polito.it
Politecnico di Torino (logo)

Associative classification on spatio-temporal sequences

Niccolo' Spagnuolo

Associative classification on spatio-temporal sequences.

Rel. Paolo Garza. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2021

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB) | Preview
Abstract:

The main purpose of the study is to build a system to perform associative classification on spatio-temporal sequences. The proposed methodology is composed of four ordered phases: preprocessing, frequent itemsets mining, association rules generation and prediction model training. The model presented is eventually compared to other state-of-the-art classification algorithms such as Decision Trees, Random Forests and Support Vector Machines. On balance, the prediction model achieves a higher precision for the critical and most rare class with respect to its competitors.

Relatori: Paolo Garza
Anno accademico: 2020/21
Tipo di pubblicazione: Elettronica
Numero di pagine: 59
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/19302
Modifica (riservato agli operatori) Modifica (riservato agli operatori)