈ [0,1] indicating the strength of the
relationship between wolf and bear: in the extreme γbear = 0, there is no effect of the
presence of the wolf; on the other hand, γbear = 1 means that if the wolf is present,
the bear is present (attractiveness).

2. δbear = 0: the presence of the wolf decreases the probability of finding the bear. This
results in the following situation: in the extreme γbear = 0, there is no effect of the
presence of the wolf; on the other hand, γbear = 1 means that if the wolf is present,
the bear is not present (repulsiveness).

An analogous construction is done for the wolf according to whether the bear is present
or not.

As for the previous models, the different environmental covariates are contained in
matrices Xbear and Xwolf , βbear and βwolf are the parameters associated to them.
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Besides βbear and βwolf , the parameters of the model to be estimated are:

• δbear ∈ {0,1} and indicates if there is attractiveness (1) or repulsiveness (0) for the
bear with respect to the presence of the wolf;

• δwolf ∈ {0,1} and indicates if there is attractiveness (1) or repulsiveness (0) for the
wolf with respect to the presence of the bear;

• γbear represents the strength of the effect of the presence of the wolf on the presence
of the bear. If it is equal to 1, there is total attractiveness (if δbear = 1) or total
repulsiveness (if δbear = 0);

• γwolf represents the strength of the effect of the presence of the bear on the presence
of the wolf. If it is equal to 1, there is total attractiveness (if δwolf = 1) or total
repulsiveness (if δwolf = 0).

The model is thus, for i = 1, ..., Nbear:

ybeari ∼ Bernoulli(πbeari − ywolfi γbearπbeari + ywolfi γbearδbear),

logit(πbeari ) = Xbear
i βbear,

ywolfi ∼ Bernoulli(πwolfi ),

logit(πwolfi ) = Xbear
i βwolf ;

for j = Nbear + 1, ..., Nbear +Nwolf , instead:

ywolfj ∼ Bernoulli(πwolfj − ybearj γwolfπwolfj + ybearj γwolfδwolf ),

logit(πwolfj ) = Xwolf
j βwolf ,

ybearj ∼ Bernoulli(πbearj ),

logit(πbearj ) = Xwolf
j βbear.

In Figure 4.4 the hierarchical structure of the model is represented.
As for the Third model, ybear, ywolf , πbear and πwolf are vectors of dimension Nwolf +

Nbear; their first Nbear entries are referred to locations of the bear, the others to locations
of the wolf.
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Chapter 5

Simulation study

Before proceeding with applying the models to the real dataset, it is important to evaluate
the goodness of the models, by considering two aspects: their identifiability and the impact
of the number of pseudo-zeros on the parameter estimates.

5.1 Identifiability of the models
Definition 13. A model is identifiable if, letting f be its likelihood:

f(x|θ1) = f(x|θ2) ∀ x =⇒ θ2 = θ1.

It is important to check that the models presented in Sections 4.1, 4.2, 4.3 and 4.4
are identifiable. In fact, the aim is to obtain a set of parameters that express the effect
of each covariate on the probabilities of the presence of the wolf and the bear and their
interaction, thus these parameters have to be univocal.

We check the identifiability of the models by considering a synthetic dataset with
lower dimensions than the real one, in order to reduce computational time. In particular,
for each model, the values for the environmental covariates are sampled from a Normal
distribution (with mean equal to 0 and variance equal to 1, in order to have values of
similar size), and are inserted in the matrices Xbear and Xwolf . Moreover, we arbitrarily
choose a set of values for the parameters. Then, the correspondent values of response
variables ybear and ywolf are generated via the model. The resulting Xbear, Xwolf , ybear
and ywolf are used as dataset for the model in JAGS and posterior MCMCs for the
parameters are obtained. Finally, statistics on the posteriors are considered in order to
check if the arbitrarily chosen parameters values (thereafter, the true parameter values)
are well estimated or not: in particular, we check whether the 95% posterior credible
intervals contain the true parameter value.

For all models we choose relatively small values of βbear and βwolf , usually in the
range [−2,2]. In Figure 5.1, we can see that if we take too large values for the logit, the
probabilities will be near 1 and will assume very similar values. Numerically, this makes
distinguishing between close parameter values hard. In our case, models are logistic
with some modifications and the values of environmental covariates are low, so choosing
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Figure 5.1. Probabilities values with respect to logit values.

relatively small values for βbear and βwolf is better in order to have a large range of
probabilities.

For the Third and Fourth model, we also find that allowing a large prior range leads
to non-identifiability of the parameters, likely due to the presence of a different set of
parameters with large numerical value which have same likelihood as the true ones. We
have tried to analytically prove the non-identifiability of the Third and the Fourth models,
without succeeding in general; however, a proof of the non-identifiability of these models
in particular cases (γbear = γwolf = 1, and γbear = γwolf = δbear = δwolf = 1 respectively)
can be found in Appendix B.

5.1.1 Identifiability of the First model
In order to check the identifiability of the First model, only 3 environmental covariates
are taken into consideration, even if the number of effective covariates is larger in the real
dataset. Nevertheless, if the model is identifiable, the identifiability should not change by
taking a larger number of covariates. The choice of using a small number of covariates in
the check of identifiability is made for computational reasons. Matrices Xwolf and Xbear

have 4 columns in this case. The arbitrarily chosen values of the parameters are γ = −1,
βbear = (2, 1,−1.5, 1.7), βwolf = (1.3,−1.5, 0.3, 2). A number of observations equal to 500
is fixed for both bears and wolves. In order to be sure that the chains reach convergence,
we considered different JAGS settings; in particular, we fixed a number of chains equal
to 3, we took 7000 samples for chain, we set an adaptation phase of 2000 samples and a
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AC.10

Parameter thinning=1 thinning=2 thinning=20

γ 0.874 0.746 0.097

βbear1 0.048 0.013 0.008

βbear2 0.048 0.033 0.002

βbear3 0.069 0.04 0.01

βbear4 0.05 0.019 -0.003

βwolf1 0.871 0.746 0.097

βwolf2 0.19 0.153 0.032

βwolf3 0.516 0.432 0.05

βwolf4 0.566 0.486 0.068

Table 5.1. Autocorrelation between samples at distance 10 for the parameters, running
the model with different values of thinning.

burn-in equal to 1000 (in order to reduce dependence on initial values of the chain) and
we tried different values for thinning: thinning = 1 (which corresponds to no thinning),
thinning = 2 and thinning = 20. Prior distributions of the parameters (γ, βbear, βwolf )
are Normal(0,107).

We compute the measures of MCMC performance presented in Section 2.4.3. Autocor-
relation between samples at distance 10 is very high for some parameters (as for instance
γ and βwolf1 ) when thinning is low, but if we run again the model increasing the value
of thinning, the autocorrelation between samples at distance 10 decreases, as Table 5.1
shows. In Figure 5.2, we represent the running mean and the autocorrelation decay with
respect to the lag for γ; the behaviours of the other problematic parameters are similar.
In general, it is clear that by taking a larger value of thinning the autocorrelation decays
faster. Nevertheless, taking a large value of thinning is possible in this case because the
dataset is not too large, which results in a relatively small computational time, but it
could be not always possible with a larger dataset.

Another measure of interest is the Effective Sample Size (SSeff ). If we fix the number
of samples, the slower the autocorrelation decays, the smaller SSeff is. In Table 5.2 we
represent how SSeff changes for the parameters by changing the value of thinning. γ,
βwolf1 , βwolf3 and βwolf4 are the parameters that, in general, have the lowest values of SSeff
for each value of thinning considered. This confirms the more problematic behaviours of
their chains with respect to other parameters chains.

Two other parameters of interest are Naive SE and Time-series SE, where the first
one computes posterior samples standard error assuming independent samples, while the
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Figure 5.2. Left: Posterior running mean of the 3 chains for γ with different
values of thinning. Right: Autocorrelation decay with respect to lag for γ by
taking different values of thinning.

second one considers that samples can be dependent. We look for equal (or at least very
similar) measures for these two errors. In Table 5.3 the values of the two errors measures
are shown for different values of thinning. In particular, looking at these parameters for the
case of no thinning (thinning = 1), we can confirm that thinning is necessary, as the two
measures are different, mostly for γ, βwolf1 , βwolf3 and βwolf4 , for which they have different
orders of magnitude. By taking thinning = 2, the two errors become more similar, but
improvements can still be done. Finally, with thinning = 20 the two errors become very
similar for all the parameters. In Table 5.4 the absolute value of the difference between
Naive SE and Time-series SE for the parameters with the different values of thinning
is shown: it decreases for all the parameters if we run the model with a larger value of
thinning. For γ, βwolf1 , βwolf3 and βwolf4 the order of magnitude remains larger than for the
other parameters, but Naive SE and Time-series SE are more similar with thinning = 20
than with the other values of thinning.
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EFFECTIVE SAMPLE SIZE

Parameter thinning=1 thinning=2 thinning=20

γ 140 312 2602

βbear1 3882 7165 19731

βbear2 4942 8737 17797

βbear3 3929 5568 16710

βbear4 3862 7787 20248

βwolf1 137 301 2557

βwolf2 1192 1814 9023

βwolf3 284 626 4082

βwolf4 275 499 3525

Table 5.2. Effective Sample Size value for the parameters, running the model with
different values of thinning.

thinning=1 thinning=2 thinning=20

Parameter Naive SE Time-series SE Naive SE Time-series SE Naive SE Time-series SE

γ 0.0083 0.1011 0.0079 0.0651 0.0084 0.0238

βbear1 0.0012 0.0028 0.0012 0.002 0.0012 0.0012

βbear2 0.001 0.0021 0.001 0.0016 0.001 0.0011

βbear3 0.0012 0.0029 0.0012 0.0024 0.0012 0.0014

βbear4 0.0012 0.0029 0.0012 0.002 0.0012 0.0013

βwolf1 0.0062 0.0756 0.0058 0.0489 0.0062 0.0177

βwolf2 0.0016 0.0067 0.0016 0.0054 0.0016 0.0024

βwolf3 0.0015 0.0131 0.0015 0.0086 0.0015 0.0035

βwolf4 0.0022 0.0199 0.0021 0.014 0.0022 0.0054

Table 5.3. Comparison between Naive SE and Time-series SE for different values of thinning.

Since we have seen that it is better to set a large value of thinning, we consider
thinning = 20 and we look at the parameters posterior densities. In order to see if
parameters are well estimated, we check if the true values of parameters (namely the
ones arbitrarily chosen at the beginning) are included in the 95% credible intervals of
the posteriors. Figure 5.3 shows that parameters are well estimated: in each plot, the
red line represents the true value of the correspondent parameter, the blue lines are the
two extremes of the 95% credible intervals (lower and upper bound). The model can be
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Parameter Thin = 1 Thin = 2 Thin = 20

γ 9.2753 · 10−2 5.7252 · 10−2 1.5418 · 10−2

βbear1 1.617 · 10−3 8.52 · 10−4 3.8 · 10−5

βbear2 1.116 · 10−3 5.92 · 10−4 9.3 · 10−5

βbear3 1.644 · 10−3 1.164 · 10−3 1.48 · 10−4

βbear4 1.66 · 10−3 7.89 · 10−4 2.4 · 10−5

βwolf1 6.9439 · 10−2 4.3125 · 10−2 1.1513 · 10−2

βwolf2 5.121 · 10−3 3.843 · 10−3 8.42 · 10−4

βwolf3 1.1623 · 10−2 7.144 · 10−3 1.937 · 10−3

βwolf4 1.77 · 10−2 1.19 · 10−2 3.2 · 10−3

Table 5.4. Absolute value of the difference between Naive SE and Time-series SE
for different values of thinning.

considered identifiable with this dataset.

5.1.2 Identifiability of the Second model
Checking the identifiability of the Second model on a synthetic dataset is not necessary,
since it is symmetric with respect to the First model. Positions of the bear and the wolf
are simply inverted in the Second model with respect to the First; thus, since the dataset
has been sampled and parameters have been arbitrarily chosen, also the identifiability of
the Second model is ensured.
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Figure 5.3. Identifiability of the First model on a synthetic dataset: density plots for
the parameters. The red line represents the true value of the parameter, the blue lines
represent the 95% credible intervals extremes. Case of thinning = 20.
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Figure 5.4. Third model: values and densities of the 3 posterior chains for γbear and
γwolf . Priors for βbear and βwolf were Normal(0,107).

5.1.3 Identifiability of the Third model

As for the First model, identifiability of this model is initially checked considering a
synthetic dataset. In particular, 3 environmental covariates are considered and their values
are sampled from a Normal distribution with mean equal to 0 and variance equal to 1.
Thus, Xwolf andXbear have 4 columns, where the first one has all the values equal to 1 and
is used for the intercept, the other three are referred to the environmental covariates. 400
observations are sampled for the wolf and 500 for the bear: Xwolf andXbear have a number
of rows equal to 400 and 500, respectively. Regarding the parameters, we arbitrarily
chose the following values: γbear = 0.4, γwolf = 0.8, βbear = (2.3,−0.1,−0.5, 1.4) and
βwolf = (1,−1, 1.9, 0.2). Also in this case, the values of ybear and ywolf are simulated from
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Figure 5.5. Third model: values and densities of the 3 posterior chains for γbear and
γwolf . Priors for βbear and βwolf were Normal(0,10).

the model considering Xbear and Xwolf sampled before and the arbitrarily chosen values
of the parameters. The model is run in JAGS and posterior estimates of the parameters
are obtained and used to check if the parameters are well estimated or not. The sampling
is done with JAGS using 3 chains with 7000 samples each chain; additionally, we use
a burn-in phase of 1000 samples, an adaptation phase of 2000 samples and thinning =
10. For γbear and γwolf the prior distributions are taken Uniform(0,1), since these are
probabilities and we do not have any previous information on them. For βbear and βwolf ,
we considered different prior distributions, less or more informative.
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Figure 5.6. Third model: representation of posteriors for βwolf
1 . Priors for βbear and

βwolf were Uniform(−10,10).

If we take very large priors like Normal(0,107) for βbear and βwolf , for some parameters
the posterior chains do not converge, as Figure 5.4 shows for γbear and γwolf 1. If we reduce
the variance of the Normal distribution used as prior for βbear and βwolf and we take, for
instance, a Normal(0,100) for βbear, βwolf , posterior chains do not stabilize, even if the
situation is slightly better than the previous case. Finally, if we reduce again the variance
of the prior distributions, for instance taking Normal(0,10) as prior for βbear, βwolf ,
chains are more stabilized, as Figure 5.5 shows, and the parameters are well estimated
(their true values are included in the 95% credible intervals of the posteriors). Moreover,
looking at the densities of the posterior chains represented in Figures 5.4 and 5.5, it is
clear that if we decrease the value of the prior variance, the densities of the 3 posterior
chains are closer.

We now consider Uniform priors for βbear and βwolf . In theory, uniform distributions
on large intervals are preferable, as they are less informative. A good alternative to them

1A choice for the priors on βbear and βwolf has a consequence on the posterior estimates of other
parameters.
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Figure 5.7. Third model: representation of posteriors for βwolf
1 . Priors for βbear

and βwolf were Uniform(−3,3).

could be a normal distribution with a very large variance, but, as described above, for this
model taking a large prior variance results in a non convergence of the chains. Setting
priors for βbear and βwolf to be Uniform(−10,10) leads to non-convergent posterior
chains, as Figure 5.6 shows for βwolf1 . In particular, the running means of the 3 chains
take several iterations to converge to a single value and the blue chain tends to a slightly
different value from the others. Figure 5.6 shows the behaviour of βwolf1 , but the situation
is similar for the other parameters. If we reduce the support of the Uniform distribution,
for instance by taking the prior for βbear and βwolf to be Uniform(−5,5), the situation
improves for most of the parameters. If we reduce again the support considering the prior
βbear and βwolf to be Uniform(−3,3), chains are even better and converge around a
single value for all the parameters. Moreover, all the true values of the parameters are
included in the correspondent 95% credible intervals of the posteriors. In order to make a
comparison with the case of priors Uniform(−10,10) (Figure 5.6), we represent in Figure
5.7 posterior chains for βwolf1 : this parameter is identifiable, the 3 chains converge and
their running means tend to a single value.

To summarize, we represent in Table 5.5 the results obtained with the different prior
distributions for βbear and βwolf . In general, this shows that the chains reach convergence
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Priors Convergence Priors Convergence

Normal(0,107) no Uniform(−10,10) no

Normal(0,102) no Uniform(−5,5) for some parameters only

Normal(0,10) yes Uniform(−3,3) yes

Table 5.5. Third model. Convergence of the chains for the parameters with different
prior distributions for βbear and βwolf .

if we take as priors uniform distributions centred in 0 and with a not too large support,
or normal distributions with low variance. In these cases, the model seams identifiable.
Likely, for this model there exists another set of parameters with similar likelihood as the
true one, but this has very large values, thus reducing the support of the prior distribution
avoids this issue.

5.1.4 Identifiability of the Fourth model
As for the previous models, the dataset used to check the identifiability of the Fourth
model is composed by covariates sampled from a Normal distribution (with mean equal
to 0 and variance equal to 1). The latter are inserted in matrices Xbear and Xwolf . In
this case, the arbitrarily chosen values of the parameters are: γbear = 0.5, γwolf = 0.8,
δbear = 1, δwolf = 0, βbear = (2.3,−0.1,−0.5, 1.4), βwolf = (1, 0.5, 1.9, 0.2). In order to
check the identifiability of the Fourth model, we follow the same procedure of the previous
models, sampling values of the response variables and using them with Xbear and Xwolf

to retrieve posteriors estimates of the parameters through JAGS. Also in this case, the
synthetic dataset is small for computational reasons: only 3 covariates, 500 observations
for the bear and 400 for the wolf are taken into consideration. Prior distributions for δbear
and δwolf are Bernoulli(0.5), for γbear and γwolf are Uniform(0,1), while for βbear and
βwolf different priors are considered.

As for the Third model, we first consider a normal distribution with large variance:
the prior for βbear and βwolf is taken to be Normal(0,107). In this case, chains do not
converge. If we reduce the variance of the normal distribution to 100, we obtain both
convergent chains and good estimates of the parameters: the model is identifiable with
this choice of prior distributions. Similarly, with Normal(0,10) priors for βbear and βwolf ,
parameters are well estimated and the chains converge into a single target value.

On the contrary, taking Uniform(−10,10) priors leads to non convergent chains for
βwolf . If we reduce the support to (−5,5) or to (−3,3), chains converge for all the param-
eters, which are also well estimated. Table 5.6 shows that the chains reach convergence
and the model seems identifiable if we take as prior distributions Uniform distributions
centred in 0 and with a not too large support, or Normal distributions with low variance.
Likely, as for the Third model, there exists another set of parameters with similar like-
lihood as the true one, but this has very large values, thus reducing the support of the
prior distribution avoids this issue.
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Priors Convergence Priors Convergence

Normal(0,107) no Uniform(−10,10) no

Normal(0,102) yes Uniform(−5,5) yes

Normal(0,10) yes Uniform(−3,3) yes

Table 5.6. Fourth model. Convergence of the chains for the parameters with different
prior distributions for βbear and βwolf .

5.2 Effect of the number of pseudo-zeros

Another important aspect to consider is the number of pseudo-zeros in the dataset. In
fact, the number of available locations used in an RSF model is arbitrarily decided by the
researcher: in our case, available locations have been sampled in the home range of the
animal. If the number of available locations is low with respect to the number of observed
locations (locations with response variable equal to 1, used locations), problems in the
estimates of the parameters may arise (for instance, parameters estimates could change).
It is necessary to check if the estimates of the parameters through the considered models
are dependent on the number of the sampled available points compared to the number of
used locations. In particular, if the number of pseudo-zeros is large enough, the estimates
of the parameters obtained with the logistic regression approach converge to the estimates
of the parameters obtained with a Poisson Point Process method, which is an exact method
based only on presence locations [Warton and Shepherd, 2010]. Thus it is necessary to
show that the considered number of available points is enough to guarantee the stability
of the parameter estimates: more precisely, if we slightly decrease the number of available
points, the estimates do not change.

For instance, Fieberg et al. [2021] show an example by using standard logistic regression
and varying the number of available points from 1 available point for each used point to
100 available points for each used point: results show that by taking a number of pseudo-
zeros larger than a threshold (that in his case was 10 available locations per used location)
the parameters estimates stabilize. On the contrary, if the total number of pseudo-zeros
is lower than the threshold, the estimates of the parameters change by taking different
proportion of available points with respect to used points. Moreover, Fieberg et al. [2021]
show that in the standard logistic regression the intercept has a different behaviour with
respect to the other parameters: its estimate changes by increasing the number of available
points.

For each model and for each dataset (corresponding to the different time-windows),
it is important then to check if the number of pseudo-zeros is enough to guarantee the
convergence of the posterior chains and, if this is verified, the goodness of the parameters
estimates. Thus, for each considered model and for each dataset we eliminate some per-
centages of pseudo-zeros and we check for any changes in the convergence of the posterior
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SEASON SPRING EARLY SUMMER

SPECIES Bear Wolf Bear Wolf

Total number of observations 26509 11047 33374 8039

Number of observations equal to 1 1876 1619 2698 1355

Number of observations equal to 0 24633 9428 30676 6684

Percentage of observations equal to 1 7.08% 14.66% 8.08% 16.86%

Percentage of observations equal to 0 92.92% 85.34% 91.92% 83.14%

SEASON LATE SUMMER AUTUMN

SPECIES Bear Wolf Bear Wolf

Total number of observations 38381 6906 28037 10989

Number of observations equal to 1 2949 921 2840 1843

Number of observations equal to 0 35432 5985 25197 9146

Percentage of observations equal to 1 7.68% 13.34% 10.13% 16.77%

Percentage of observations equal to 0 92.32% 86.66% 89.87% 83.23%

Table 5.7. Statistics on the number of available/used locations in the different time-win-
dows. Note that equal to has to be intended as with response variable y equal to.

chains and in the estimates of the parameters. In this way, we find a threshold above
which the percentage of discarded pseudo-zeros leads to bad estimates of the parameters
or non-convergent chains. Given a model, this procedure is implemented for each dataset
(both the simulated one and those related to each different time-window), since in each
dataset the percentage of pseudo-zeros and their distribution can change.

5.2.1 Number of pseudo-zeros for the First model
First, we consider the synthetic dataset used in Section 4.1 and we randomly eliminate the
following percentages of pseudo-zeros: 10%, 25%, 40%, 50%, 75%. For each percentage of
discarded pseudo-zeros, we run the model in JAGS in order to check if the estimates of
the parameters change. JAGS settings are in this case: 3 chains, 7000 samples for chain,
a burn-in phase of 1000 samples, an adaptation phase of 2000 samples and thinning = 20.
Priors for all the parameters are Normal(0,107). If we eliminate 40% or less of the pseudo-
zeros, parameters continue to be well estimated, while if we eliminate 50% or 75% of the
pseudo-zeros the true value of the intercept βbear1 is not included in the 95% credible
interval of the posterior. In the case of 50% of discarded pseudo-zeros, the distance
between true value of βbear1 and the lower bound of the interval is equal to 0.15575, in
the case of 75% of discarded pseudo-zeros, this becomes equal to 0.8306. Moreover, with
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Bear Wolf

SEASON Original dataset Reduced dataset Original dataset Reduced dataset

SPRING 7.08% 7.13% 14.66% 14.66%

EARLY SUMMER 8.08% 8.09% 16.86% 16.92%

LATE SUMMER 7.68% 7.73% 13.34% 13.46%

AUTUMN 10.13% 10.16% 16.77% 16.83%

Table 5.8. Percentages of used locations in the original dataset and in the reduced
dataset (1 observation every 30 for the bear and 1 observation every 10 for the wolf).

75% of discarded pseudo-zeros βwolf1 as well is not well estimated. Nevertheless, the true
values of the other parameters are included in the respective 95% credible intervals also
with a low percentage of original pseudo-zeros. Thus, the theory of Fieberg et al. [2021]
is confirmed for the First model on the synthetic dataset, even if this involves interactions
between the two species: if the number of pseudo-zeros is larger than a threshold, the
parameter estimates are not affected by the number of pseudo-zeros. Note that in our
case the initial percentage of pseudo-zeros was 42.6% for the wolf and 24% for the bear:
these percentages are not obtained for a particular reason, but simply because ywolf
and ybear have been sampled through the model starting by values of the environmental
covariates sampled by Normal(0,1) and arbitrary chosen parameters values.

We now apply the same procedure to the real datasets with all the covariates given
in Table 4.1, since, as already mentioned, the number and the distribution of available
locations change in each dataset. In Table 5.7 some statistics on the number of pseudo-
zeros in the different time-windows are shown. For computational reasons, the original
dataset is "reduced" considering an observation every 30 for the bear and an observation
every 10 for the wolf. Taking a smaller number of observations should not change the
situation, since the percentages of available and used locations are very similar, as Table
5.8 shows. Priors for all the parameters are Normal(0,107).

Let us start considering the dataset for SPRING; we randomly eliminate different
percentages of pseudo-zeros (10%, 25%, 50% and 75%) and run the model in JAGS with
the following settings: 3 chains, 7000 samples for chain, a burn-in phase of 1000 samples,
an adaptation phase of 2000 samples and thinning = 5. For each percentage of randomly
discarded pseudo-zeros, posterior chains converge. Thus, we look at the differences in the
mean and in the extremes of 95% credible intervals of the posterior estimates varying the
proportion of randomly discarded pseudo-zeros: in general, if we eliminate 75% or more
of the pseudo-zeros, posterior estimates of all the parameters slightly change. Moreover,
posterior estimates of the intercept βbear1 are different if we eliminate 50% of the available
locations. This confirms again what found by Fieberg et al. [2021] in standard logistic
regression. We can conclude that for the First model applied to Spring dataset the initial
percentage of pseudo-zeros is enough to guarantee the convergence of the methodology
and it is possible to obtain good estimates of the parameters.
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For EARLY SUMMER as well, JAGS settings are the following: 3 chains, 7000
samples for chain, a burn-in phase of 1000 samples, an adaptation phase of 2000 samples
and thinning = 10. For this time-window as well, we randomly eliminate several per-
centages of pseudo-zeros (5%, 10%, 25%, 50% and 75%) and we compare the posterior
estimates (mean and 95% credible intervals) with those obtained without the elimination
of available locations: the estimates do not change too much, except for βbear1 (when the
percentage of discarded pseudo-zeros is 25% or more) and βwolf1 (when the percentage
of discarded pseudo-zeros is 50% or more). Thus, as for Spring, we can argue that the
number of pseudo-zeros in the dataset is enough to guarantee the convergence of the
methodology.

In the case of LATE SUMMER, we randomly eliminate different percentages of
pseudo-zeros (10%, 25%, 50% and 75%). JAGS settings are: 3 chains, 7000 samples
for chain, a burn-in phase of 1000 samples, an adaptation phase of 2000 samples and
thinning = 5. If we randomly eliminate 50% or less of the initial pseudo-zeros, mean,
lower bound and upper bound of the 95% credible intervals do not change too much for
the posterior estimates of the parameters, while eliminating 75% of the initial pseudo-
zeros leads to different estimates of the parameters, mostly for γ and βwolf . As already
mentioned, we are considering a "reduced" dataset (obtained by taken 1 observation every
30 for the bear and 1 observation every 10 for the wolf) for computational reasons: in the
case of non-elimination of pseudo-zeros there are 1280 observations for the bear and 691
for the wolf, where the available locations are 1181 for the bear and 598 for the wolf. If we
randomly eliminate 75% of the pseudo-zeros, we obtain 295 pseudo-zeros and 99 ones for
the bear, 150 pseudo-zeros and 93 ones for the wolf. Thus, problems arise when we have
around one used location every 3 available locations for the bear and one used location
every 2 available locations for the wolf. Likely, these are not enough for the model we are
considering: it is necessary to take a larger number of pseudo-zeros in order to obtain good
estimates of the parameters. To conclude, for the First model the number of pseudo-zeros
in Late Summer dataset is enough to guarantee the convergence of the methodology and
parameters are well estimated.

Finally, forAUTUMN, the JAGS settings are the same as Spring. The percentages of
randomly eliminated pseudo-zeros are 10%, 25%, 50% and 75%. Posterior estimates of the
parameters do not change too much if the percentage of discarded pseudo-zeros is less than
or equal to 50%. For the intercept the estimates change with lower percentages of discarded
pseudo-zeros. Nevertheless, we can argue that also in Autumn dataset the original number
of pseudo-zeros is enough to guarantee the convergence of the methodology.

As an example, Figure 5.8 represents the effect of eliminating a percentage of pseudo-
zeros on lower bound, mean and upper bound of the 95% credible interval, with respect
to the proportion of discarded pseudo-zeros in Early Summer for the parameter γ. For
the other parameters and the other time-windows, similar Figures are shown in Appendix
A.
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Figure 5.8. First model: effect of eliminating a percentage of pseudo-zeros on poste-
rior estimates (lower bound, mean, upper bound) for γ, with respect to the proportion
of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation every
10 for the wolves. Early Summer.

5.2.2 Number of pseudo-zeros for the Second model
For the Second model, we do not perform the study over the synthetic dataset as that
would be identical to the First model. We consider the real dataset. Prior distributions
for the parameters are Normal(0,107). We check for each time-window if the poste-
rior estimates of the parameters change by randomly eliminating different percentages of
pseudo-zeros. As for the First model, we consider only one observation every 10 for the
wolf and one every 30 for the bear.

For SPRING dataset, we randomly eliminate the following percentages of pseudo-
zeros: 10%, 25%, 50% and 75%. JAGS settings are in this case: 3 chains, 7000 samples
for chain, a burn-in phase of 2000 samples, an adaptation phase of 2000 samples and
thinning = 7. For the intercepts βbear1 and βwolf1 the estimates change if we eliminate
50% of the pseudo-zeros or more, while for the other parameters the estimates do not
change until we eliminate 75% of the pseudo-zeros.

For EARLY SUMMER dataset, the randomly discarded percentages of pseudo-zeros
and JAGS settings are the same as for Spring. Posterior estimates do not change too much
if we eliminate less than 75% of the pseudo-zeros for all the parameters, except for βwolf1 ,
for which the elimination of 50% of the pseudo-zeros or more leads to very different values
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Figure 5.9. Second model: effect of eliminating a percentage of pseudo-zeros on
posterior estimates (lower bound, mean, upper bound) of βwolf

1 , with respect to
the proportion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1
observation every 10 for the wolves. Autumn.

of the posterior mean and the 95% credible intervals.
For LATE SUMMER dataset, the randomly discarded percentages of pseudo-zeros

are the same as for the previous time-windows, while JAGS settings are in this case: 3
chains, 7000 samples for chain, a burn-in phase of 1000 samples, an adaptation phase of
2000 samples and thinning = 5. Results are very similar to what was found for Early
Summer.

Finally, for AUTUMN dataset, the randomly discarded percentages of pseudo-zeros
are the same as for the previous time-windows and JAGS settings are the following: 3
chains, 7000 samples for chain, a burn-in phase of 2000 samples, an adaptation phase of
2000 samples and thinning = 15. The posterior estimates do not change too much until
the proportion of discarded pseudo-zeros is equal to 75% for βbear (except the intercept
βbear1 ) and γ, and until we eliminate 50% of the pseudo-zeros for βwolf (except the intercept
βwolf1 ) and βbear1 . However, the posterior estimates of βwolf1 change if we eliminate any
percentage of pseudo-zeros, as Figure 5.9 shows. This is not surprising, since βwolf1 is an
intercept.

As for the First model, the number of pseudo-zeros is enough to have good parameter
estimates for the Second model.
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Figure 5.10. Third model: effect of randomly eliminating different percentages of pseu-
do-zeros on density and running mean of βbear

4 , considering the synthetic dataset.
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βbear1 βbear6

Figure 5.11. Third model: posterior densities for βbear
1 and βbear

6 with 60% of the
pseudo-zeros eliminated. Autumn.

5.2.3 Number of pseudo-zeros for the Third model

We first look at the number of pseudo-zeros for the synthetic dataset used to check the
identifiability. We run the model in JAGS (with 3 chains, 8000 samples for chain, a burn-
in phase of 2000 samples, an adaptation phase of 2000 samples and thinning = 15) and
we randomly eliminate the following percentages of pseudo-zeros: 10%, 40% and 75%. As
prior distributions, we set Uniform(0,1) for γbear and γwolf , and Normal(0,10) for βbear
and βwolf . In the case of 10% and 40% of discarded pseudo-zeros, posterior chains reach
convergence, while eliminating 75% of the pseudo-zeros leads to chains that converge more
slowly. Figure 5.10 shows the posterior running mean and the density in the three cases
described above. Moreover, if the percentage of discarded pseudo-zeros is too high, some
parameters (like γbear and γwolf ) are not well estimated.

Then, we consider the four datasets associated to the different time-windows: we take
as environmental covariates for each time-window the same as the First model and we
reduce the dataset size in the same way. The discarded percentages of pseudo-zeros are
also in this case 10%, 40% and 75%.

For AUTUMN dataset, JAGS settings are the following: 3 chains, 8000 samples
for chain, a burn-in phase of 2000 samples, an adaptation phase of 2000 samples and
thinning = 15. If we do not eliminate any pseudo-zeros, the chains converge, but elim-
inating a percentage of pseudo-zeros (like 10% or 40%) leads to non-convergent chains.
In particular, with 40% of discarded pseudo-zeros, for some parameters two of the three
posterior chains have very similar densities, that approximate a normal distribution with
a certain mean, while the density of the other chain approximates a normal distribution
symmetric to the others with respect to the value 0, as Figure 5.11 shows for two of the
parameters. This could be an empirical proof of the non-identifiability of the Third model
on that dataset. We tried to analytically prove the non identifiability of the Third model,
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Figure 5.12. Third model: posterior densities for γbear with elimination of 75% of
the pseudo-zeros. Late summer.

without succeeding in general. However, we have proven that if γbear = γwolf = 1 swap-
ping βbear and βwolf gives the same likelihood for the data. See Appendix B for more
details.

For EARLY SUMMER dataset, JAGS settings are the following: 3 chains, 7000
samples for chain, a burn-in phase of 1000 samples, an adaptation phase of 2000 samples
and thinning = 10. If we do not eliminate any pseudo-zeros, the chains converge. Also
with the elimination of 10% of the pseudo-zeros, chains converge, but eliminating an higher
percentage of pseudo-zeros (for instance 40% or 75%) leads to non-convergent chains. The
situation is similar to what shown in Figure 5.11 for the Autumn case.

For LATE SUMMER dataset, JAGS settings are the same as the ones used for
Early summer. The chains reach convergence with the following percentages of randomly
discarded pseudo-zeros: 10% and 40%. However, with the random elimination of 75%
of the pseudo-zeros, we obtain non-convergent chains. In Figure 5.12 we represent the
posterior density of the three chains for γbear: likely, the model is not identifiable on this
reduced dataset, since it seams that there are two possible values for γbear. The situation
is similar for the other parameters.

For SPRING dataset, JAGS settings are the following: 3 chains, 9000 samples
for chain, a burn-in phase of 3000 samples, an adaptation phase of 2500 samples and
thinning = 20. In this case, if we eliminate 10% of the pseudo-zeros, chains converge, but
if we eliminate more than 40% of the pseudo-zeros, this no longer happens. The obtained
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chains are similar to those shown for the other time-windows.
For this model, we find that if we eliminate a small percentage of pseudo-zeros in the

Autumn and Early Summer datasets, the MCMC do not reach convergence, meaning that
they either have a very bad behaviour or different chains converge to different parameter
values. For the remaining time-windows, chains converge if we discard less than 40% of
pseudo-zeros.

5.2.4 Number of pseudo-zeros for the Fourth model
For the Fourth model as well, we initially take into consideration the synthetic dataset
used in Section 5.1.4 and we randomly eliminate the following percentages of pseudo-
zeros: 10%, 25%, 50%, 75%. For each percentage of discarded pseudo-zeros, we run the
model in JAGS in order to check if the estimates of the parameters change, with the
following settings: 3 chains, 7000 samples for chain, a burn-in phase of 3000 samples, an
adaptation phase of 2000 samples and thinning = 15. Prior distributions for δbear and
δwolf are Bernoulli(0.5), for γbear and γwolf are Uniform(0,1), and for βbear and βwolf
are Normal(0,10). For all the percentages of randomly eliminated pseudo-zeros, posterior
chains of the parameters converge. Moreover, for γbear the posterior estimates do not
change too much if we randomly eliminate less than 50% of the initial pseudo-zeros, for
γwolf if we randomly eliminate less than 75% of the initial pseudo-zeros. For δbear the
posterior estimates are the same for each percentage of discarded pseudo-zeros, while for
δwolf the posterior estimates change if we randomly eliminate 50% of the pseudo-zeros.
For βbear, the posterior estimates slightly change if we randomly eliminate 50% of the
pseudo-zeros, and significantly change if the percentage of discarded pseudo-zeros reaches
75%. Finally, for βwolf , the posterior estimates do not change too much until we eliminate
75% of the initial pseudo-zeros. On the synthetic dataset, the number of pseudo-zeros is
therefore enough to guarantee good parameter estimates.

Then, we study the behaviour of the chains considering real data in the different
time-windows. For computational reasons, also in this case we take into consideration 1
observation every 30 for the bear and 1 observation every 10 for the wolf. Statistics on
the number of used and available locations are the same as for the First model, as shown
in Table 5.7. For all time-windows, prior distributions are set as following: δbear and δwolf
are Bernoulli(0.5), γbear and γwolf are Uniform(0,1), βbear and βwolf are Normal(0,10).
Moreover, JAGS settings are the following: 3 chains, 7000 samples for chain, a burn-in
phase of 1000 samples, an adaptation phase of 2000 samples and thinning = 10. The
percentages of discarded pseudo-zeros are 10%, 40%, 75%.

For SPRING dataset, we run the model in JAGS, and we eliminate the different
percentages of pseudo-zeros in order to see if the posterior estimates of the parameters
change or not. If we eliminate 40% or 75% of the pseudo-zeros, the posterior chains do
not reach convergence.

In EARLY SUMMER case, the posterior chains obtained considering the different
percentages of pseudo-zeros described above reach convergence. However, for most of the
parameters (γbear, γwolf , δbear, δwolf , βwolf and some components of βbear) the posterior
estimates change if we eliminate more than 40% of the pseudo-zeros. This is evident
mostly for the intercepts βbear1 and βwolf1 , as Figure 5.13 shows. When we consider all the
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Figure 5.13. Fourth model: Effect of eliminating a percentage of pseudo-zeros on the
posterior estimates (lower bound, mean, upper bound) of the intercepts, with respect
to the proportion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1
observation every 10 for the wolves. Early Summer.

pseudo-zeros or 90% of the pseudo-zeros, posterior estimates are concentrated on a certain
value, while if we eliminate an higher percentage of pseudo-zeros, they are concentrated
on a different value.

In LATE SUMMER case, the chains reach convergence with all the percentages of
discarded pseudo-zeros we considered. In this case, posterior estimates of the parameters
do not change until we eliminate 75% of the pseudo-zeros.

For these first three time-windows, then, the number of pseudo-zeros is enough to have
good parameter estimates for the Fourth model. However, reducing them by more than
10% changes the parameter estimates for Spring and Early Summer, while the threshold
is larger for Late Summer.

In AUTUMN case, if we take into consideration the original reduced dataset, chains
do not reach convergence; also if we eliminate small percentages of pseudo-zeros (like 10%
or 40%), they take a lot of steps to reach convergence, while randomly eliminating 75%
of the original pseudo-zeros leads to convergent chains. This behaviour is different from
what we expected and we are unable to give an explanation.
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Chapter 6

Final results on real datasets
and comparison between
models

We now run the four models on the entire datasets corresponding to the different time-
windows, in order to obtain posterior estimates of the parameters and to compare results
obtained through the different models. JAGS settings used for all the models in the
different time-windows are the following: 3 chains, 7000 samples for chain, a burn-in
phase of 2000 samples, an adaptation phase of 2000 samples and thinning = 10. Posterior
chains for the parameters of the different models converge, except for the Second model
in Autumn. For each model and time-window in which convergence is reached, the mean
and the extremes of the 95% credible intervals are computed. In Table 6.1 we represent
the posterior mean of the parameters of the First model in the different time-windows, in
order to compare the behaviours of the animals and their interaction in different parts of
the year. Similarly, we represent the same in Tables 6.2, 6.3 and 6.4 for the Second, Third
and Fourth models, respectively.

From the values of βbear in Table 6.1, we can see the effect of each environmental
covariate on the presence of the bear. The larger βbearj is for a given j, the larger is the
effect of the corresponding covariate on the probability of finding the bear. If we compare
the absolute values of two components of βbear, a greater effect on the probability of
finding the bear is given by the component with larger absolute value. For instance,
in Spring, βbear3 (correspondent to the covariate representing the percentage of pastures
and grasslands) is the largest component of βbear in absolute value; in Early Summer the
largest component is by βbear7 , which corresponds to the average density of trees in oak and
hop-hornbeam forest. The same reasoning can be done for Late Summer and Autumn,
for which the greater effect is given by βbear6 (associated to average density of trees in
beech forest) and βbear7 , respectively. Another distinction can be made in terms of signs:
if a parameter is positive, the probability of presence of the bear is increased by positive
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Spring Early Summer Late Summer Autumn

γ 2.88 -27.44 11.69 -8

βbear1 -2.96 -2.68 -2.82 -2.46

βbear2 -0.08 0.04 0.26 -0.09

βbear3 -0.65 0.18 0.45 -0.25

βbear4 -0.19 0.24 -0.16 0.12

βbear5 0.28 -0.06 -0.08 -0.24

βbear6 0.3 0.57 0.76 -0.1

βbear7 0.3 0.79 0.35 0.37

βbear8 -0.03 0.16 0.19 -0.05

βbear9 0.32 0.18 0.3 0.31

βbear10 0.32 0.17 0.01 0.16

βbear11 -0.13 -0.19 -0.06 -0.22

βbear12 -0.45 0.36 0.53 0.03

βwolf1 -2.28 -0.09 -3.44 -0.9

βwolf2 -0.03 -0.2 -0.34 -0.01

βwolf3 0.25 0.25 -0.55 -0.26

βwolf4 0.04 0.4 0.009 0.19

βwolf5 -0.6 -0.77 -0.18 -0.31

βwolf6 0.13 1.55 -0.24 -0.16

βwolf7 -0.03 1.78 0.04 0.34

βwolf8 -0.68 0.94 0.79 -0.03

βwolf9 0.27 0.8 0.22 0.27

βwolf10 -0.07 -0.36 -0.58 0.1

βwolf11 0.14 -0.22 0.52 -0.24

βwolf12 -0.42 0.8 -0.63 -0.15

Table 6.1. First Model: posterior mean of the parameters in the different time-windows.
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values of the corresponding covariate; vice versa if it is negative1. Thus, we can look at the
signs of the parameters considered above and notice that βbear3 is negative for the Spring
dataset, βbear7 is positive both in Early Summer and Autumn, and βbear6 is positive in Late
Summer. Moreover, βbear7 is positive in all the time-windows, thus if the average density
of trees in oak and hop-hornbeam forest in a location is large, it increases the probability
of finding the bear in that location; in particular, this happens mostly in Early Summer,
since the value of βbear7 is bigger in this time-window than in the others. On the contrary, a
covariate that has a negative impact on the presence of the bear in all time-windows is the
hillshade, represented by βbear11 : this happens more strongly in Autumn, followed by Early
Summer and Spring. βbear9 (associated to the distance from secondary roads) and βbear10
(associated to the terrain ruggedness index) have similar posterior means in Spring and
Early Summer, while quite different posterior means in Late Summer and Autumn. βbear12 ,
that is associated to the percentage of non-vegetated rocky areas, has a negative posterior
mean only in Spring. The percentage of shrubland (βbear2 ) and the percentage of pastures
and grasslands (βbear3 ) have a positive impact in Late Summer and Early Summer, and a
negative impact in the other time-windows. βbear4 (which is associated to the percentage
of agricultural areas) has a positive posterior mean in Early Summer and Autumn, and
negative in Spring and Late Summer. Similar comparisons can be made for the other
components of βbear, but in general we can see in Table 6.1 that the posterior means of
the parameters usually have same sign in Early Summer and Late Summer, except for
βbear4 (associated to the percentage of agricultural areas); the same happens for Spring
and Autumn, except for βbear4 , βbear5 (associated to the distance to forest edges) and βbear12 .
If we fix the values of βbear and βwolf and of the environmental covariates, we can look at
the behaviour of γ, which represents the effect of the presence of the bear on the presence
of the wolf. From the Table, we can see that the absolute value of the posterior mean of
γ is largest in Early Summer, for which the impact is negative, followed by Late Summer,
for which the impact is positive. Also in Spring the impact is positive, but the value of the
posterior mean is smaller than in Late Summer. On the contrary, in Autumn the impact
is again negative. As for the bear, we can look at the posterior estimates of βwolf . In
Spring, βwolf8 (associated to the distance from urban centres and primary roads) has the
highest negative impact on the probability of finding the wolf, followed by βwolf12 , while the
highest positive impact is given by βwolf9 , followed by βwolf3 . In Early Summer the highest
positive impact is given by βwolf7 , that has a very large posterior mean in absolute value
compared to the other parameters (1.78); on the contrary, βwolf5 has the biggest negative
impact (−0.77). In the same way, we can see from the Table that βwolf8 has the highest
positive impact in Late Summer, βwolf7 in Autumn.

For the Second model, we do not report posterior means for the Autumn case in Table
6.2 since, as already mentioned before, chains did not converge in that case. Interpretation
of the parameters is analogous to the First model, since they are symmetric. In this case,
an high probability of presence of the wolf has a negative impact on the probability of
presence of the bear in all considered time-windows. In particular, this impact is very big

1Recall here that we are considering standardized covariates.

61



Final results on real datasets and comparison between models

Spring Early Summer Late Summer

γ -11.8 -1.66 -12.83

βbear1 -1.34 -2.44 -1.34

βbear2 -0.18 -0.05 0.98

βbear3 -0.42 -0.05 0.56

βbear4 -0.18 0.21 0.46

βbear5 -0.6 -0.12 -0.82

βbear6 0.6 0.51 1.56

βbear7 0.29 0.71 0.82

βbear8 -1.36 0.35 1.3

βbear9 0.77 0.3 0.63

βbear10 0.37 0.06 -0.66

βbear11 0.04 -0.16 0.14

βbear12 -0.54 0.22 0.58

βwolf1 -2.07 -2.16 -2.34

βwolf2 -0.14 -0.26 0.45

βwolf3 0.11 -0.19 0.06

βwolf4 0.02 -0.18 0.5

βwolf5 -0.48 -0.65 -0.5

βwolf6 0.17 0.3 0.56

βwolf7 0.01 0.13 0.35

βwolf8 -0.71 0.65 0.98

βwolf9 0.28 0.47 0.23

βwolf10 0.05 -0.68 -0.42

βwolf11 0.1 0.16 0.18

βwolf12 -0.45 -0.14 -0.008

Table 6.2. Second Model: posterior mean of the parameters in the different time-windows.
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in Late Summer (for which the posterior mean of γ is −12.83) and in Spring (for which the
posterior mean of γ is −11.8), while it is lower in Early Summer (for which the posterior
mean of γ is −1.66). In Spring, the component of βbear that has the biggest impact in
absolute value on the presence of the bear is βbear8 , in Early Summer βbear7 (according
to what found with the First model), and in Late Summer βbear6 . Similar reasoning can
be done for βwolf , for which in general the values of the posterior means are lower than
βbear. In particular, βbear11 has posterior mean equal to 0: this means that the covariate
associated to this parameter (hillshade) likely has a negligible impact on the probability
of finding the wolf.

For the Third model, In Table 6.3, parameters γbear and γwolf are very interesting,
since the first one represents the probability of finding the bear in a location where the
wolf is observed, the second one vice versa. In Spring the probability of finding the wolf
in a location where the bear is observed is, in average, almost equal to 0 (more precisely
0.006), and the probability of finding the bear in a location where the wolf is observed
is 0.12. The latter increases in Early Summer, Late Summer and Autumn, where, in
particular, it reaches the value 0.5. The probability of finding the wolf in a position in
which the bear is present is small in Autumn (0.02), while in Late Summer it is equal
to 0.18. However, in Early Summer the probability of finding the wolf in a location in
which the bear is observed is, in average, higher than in the other time-windows (0.39),
even if it remains lower than 0.5. In the case in which a species is not observed in a
location, the probability of finding the other species depends only on the environmental
covariates. In that case, each component of βbear and βwolf gives an idea of the effect
of the correspondent covariate on the presence of the considered animal. Values of the
parameters associated to the different covariates can be compared: if a parameter is in
absolute value larger than another parameter, this means that the first has a greater
impact on the probability of finding the animal. The biggest impact on the probability
of finding the bear in the different time-windows is given by: βbear9 in Spring (with a
posterior mean equal −0.32, negative impact), βbear6 in Early Summer (0.35, positive
impact) and Late Summer (−0.32, negative impact) and βbear4 in Autumn (0.33, positive
impact). Regarding the probability of finding the wolf, the highest positive impact is
given by βwolf8 in Early Summer (0.27) and Autumn (0.29), by βwolf10 in Spring (0.12), and
by βwolf6 in Late Summer (0.21).

Finally for the Fourth model, Table 6.4 shows that δbear has posterior mean equal to 1 in
Early Summer, Late Summer and Autumn and almost equal to 1 in Spring. This means
that the presence of the wolf attracts the bear in all the time windows considered. The
strength of this attractiveness is represented by γbear: we can see in Table 6.4 that this
is very low in Spring (since γbear = 0.075 in average), then it increases in Early Summer
and Late Summer (γbear = 0.18 and 0.26 respectively) and reaches its maximum value in
Autumn (0.47). However, this attractiveness is never total, as the posterior mean of γbear
is not equal to 1. On the contrary, the posterior mean of δwolf is equal to 0 in Spring and
Autumn, and assumes quite low value in Early Summer and Late Summer. In Autumn
the posterior mean of γwolf is high (0.83), so we can argue that the wolf tends to avoid
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locations in which the bear is observed, while the bear is attracted by the wolf. This is
in accordance with what we found in the Third model. Regarding Spring, the posterior
mean of γwolf is very high (0.95): this means that there is almost total repulsiveness of the
wolf with respect to the bear. In Early Summer and Late Summer, the posterior means
of δwolf are 0.37 and 0.31 respectively, so there is a larger number of times in which there
has been a repulsive effect on the wolf with respect to the bear than an attractive effect.
Likely, in these time-windows, the bear is attracted by the wolf with a lower strength with
respect, for instance, to the Autumn case; thus, the wolf tends less to avoid locations in
which the bear is observed. This confirms what we found with the Third model, that
is the probability of finding the wolf in a location of the bear is slightly higher than in
Autumn.
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Spring Early Summer Late Summer Autumn

γbear 0.12 0.23 0.3 0.5

γwolf 0.006 0.39 0.18 0.02

βbear1 -2.76 -2.9 -3.04 -3.48

βbear2 0.08 0.04 -0.04 -0.28

βbear3 -0.2 0.02 -0.17 -0.19

βbear4 -0.23 -0.04 0.08 0.33

βbear5 0.14 0.05 0.02 0.1

βbear6 0.08 0.35 -0.32 -0.06

βbear7 -0.04 -0.06 -0.09 -0.05

βbear8 -0.09 0.06 -0.002 0.25

βbear9 -0.32 -0.09 -0.13 -0.15

βbear10 -0.11 -0.11 0.15 0.02

βbear11 0.1 0.06 -0.002 0.1

βbear12 0.03 -0.04 -0.08 0.04

βwolf1 -1.75 -1.66 -2.23 -1.6

βwolf2 -0.08 -0.02 -0.07 -0.11

βwolf3 0.05 0.04 0.11 0.04

βwolf4 0.06 -0.09 -1.06 -0.02

βwolf5 -0.13 -0.02 -0.06 0.05

βwolf6 0.04 0.03 0.21 -0.04

βwolf7 -0.02 0.005 -0.18 -0.03

βwolf8 -0.11 0.27 0.18 0.29

βwolf9 0.06 0.002 -0.004 0.002

βwolf10 0.12 0.04 -0.04 0.06

βwolf11 -0.05 0 -0.12 -0.06

βwolf12 0.11 -0.01 0.09 -0.06

Table 6.3. Third Model: posterior mean of the parameters in the different time-windows.
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Final results on real datasets and comparison between models

Spring Early Summer Late Summer Autumn

γbear 0.075 0.18 0.26 0.47

γwolf 0.95 0.24 0.22 0.83

δbear 0.99 1 1 1

δwolf 0 0.37 0.31 0

βbear1 -2.78 -2.88 -3.05 -3.46

βbear2 0.08 0.05 -0.04 -0.29

βbear3 -0.18 0.03 -0.18 -0.2

βbear4 -0.21 -0.01 0.08 0.32

βbear5 0.14 0.04 0.05 0.1

βbear6 0.07 0.31 -0.29 -0.07

βbear7 -0.02 -0.01 -0.07 -0.06

βbear8 -0.08 0.07 0.006 0.23

βbear9 -0.3 -0.07 -0.12 -0.14

βbear10 -0.1 -0.09 0.14 0.03

βbear11 0.09 0.07 -0.008 0.09

βbear12 0.02 -0.02 -0.08 0.05

βwolf1 -1.75 -1.62 -2.15 -1.6

βwolf2 -0.08 -0.03 -0.06 -0.09

βwolf3 0.06 0.03 0.12 0.05

βwolf4 0.06 -0.12 -0.79 -0.02

βwolf5 -0.13 0.007 -0.08 0.04

βwolf6 0.04 0.05 0.2 -0.04

βwolf7 -0.02 -0.005 -0.2 0.03

βwolf8 -0.1 0.25 0.16 0.28

βwolf9 0.06 -0.01 -0.003 0.005

βwolf10 0.12 0.02 -0.03 0.06

βwolf11 -0.05 -0.006 -0.11 -0.06

βwolf12 0.11 -0.02 0.09 -0.07

Table 6.4. Fourth Model: posterior mean of the parameters in the different time-windows.
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Chapter 7

Conclusion

In this thesis, four different models have been presented. We studied the identifiability
of the parameters and checked if the number of pseudo-zeros of each considered dataset
was enough to guarantee the convergence of the methodology for each model. The First
and the Second models are identifiable, while we analytically proved that the Third and
the Fourth models are not identifiable in particular cases (γbear = γwolf = 1, and γbear =
γwolf = δbear = δwolf = 1 respectively), and we empirically proved that if we took
prior distributions with large supports for βbear and βwolf , posterior chains converge
to different parameter values. Regarding the effect of the number of pseudo-zeros, the
considered datasets (the synthetic one and the reduced datasets corresponding to the
different time-windows) contain a number of pseudo-zeros that is enough to guarantee the
convergence of the posterior chains and good estimates of the parameters for the First
and the Second model, while if we discard a too high percentage of pseudo-zeros from
some of the considered datasets, some problems in the convergence of the chains and in
the estimates of the parameters arise for the Third and the Fourth models.

We then applied these models to the real datasets and compare results obtained in the
different time-windows with the different models (except the Second model in Autumn,
for which the posterior chains did not converge). In particular, the Third and the Fourth
models give similar conclusions regarding the interaction between the two species, while
the Second model gives a different conclusion. However, it is important to notice that the
temporal dependency has not been modelled, thus if we estimate a high probability of
both species being present in a given location, this does not mean that they encountered,
but likely they have been passed through that location in different moments. This leads
to difficulties in the interpretation of the probability to find a species given the presence
of the other species, and can also explain different conclusions from different models.

Finally, performing inference on the real datasets with all models was computationally
expensive.

Future works could involve the temporal dimension in order to better understand
animal movement taking into consideration time as well.
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Appendix A

Additional figures

A.1 Data representation

Late Summer

Spring Early Summer

Autumn

Figure A.1. Wolves: number of occurrences for each pack in the different time-windows.
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Additional figures

Figures A.1 and A.2 represent, for each time-window, the number of occurrences for
each pack of wolves (in the case of wolves) or for each individual (in the case of bears).

Spring Early Summer 

Late Summer Autumn 

Figure A.2. Bears: number of occurrences for each individual in the different time-windows.
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A.2 – Number of pseudo-zeros for the First model

A.2 Number of pseudo-zeros for the First model
The following Figures show how the posterior estimates change if we eliminate different
percentages of available locations, in different time-windows.

 posterior estimates

upper bound
mean
lower bound

0.1 0.25 0.5 0.750

proportion of discarded pseudo-zeros

-20

0

20

40

𝛾

Figure A.3. First model: effect of eliminating a percentage of pseudo-zeros on
γ posterior estimates (lower bound, mean, upper bound), with respect to the
proportion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1
observation every 10 for the wolves. Spring.
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Additional figures

0.1 0.25 0.5 0.750

-40

-20

20

0

proportion of discarded pseudo-zeros

posterior estimates

upper bound
mean
lower bound

𝛾

Figure A.4. First model: effect of eliminating a percentage of pseudo-zeros on γ
posterior estimates (lower bound, mean, upper bound), with respect to the propor-
tion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation
every 10 for the wolves. Late Summer.
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-20
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Figure A.5. First model: effect of eliminating a percentage of pseudo-zeros on
γ posterior estimates (lower bound, mean, upper bound), with respect to the
proportion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1
observation every 10 for the wolves. Autumn.
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A.2 – Number of pseudo-zeros for the First model

Posterior estimates for the bear
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Figure A.6. First model: effect of eliminating a percentage of pseudo-zeros on βbear

posterior estimates (lower bound, mean, upper bound), with respect to the propor-
tion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation
every 10 for the wolves. Spring. 73



Additional figures

Posterior estimates for the wolf
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Figure A.7. First model: effect of eliminating a percentage of pseudo-zeros on βwolf

posterior estimates (lower bound, mean, upper bound), with respect to the propor-
tion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation
every 10 for the wolves. Spring. 74



A.2 – Number of pseudo-zeros for the First model

Posterior estimates for the bear
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Figure A.8. First model: effect of eliminating a percentage of pseudo-zeros on βbear

posterior estimates (lower bound, mean, upper bound), with respect to the proportion
of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation every
10 for the wolves. Early Summer. 75



Additional figures

Posterior estimates for the wolf
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Figure A.9. First model: effect of eliminating a percentage of pseudo-zeros on βwolf

posterior estimates (lower bound, mean, upper bound), with respect to the proportion
of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation every
10 for the wolves. Early Summer. 76



A.2 – Number of pseudo-zeros for the First model
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Figure A.10. First model: effect of eliminating a percentage of pseudo-zeros on βbear

posterior estimates (lower bound, mean, upper bound), with respect to the propor-
tion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation
every 10 for the wolves. Autumn.
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Posterior estimates for the wolf
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Figure A.11. First model: effect of eliminating a percentage of pseudo-zeros on
βwolf posterior estimates (lower bound, mean, upper bound), with respect to the pro-
portion of discarded pseudo-zeros. 1 observation every 30 for the bears, 1 observation
every 10 for the wolves. Autumn. 78



Appendix B

Proofs

B.1 Identifiability of the Third model
We now analytically compute the likelihoods for ybear and ywolf given a set of parameters
θ =

(
βbear,βwolf , γbear, γwolf

)
. For i = 1, ..., Nbear:

P
(
ybeari = 1 | θ,ywolf

)
=
(
1− ywolfi

)
πbeari + ywolfi γbear,

P
(
ybeari = 1 | θ

)
= Eywolf

[(
1− ywolfi

)
πbeari + ywolfi γbear

]
=
(
1− πwolfi

)
πbeari + πwolfi γbear.

Since

πbeari = logit−1
(
Xbear
i βbear

)
= eX

bear
i ·βbear

1 + eX
bear
i βbear

,

πwolfi = logit−1
(
Xbear
i βwolf

)
= eX

bear
i βwolf

1 + eX
bear
i βwolf

,

we obtain:

P
(
ybeari = 1 | θ

)
= 1

1 + eX
bear
i βwolf

eX
bear
i βbear

1 + eX
bear
i βbear

+ γbear
eX

bear
i βwolf

1 + eX
bear
i βwolf

=

=
eX

bear
i βbear + γbeareX

bear
i βwolf

(
1 + eX

bear
i βbear

)
(
1 + eX

bear
i βwolf

) (
1 + eX

bear
i βbear

) .

For j = Nbear, ..., Nbear +Nwolf :

P
(
ywolfj = 1 | θ,ybear

)
=
(
1− ybearj

)
πwolfj + ybearj γwolf ,

P
(
ywolfj = 1 | θ

)
= Eybear

[(
1− ybearj

)
πwolfj + ybearj γwolf

]
=
(
1− πbearj

)
πwolfj + πbearj γwolf .

Since

πbearj = logit−1
(
Xwolf
j βbear

)
= eX

wolf
j βbear

1 + eX
wolf
j βbear

,

πwolfj = logit−1
(
Xwolf
j · βwolf

)
= eX

wolf
j βwolf

1 + eX
wolf
j βwolf

,
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we obtain:

P
(
ywolfj = 1 | θ

)
= 1

1 + eX
wolf
j βbear

eX
wolf
j βwolf

1 + eX
wolf
j βwolf

+ γwolf
eX

wolf
j βbear

1 + eX
wolf
j βbear

=

=
eX

wolf
j βwolf + γwolfeX

wolf
j βbear

(
1 + eX

wolf
j βwolf

)
(
1 + eX

bear
i βwolf

) (
1 + eX

bear
i βbear

) .

If γbear = γwolf = 1, in the two likelihoods above βbear and βwolf are interchangeable.
Thus, in that case, the model is not identifiable.

If γbearandγwolf /= 1, nothing can be said from an analytical point of view.

B.2 Identifiability of the Fourth model
As for the Third model, we analytically compute the likelihoods for ybear and ywolf given
a set of parameters θ =

(
βbear,βwolf , γbear, γwolf , δbear, δwolf

)
. For i = 1, ..., Nbear:

P
(
ybeari = 1 | θ,ywolf

)
= πbeari − ywolfi γbearπbeari + ywolfi γbearδbear,

P
(
ybeari = 1 | θ

)
= Eywolf

[
πbeari − ywolfi γbearπbeari + ywolfi γbearδbear

]
=

= πbeari − πwolfi γbearπbeari + πwolfi γbearδbear.

Since

πbeari = logit−1
(
Xbear
i βbear

)
= eX

bear
i βbear

1 + eX
bear
i βbear

,

πwolfi = logit−1
(
Xbear
i · βwolf

)
= eX

bear
i βwolf

1 + eX
bear
i βwolf

,

we obtain:

P
(
ybeari = 1 | θ

)
= eX

bear
i βbear

1 + eX
bear
i βbear

− eX
bear
i βwolf

1 + eX
bear
i βwolf

γbear
eX

bear
i βbear

1 + eX
bear
i βbear

+ eX
bear
i βwolf

1 + eX
bear
i βwolf

γbearδbear =

=
eX

bear
i βbear

(
1 + eX

bear
i βwolf

)
− eXbear

i βbeareX
bear
i βwolfγbear + eX

bear
i βwolfγbearδbear

(
1 + eX

bear
i βbear

)
(
1 + eX

bear
i βwolf

) (
1 + eX

bear
i βbear

) .

For j = Nbear, ..., Nbear +Nwolf :

P
(
ywolfj = 1 | θ,ybear

)
= πwolfj − ybearj γwolfπwolfj + ybearj γwolfδwolf ,

P
(
ywolfj = 1 | θ

)
= Eywolf

[
πwolfj − ybearj γwolfπwolfj + ybearj γwolfδwolf

]
=

= πwolfj − πbearj γwolfπwolfj + πbearj γwolfδwolf .
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B.2 – Identifiability of the Fourth model

Since

πbearj = logit−1
(
Xwolf
j · βbear

)
= eX

wolf
j βbear

1 + eX
wolf
j βbear

,

πwolfj = logit−1
(
Xwolf
j · βwolf

)
= eX

wolf
j βwolf

1 + eX
wolf
j βwolf

,

we obtain:

P
(
ywolfj = 1 | θ

)
=
eX

wolf
j βwolf

(
1 + eX

wolf
j βbear

)
− eX

wolf
j βwolf eX

wolf
j βbearγwolf(

1 + eX
wolf
j βbear

) (
1 + eX

wolf
j βwolf

) +

+
eX

wolf
j βbearγwolfδwolf

(
1 + eX

wolf
j βwolf

)
(
1 + eX

wolf
j βbear

) (
1 + eX

wolf
j βwolf

) .

We have that: δbear and δwolf ∈ {0,1}. If they are both equal to 1 and also γbear =
γwolf = 1, then

P
(
ybeari = 1 | θ

)
=
eX

bear
i βbear

(
1 + eX

bear
i βwolf

)
− eXbear

i βbeareX
bear
i βwolf + eX

bear
i βwolf

(
1 + eX

bear
i βbear

)
(
1 + eX

bear
i βwolf

) (
1 + eX

bear
i βbear

) =

= eX
bear
i βbear + eX

bear
i βwolf + eX

bear
i βbear+Xbear

i βwolf(
1 + eX

bear
i βwolf

) (
1 + eX

bear
i βbear

) ,

and

P
(
ywolfj = 1 | θ

)
=
eX

wolf
j βwolf

(
1 + eX

wolf
j βbear

)
− eX

wolf
j βwolf eX

wolf
j βbear + eX

wolf
j βbear

(
1 + eX

wolf
j βwolf

)
(
1 + eX

wolf
j βbear

) (
1 + eX

wolf
j βwolf

) =

= eX
wolf
j βwolf + eX

wolf
j βbear + eX

wolf
j βwolf+Xwolf

j βbear(
1 + eX

wolf
j βbear

) (
1 + eX

wolf
j βwolf

) .

Also in this case, βbear and βwolf are interchangeable. Thus, the Fourth model is not
identifiable if γbear = γwolf = δbear = δwolf = 1. However, if this particular condition
is not verified, nothing can be said on the identifiability of the Fourth model from an
analytical point of view.
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