
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Ferroelectric FET–based
circuits for Logic–in–Memory

computing

Relatore
Prof. Mariagrazia Graziano
Correlatore:
Prof. Giovanna Turvani

Candidato
Danilo Franco

Luglio 2021

This work is subject to the Creative Commons Licence

Contents

1 Abstract 5

2 State of the art 9
2.1 Logic–in–Memory . 9

2.1.1 Von Neumman architecture 9
2.1.2 LiM with standard CMOS technology 10

2.2 Beyond–CMOS technologies 12
2.2.1 Memory devices . 12
2.2.2 Smart cells and logic 21

3 FeFET SPICE model 49
3.1 Physics–based FeFET model 49

3.1.1 Landau-Khalatnikov equation 50
3.1.2 Preisach model . 52

3.2 FeFET experimental calibration 52
3.3 FeFET simulation and characterization 53

3.3.1 Schematic and testbench 53
3.3.2 The impact of the ferroelectric thickness 55
3.3.3 Hysteresis frequency response 56
3.3.4 Other measurements 57

3.4 Basic FeFET–based memory cell 58

4 FeFET–based memory array 61
4.1 The topology . 61

4.1.1 NAND architecture . 62
4.1.2 NOR architecture . 63

4.2 NOR FeFET memory array: schematics 63
4.2.1 8x8 memory array . 64
4.2.2 Larger dimension memory array 65

3

4.2.3 Writing schemes . 66
4.2.4 Reading schemes . 68

4.3 Sense Amplifier . 69
4.3.1 Schematic . 70
4.3.2 Testing and performance 72

4.4 NOR FeFET memory array: Testbench and scripts 73
4.4.1 Python scripts . 76

4.5 NOR FeFET memory array: measurements and performances 78
4.5.1 Delays . 80
4.5.2 Power consumption . 81

5 Programmable FeFET–based Logic in Memory 89
5.1 Overview . 89
5.2 LiM: template . 89

5.2.1 Schematic . 89
5.2.2 Testbench . 91

5.3 LiM: circuits for computing 92
5.3.1 LUT cell . 92
5.3.2 AND–OR cell . 94
5.3.3 3–functions cell . 97
5.3.4 XOR cell . 100
5.3.5 Full Adder cell . 103
5.3.6 Majority voter cell . 107

5.4 Liberty characterization for Logic in Memory 112
5.4.1 Purposes . 112
5.4.2 Liberty file template 113
5.4.3 Measurements . 117
5.4.4 LiM cells . 118

5.5 Results . 123
5.6 Conclusions and future work 124

A FeFET model Verilog–A source code 133
A.1 Ferroelectric capacitor . 133
A.2 MOSFET . 135

B Python scripts for the array management 149
B.1 Operations script . 149
B.2 Signals script . 153

Bibliography 155

4

Chapter 1

Abstract

Conventional architectures for digital computing are based on the Von–
Neumann paradigm, where data are exchanged between CPU and memory.
That is, any program executed by the CPU requires a certain amount of
data from the memory, in order to elaborate it and write back to the mem-
ory. Nonetheless, in modern computer technology, the tendency is that CPUs
are faster than memories, causing the CPU to wait for data coming from the
memory and resulting in a slow down of the processing speed in computers
and other elaboration devices.
Therefore, solutions have been elaborated during the past decades. Among
the fundamental ones: fractioning the memory unit allocating the faster units
closer to the CPU, elaborating new memory topologies and lastly the Logic
in Memory approach.
The Logic in Memory approach aims to execute inside the memory array part
of the logic and arithmetic operations conventionally reserved to the ALU
unit in the CPU.
Moreover, this new paradigm is being improved by the introduction of beyond–
CMOS devices. In other words, an alternative to standard CMOS–based
digital circuits is being researched in every technology which is capable of
logic and storage functionalities. Then, the focus of this work is the Ferro-
electric Field Effect Transistor (FeFET), an enanched MOSFET which shows
hysteresis in its gate voltage–gate charge characteristic, as discussed in [32].
In this work, the FeFET is treated first under the mathematical point of view,
by means of the Landau-Khalatnikov equations which predict the response
of the device to the application of an external voltage. Then, a Verilog–A
model for the FeFET is proposed and discussed at the schematic level in the

5

1 – Abstract

CAD software for microelectronics Cadence Virtuoso, simulated and charac-
terized.
Furthermore, it is demonstred that the FeFET is suitable for both memory
and logic goals. Nevertheless, before discussing FeFET–based Logic in Mem-
ory solutions, which is the final purpose if this work, memory arrays of three
different dimensions are designed and simulated in Cadence Virtuoso, refer-
ring to the memory topologies discussed in [39]. Moreover, a sense amplifier
peripheral is developed. Figure 1.1 shows the memory cell simulated for this

Figure 1.1: FeFET–based memory cell.

purpose.
The resultant characterization of a FeFET–based memory is presented in
Figure 1.2, for the array dimension of 8, 16, 32 bit and 8, 16, 32 words. In
general, writing ‘1’ appears to be faster than writing ‘0’, due to asymmetries
in the FeFET hysteresis. Nonetheless, the dynamic power in writing ‘1’ is
higher due to the leakage of current.
For what concerns the developement of Logic in Memory, it is chosen to

characterize single cells whose features are compared in Figure 1.3. The pre-
sented Logic in Memory cells are a selection of six cells capable of memory
and logic. In particular, a Look Up Table cell is created, which can execute
all the logic functions of two inputs. Moreover, some of them have a pro-
grammable function. For each cell, the schematic level and the correlated
simulations are discussed.
Finally, the concept of Liberty description is introduced, which aims to define
for a given logic gate or cell the performance in terms of timing and power.
That is, these data are exploited by logic synthesis tools to select which gate
best fits a given architecture.
The results of this characterization are showed in Figure 1.4. Here, for each
measurement and each cell, a sample of data is randomly selected among
one of the input–output combinations and then the worst value from all the
available data is considered.

6

1 – Abstract

(a) Writing delays. (b) Reading delays.

(c) Average dynamic reading power. (d) Average dynamic writing power.

Figure 1.2: Results of the timing and power performance of the memory
arrays.

Figure 1.3: Prospect of cell size, number of functions, number of inputs and
number of outputs from the different LiM cells.

Regarding the timing performance, by comparison of the results discussed,
the delays which affect the output of the logic functions are almost one order
of magnitude greater than the reading and writing delays of the conventional
array. Morevoer, the average dynamic power dissipated by the Logic in Mem-
ory cells is comparable to the writing power dissipated by a cell in a standard

7

1 – Abstract

(a) Prospect of the timing measurements
from the different LiM cells.

(b) Prospect of the power measurements
from the different LiM cells.

Figure 1.4: Liberty characterization of the Logic in Memory cells.

array, but an order of magnitude greater than its reading power.
In conclusion, the logic functionality introduced to the FeFET–based mem-
ory is time and power demanding with respect to the operation allowed in a
standard memory. Nonetheless, these enhanced cells can be used to build a
Logic in Memory array, avoiding the whole memory content transferring to
the CPU, as discussed before.

8

Chapter 2

State of the art

Overview
Over the past 50 years progress in computing and information technology,
as well as the business of the semiconductor industry, has been based on the
downscaling of the MOSFET transistor and on its derivative Complementary
MOS (CMOS) digital systems.
As a matter of fact, CMOS–based computing systems sustained an expo-
nential increase in both the operating frequency and the area density until,
nowadays, at least two technological barriers have risen, resulting in limiting
these performance.
That is: the first is the dissipated power having become so large, the second
is the increasing speed gap between the central unit and the memory unit,
problem known as memory wall or bottleneck, leading to a cap to the oper-
ating frequency. This aspect is explored in section 2.1.
Therefore, the demand for higher performance is expected to be no longer
satisfied by the conventional solutions in circuit design that the standard
CMOS has provided so far.

2.1 Logic–in–Memory
2.1.1 Von Neumman architecture
Conventional computer architectures are designed according to the Von
Neumann paradigm. That is, there are three separate units, respectively
for computing (CPU), for storage of data and instructions (memory), and

9

2 – State of the art

for data–exchange (bus).
In this context, while the CPU has reached its full potential, the memory
stays behind. Indeed, the response time of a modern memory interfacing
with a modern CPU has become the system bottleneck.
Modern studies are tackling down these barriers from many angles, from the
physical level to the architectural one. A wide exploration of new paradigms
is presented in [1].
Moreover, some of these studies suggest a massive use of parallelism, such
as Graphics Processing Unit (GPU). These devices make extensive use of
multi–core processing and each core often gets a dedicated high–throughput
connection with the memory ([4]).
Besides, application-specific processors known as accelerators are integrated
in the computing systems to speed up a set of algorithms to be performed
([34], [35]).
Furthermore, memory chips with enhanced bandwidth have been investi-
gated, such as the hybrid memory cube (HMC, [36]) and the high bandwidth
memory (HBM, [37]), where performance are improved by stacking multiple
memory chips in a 3D structure.

2.1.2 LiM with standard CMOS technology
A thriving research field which goes beyond the approaches previously ex-
pressed exists, which is suggesting the approach of Logic–in–Memory (LiM)
as a solution for the aforementioned memory issues. That is a newly devel-
oped architectural concept which tries to overcome the separation between
logic and memory units imposed until now. A good overview of this research
is given in [2], [3].
As the name suggests, computation is partially or totally moved inside the
memory array bringing benefits such as reduction of power consumption orig-
inated by data movement between central and memory units, avoiding of the
bandwidth bottleneck and distributed computation.
The basic implementation of LiM allows the integration of logic elements in
every memory cell.

A futher evolution of the LiM architecture is named Configurable Logic in
Memory Architecture (CLiMA), conceived to allow flexible and adaptable
design. CLiMA is well explained in [1].
The main point of a CLiMA is that the designer can choose how to map each
and every operation of an algorithm thanks to logic units moved both inside

10

2.1 – Logic–in–Memory

the single cell and to the pheriperal of the memory array.
In fact, a CLiMA schematic is depicted in Figure 2.1, where it is clearly
represented how a cell is the result of merged storage and logic features, and
then put in an array with logic pheripherals. This is the most general and
straightforward approach, which allows to obtain the desired algorithm in-
side the memory.

Figure 2.1: CLiMA in-memory computing approach [1].

By definition, an enhanced cell with built–in logic is called smart cell. It is
made by a storage element implemented in one of the known technologies
(such as Static Random Access Memory, Dinamic RAM, or more modern
Resistive RAM, Magnetic RAM) and the logic element capable of executing
the most common bit–wise operations.
Usually, a LiM or a CLiM architecture is designed to perform different algo-
rithms, starting from the bit–wise computation inside the cell and arriving
to more complex inter–row computations, involving more than one row in
the memory array.

As far as performance of such these architectures are concerned, recent in-
vestigations are directioned toward new technologies to replace CMOS or to
be integrated with it. According to the fact that standard memory arrays,
based on alternative technologies, had been already analysed so far, the next
step consist of building up entire smart cells exploiting the opportunities that
non–volatile beyond–CMOS devices might offer.

11

2 – State of the art

2.2 Beyond–CMOS technologies

2.2.1 Memory devices

New and emerging non–volatile memory concepts have been introduced into
the traditional memory hierarchy.
These, generally identified under the name of resistive and capacitive switch-
ing devices, do not base their functionality upon charge, as in traditional
metal oxide semiconductor transistor technology, but instead on different
physical characteristics of the active material they are made of. And even
if they rely on charge, as the ferroelectric capacitors and ferroelectric tran-
sistors, they distinguish themselves from the conventional semiconductor de-
vices by the way they are employeed, as it will be explained in this section.
Among these, the most developed and already available on the market are
the resistance switching memory (RRAM), phase change memory (PCM),
magnetoresistive RAM (MRAM) and ferroeletric RAM (FeRAM) ([4]).

What is remarkable about these devices is their natural ability of merging
both memory and computation within themselves, often through peculiar
architecture designs such that LiM is achieved.

Threshold Switching Memristor

Figure 2.2: Resistive switching device [4].

Memristors are two-terminal resistors ([4], [5]) that modify the internal re-
sistance state according to the history of applied voltage (or current). They
are usually referred to as memory resistors in the sense that their resistance

12

2.2 – Beyond–CMOS technologies

state is used to memorize information. In other words, memristors are pas-
sive circuit components with their resistance state which recalls a pinched–
hysteresis loop.
The first aim memristors were addressed to was the resistive random access
memory (ReRAM), but their non–linear switching property suggests logic
and computational implementations.

A common memristor consist of a metal–insulator–metal stack where a fil-
amentary path is initially induced, as in Figure 2.2. At this point, the ap-
plication of a positive voltage allows the defects migrate inside the insulator
causing the transition to the low–resistance state (LRS). On the contrary, the
application of a negative voltage forces the disconnection of the conductive
filament and thus an high–resistance state (HRS).
These transitions are visible in Figure 2.3, where the non-volatile storage
ability of this device is observable. That is, the resistance status is not lost
when the device is not driven by any current or voltage.

For what concern the advantages, these memories can be accomodated in a
crosspoint structure as a result of not being three–terminal devices, and each
of them is independently programmable and erasable. Prototypes of such
architecture have been also presented in the form of a one transistor/one
memristor cell, as in [38].
Furthermore, they provide fast switching and moderate endurance compared
to conventional memory arrays. A summary is presented in Table 2.1.

Figure 2.3: Current-voltage characteristic of a memristor [4].

13

2 – State of the art

ReRAM SRAM DRAM NAND
Flash

Cell area < 4 F2 > 100 F2 6 F2 < 4 F2

Read time < 10 ns ∼ 1 ns ∼ 10 ns ∼ 10 µs
Write time < 10 ns ∼ 1 ns ∼ 10 ns 100 µs-1 ms
Write energy [J/bit] ∼ 0.1 pJ ∼ 1 fJ ∼ 10 fJ ∼ 10 fJ
Endurance ∼ 106-1012 > 1016 > 1016 > 104

Table 2.1: Performance review of different memories technologies [30].

Phase Change Memory

Figure 2.4: Phase change memory cell structure. [4]

Every material that exists in at least two structurally distinct solid phases,
amorphous and crystalline, is defined as a phase change material (PCM, [7]).
Amorphous and crystalline phases clearly show different optical and electri-
cal properties, therefore such materials are being used to store information
in electronic applications, as long as the resistance state in the amorphous
phase is higher than in the crystalized phase.

The structure of a basic PCM cell ([4]) is shown in Figure 2.4, a two terminal
device which has the typical mushroom shape. Among the two electrodes,
there is a chalcogenide active layer, such as Ge2Sb2Te5, which gets heated
and, so, physically rearranged by the application of voltage pulses.
In particular, the amount of crystalline volume in the active layer is aug-
mented by applying long enough and low amplitude pulses, while fast and

14

2.2 – Beyond–CMOS technologies

high amplitude pulses lead to local melting and consequent amorphization.
This operation principle is also depicted in Figure 2.5.

Figure 2.5: PCM resistance change process [7].

Moreover, two main applications of PCM exist nowadays: rewritable opti-
cal phase change storage technology and the emerging PCM Random Access
Memory (PCMRAM), as explained in [7].
Finally, PCMs have been described in this section but will be no longer
considered in this work. The reason is that delicate operations such as crys-
tallization and melting are found to be, respectively, data rate and power
limiting [7]. Indeed, the melting temperature for phase change materials is
typically between 500 and 800 ◦C. That is, the performances of PCM–based
memory arrays are discouraging, as summarized in Table 2.2. Moreover, the
most common usage of this technology is optical, as well.

PCM ReRAM
Cell area 4–20 F2 4 F2

Read time < 10 ns < 10 ns
Write time ∼ 50 ns < 10 ns
Write energy [J/bit] ∼ 10 pJ ∼ 0.1 pJ
Endurance > 109 ∼ 106-1012

Table 2.2: Performance comparison between PCM-based memories and
memristor-based memories [30].

15

2 – State of the art

Magneto Tunnel Junction

Figure 2.6: Magneto Tunnel Junction cell structure [4].

A Magneto Tunnel Junction (MTJ), in Figure 2.6, consists of a MIM
structure with two ferromagnetic metal layers, usually CoFeB, and a thin
oxide, usually MgO ([4], [17]).
One of the two metal layers is defined as pinned, meaning that its ferro-
magnetic magnetization is structurally fixed to act as a reference, while the
magnetization of the other layer is controllable. The latter is called free
layer.
Consequently, an MTJ device can either be in the state of low resistance,
when the ferromagnetic polarizations are parallel, or high resistance, when
these are anti–parallel.
Actually, there are two well known techniques used to flip the state of the
MTJ, that is the Spin Transfer Torque (STT) and the Spin Orbit Torque
(SOT). Besides, they also give the name to the memories, respectively STT–
MRAM and SOT–MRAM. Treatments of this can be found in [9], [10], [11].

As far as the physical aspect is concerned, in a STT–MRAM cell the tran-
sition is conducted by spin–polarized electrons which rotate the free layer
magnetic polarization by magnetic momentum conservation. That is to say,
current is applied in a precise direction and the polarization is estabilished
accordingly. As a result, the cell is a two-terminal component. STT-MRAM
is known to have magnetorersistance ratio of about 200%, high switching
speed (< 1 ns) and high endurance. [4]
Instead, the SOT–MRAM cell is made by a MTJ laid above a heavy metal
film, which results in a three-terminal device as a matter of fact.
In this case, the flipping mechanism is due to the injection af a spin–polarized

16

2.2 – Beyond–CMOS technologies

current in the metal film, whose spin desity induces a spin orbit coupling to
the free layer. The structures of these cells are showed in Figure 2.7.
Therefore, this cell is being introduced as an improvement of the STT–

(a) STT-MRAM cell. (b) SOT-MRAM cell.

Figure 2.7: Arrangments of MTJ cells [8].

MRAM cell, as long as the read and write paths are physically separated.
Futhermore, SOT–MRAM offers better performance in terms of speed and
endurance at the expense of a degraded density [8], as it is reported in Ta-
ble 2.3 from [31].

STT-MRAM STT-MRAM SOT-MRAMfor SRAM for eFlash
Cell area 70-100 F2 50-60 F2 160 F2

Read time ∼ 5 ns ∼ 25 ns ∼ 5 ns
Write time ∼ 10 ns ∼ 200 ns < 2 ns
Endurance 1014 108 1014

Table 2.3: Performance comparison between STT-MRAM and SOT-MRAM.
[31]

Ferroelectric capacitor

A ferroelectric capacitor (Fe–cap) recalls the structure of a regular capacitor
except for the substitution of the dielectric with a ferroelectric material as
shown in Figure 2.8, mostly perovskite material or doped–HfO2 ([18], [19]).
In particular, when a voltage is applied across its two terminals, the polariza-
tion charge in the Fe-cap shows a hysteresis loop characteristic (Figure 2.9)

17

2 – State of the art

Figure 2.8: Ferroelectric capacitor cell structure [4].

due to the fact that the ferroelectric dipoles change their orientation. That
is, its behavior is not different from the hysteresis of a ferromagnetic mate-
rial, on which magnetic memory devices are based.

Figure 2.9: Hysteresis of a ferroelectric capacitor [4].

Therefore, even when driven by 0 V, the Fe–cap is able to retain a remnant-
polarization charge, thus it is effectively a non–volatile memory element.
The Fe–cap cell is capable of reading and writing operations, by selecting
and adoperating the correct voltage level. In fact, if the voltage is higher (in
absolute value) than a specific threshold, called coercitive and set by tech-
nology, the polarization is switched.
Otherwise, if the reading voltage is lower than the coercive threshold, the
remnant charge is theoretically not switched, nonetheless it may happen that
the continuous application of pulses disturbs the stored non–volatile charge,
as shown in Figure 2.10.
Moreover, the transitive speed of this cell is expected to be comparable to

18

2.2 – Beyond–CMOS technologies

DRAMs ([19]).

Figure 2.10: Non-volatile charge in a ferroelectric capacitor [12].

It is important to underline that the MIM stack resistance is not impacted
in this way of use, but the charge induced on the metallic electrodes is. Nev-
ertheless, resistance change is still achievable from the ferroelectric switching
by the ferroelectric field effect transistor (FeFET), a three-terminal structure
([23]).
Here, the alternation in dielectric polarization causes a variation in the re-
sistance of the FeFET channel.

Ferroelectric Field Effect Transistor

(a) Low threshold state. (b) High threshold state.

Figure 2.11: Structure of an n–type FeFET [25].

19

2 – State of the art

A Ferroelectric FET (FeFET) has the same structure as a standard MOS
transistor except to the presence of a ferroelectric layer inside the gate stack
(Figure 2.11).
A typical implementation of a FeFET features a TiN/Si:HfO2/SiO/Si gate,
and it is usually realized in two different technologies, the 22 nm FD-SOI and
the 28 nm HKGM, as explored in [22].
Recalling the description of the hysteresis polarization of the ferroelectric
capacitor, the application of either a large enough positive or negative gate
voltage switches the polarization state of the ferroelectric gate. That is, neg-
ative or positive charges are inducted in the transistor channel, thus setting
the devices into, respectively, the low threshold state or the high threshold
state. These phenomena are usually referred respectively as programming
and erasing, and are visible in the output characteristic in Figure 2.12. Here,
the programmable thresholds of the FeFET are shown.
As far as memory and computing are concerned, the threshold–changing

Figure 2.12: Hysteresis of a Ferroelectric transistor [22].

feature allows to store information, since a FeFET in high threshold state
is not conducting (logic ‘0’, transistor off) whereas it is conducting in low
threshold state (logic ‘1’, transistor on) even when VG ≈ 0 V. Conduction
occurs for VDS > 0 V.
Moreover, in the experimental cases expressed in [22], the combination of the
polarization state of the transistor and the input gate voltage leads to the
set up of logic boolean functions, that will be explained in detail in the next
section.
Regarding other applications, a FeFET belongs to the field effect transistor
family, thus it can be employed as a standard transitor. Such a device, which
exists already in literature as negative capacitance FET (NCFET), is based

20

2.2 – Beyond–CMOS technologies

on the removal of the hysteresis behaviour from the output characteristic, in
which the curve exhibits a better steepness than in standard CMOS transis-
tors, being ideal for digital applications. An exhaustive theoretical digression
about the NCFET is avaible in the first section of the manual in [29].

2.2.2 Smart cells and logic
In the past decades the technologies previously described in subsection 2.2.1
have been employed for the realization of either logic gates with non–volatile
storage capabilities or non–volatile memory cells with logic capability.
Therefore such architectures have been demonstrated both experimentally
and by means of computational models, as it is will be presented in this sec-
tion, where a look–up at the state of the art has been made.

Resistive threshold logic

Figure 2.13: Resistive threshold logic. It is composed by two memristors
(red) driven by two electrodes [4].

A resistive threshold logic is classificable as memristor–based logic gate.
In fact, it represents a voltage–to–voltage boolean function like any standard
logic port and its behavior is based on memristors and their resistive divider.
Then, a threshold comparator drives the output to the logic level. The
equivalent circuit, shown in Figure 2.13, is derived from [4].
Such a device has no storage capability and can have N inputs, as long as N
input memristors are employed. Nonetheless, it can be exploited as the logic
element in a LiM smart cell.

21

2 – State of the art

Figure 2.14: Resistive threshold logic with inverter-made comparator [13].

The typical logic functions programmable on this device are NAND and
NOR. To explain the working principle, Figure 2.14 is taken as a reference.
Here, an inverter is used as threshold comparator.
Then, in the case that the input memristors have the same value and the
output resistor (memristor) is an integer multiple of the formers, the voltage
divider is given by:

V0 =
N∑

i=1
Vi/[1/m+N] (2.1)

m = R0/Ri (2.2)

Thus, the number of inputs can be generic and the voltage levels for high and
low digital values are arbitrarily chosen. For example, a standard dynamic
for integrated circuit can be assumed, as VH = 1 V, VL = 0 V.
Knowing that NAND function has output ‘1’ whenever at least one input is
‘0’ and NOR function has output ‘0’ whenever at least one input is ‘1’, the
following boundary conditions are needed:

• for NAND:

(N − 1)(1/m+N)−1 < VT H < N(1/m+N)−1 (2.3)

• for NOR:
0V < VT H < (1/m+N)−1 (2.4)

For VH = 1 V, VL = 0 V. Also, these equations are valid for whatever
threshold comparator is appended to the circuit.

22

2.2 – Beyond–CMOS technologies

Therefore the two design parameters for the circuit are VTH and m, which
are dependent on each other at a given N . If the case in Figure 2.14 is con-
sidered, VT H ≈ 0.5 V, since it corresponds to the inverter threshold voltage.
N is so assumed as the sweep variable and the results are shown in Table 2.4.
Analyzing Table 2.4, for large N , the needed value of m in order to obtain

N VT H ≈ 0.5 V
2 0.5 < m
3 0.33 < m < 1
4 0.25 < m < 0.5
20 0.05 < m < 0.055

Table 2.4: Resistive threshold logic parameters for NAND; VTH fixed.

a NAND function is shrunk to a small range.
Instead, as far as NOR is concerned, no solution exist for Equation 2.4 if
VT H is fixed, because m would be negative.
Nevertheless, if the case that m is fixed is assumed and the threshold com-
parator is arbitrary –an operational amplifier or a rectifier– the results are
shown in Table 2.5.
Also for this second approach, the parameters have to be accurate when N

N VT H , m = 1
[V]

2 0.33 < VTH < 0.66
3 0.5 < VTH < 0.75
4 0.6 < VTH < 0.8
20 0.905 < VTH < 0.952

(a) Results for NAND.

N VT H , m = 4
[V]

2 VTH < 0.44
3 VTH < 0.307
4 VTH < 0.190
20 VTH < 0.049
(b) Results for NOR.

Table 2.5: Resistive threshold logic parameters for NAND and NOR;m fixed.

is large.

Consequently, appropriate architectural solutions should be found. Among
the most popular there are:

• Inverter buffer, Figure 2.15

23

2 – State of the art

For low N NOR applications, inverters are cascaded with increasing
power supply VDD such that the final output stage reaches the same
dynamic as the input;

Figure 2.15: Resistive threshold logic with inverter buffer [13].

• Operational amplifier, Figure 2.16
For high N applications, opamps are used as comparators with an ar-
bitrary threshold. Thus, voltage levels very close to the threshold are
sensed correctly.
An operational amplifier–based resistive threshold logic has the advan-
tages of being programmable and of providing a strong input–output
decoupling. On the other hand, on Opamp requires at least eight tran-
sistors ([13]).

Figure 2.16: Resistive threshold logic with operational amplifier [13].

Stateful logic via material implication (IMPLY)

The material implication is a fundamental Boolean operation on two vari-
ables p and q such that p → q is equivalent to p + q. Moreover, it is shown

24

2.2 – Beyond–CMOS technologies

(a) Schematic of the imply
circuit.[6]

p q p→ q

0 0 1
0 1 1
1 0 0
1 1 1

(b) Logic implication
truth table.

Figure 2.17: Schematic and truth table of the imply circuit.

that any Boolean function is feasible by means of a series of logic implica-
tions.
Remarkably, memristors can perform stateful logic operations by exploiting
the implication, since they can act as switches. That is to say, if incorporated
within an appropriate circuit, memristors serve simultaneously as gates and
latches. The present section demonstrates these assumptions, referring to
[6].
The schematic is shown in Figure 2.17a. Here, memristors P and Q repre-
sent the input values through their resistance state, which is for semplicity
associated to open circuit (high) and closed circuit (low).
The operation is destructive because the output is written back to Q. Fur-
thermore, this circuit can be integrated in a smart cell, where P is the mem-
ory element.

Moreover, to understand how this circuit works, it has to be considered that
the applied voltages are chosen as follows:

|VCOND| < |VCLOSE| (2.5)
|VSET | > |VCLOSE| (2.6)

where VCLOSE is the low resistance threshold of the memristor, and

Rclosed < RG < Ropen. (2.7)

Therefore:

• when P = ‘0’, memristor P is excluded from the resistive divider and if
Q = ‘0’, VSET drops on it and closes it. Otherwise, Q stays closed;

25

2 – State of the art

• when P = ‘1’, most of VCOND drops on RG, thus the voltage drop on Q
is VSET − VCOND. Q is then unchanged.

Figure 2.18: Schematic of NAND/XOR through imply circuits.

In addition, Figure 2.18 shows the schematic of a NAND function obtained
according to the implication paradigm, from [6]. Here, three memristor are
employed: P , Q as inputs and S as functional memristor. That is, the latter
is used to store the temporary results as well as the final output.
Recalling that:

p · q = q → p (2.8)

the operation is achieved in three steps

1. S is cleared (forced to ‘0’) by applying VRESET ;

2. P → S is stored into S, which corresponds to S = p. In this case,
VCOND is applied to P and VSET to S;

3. Q → S is stored into S, which corresponds to q → p and thus p · q. In
this case, VCOND is applied to Q and VSET to S.

In conclusion, the IMPLY logic is a versatile architectural solution, con-
sidering the fact that every boolean function can be achieved. Moreover, the
circuit in Figure 2.18 is non-destructive for the inputs such that it can be
integrated in a memristor smart array.
However, the latency increases with the function complexity, in the form of
cascaded operations.
Finally the XOR operation in IMPLY logic is analyzed in the following.
First of all, Figure 2.18 shows the schematic for the current purpose, in which
a total of three memristor are used and it is the same as the NAND case. P
and Q are inputs, S is the functional memristor. However, for this function

26

2.2 – Beyond–CMOS technologies

the inputs are destroyed and the final output is stored in Q.
Assuming the De Morgan theorem for the boolean logic and the laws:

p→ q ⇔ p+ q = p · q (2.9)
r → ‘0’⇔ r (2.10)

it follows:
p⊕ q = (p→ q)→ ((q → p)→ ‘0’) (2.11)

Therefore, Equation 2.11 suggests that at least four distinct logic operations
are needed to achieve the XOR function by means of the IMPLY logic. Ac-
tually, a destructive XOR operation is obtained in six steps:

1. Q is copied to S by a reading phase followed by a writing phase. Actually,
the pheriperal architecture can be arranged to perform these operation
in the same clock cycle;

2. P → S is stored into S, which corresponds to p → q. In this case,
VCOND is applied to P and VSET to S;

3. Q→ P is stored into P . In this case, VCOND is applied to Q and VSET

to P ;

4. Q is cleared (forced to ‘0’) by applying VRESET ;

5. P → Q is stored into Q, which corresponds to (q → p) → ‘0’. In this
case, VCOND is applied to P and VSET to Q;

6. S → Q is stored into Q, which corresponds to Equation 2.11. In this
case, VCOND is applied to S and VSET to Q.

Table 2.6 provides an overview of this process.
Finally, Figure 2.19 shows how the complexity of the logic function affects
parameters such as latency and variety of voltage levels to manage.

Memristor Aided loGIC (MAGIC)

Memristor Aided loGIC addresses the realization of logic within passive cross-
bar memory arrays by means of memristive cells, in [14] defined as Memory
Processing Unit (MPU).
MAGIC can be seen as an improvement of the stateful imply logic described
before since it supports more basic Boolean functions, does not require ad-
ditional resistors and most importantly every operation is non-destructive,

27

2 – State of the art

p q p→ q q → p (q → p)→ ‘0’ XOR
0 0 1 1 0 0
0 1 1 0 1 1
1 0 0 1 0 1
1 1 1 1 0 0

Table 2.6: XOR through logic implications truth table. Ref. Equation 2.11.

since the output cell is separated from the input cells.

The structure in Figure 2.20 is defacto a LiM architecture, where columns
and rows are driven by voltage controllers allowing reading, writing and logic
operations togheter with a battery of peripheral sense amplifiers for both rows
and columns.
Intuitively, each cell stores a logic value according to its resistance state.
For what concern the computation, the Voltage ThrEshold Adaptive Mem-
ristor (VTEAM) model is adopted to explain the successively introduced
equations, and can be found in [14], [15].

In the following, the three main operations available are explained.

• Write: since each column and row is individually driven, either VSET

or VRESET can be applied to write, respectively, ‘1’ or ‘0’, as shown
in Figure 2.21. Moreover, these voltages are chosen larger than each
threshold voltage.
Nevertheless, the write interference that may happen along the row and
the column of the interested cell is attenuated by the application of
half–voltages, as in Figure 2.21 and explained in [14]. That is, the ad-
jacent rows and columns are driven by VISO (for instance VSET/2 and
VRESET/2) in order to have a small voltage drop on the cells which sur-
round the memristror to be written.

• Read: the read operation is performed by applying VREAD, below
threshold, to the row (column) and the current is sensed by the sense
amplifier attached.

28

2.2 – Beyond–CMOS technologies

(a) Time graph of the NAND–imply logic, applied
voltages.

(b) Time graph of the NAND–imply
logic, digital values.

(c) Time graph of the XOR–imply logic, applied voltages.

(d) Time graph of the XOR–imply logic, digital values.

Figure 2.19: Time graphs of the imply logic.

• NOR operation: the most straightforward logic operation for this
architecture is the NOR with N inputs.
First of all, the operation involves only cells from the same row (column).
Then, all the input cells are driven with the same voltage VO (0 V) and
the output cell with 0 V (VO). Thus, the equivalent circuit is a resistive
divider as depicted in Figure 2.22.
After an initialization step where the output cell is set to ’1’ (or RON),

29

2 – State of the art

Figure 2.20: Schematic of the Magic crossbar architecture [14].

Figure 2.21: Writing operation in the MAGIC crossbar. Green dot: fully-
selected cell; red dot: half-selected cell; blue dot: unselected cell[14].

VO assumes a value according to the states of the input memristors.
That is, being VOF F , VON the memristor thresholds and RON , ROF F the
resistance states, the voltage drop on the output memristor, according
to the VTEAM,

30

2.2 – Beyond–CMOS technologies

(a) MAGIC NOR performed along
a row.

(b) MAGIC NOR performed along a column.

Figure 2.22: MAGIC NOR operation in a crossbar [14].

– has to be lower than VOF F if all the inputs are ‘0’;
– has to be larger than VOF F if at least one input is ‘1’.

Additionally, in order to not switch the input cells, the voltage drop on
them has to be lower than VON when all of them are ‘0’.
As a consequence, VO ends up with boundaries:

VOF F

RON

(
RON +

(
ROF F

N − 1

)
||RON

)
< VO,

VO < min
[
VOF F

(
1 + ROF F

NRON

)
, |VON |

(
1 + NRON

ROF F

)]
(2.12)

Finally, regarding Equation 2.12, if N tends to a very large number, the
range of VO is shrunk around VOF F .
Furthermore, the NOR operation with N = 1 becomes a NOT.

Although MAGIC is a possible approach for Logic in Memory, the issue of
sneaky currents has to be dealt with.
In fact, when the MAGIC operation is performed, it is supposed to involve

31

2 – State of the art

(a) Sneaky currents in row MAGIC
NOR.

(b) Sneaky currents in column MAGIC
NOR.

Figure 2.23: MAGIC NOR operation in a crossbar [14].

only a set of cells. That is, isolation voltages prevent other cells to be uncor-
rectly written.
Nevertheless, as is shown in Figure 2.23, sneaky currents which flow through
the output memristor are produced by these voltages, thus the resistance
state of the output may be altered so far.
Among the solutions proposed in [16], one of them consist of providing each
cell of a transistor to cut off the leakage currents. (1T 1M cell).

Programmable spintronics devices

Figure 2.24: 3D model of a programmable spintronics cell [17].

32

2.2 – Beyond–CMOS technologies

As previously discussed in subsection 2.2.1, the two polarization states of
a MTJ are associated to logic values through its resistance state. Therefore,
a programmable spintronic device is realized by a MTJ and three electrodes:

• The two input electrodes, here A and B, are placed above the MTJ.
These are traversed by polarized bidirectional currents (IA, IB) whose
magnetic field act to switch the polarization of the MTJ free layer, follow-
ing the same principle of the spin orbit torque writing in a SOT–MRAM.
Only if the currents directions agree, an actual magnetization is forced
to the free layer;

• the third electrode, C in Figure 2.24, is auxiliary and attached to the
pinned layer. Its purpose is to heat up the aforementioned layer by
means of IC making possible to force an arbitrary magnetization to it.
Thus, this establishes the programmability of the cell.

In order to fix a convention, here a positive current, hence ‘1’, leads the
magnetization to the right; otherwise, a negative current, hence ‘0’, leads the
magnetization to the left.
The model is shown in Figure 2.24.

At this point, to show how such a device is able to perform any logic

Set step
A B polarization Out

1 1 0
1 0 1
0 1 1
0 0 1

Table 2.7: NAND operation with programmable spintronics device.

operation, the most representative Boolean function is analyzed. That is, a
spintronics–based NAND.
The NAND function is reached in two steps:

33

2 – State of the art

• Set step: here both input currents push the magnetization to the left,
thus IA = IB = ‘0’; also IC is on and, as a result, both the free layer
and the pinned layer are polarized to the left (parallel polarization, low
resistance);

• Computation step: the directions of IA and IB depend on the values
of the inputs; electrode C is unused, so IC = 0 A. Then, the only case in
which the free layer switches to the right, thus leading to an anti-parallel
polarization, is when IA = IB = ‘1’.
Overall, this circuit fulfills the NAND requirements.

Therefore, the two steps are summed up in table 2.7.

As far as the integration in memory as smart cell is regarded, the presented
spintronics–based logic gate can be used as a LiM cell thanks to its storage
capability. In particular, a spintronics-based LiM cell is composed by:

• Write circuit: a bidirectional current source is responsible for the
magnetization of the SOT–MTJ;

• Read circuit: a sense amplifier detects the state of the SOT-MTJ by
comparison with a reference current;

• Logic element: the cell itsef is used as logic. Moreover, the logic
operation is destructive. That is, the inputs must derive from other cells
in the crossbar array or from external signals.

Finally, in Figure 2.25 the bidirectional current source and the sensing circuit
are respectively described.

Ferroelectric-capacitor smart cell

Ferroelectric capacitors are exploited as non-volatile elements in what is
called Complementary Ferroelectric-based logic Cell (CFC). The following
description is derived from [12].
A CFC is shown in Figure 2.26. This cell is designed for both storage and
logic, according to which phase is executed. Its main parts are:

• two ferroelectric capacitors, which store the data Y in a complementary
way;

• the cell pass transistor, which is responsible for the computational fea-
ture of the cell;

34

2.2 – Beyond–CMOS technologies

(a) Bidirectional current source. Here,
four transistor in CMOS digital logic
switches the direction of the current pro-
vided by the supply; then it is driven to
the MTJ cell.

(b) Sensing circuit. Here, a
sense amplifier compares the
current from the MTJ cell
with a reference and outputs
a digital voltage.

Figure 2.25: Writing and reading circuits for the programmable spintronics-
based smart cell [17].

Figure 2.26: Schematic of a complementary ferroelectric-based logic cell [18].

• two bit lines, connected to the external node of each Fe–cap, therefore
driven by either the inputs X1,2 during a logic phase or the data Y to
be loaded during a storage phase;

35

2 – State of the art

• a write bit line and a write transistor, allowing to drive the common
node of the Fe–caps with Y ;

• two reset transistors, to initialize the common node bringing the Fe–caps
to zero voltage drop, a preliminary operation before the logic phase.

Furthermore, the pass transistor of the cell connects it to an external output
circuit. That is, an output match line provided with pull–up and pull–down
transistors (precharge transistors) which is activated during a logic phase.
Indeed, it is part of the cell.

Regarding the different phases that define the functionalities of this cell:

• Read phase: the charge induced on the metallic electrodes of the MIM
capacitance is sensed by integrating the current over a sweeping voltage;

• Storage phase: to load a logic data to the Fe–caps, the two terminals
of each of them become controllable by means of the activation of the
write transistor.
Thus, applying +VSR or −VSR which are greater than the critical volt-
ages (see Figure 2.9), the remnant–polarization of the Fe–caps is switched
accordingly;

• Reset phase: as discussed before, during a reset the Fe–caps are ini-
tialized to zero voltage drop, keeping their non-volatile polarization;

(a) Detail of the CFC [18]. (b) Fe-cap hysteresis diagram [18].

Figure 2.27: Detail of the CFC and hysteresis diagram for logic purpose [18].

• Logic phase: as far as the logic phase is regarded, a detail of the CFC
cell is shown in Figure 2.27, which is sufficient to describe the behavior

36

2.2 – Beyond–CMOS technologies

of the device in this phase.
After the reset phase, the precharge transistors are turned on and the
bit lines are driven by two inputs VX1 and VX2. Then the voltage drop
VG on the common node of the Fe–caps is dependent on X and Y . In
particular:

– if VX1 = VX2, then VG = VX1 = VX2, regardless of Y ;
– if VX1 /= VX2, Y determines VG. Being VSS ≡ ‘0’ and VDD ≡ ‘1’, as-
sume that VX1 = VDD (VSS) and VX2 = VSS (VDD). Then, a positive
(negative) voltage is transfered to both Fe–caps. That is, recalling
the hysteresis diagram in Figure 2.27, the Fe–cap with positive po-
larization is in small (large) capacitance state while the other one
with negative polarization is in large (small) capacitance state.
Therefore, according to the capacitive divider, the voltage drop is
greater on the small capacitance. VG then turns either on or off the
pass transistor.

The results are summed up in Table 2.8. Finally, by covering Table 2.8
PPPPPPPPPPY

X1 X2 ‘00’ ‘01’ ‘11’ ‘10’

‘0’ OFF(‘0’) ON(‘1’) ON(‘1’) ON(‘1’)
‘1’ OFF(‘0’) OFF(‘0’) ON(‘1’) OFF(‘0’)

Table 2.8: Switching state of the pass transistor in a complementary
ferroelectric-based logic cell [18].

with Karnaugh’s maps, it follows:

F (X1, X2, Y) = X1X2 +X1Y +X2Y (2.13)

In conclusion, as in Figure 2.28, each individual smart cell is inserted in a
larger architecture by means of its pass transistor, in what resembles a wired
AND/OR circuit.

Reconfigurable 1FeFET (N)AND-(N)OR smart cell

A smart reconfigurable cell with bitwise (N)AND/(N)OR operations based
on a single FeFET is explained in [22]. In fact, the FeFET hysteresis char-
acteristic can be shifted along the voltage axis. In particular, the two main

37

2 – State of the art

Figure 2.28: Wired AND/OR architecture with complementary ferroelectric-
based logic cells [18].

Figure 2.29: Structure of the reconfigurable FeFET NAND/NOR cell [22].

technologies for this applications, the 28 nm HKMG and the 22 nm FD–SOI,
show this behavior (Figure 2.30).
The structure of this smart cell is shown in Figure 2.29. It consists of a

n–type FeFET in series with a pull–up device. The latter converts the output
drain current to a voltage output, while the gate voltage and the polarization
state of the gate are the two inputs of the function.
Consequently, as a smart cell, the operations allowed by the circuit in Fig-
ure 2.29 are:

• Write: a gate voltage higher than the voltage levels required during any
logic operation is sufficient to either programming or erasing the cell, in
other words to switch from the high threshold to the low threshold and
viceversa;

38

2.2 – Beyond–CMOS technologies

(a) 28 nm HKMG (b) 22 nm FD-SOI

Figure 2.30: Measured Id-Vg characteristic of the FeFET based NAND/NOR
smart cell [22].

• Read: referring to Figure 2.30, the memory window is the span between
the two thresholds. Therefore, the read operation is accomplished by
the application of a low read voltage which, according to the technology,
differs depending on which logic operation is configured at the time. The
output current is then sensed to read the cell content;

• Logic: as aforementioned, this cell can perform a logic function (N)AND-
(N)OR between its polarization state and its gate input, where the for-
mer has to be non–volatilely stored in a previous step. Then, the high
or low threshold corresponds to a logic ‘0’ or ‘1’, respectively.
Furthermore, once the logic function has been configured, the voltage
level of the gate input has to be chosen accordingly to the simulated
or experimentally measured technology. By analysing Figure 2.30, it is
clear that VL = 0 V and VH = 1 V is a suitable design choice. Thus:

– (N)OR: with the FeFET in NOR confguration, only the combina-
tion of low gate input and high threshold leads to cut-off current Id

(OR). Then, low Id is converted to high drain voltage (NOR). In all
the other cases, Id is high;

– (N)AND: with the FeFET in NAND configuration, only the com-
bination of high gate input and low threshold leads to high current
Id (AND). Then, high Id is converted to low drain voltage (NAND).
In all the other cases, Id is low.

• Function reconfiguration: the Id–Vg curve of the FeFET can be

39

2 – State of the art

shifted along the gate voltage axis, by applying an appropriate source
voltage Vs or back bias voltage Vbb, depending on the technology.
As depicted in Figure 2.30, if the source and the bulk are grounded the
device is in NOR configuration. Otherwise, in the HKMG technology
a Vs = 0.5 V turns the devices into the NAND operation, while in the
FD–SOI technology Vbb < 0 V is necessary to have a NAND operation.

(a) Two logic–enabled FeFETs connected
in parallel, equivalent to a NOR.

(b) A series con-
nection of two
logic–enabled Fe-
FETs, equivalent
to a NAND.

Figure 2.31: FeFETs arranged equivalently to a memory array [23].

For what concern the integration of the smart cell in a memory array, the
idea is shown in Figure 2.31: here, single logic–enabled FeFETs are combined
within parallel and series stacks. That is, the final result is given by summa-
tion of drain currents according to the well known Kirchhoff’s laws.
Therefore, examples of memory array are shown in Figure 2.32, where two
different topologies are proposed, described in [23]. A logic function is ob-
tained between cells in the same row (left) or column (right), where these
cells are logically configured by manipulating the source line or the bulk volt-
age.
Moreover, to realize a XOR function, the array in Figure 2.32 (a) is taken
into consideration. Supposing to use one row and two cells, namely cell 1
and cell 2, the steps are the following:
1. The FeFETS are configured in AND mode. This means that either a bias

40

2.2 – Beyond–CMOS technologies

(a) (N)OR memory array. (b) (N)AND memory array.

Figure 2.32: Integration of one FeFET smart cells in a memory array through
bit lines, word lines and source lines [23].

voltage is applied or negative gate voltages are used as inputs (reference
to Figure 2.30);

2. If A and B are the inputs of the XOR, A and B are written to, respec-
tively, cell 2 and cell 1;

3. A and B are driven to, respectively, WL1 and WL2;

4. The output current flowing from BL1 to SL1, representing A ·B+A ·B,
is sensed at the peripherals.

1T-1FeFET smart cell

Figure 2.33: Structure of a 1T 1FeFET smart cell [26].

In this version of FeFET smart cell, the single FeFET storing the infor-
mation bit is accompanied by a series MOSFET transistor, named selector
transistor, and introduced in [26].

41

2 – State of the art

The integration in the memory array is the same as the previous case, includ-
ing all the available operations such as writing, reading, logic. An example
of it can be viewed in Figure 2.33. This structure is also known as 2T–NOR
memory array since the cells are connected in parallel. Moreover, the series
selector transistor can include a logic AND inside the cell.
The first example of LiM achievable with this array is a 2–inputs Look Up

(a) Standard LUT. (b) LUTMUX integrated
into the array.

Figure 2.34: Integration of a LUT in both standard transistors and in a 1T
1FeFET smart array [26].

Table (LUT). As shown in Figure 2.34, the standard 2-input LUT is com-
posed by a programmable unit and an output multiplexer. It is the most
straightforward implementation of a 2–inputs LUT, where the MUX select
signals are the inputs of the boolean function.
In spite of that, the 1T–1FeFET smart array merges those two parts by means
of four cells connected to the same bit line and source line. The boolean in-
puts and their negative, in all the possible combinations, are sent to the word
lines and the selection lines. That is, the boolean function is reconfigurable
by arbitrarly programming or erasing the content of the FeFETs.
Moreover, the second example is a Full Adder. Precisely, the Full Adder

implemented in the smart array in Figure 2.35 takes two rows for a total
of ten cells allocated. The concept behind is simple, for which the inputs
are distributed among all the cells content and the word lines, and the two
output (sum and carry out) are sensed from the two bit lines. In particular,

42

2.2 – Beyond–CMOS technologies

Figure 2.35: Full Adder realized in a 1T 1FeFET smart array. [26]

the logic functions performed are:

S = B · (Ci · A+ Ci · A) +B · (Ci · A+ Ci · A) (2.14)
Co = B · Ci + A ·B · Ci + A · Ci (2.15)

Thus it is demonstrated, as aforementioned, that the selector transistors is
exploited to insert an AND in the circuit.

Complementary FeFET TCAM

Figure 2.36: FeFET-based core cell for NOR-type TCAM [27].

43

2 – State of the art

The wide versatility of FeFETs as memory cells introduces this device also
in the field of the Content Addressable Memories (CAM). The implementa-
tion of a ternary CAM (TCAM) cell is shown in Figure 2.36 and refers to
the work in [27].
A TCAM is conceived to compare a word given as input to the words stored in
the memory to find a match. Therefore, the store operation is conducted by
means of a tri–state word line connected to the FeFETs gates. The attribute
ternary refers to the adding of a third state "don’t care" to the hit and miss
states. In particular, the comparison is based on the following assumptions:

• Two FeFETs are connected in parallel, storing the bit and its comple-
mentary;

• the FeFETs are connected to a match line by means of two pass transis-
tors which are controlled by the input data. That is, it is a NOR-type
match–mismatch detection;

• the match line is precharged to VDD before the detection and it is dis-
charged to ground in case of miss, otherwise it keeps VDD.

Dynamic current mode FeyFET smart cell

The Dynamic Current Mode Logic (DyCML) style, described in [27], aims at
reducing dynamic power by limiting the output swing, at the cost of doubling
the number of necessary transistors.
In Figure 2.37 a DyCML is implemented to build a non–volatile LiM, which
consist of:

• A clock–controlled pull-up network (top center) responsible for pre–
charging and latching to mantain the output even after the logic op-
eration;

• a logic network to obtain the desired arbitrary function;

• a non-volatile cell based on two complementary FeFETs;

• a dynamic, clocked current source.

This FeFET–DyCML is based on the use of a differential pull–down logic
network which, combined with the FeFETs cell, generates the corresponding
complementary outputs. Furthermore, while the inputs are respectively the
content of the cell and one external, the flexible design of the wiring con-
nections of the logic network enables various logic functions, such as NOR,

44

2.2 – Beyond–CMOS technologies

Figure 2.37: General circuit structure of a FeFET-based DyCML LiM cell
[27].

NAND, and more complex ones as the Full Adder.
In addition, the writing operation needs a tri–state word line to write the
FeFETs content, as in the previous FeFET TCAM.
The first two examples of a DyCML used in LiM mode are the NAND and

(a) NAND logic network of
a DyCML.

(b) NOR logic network of a
DyCML.

Figure 2.38: Examples of FeFET-DyCML logic functions [27].

NOR functions, as shown in Figure 2.38. Here, the two FeFETs excludes each

45

2 – State of the art

other and only one branch at time is activated. Then, the shape of the logic
network is composed by couples of semi-parallel transistors, controlled by the
external input, and the wired inteconnections estabilish the logic function.
Moreover, a more complex example is depicted in Figure 2.39, where a Full

Figure 2.39: Schematic of a FeFET-based DyCML LiM 1-bit Full Adder [27].

Adder is realized by means of 4 FeFETs, 28 MOSFETs (24 for DyCML, 4 for
allowing the writing operation).
In this architecture the output are achieved by stacking several stages of
transistors couples, with adequate wired interconnections.
In spite of the previous examples, here the inputs are dislocated among the
FeFETs and the transistors of the logic network, and two smart cells are
required to compute the sum and the carry out. That is, the left cell in
Figure 2.39 is configured to perform a triple XOR while the right cell is
configured to perform the carry out function.

Dynamic Logic FeFET smart cell

FeFETs–based Dynamic Logic (DL) LiM is based on the high Ion/Ioff ratio of
the FeFETs, allowing them to be trustly modelized with either open circuits
or short circuits. Moreover, Dynamic logic gates and cells becoms useful
when low area circuits are preferred.
A DL smart cell, in Figure 2.40, derives from the DyCML smart cell by
employing only one branch of logic network, supported by a single FeFET to
store a bit. In particular it is composed by:

46

2.2 – Beyond–CMOS technologies

Figure 2.40: General structure of FeFET-based dynamic logic circuits[27].

• a pull–up network made by a simple clocked p-type MOS transistor;

• a n–type MOS pull-down logic network that executes the logic function;

• a clocked n–type MOS transistor to discharge the network to ground;

• a FeFET–based cell.

Furthermore, as in the previous FeFET–based circuits, the writing operation
is conducted by a tri–state line. The topology of the logic network is different
for every logic function, as can be seen in the following examples.
Therefore, the NAND and NOR functions are the examples with the small-
est number of transistors. (Figure 2.41). Their structure is composed by
a series and a parallel between a FeFET and a MOSFET, respectively. In
particular, the NAND configuration resembles the 1T–1FeFET smart cell.
Indeed, the working principle is the same as in section 2.2.2.
Nevertheless, a more complex logic configuration is depicted in Figure 2.42.
Here, to achieve the two desired outputs (sum and carry out), more than one
stage are stacked on the top of each other. Besides, three smart cell are used,
all of them containing the same input bit.
Once the outputs are set by the logic pull–down network, the presence of sev-
eral stages generates voltage drops in the final output dynamic. That is, an
output inverting stage is added, at the expense of two additional MOSFETs
per output signal.

47

2 – State of the art

(a) NAND logic net-
work of a dynamic
logic smart cell.

(b) NOR logic net-
work of a dynamic logic
smart cell.

Figure 2.41: Examples of FeFET-DL logic functions [27].

Figure 2.42: Schematic of a FeFET–based dynamic logic 1 bit Full Adder
[27].

48

Chapter 3

FeFET SPICE model

Overview
The purpose of this chapter is to describe and characterize a SPICE FeFET
model, which is intended to be used to characterize, first, a conventional
memory array and, second, several LiM cells.
As discussed in subsection 2.2.2, there exist several methods to obtain both
storage and logic features with one or more FeFETs.
Therefore, the first step is to refer to a physical model for the FeFET, derived
from [32], getting the parameters from experimental results in literature, and
to translate it to a computational model and finally to a SPICE model. Then,
the model is simulated and data are extracted, shown and discussed.

3.1 Physics–based FeFET model

Figure 3.1: 3D model of a n–type FeFET [32].

49

3 – FeFET SPICE model

Different mathematical approaches to the FeFET model exist, as far as
the behavior of the internal polarization of the ferroelectric material in the
gate stack is concerned. In particular, the gate stack that is examined is
shown in Figure 3.1. Here, a Metal Ferroelectric Insulator Semiconductor
(MFIS) stack composes the gate of the transistor, in which the total number
of carriers in the channel is controlled by the behavior of the gate.
Moreover, any mathematical model characterizes the device by means of pa-
rameters which depend on the chosen ferroelectric material, and these are
usually extracted experimentally, as described in [32].
Furthermore, the two most used physics–based models are the Landau–
Khalatnikov (LK) equation and the Preisach model.

3.1.1 Landau-Khalatnikov equation
The time-dependent LK equation is a single–domain approximation which
describes the correlation between the applied electric field and the internal
charge density of the gate. From [33], this equation is non-linear:

E − ρdP
dt

= αP + βP 3 + γP 5 (3.1)

where α, β and γ are the static parameters of the ferroelectric and ρ is the
kinetic coefficient.
Then, if tF E and AF E are, respectively, the thickness and the area of the
ferroelectric, let VF E = tF E · E be the voltage across the ferroelectric and
Q = AF E ·P be the total charge. That is, Equation 3.1 can be rewritten as:

VF E = RF EIF E + C ′F EQ+ C ′′F EQ
3 + C ′′′F EQ

5 (3.2)

where RF E = ρ tF E

AF E
, C ′F E = α tF E

AF E
, C ′′F E = β tF E

A3
F E

and C ′′′F E = γ tF E

A5
F E

. The form
of the derived Equation 3.2 recalls a circuit scheme composed by a resistor
and a non–linear capacitor. The complete circuital scheme is depicted in
Figure 3.2, which features also a MOSFET and a conventional capacitance
in parallel to the LK–gate, C0 = ε0

AF E

tF E
.

That is, in the SPICE model it is assumed that the LK–based gate is in series
to the MOSFET gate.
Nevertheless, in the SPICE model, a subcircuit is needed to generate the
non–linear voltage–charge relationship, which is not recalled in Figure 3.2.
Therefore, a Verilog–A model is derived and is compatible to the majority of
the SPICE simulators, such as Cadence Virtuoso.

50

3.1 – Physics–based FeFET model

Figure 3.2: proposed circuit/SPICE model for FeFET [32].

Verilog–A script

Figure 3.3: FeFET circuit scheme equivalent to the Verilog-A script.

The scheme in Figure 3.3 shows two distinct parts —the gate part and
the MOSFET part— which communicate through a dummy node. That is,
the latter carries the information about how much charge density is present
in the ferroelectric gate.
The introduction of the dummy node, which is considered a fake voltage node
in the simulator, is sufficient to fix the same amount of charge between the
transistor gate and the ferroelectric gate.
As far as the ferroelectric gate is concerned, the following Verilog–A extract
describes its behavior:

1 V(fecap) <+alpha*tFE *(V(qg_as_v)*1e -6) + beta*tFE*pow ((V(
qg_as_v)*1e -6) ,3.0) + gamma*tFE*pow ((V(qg_as_v)*1e -6) ,5.0)
;

51

3 – FeFET SPICE model

2 V(fecap) <+ rho*tFE*ddt(V(qg_as_v)*1e -6);
3 I(c0) <+ C0*ddt(V(c0));

Listing 3.1: Ferroelectric capacitor in Verilog–A description. Reference to
Figure 3.3.

In the code above:

• the first line describes the non–linear behavior;

• the second line describes the resistive behavior;

• the third line describes the conventional capacitive phenomenon of a
dielectric device.

Moreover, qg_as_v is the name of the dummy node.
The Verilog–A code for the MOSFET is a virtual–source (VS) based self-
consistent transport/capacitance model for silicon MOSFET, developed by
the Purdue University. It is reported entirely in the Appendix.
Furthermore, reference to both source codes are found in [29].

3.1.2 Preisach model
The Preisach model is a multi–domain model and its modeling framework,
presented in [28], is composed of two subcomponents, similarly to the LK
model in subsection 3.1.1. In this case, two equations governing charge con-
servation and voltage division must be solved simultaneously.
Therefore, the determination of the gate charge density is dependent on the
ferroelectric history, switching dynamics and minor loop trajectory.
Contrarily to the LK model, this description translates to a more accu-
rate computational model, although it is difficult to implement in SPICE
or Verilog–A language being an algorithmic model and not only a math-
ematical model, according to [28]. That is, for the following sections the
single domain LK model will be employed.

3.2 FeFET experimental calibration
From the studies conducted in [32], to calibrate the model described by the
LK equation (Equation 3.1), the parameters α, β, γ and ρ have to be ex-
perimentally determined since these act as fitting coefficients to reduce the
differences between the ideal model and the real device.

52

3.3 – FeFET simulation and characterization

(a) Gate
stack exper-
imentally
measured.

(b) Experimental P-E loop and LK
fit.

Figure 3.4: Calibration of the LK model with experiments [32].

Therefore, in [32], a 100 nm lead zirconium titanate (PZT) film has been
grown on hafnium oxide (HfO2) buffer and silicon substrate using pulsed va-
por deposition.
Then, the static LK coefficients have been extracted from the experimental
P–E loop in Figure 3.4, while the value of ρ has been calculated from the
polarization switching time.
As a result, the following parameters have been set in the Verilog–A model:

α = −1.05× 109 m F−1 (3.3)
β = 1× 107 m5 F−1 C−2 (3.4)
γ = 6× 1011 m9 F−1 C−4 (3.5)

ρ = 0.25 Ω m (3.6)

3.3 FeFET simulation and characterization
3.3.1 Schematic and testbench
An n–type FeFET schematic has been created in the Cadence Virtuoso CAD
environment starting from the Verilog–A description in subsection 3.1.1.
In particular, the two Verilog–A models has been converted into building
blocks as shown in Figure 3.5. Also, the symbol is shown.

Therefore, the model has been tested in order to characterize, for any writ-
ing operation, its actual behavior in terms of frequency response, ION/IOF F

53

3 – FeFET SPICE model

(a) n–type FeFET schematic in Cadence
Virtuoso CAD Tool.

(b) n–type FeFET symbol in Ca-
dence Virtuoso CAD Tool.

Figure 3.5: n–type FeFET in Cadence Virtuoso CAD Tool.

(a) FeFET model testbench for writ-
ing operation.

(b) FeFET model testbench for read-
ing operation.

Figure 3.6: FeFET model testbenches.

ratio and performance when technological parameters are varying, such as
the thickness of the ferroelectric material.
For this purpose, a testbench has been created in Virtuoso and is presented
in Figure 3.6.
Furthermore, the model has also been tested for the reading operation and
the testbench for this purpose is depicted in Figure 3.6.

54

3.3 – FeFET simulation and characterization

3.3.2 The impact of the ferroelectric thickness

Figure 3.7: Simulation of the hysteresis of the FeFET gate polarization with
varying thickness of the ferroelectric layer. I–V characteristic.

An aspect not covered in section 3.2 is how the thickness of the ferro-
electric layer (tF E) impacts the model behavior. In section 3.2, a 100 nm
thickness is chosen to perform the data extraction.
That is, this value appears to be the suitable choice for the fitting parameters
used in the model.
Nevertheless, simulations have been conducted with different values of thick-
ness in order to demonstrate and justify the choice about that value.
The results of this simulation are reported in Figure 3.7, which refers to a
pulsed gate voltage with frequency of 10 kHz and peak amplitude of 5 V. VDS

is set to 300 mV.
Here, the output characteristic I–V recalls the conventional MOSFET for
low tF E, losing the hysteresis feature which is being exploited in this work
to use the FeFET as a memory device.
On the contrary, tF E = 100 nm leads to hysteresis and will be the current
choice for the following sections.
Finally, a dashed lined has been plotted to highlight the behavior of the cur-
rent conduction of the device at VG = 0 V. That is, the model exhibits two
distinct thresholds which will be exploited to read the information stored in

55

3 – FeFET SPICE model

the FeFET.

3.3.3 Hysteresis frequency response

Figure 3.8: Simulation of the hysteresis of the FeFET gate polarization with
varying periods of the gate voltage. Polarization vs. gate voltage.

Another test performed with this FeFET model is the frequency response.
In other words, when the FeFET is used as building block for the composition
of a memory cell or LiM cell, it is useful to know how it reacts to different
working frequencies applied to the circuit.
Therefore, Figure 3.8 is the result of the simulation with a set of different
frequencies, from 10 kHz to 20 MHz.
Here, the polarization of the gate is plotted versus the gate voltage, which
is a triangular wave with peak amplitude of 10 V, and a change in both the
high and low threshold is visible.
This behavior is due to the fact that the internal polarization is affected by a
delay when exposed to a variation, and consequently faster signals on the gate
require higher voltage levels to accomplish the switching of the polarization.
That is, both the low and high thresholds become larger, in absolute value,
when the frequency rises.

56

3.4 – Basic FeFET–based memory cell

(a) I–V output characteristic at 10 MHz. (b) Q–V output characteristic at 10 MHz.

Figure 3.9: FeFET hysteresis simulation at 10 MHz.

3.3.4 Other measurements

Writing example

In Figure 3.9 it is shown an example of response of the FeFET to the appli-
cation of a 10 MHz triangular wave to the gate.
Thereby, Figure 3.9(b) exhibits the two distinct equilibrium points of the
gate polarization.
Moreover, Figure 3.9(a) is a plot of the drain current where the two thresholds
are visible. With VDS = 300 mV, the on current results in ION ' 1.5 mA.

Reading example

Referring to Figure 3.6(b), a single–ended reading circuit has been set up to
demonstrate an example of reading of the content of a n–type FeFET.
That is, a pull–down resistor ROUT translates the drain current into a voltage
drop such that the output voltage is driven to VL ' 0 V when the FeFET is
in low threshold state.
Moreover, a capacitive load has been considered.
The result of the reading is depicted in Figure 3.10, where the content of the
cell is the logic ‘1’ and the output voltage goes to VL.
Otherwise, reading a logic ‘0’ is not useful due to the fact that the output
voltage would remain pulled–up.

57

3 – FeFET SPICE model

Figure 3.10: Reading waveforms of the FeFET model with ROUT = 1 kΩ as
pull–up resistor and CLOAD = 100 fF as load capacitance.

Figure 3.11: FeFET–based memory cell.

3.4 Basic FeFET–based memory cell
The memory cell in Figure 3.11 is composed by an n–type FeFET and a
conventional n–type MOSFET. In particular, the FeFET is responsible for
data storage, while the MOSFET acts as a selector, plugging and unplugging
the cell to the bit line of the array.
As far as logic is concerned, this cell is not capable of LiM. Nevertheless,
this cell is the basic block of memory arrays of varying dimensions which are
characterized in chapter 4.
Moreover, the functions of this cell are here summed–up:

58

3.4 – Basic FeFET–based memory cell

• Write: the cell content can be written through a word line (WL)
which is connected to the gate of the FeFET. ‘0’ and ‘1’ are associated
to, respectively, high conduction threshold state and low conduction
threshold (Figure 3.9, to have a reference). During this operation, the
selector is off.
Moreover, a single WL is shared across a word of the array.

• Read: the cell content can be sensed through a bit line (BL) while
the selector is on. That is, the select signal is supposed to be shared
across a single word of the array.
For what concerns the WL, as discussed in section 3.3, the reading volt-
age on the gate of the FeFET is 0 V. Then, the cell can either show low
or high conduction.

59

60

Chapter 4

FeFET–based memory
array

Overview

As aforementioned in section 3.4, a memory architecture is generated start-
ing from the basic cell shown in Figure 3.11.
Moreover, due to the fact that the FeFET recalls the behavior of a Float-
ing Gate MOSFET (FGMOS), two topologies have been investigated at the
purpose of creating a memory array. That is, the NAND FLASH topology
and the NOR FLASH topology.

4.1 The topology

Referring to [39], the NAND and NOR architectural solution have been in-
quired if suitable to be applied to the case of the FeFET. Indeed, a FeFET
can be either in the state of conduction or cut off as well as a FGMOS does.
Moreover, the writing operation occurs by the application of a large gate
voltage in both devices.
Finally, both devices present a current output to be sensed. Thus, the FLASH
memory design has been the most inspiring for the purposes of this work.

61

4 – FeFET–based memory array

Figure 4.1: A column of the NAND–FeFET array [39].

4.1.1 NAND architecture

Suppose to build a columna of FeFETs as in Figure 4.1, inspired by the
NAND FLASH architecture in [39].
Thereby, each FeFET in the column: acts as a cell, is driven by its own word
line and shares the same source line (SL) at the bottom of the column.
Therefore, during a reading operation of a cell inside the column, a reading
voltage of 0 V is applied to the FeFET to be read. Then, all the other FeFETs
in the string are supposed to be forced to conduction with the application of
a coercitive voltage, to properly obtain the reading.
Nonetheless, this operation is unfeasible, due to the nature of the FeFET
gate polarization. That is, there exist no coercitive voltage that leads the
FeFET in conduction without programming the FeFET itself.
Thus, reading in a NAND–topology FeFET memory array would be destruc-
tive for the data stored.
An example of how the internal polarization would be altered is shown in
Figure 4.2. Here, the gate voltage is set to a ramp starting from −5 V to 5 V
and lasting 20 ns. Moreover, the sensing circuit is the same as in Figure 3.6.
The initial content of the cell is ‘0’, from Figure 4.2, and the output value
is correctly ‘1’. Nevertheless, as VG increases, the output falls to ‘0’ meaning
that the cell is forced to conduction, but also the polarization is altered and
the data stored is destroyed.

62

4.2 – NOR FeFET memory array: schematics

Figure 4.2: Simulation of a reading operation in a NAND–topology FeFET
memory column.

4.1.2 NOR architecture
Since the NAND topology has been discarded according to subsection 4.1.1,
the NOR topology is adopted for the rest of this work. In particular, the
memory cell is the same as shown in Figure 3.11.
Here, each cell in a memory word is connected to its own BL and SL, thereby
each cell has its own sensing circuit and one word per time is read.
Therefore, the reading of a FeFET does not affect the data stored in the
other cells, as explained in subsection 4.2.4.
Moreover, the NOR topology is inspired by the tractation in [39].

4.2 NOR FeFET memory array: schematics

Figure 4.3: A word of the FeFET–based NOR memory array with n cells.

As discussed in subsection 4.1.2, a NOR memory array with the basic
FeFET cell is presented. In particular, a word of this memory architecture

63

4 – FeFET–based memory array

is depicted in Figure 4.3.
Thus, bit lines and source lines are dedicated to each single cell in a word,
while word lines and select lines are shared across the same word. The
words of this proposed memory are organized in columns. Contrarily to
that, Figure 4.3 shows the word adapted as a row for the sake of clearness of
the figure.
Furthermore, with this topology, a word (column) is either read or written
per time.

Interconnections parasitics

The non–idealities of the memory array are modelized in Figure 4.3 by means
of parasitic RC at the interconnections between cells. In particular, the
values for the parasitic resistance and capacitance are, respectively, 5 Ω and
100 aF.
Moreover, these parasitics affect the worst case delay measurements, as it is
discussed in subsection 4.5.1.

4.2.1 8x8 memory array

Figure 4.4: Schematic of a 8x8 FeFET–based array.

For what concern the design of the memory array, it has been conducted

64

4.2 – NOR FeFET memory array: schematics

at schematic level in Cadence Virtuoso, using the CMOS 28nm FD–SOI
technological library and a custom library containing the FeFET model.
The first array to be implemented is an 8x8 array and its schematic is shown
in Figure 4.4. Here, the aforementioned memory word (column) in Figure 4.3
is replicated eight times, defining the following signals —all of these have two
sides: an input side and an output side, separated by the cascade of parasitics
—:

• BL<0:7> driven by the sense amplifier peripheral (section 4.3);

• SL<0:7>, WL<0:7> for write and read purposes (section 4.4);

• Sel<0:7> for read purposes (subsection 4.2.4);

• from data0<0:7> to data7<0:7> for debugging purposes. That is, these
signals represents the internal polarization of each cell. These are mea-
surable voltage nodes with unit µC cm−2.

4.2.2 Larger dimension memory array

(a) Schematic of a 16x16 FeFET–based
array.

(b) Schematic of a 32x32 FeFET–based
array.

Figure 4.5: Schematics of larger dimension arrays.

Starting from the 8x8 array shown in subsection 4.2.1, larger arrays can
be obtained at a schematic level by appending more than one smaller array.
That is, a 16 words array and a 32 words array are shown in Figure 4.5.
Here, the signals have the same meaning as described in subsection 4.2.1.

65

4 – FeFET–based memory array

4.2.3 Writing schemes

(a) Programming ‘10’ to the first
word.

(b) Erasing the first word.

Figure 4.6: Writing schemes of the FeFET–based memory array.

The writing operation in the proposed memory architecture involves one
word (column) per time and no other operation —such as reading — is
allowed meanwhile.
Therefore, the writing operation is controlled by the WL and SL signals, while
every cell is unplugged from the bit lines during the operation by means of
the selector in cut off.
For what concern the simulation in Cadence Virtuoso, ideal PWL generators
from the analogLib drive both word lines and source lines, as it is explained
in section 4.4.
According to the convention in FLASH memories, the writing is distinguished
in two operations: programming and erasing. In the former case, a positive
voltage of VG = 3 V on the FeFET gate is sufficient to rise the polarization to
the high conduction level. On the other hand, in the latter case, VG = −5 V
is required.

Programming scheme

Programming refers to the operation of writing ‘1’ to the desired memory
cell inside a word. Thus, the word to be written must contain only zeroes
before being programmed.
This process is shown in Figure 4.6(a). Here, the first word is being written.
Suppose to write ‘10’:

66

4.2 – NOR FeFET memory array: schematics

• the selected word line is driven to 3 V, the others to 0 V, in order to lead
the gate of the selected FeFET to the programming voltage;

• the selected source line is driven to 0 V, the others to 3 V in order to set
the proper voltage drops on every cell.

Erasing scheme

Erasing refers to the process of deleting the whole content stored in a memory
word in order to write the new word to it.
Thus, as depicted in Figure 4.6(b):

• the selected word line is driven to −5 V, the others to 0 V, in order to
lead the gate of the selected FeFET to the erasing voltage;

• all the source lines are driven to 0 V.

Figure 4.7: An example of writing timing referred to Figure 4.6.

Finally, Figure 4.7 shows an example of a full write operation of the first word
as in Figure 4.6. That is, an erasing operation preceeds the programming
operation.

67

4 – FeFET–based memory array

4.2.4 Reading schemes
The reading operation involves a pheriperal circuit to convert the current
of the cell to a logic voltage output. That is, a sense amplifier capable of
reading an entire memory word has been simulated in Cadence Virtuoso and
is described in section 4.3.
Moreover, one word per time is read, meaning that the column to be read is
plugged to the bit line bus.
Considering the schematic in Figure 4.8, reading a word in the memory

Figure 4.8: Reading scheme of the FeFET–based memory array, involving a
Sense Amplifier.

leads to the following operations:
• during a phase of memory initialization, the reference cells inside the

sense amplifier must be programmed to ‘1’. Thus, the dedicated reference
word line is used, in particular WLRef = 3 V.

• the selected word (column) is plugged to the bit line bus —each cell to
its own bit line— through the select signal, generated by an ideal PWL
generator. Thus, VSel = 0.5 V has been chosen to turn on the selector
transistor. Reference to Figure 3.11;

• the word line of the selected word is driven to 0 V, as well as all the
other words. Nonetheless, the other words are not connected to the bit
line bus and cannot alterate the bit line voltage;

• then, a cell can either generate ION or IOF F , which values depend on
the sense amplifier design. This current level is then converted to high
or low voltage.

68

4.3 – Sense Amplifier

Figure 4.9: An example of reading timing referred to Figure 4.8.

Finally, an example of a read operation performed by the sense amplifier on
the first column in Figure 4.8 is presented in Figure 4.9. Here, it is shown
how the sense amplifier manages to convert the output current to a voltage
variation on the bit line and senses it to generate a voltage output. Therefore,
the details of this process are discussed in section 4.3.

4.3 Sense Amplifier

The reference for the design of the sense amplifier is derived from [40] and [41],
where topologies for conventional current sense amplifiers for NOR FLASH
memories are reported.
In particular, the schematic simulated in Cadence Virtuoso will be described
as well as the testbench and the performance measurements.

69

4 – FeFET–based memory array

4.3.1 Schematic

Figure 4.10: Schematic of the sense amplifier. In the yellow box the cascode
amplifier; in the red box the differential pair; in the blue box the output
buffer.

The schematic of the sense amplifier is shown in Figure 4.10. It is com-
posed by:

• a first cascode stage which amplifies the voltage on the bit line to the
input voltage to the second stage. In other words, the current generated
by the cell is converted to voltage. The common gate MOSFET is driven
by VBIAS ' 0.6 V only during the reading phase, otherwise it is off.

• a second differential pair stage, a n–channel current mirror, which takes
two inputs, VIN from the cell —by the first stage— and VRef from a
dummy cell which is always programmed. VRef is similarly generated
by a cascode stage but the transistors dimensioning is such that this
voltage level is fixed and close to half of the sensing dynamic. Moreover,
VDD = 1 V. To cut the power during the non–reading phases, a p–type
MOSFET controlled by the PWR signal cuts the current to the current
mirror.

• a final output buffer stage, composed by two cascaded CMOS inverters.
Its purpose is to adjust the values of VH and VL to, respectively, 1 V and
0 V, since the dynamic is reduced due to the transistors overdrives.

70

4.3 – Sense Amplifier

Moreover, the dimensioning of the transistors is the following:

W1 = W2 = W7 = W8 = 80 nm (4.1)
W3 = W4 = W5 = W6 = W9 = 160 nm (4.2)

In particular, since W9 = 2 ·W7, the drain voltage VIN is affected by a larger
overdrive than the drain voltage VRef when the current is the same in both
branches. That is the case when the cell stores ‘1’ and the voltage on the bit
line —and then VIN— is driven below VRef ' 300 mV. Thus, the differential
pair converts this difference to VH .
Otherwise, when the cell stores ‘0’, a negligible current flows in the input
branch, then VIN is above VRef . The output is so driven to VL.
For what concerns the dimensioning of the differential pair, W3 = W4 =
W5 = 2 ·W1 = 2 ·W2 in order to adjust VH as close as possible to VDD.
Moreover, an enhancement to the conventional schematic in [40] is apported.
That is, the output is driven to 0 V by a pull–down transistor when the sense
amplifier is unused.
Finally, the schematic level in Cadence Virtuoso is shown in Figure 4.11.

Figure 4.11: Schematic level of the sense amplifier in Cadence Virtuoso.

71

4 – FeFET–based memory array

4.3.2 Testing and performance

(a) Testbench of the sense amplifier. (b) Scheme of the bias cir-
cuit for the sense ampli-
fier.

Figure 4.12: Complete circuit of the testbench of the sense amplifier.

A single instance of the sense amplifier has been tested by means of a
single memory cell, where a capacitance has been appended to the bit line in
order to emulate the load capacitance of a full array. The testbench is shown
in Figure 4.12(a), with a bit line load capacitance of Cbit line = 100 fF.
Moreover, the bias voltage to drive the sense amplifier is generated by the
subcircuit in Figure 4.12(b).
Furthermore, the simulated waveforms in the case of a reading of a cell

containing ‘1’ are plotted in Figure 4.13.
In particular, the amplification of the cascode stage results in a speeding–up
of the VIN signal with respect to the voltage on the bit line.
Moreover, the non–buffered output is compared to the buffered output.
Finally, the input select signal and the sense amplifier output are compared
to show the delay. That is, under these conditions it is almost 150 ps.

As far as the power consumption is regarded, the profile shown in Figure 4.14
exhibits Ppeak ' 40 µW, with an average dynamic power of about 25 µW.

72

4.4 – NOR FeFET memory array: Testbench and scripts

Figure 4.13: Signals in the cascode, differential pair and output stage during
the simulation of a reading.

That is a reasonable result if compared to current sense amplifiers in litera-
ture such as in [42], [43], [44].

4.4 NOR FeFET memory array: Testbench
and scripts

In order to characterize a complete memory array with FeFET–based cells,
three versions have been created. That is, N words–N bit arrays with N =
8,16,32.
These are shown in Figure 4.15, where all the driving signals such as WLs,
SLs, PWR and Select are generated through ideal PWL generators from the
analogLib in Cadence Virtuoso. These generators are then written by means
of python scripts which is presented in subsection 4.4.1.
Moreover, the testbenches in Figure 4.15 are completed by a pheripheral
column–sense amplifier composed by N instances of the single sense amplifier
described in section 4.3.
Therefore, the allowed operations inside each memory are:

73

4 – FeFET–based memory array

(a) Input selection signal and output voltage comparison.

(b) Power profile of the sense amplifier.

Figure 4.14: Waveforms of the simulation of the sense amplifier while the cell
contains ‘1’.

• reading a word (column): in this case, the performance evaluated
are the reading delay low to high (LtoH) and high to low (HtoL) during
the reading of the cell in the first column and in the last row. In fact,
this position is the farthest from both the Select drivers and the sense
amplifier (Figure 4.16).

74

4.4 – NOR FeFET memory array: Testbench and scripts

(a) Testbench of the 8x8 array. (b) Testbench of the 16x16 array.

(c) Testbench of the 32x32 array.

Figure 4.15: Testbench of varying dimension memory arrays.

For what concerns the power dissipation, the average power consump-
tion is derived for both the array and the sense amplifier. Here, the
measurements refer to the reading of the entire word.

• erasing a word (column): in this case, the erasing delay is calcu-
lated considering the first column and the last row due to the distance
from the WL drivers. Since the sense amplifier is off, only the average
power consumption for the array is taken. In particular, the entire word
containing ‘111...1’ is erased;

• programming a word (column): in this case, the programming delay

75

4 – FeFET–based memory array

is calculated considering the same motivations as above. Regarding the
average power, same considerations as above except by the fact that only
one ‘1’ is written in the word. Thus, the maximum allowed number of
source lines switches, being more power demanding;

• idle: during an idle phase in which the memory is unused, the average
power dissipation is calculated.

Figure 4.16: Worst case cell for reading and writing performance.

4.4.1 Python scripts
Every PWL generator from the analogLib in Cadence Virtuoso takes a .csv
input file to generate a custom waveform. Also, the input file has the follow-
ing format: <time> <value>.
Therefore, two Python scripts are created to manage, respectively, the gener-
ators of the array —WL, SL, Select— and the signals fo the sense amplifier.
In fact, the array may require a quite large number of .csv file, which are
time demanding to handle without a script.

Array signals

The script for the array signals contains a functions whose arguments are:

• operation: erasing, programming or reading;

• cycle: during which cycle the operation happens;

76

4.4 – NOR FeFET memory array: Testbench and scripts

• duration: how long, in total, the simulation is going to last;

• word: the word to be written to the memory in case of programming.
Otherwise, it is unused;

• col: at which address (column) the operation is taking place;

• time_offset: if different from 0, allows to append further operations to
the simulation.

Moreover, the script specifies some parameters such as the duration in sec-
onds of a cycle, the array dimension, the rise/falling time and VDD.

1 # WL now
2 for wl in range(len_word):
3 if wl== col and t== cycle:
4 file_WL [wl]. write(str ((t -1)*t0 + t_rise) +

" " + ’3’ + "\n")
5 file_WL [wl]. write(str(t*t0) + " " + ’3’ +

"\n")
6 else:
7 file_WL [wl]. write(str ((t -1)*t0 + t_rise)

+ " " + ’0’ + "\n")
8 file_WL [wl]. write(str(t*t0) + " " + ’0’ +

"\n")

Listing 4.1: Source code of the Python script for the array signals. The
generation of the word lines is shown.

In the source code above, it is shown how the word lines are generated in
case of a programming operation. Thereby, the script sweeps all the word
lines in the memory, for each cycle out of the total duration, and writes 3 V
to the correct memory address (column) at the correct cycle.

1 # SL now
2 for sl in range(len_word):
3 if t== cycle:
4 if int(word[sl])== 0:
5 file_SL [sl]. write(str ((t -1)*t0 +

t_rise) + " " + ’3’ + "\n")
6 file_SL [sl]. write(str(t*t0) + " " + ’

3’ + "\n")
7 elif int(word[sl])== 1:
8 file_SL [sl]. write(str ((t -1)*t0 +

t_rise) + " " + ’0’ + "\n")

77

4 – FeFET–based memory array

9 file_SL [sl]. write(str(t*t0) + " " + ’
0’ + "\n")

10 else:
11 file_SL [sl]. write(str ((t -1)*t0 + t_rise)

+ " " + ’0’ + "\n")
12 file_SL [sl]. write(str(t*t0) + " " + ’0’ +

"\n")

Listing 4.2: Source code of the Python script for the array signals. The
generation of the source lines is shown.
Here, instead, the generation of the source lines in case of programming is
shown. As discussed in subsection 4.2.3, the source lines are sweeped and
0 V is written if a ‘1’ is addressed to that cell and the cycle is correct, 3 V
otherwise.
Furthermore, the other operations behave in a similar way. The entire code
is left to the Appendix.

Sense Amplifier signals

The script for the sense amplifier signals contains a functions whose argu-
ments are:

• signal: the signal to be controlled. Each signal is associated to an op-
eration (e.g. WLRef is associated to programming the dummy cell during
the initialization of the memory);

• start: the starting cycle of the operation associated to the signal;

• stop: the final cycle of the operation associated to the signal;

• duration: how long, in total, the simulation is going to last;

• time_offset: if different from 0, allows to append further operations to
the simulation.

Therefore, the code has the same structure of the code portions shown pre-
viously.

4.5 NOR FeFET memory array: measure-
ments and performances

As explained in section 4.4, several measurements are taken to characterize
the proposed memory array. Therefore, in the following, the main waveforms

78

4.5 – NOR FeFET memory array: measurements and performances

will be shown as long as graphs to put in comparison the arrays of different
dimensions.
Moreover, the writing and reading operations follow the concepts discussed
in subsection 4.2.3 and subsection 4.2.4, where the sequence of necessary
steps are shown in Figure 4.7 and Figure 4.9. Therefore, Figure 4.17 shows a

Figure 4.17: Simulation of memory operations sequence in three cycles: eras-
ing, programming and reading. 8x8 array.

simulation of three cycles of memory operations. It is shown how the signals
manage the three allowed operation of the array.

79

4 – FeFET–based memory array

Parameter value
VDD 1 V
trise, tfall 50 ps
t0 (period) 5 ns
tF E (thickness) 100 nm
Vread 0 V
Vselect 500 mV
Vprogram 3 V
Verase −5 V
Integration period 1 ns*, 5 ns**
Thresholds for signal delay 90%–90%

Table 4.1: List of the simulation parameters used for the performance mea-
surments.
*: integration period for the power during a read operation;
**: integration time for the power during a write operation.

4.5.1 Delays

The extracted delays are summarized in Figure 4.18. Those results are ob-
tained considering an input slew —the rising and falling time of the signals
generated— of 50 ps.
The programming operation appears to be faster than the erasing operation,
due to asymmetries in the FeFET hysteresis, as it is clear from Figure 3.8
and Figure 3.9, for instance. In fact, in the tested FeFET model, less efforts
in terms of voltage level and duration of the pulse are required to switch on
the polarization than to switch it off.
For what concern the reading operation, the results refer to the performance
of the sense amplifier already introduced in section 4.3. Here, the reading
of a cell containing ‘1’ tends to be slower than the other case. Furthermore,
in Figure 4.19 the waveforms of the word line and the data inside the cell
—the polarization of the FeFET— are shown to have a visual example of the
process inside the cell.
In Figure 4.20 the waveforms of the select line and the output of the sense
amplifier are shown to demonstrate the behavior of the device applied to an
array.

80

4.5 – NOR FeFET memory array: measurements and performances

(a) Reading delays.

(b) Writing delays.

Figure 4.18: Graphs of the simulated delays of the memory arrays.

4.5.2 Power consumption
The extracted average power of the array and the sense amplifier are sum-
marized in Figure 4.21, Figure 4.22 and in Figure 4.23. Since the operations
of writing and reading are affected by different delays, periods of 5 ns and
1 ns are used, respectively, to integrate the waveforms. Moreover, the idle
power is integrated over 5 ns.
Therefore, the programming dynamic power is higher than the erasing power,
since the FeFET, when programmed to the high conduction state, might be
affected by current leakage which leads to greater peak currents as shown in
Figure 4.24.
Moreover, in Figure 4.24, negative peaks are generated at the end of the

81

4 – FeFET–based memory array

(a) Program delay.

(b) Erase delay.

Figure 4.19: Programming and erasing delays in the 32x32 array.

writing cycle. This behavior is connected to the ideal generators going back
to an idle state, where the power profiles is calculated by means of a sum
of all the current–voltage products of the generators. In those points, the
current tends to switch its verse.
Also, the array consumes more when a ‘1’ is read, since in that case ION

flows from the bit lines to the source lines.

82

4.5 – NOR FeFET memory array: measurements and performances

(a) Reading ‘0’ delay.

(b) Reading ‘1’ delay.

Figure 4.20: Reading delays of the sense amplifier for the 32x32 array.

83

4 – FeFET–based memory array

(a) Writing average power consumption.

(b) Reading average power consumption.

Figure 4.21: Graphs of the simulated average power consumed by the arrays
during the writing and reading operations.

84

4.5 – NOR FeFET memory array: measurements and performances

Figure 4.22: Graph of the simulated average idle power consumed by the
array during various phases.

85

4 – FeFET–based memory array

(a) Average power consumption for a reading.

(b) Average idle power consumption.

Figure 4.23: Graphs of the simulated average power consumed by the sense
amplifier during the reading operation and in idle.

86

4.5 – NOR FeFET memory array: measurements and performances

(a) Power profile during a program operation.

(b) Power profile during an erase operation.

Figure 4.24: Power waveforms during writing operations in the 32x32 array.

87

88

Chapter 5

Programmable
FeFET–based Logic in
Memory

5.1 Overview
The literature presented in subsection 2.2.2 provides several examples of cir-
cuits for computing inside the memory. Therefore, the discussed topologies
for FeFET–based computing allow to derive solutions for the implementa-
tion of smart cells, capable of both memory and logic, which are described
in section 5.3. Then, the concept of Liberty file is introduced in section 5.4
and the aforementioned LiM cells are simulated in Cadence Virtuoso and
characterized by the Liberty approach.

5.2 LiM: template
5.2.1 Schematic
Every LiM cell presented in this work follows the same template, inspired by
Figure 2.40 and discussed in [27].
Therefore, the only variation to take into account is the presence or not of a
complementary couple of FeFETs, which store both the data and its inverted
value.
In particular, a FeFET–based LiM cell is composed by three main parts and

89

5 – Programmable FeFET–based Logic in Memory

(a) LiM template of single FeFET
cell.

(b) LiM template of double FeFET cell.

Figure 5.1: Schematic of the LiM cell template.

is depicted in Figure 5.1:

• memory: one or two FeFETs store the data, similarly to the basic cell
discussed in section 3.4. In fact, in case of single FeFET, it is connected
to a source line, a word line and a bit line through a selector transistor.
Otherwise, if there are two FeFETs, the one storing the original data is
connected to the bit line.
Moreover, the presence of the complementary data would allow the use
of a differential sensing circuit, but the design and simulation of a new
differential sense amplifier go beyond the aim of this work;

• n–type logic circuit: this part is responsible for the logic computa-
tion. In particular, a pull–down circuit, which is different according to
the typology of LiM cell, generates a current output. Moreover, this
part can be composed by standard n–type MOSFETs either stand alone
or in combination with FeFETs. In the latter case, FeFETs act as the
programmable part of the circuit, allowing the LiM cell to be customiz-
able with more than one logic function.
The external input(s) X is a logic signal which drives the gate of the
transistors mentioned above;

• output circuit: an output circuit is needed to convert the current
output to a logic voltage level. Thus, the schematic in Figure 5.2 is
adopted, which is based on the concept of pulling–up the voltage of
a match line with a diode–connected active load. Moreover, a PWR
transistor cuts the static power when the logic is unused. Finally, the
output is buffered by a CMOS inverter stage.

90

5.2 – LiM: template

Figure 5.2: Schematic in Cadence Virtuoso of the output circuit of the LiM
template.

5.2.2 Testbench

The testbench used for all the instances of LiM cell is shown in Figure 5.3.
For the writing operation, PWL generators have been used to drive the word
lines; for the reading operation, an instance of a sense amplifier with a bit
line capacitance of 100 fF is set up; for the logic operation, PWL generators
are used to drive the external inputs and control signals. Moreover, a load
capacitance is added, whose value is parameteric during the simulations as
it is discussed in section 5.4.
All the simulations parameters are summed–up in Table 5.1.
Finally, there is a singularity in the following simulations, since writing the
cell is executed togheter with the logic operation. Normally, this is forbidden
due to the fact that if overlapped, these operations could lead to glitches
in the output. Nevertheless, these simulations can be considered debugging
operations in order to show the correct behavior of the logic circuit.

91

5 – Programmable FeFET–based Logic in Memory

Figure 5.3: Testbench of a generic LiM cell.

5.3 LiM: circuits for computing
The schematic of six LiM cells are presented and simulations are performed
to verify the behavior of the cell during the logic operation(s).
Nonetheless, since the writing and reading operations are identical to what
presented in subsection 4.2.3 and subsection 4.2.4, these are not discussed
here.

5.3.1 LUT cell
Schematic

The LUT cell, whose schematic is shown in Figure 5.4, is a LiM memory
cell capable of executing all the possible logic functions with two inputs, by
means of 15 transistors. Its logic circuit is made by four branches which are

92

5.3 – LiM: circuits for computing

Parameter value
VDD 1 V
trise, tfall 0.01 · t0*, varying**
t0 (period) 40 ns*, 80 ns**
tF E (thickness) 100 nm
Vread 0 V
Vselect 500 mV
V ext_input

H 1 V
Vprogram 3 V
Verase −5 V

Power integration period trise, tfall (dynamic)
t0 (static)

Thresholds for signal delay 50%–50%
Thresholds for rise and fall time 30%–70%
Bit line capacitance 100 fF
Load capacitance 100 fF*, varying**

Table 5.1: List of the simulation parameters used for the performance mea-
surments of the LiM cells.
*: value for the LiM simulations;
**: value for the Liberty characterization (section 5.4).

Figure 5.4: Schematic level of the LiM LUT cell.

provided by a programmable FeFET — A, B, C, or D —. In each branch,
the conduction is activated only by the correct combination of X and data.
Therefore, only one branch conducts per time, and the output value depends

93

5 – Programmable FeFET–based Logic in Memory

on whether the programmable FeFET is previously written with ‘0’ or ‘1’.
The design of the LUT cell is derived from the Look Up Tables discussed in
[26].

Word line(s) differential
External input number 1
Input line(s) differential
Logic functions 14
Transistor number 15

Table 5.2: LUT cell features.

Simulation

data X f(X, data)
0 0 D
0 1 C
1 0 B
1 1 A

Table 5.3: Truth table of the LUT cell.

Referring to Table 5.3, the four programmable FeFETs can be written to
emulate the desired logic function. Thus, the LiM LUT cell is simulated in
order to perform both a XOR function and a NAND funtions. Then, three
operations are executed: set up the LiM function, writing the cell and the
logic operation.
The resultant waveforms are shown in Figure 5.5, Figure 5.6 for the XOR
case, and in Figure 5.7, Figure 5.8 for the NAND case.

5.3.2 AND–OR cell
Schematic

The schematic of the AND–OR cell is shown in Figure 5.9. Here is presented
a LiM cell which can perform both the AND and OR functions with a total
of 11 transistors and 3 programmable FeFETs to select the function. That

94

5.3 – LiM: circuits for computing

Figure 5.5: Setting up the LiM function by driving the four programming
word lines. Simulation of the XOR function programmed to the LUT cell
(1).

is, there are two paths in the logic circuit, and only one path per time is
activated by properly writing the FeFETs A and B.

Word line(s) single
External input number 1
Input line(s) single
Logic functions 2
Transistor number 11

Table 5.4: AND–OR cell features.

95

5 – Programmable FeFET–based Logic in Memory

Figure 5.6: Executing the LiM function by changing data and X. Simulation
of the XOR function programmed to the LUT cell (2).

A B f(A,B)
0 0 unconditional 0
0 1 OR
1 0 AND
1 1 X

Table 5.5: Truth table of the AND–OR cell.

Simulation

In Table 5.5 it is discussed what function the AND–OR cell is performing
according to the values written to its programmable FeFETs. Therefore, out
of the two cases of interest, the other functions are a ‘don’t care’.
Thus, the first part of the simulation regards setting up the cell, while the
second part is the logic operation.
The resultant waveforms are shown in Figure 5.10, Figure 5.11 for the AND

96

5.3 – LiM: circuits for computing

Figure 5.7: Setting up the LiM function by driving the four programming
word lines. Simulation of the NAND function programmed to the LUT cell
(1).

case, and in Figure 5.12, Figure 5.13 for the OR case.

5.3.3 3–functions cell
Schematic

Figure 5.14 shows the schematic of the 3–functions cell, capable fo executing
the three logic functions NOR, AND and XNOR, due to the fact that two
programmable transistors enable three different paths in the logic circuit of
the cell.
Moreover, this cell has 11 transistors.

Simulation

The logic function allowed by this cell are summarized in Table 5.7.
Following, the waveforms for the simulation for the three possible functions

97

5 – Programmable FeFET–based Logic in Memory

Figure 5.8: Executing the LiM function by changing data and X. Simulation
of the NAND function programmed to the LUT cell (2).

Figure 5.9: Schematic level of the LiM AND–OR cell.

98

5.3 – LiM: circuits for computing

Figure 5.10: Setting up the LiM function by driving the two programming
word lines. Simulation of the AND function programmed to the AND–OR
cell (1).

Word line(s) differential
External input number 1
Input line(s) differential
Logic functions 3
Transistor number 11

Table 5.6: 3–functions cell features.

are shown. That is:

• NOR: Figure 5.15 and Figure 5.16;

• AND: Figure 5.17 and Figure 5.18;

• XNOR: Figure 5.19 and Figure 5.20.

99

5 – Programmable FeFET–based Logic in Memory

Figure 5.11: Executing the LiM function by changing data and X. Simulation
of the AND function programmed to the AND–OR cell (2).

A B f(A,B)
0 0 unconditional 0
0 1 NOR
1 0 AND
1 1 XNOR

Table 5.7: Truth table of the 3–functions cell.

5.3.4 XOR cell
Schematic

Contrarily to the LiM LUT, AND–OR and 3–functions cells, the XOR cell,
whose schematic is depicted in Figure 5.21, is a non–programmable LiM cell
which executes a bitwise XOR between the stored data and an external input.
Moreover, the data is stored in a complementary way, and the external input

100

5.3 – LiM: circuits for computing

Figure 5.12: Setting up the LiM function by driving the two programming
word lines. Simulation of the OR function programmed to the AND–OR cell
(1).

is differential, as well.
The logic circuit is composed by two branches which emulate the behavior
of the XOR function as a sum of products. This cell has 9 transistors.

Word line(s) differential
External input number 1
Input line(s) differential
Logic functions 1
Transistor number 9

Table 5.8: XOR cell features.

101

5 – Programmable FeFET–based Logic in Memory

Figure 5.13: Executing the LiM function by changing data and X. Simulation
of the OR function programmed to the AND–OR cell (2).

Figure 5.14: Schematic level of the LiM 3–functions cell.

102

5.3 – LiM: circuits for computing

Figure 5.15: Setting up the LiM function by driving the two programming
word lines. Simulation of the NOR function programmed to the 3–functions
cell (1).

Simulation

The only simulation allowed is the one concerning the XOR function, and it
is shown in Figure 5.22.

5.3.5 Full Adder cell
Schematic

The schematic of the LiM Full Adder cell is shown in Figure 5.23. This cell
presents some differences with respect to the previous cells, starting from the
fact that it takes three inputs and generates two outputs. Moreover, another
difference is the presence of two logic subcirtcuits stacked one on the top of
the other. That is, the match line of the first subcircuit is used as input
for the second subcircuit.
In particular, the first logic subcircuit generates the signal C0 which is used

103

5 – Programmable FeFET–based Logic in Memory

Figure 5.16: Executing the LiM function by changing data and X. Simulation
of the NOR function programmed to the 3–functions cell (2).

as gate voltage to generate S. Then, the outputs are finally converted by
means of pull–up circuits and CMOS inverters, similarly to the other cells.
Furthermore, this LiM cell is able to perform the full adder operation with
its data as one addendum and two external data as the other addendum and
the carry in.
The transistor number is 21 and this cell is the largest among the cells dis-
cussed in this work. Nonetheless, this full adder circuit can be also recognized
as a programmable logic circuit if one of the inputs is fixed. That is, the two
inputs AND, OR, XOR and XNOR functions are available in this LiM cell.

Simulation

Table 5.10 can be splitted in two parts, keeping one of the operands fixed.
For instance:

• if B = 1, Sum represents the XNOR function, while Cout the OR function;

104

5.3 – LiM: circuits for computing

Figure 5.17: Setting up the LiM function by driving the two programming
word lines. Simulation of the AND function programmed to the 3–funtions
cell (1).

Word line(s) single
External input number 2
Input line(s) single
Logic functions 2 (4)
Transistor number 21

Table 5.9: Full Adder cell features.

• if B = 0, Sum represents the XOR function, while Cout the AND function;

Therefore, these functions are simulated and shown in, respectively, Fig-
ure 5.24 and Figure 5.25.

105

5 – Programmable FeFET–based Logic in Memory

Figure 5.18: Executing the LiM function by changing data and X. Simulation
of the AND function programmed to the 3–functions cell (2).

A B Cin Sum Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 5.10: Truth table of the Full Adder cell.

106

5.3 – LiM: circuits for computing

Figure 5.19: Setting up the LiM function by driving the two programming
word lines. Simulation of the XNOR function programmed to the 3–functions
cell (1).

5.3.6 Majority voter cell

Schematic

The concept behind the Majority Voter (MV) cell in Figure 5.26 is the same
as in the case of the Full Adder cell. In fact, for the MV cell there is no
possibility to program one ore more FeFETs to change logic function, but
the presence of three total inputs — data, B and C — allows to have at
disposal the two inputs functions AND and OR, in addition to the three
inputs majority voter function.
Moreover, in this cell the logic circuit is made by three branches, since two
sums and three products are needed to obtain the MV, and the number of
transistor is 11.

107

5 – Programmable FeFET–based Logic in Memory

Figure 5.20: Executing the LiM function by changing data and X. Simulation
of the XNOR function programmed to the 3–functions cell (2).

Figure 5.21: Schematic level of the LiM XOR cell.

Simulation

The same approach used for the Full Adder cell is used for the MV cell. That
is, Table 5.12 is splitted in two parts and two functions are extracted:

108

5.3 – LiM: circuits for computing

Figure 5.22: Executing the LiM function by changing data and X. Simulation
of the XOR function in the XOR cell.

Figure 5.23: Schematic level of the LiM FA cell.

109

5 – Programmable FeFET–based Logic in Memory

Figure 5.24: Executing the LiM function by changing A and Cin. B, which is
the cell data, is fixed to ‘1’. Simulation of the XNOR and OR functions in
the Full Adder cell.

Word line(s) single
External input number 2
Input line(s) single
Logic functions 1 (2)
Transistor number 11

Table 5.11: Majority Voter cell features.

• if A = 1, Vout represents the OR function;

• if A = 0, Vout represents the AND function.

Where A is the data stored in the cell and B and C are the external inputs.
Therefore, these functions are simulated and shown in, respectively, Fig-
ure 5.27 and Figure 5.28. Finally, the cells features are compared in Ta-
ble 5.13

110

5.3 – LiM: circuits for computing

Figure 5.25: Executing the LiM function by changing A and Cin. B, which is
the cell data, is fixed to ‘0’. Simulation of the XOR and AND functions in
the Full Adder cell.

Figure 5.26: Schematic level of the LiM Majority Voter cell.

111

5 – Programmable FeFET–based Logic in Memory

A B C Vout

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 5.12: Truth table of the Majority Voter cell.

Figure 5.27: Executing the LiM function by changing B and C. A, which is
the cell data, is fixed to ‘1’. Simulation of the OR function in the Majority
voter cell.

5.4 Liberty characterization for Logic in Mem-
ory

5.4.1 Purposes
In the field of the simulation of logic gates, memory cells or ports in general,
a library might usually be described in various formats, according to which

112

5.4 – Liberty characterization for Logic in Memory

Figure 5.28: Executing the LiM function by changing B and C. A, which is
the cell data, is fixed to ‘0’. Simulation of the AND function in the Majority
voter cell.

tool is using it.
Therefore, the schematic level description, which is converted for instance
by Cadence Virtuoso in a SPICE description, is mostly used in chapter 4
and section 5.3 for the purposes of this work. Nevertheless, commercial
logic synthesis tools for digital microelectronics, in order to characterize an
arbitrary architecture, use timing and power data to estimate:

• the best logic gate in terms of performance for a given path;

• the path total delay.

5.4.2 Liberty file template
As reported in [45], the aforementioned timing and power parameters are
represented by a .lib file in ASCII language — Liberty file —, associated
with a cell or gate in a precise semiconductor technology. In this case, the

113

5 – Programmable FeFET–based Logic in Memory

LUT AND–OR 3–functions
Word line(s) differential single differential
External input number 1 1 1
Input line(s) differential single differential
Logic functions 14 2 3
Transistor number 15 11 11

(a)

XOR Full Adder Majority Voter
Word line(s) differential single single
External input number 1 2 2
Input line(s) differential single single
Logic functions 1 2 (4) 1 (2)
Transistor number 9 21 11

(b)

Table 5.13: Comparison of cells dimension and features.

Figure 5.29: Concept of a cell in Liberty description. [45].

CMOS 28 nm FD–SOI.
Thereby, in order to obtain these performance descriptions, the cells have to
be simulated under several input conditions, which is discussed in subsec-
tion 5.4.3.
Generally, a cell in this description is not different from a black box (Fig-
ure 5.29) characterized by its input and output signals and the paths between
these. In particular, path delays are considered for each input signal transi-
tion which affects an output signal. Also, such a delay might depend on the
state of the other inputs. Moreover, the LiM cells presented in section 5.3
do not have sequential logic, then each path does not depend on the other
outputs.

114

5.4 – Liberty characterization for Logic in Memory

1 /* General Syntax of a Technology Library */
2 library (nameoflibrary) {
3 ... /* Library level simple and complex attributes */
4 ... /* Library level group statements */
5 ... /* Default attributes */
6 ... /* Scaling Factors for delay calculation */
7

8 /* Cell definitions */
9

10 cell (cell_name) {
11 ... /* cell level simple attributes */
12

13 /* pin groups within the cell */
14 pin(pin_name) {
15 ... /* pin level simple attributes */
16

17 /* timing group within the pin level */
18 timing (){
19 ... /* timing level simple attributes */
20 } /* end of timing */
21

22 ... /* aditional timing groups */
23

24 } /* end of pin */
25

26 ... /* more pin descriptions */
27

28 } /* end of cell */
29

30 ... /* more cells */
31

32 } /* end of library */

Listing 5.1: Source code af a Liberty file template.

In Listing 5.1 it is shown a template of a Liberty file, where, first of all, the
library name is defined. Then, cells are defined and for each pin the cor-
rispondent time measurements are reported. That is, these are in the form
of a look–up–table where delays information are provided, in relation with
the simulation parameters. The same considerations are applied to the power
measurements.

1 /* Units Attributes */
2 time_unit :"1ns";

115

5 – Programmable FeFET–based Logic in Memory

3 power_unit :"1uW";
4 voltage_unit :"1V";
5 current_unit :"1A";
6 capacitive_load_unit :"1pF";
7

8 /* Threshold Definitions */
9 slew_lower_threshold_pct_fall :30.00 ;

10 slew_lower_threshold_pct_rise :30.00 ;
11 slew_upper_threshold_pct_fall :70.00 ;
12 slew_upper_threshold_pct_rise :70.00 ;
13 input_threshold_pct_fall :50.00 ;
14 input_threshold_pct_rise :50.00 ;
15 output_threshold_pct_fall :50.00 ;
16 output_threshold_pct_rise :50.00 ;

Listing 5.2: Details of measurement units and thresholds of a Liberty file for
the LiM cells in section 5.3.

Moreover, among the attributes of a library in a Liberty file, measurement
units and thresholds are given in Listing 5.2. The discussed parameters are
collected in Table 5.1.

1 pin(Vout) {
2 direction : output ;
3 timing () {
4 related_pin :"X";
5 cell_rise (Timing_7_7) {
6 index_1 ("0.05 ,0.1 ,0.15 ,0.2 ,0.25 ,0.3 ,0.35"); // input slew

(ns)
7 index_2 (" 0.015 ,0.05 ,0.085 ,0.12 ,0.155 ,0.19 ,0.225 "); //

load capacitance (pF)
8 values (.......) ;
9 }

10 }
11 }

Listing 5.3: Example of look–up–table about timing measurements of a
Liberty file for the LiM cells in section 5.3.

As far as the look–up–table is concerned, Listing 5.3 contains an example of
how the timing measurements are organized. That is, in the section dedi-
cated to the output pin Vout, a table for the output rise time is inserted in
correspondence to the related pin (input) X. In particular, for each combina-
tion of the two simulation parameters — input slew and load capacitance —
a timing value is given.

116

5.4 – Liberty characterization for Logic in Memory

Therefore, this example applies to all the measurements which are discussed
in subsection 5.4.3.

5.4.3 Measurements
For the objectives of this work, Liberate, the automatized tool in Cadence
Virtuoso to perform Liberty simulations, cannot properly read the FeFET
model discussed in subsection 3.1.1 since it is described in Verilog–A lan-
guage.
Therefore, the simulator ADE available in Virtuoso has been adopted in order
to obtain timing and power look–up–tables for each LiM cells in section 5.3.
Furthermore, each delay and power measurement follows the schemes in

(a) Input slew, output slew and delay. (b) Dynamic power.

Figure 5.30: Liberty measurements in terms of delays and power [45].

Figure 5.30. In particular, the average dynamic power is calculated by in-
tegrating the power profile of the cell in the interval going from the 30% to
the 70% of the rising (or falling) output. This interval is also calculated and
collected as the rise time or fall time of the signal.
One must underline that every measurement is performed with parametric
values of the input slew of the signals — 30%–70% rise or fall time — and
of the load capacitance of the measured output. Therefore, these parameters
are indicated in Listing 5.3 and are the same for every cell. Thus, 7x7 look–
up–tables are generated.
Moreover, the list of measurements performed to the LiM cells is the follow-
ing:

• input to high output propagation delay: every delay from the

117

5 – Programmable FeFET–based Logic in Memory

rise/fall of one input to a rising output, when the former affects the
latter;

• input to low output propagation delay: every delay from the rise/-
fall of one input to a falling output, when the former affects the latter;

• output rise time: the 30%–70% rise time of an output;

• output fall time: the 70%–30% fall time of an output;

• average dynamic power rising output: the average dynamic power
calculated during the output rise time;

• average dynamic power falling output: the average dynamic power
calculated during the output fall time;

• average static power: the average static power calculated during one
period;

• peak power rising output: the peak power when an output rises;

• peak power falling output: the peak power when an output falls;

• word line to data ‘0’ propagation delay: the delay when ‘0’ is
written to a FeFET;

• word line to data ‘1’ propagation delay: the delay when ‘1’ is
written to a FeFET;

• writing data rise time: the 30%–70% rise time of data;

• writing data fall time: the 70%–30% fall time of data;

• average dynamic power programming: the average dynamic power
calculated during writing ‘1’;

• average dynamic power erasing: the average dynamic power calcu-
lated during writing ‘0’;

5.4.4 LiM cells
This section is a close–up to each LiM cell in section 5.3 in order to discuss
the measurements to execute and to give examples of waveforms related to
the Liberty characterization.

118

5.4 – Liberty characterization for Logic in Memory

LUT cell

The LUT cell, recalling Figure 5.4, can be divided in 28 states, one for each
logic functions for which the FeFETs can be programmed together with the
data stored. Therefore, the variation of the input X is associated to the out-
put Vout.
Moreover, Figure 5.31, Figure 5.32, Figure 5.33 and Figure 5.34 show wave-
forms from the Liberty simulation of the cell.

Figure 5.31: Low to high propagation delay (ns), state XOR, cell data ‘0’
and X switching from ‘0’ to ‘1’. LUT cell.

AND–OR cell

The AND–OR cell in Figure 5.9 can be divided in 8 states, one for each logic
functions for which the FeFETs can be programmed together with the data
stored. Therefore, the variation of the input X is associated to the output
Vout.
Moreover, Figure 5.35 and Figure 5.36 show waveforms from the Liberty
simulation of the cell.

119

5 – Programmable FeFET–based Logic in Memory

Figure 5.32: Output rise time (ns), state XOR, cell data ‘0’ and X switching
from ‘0’ to ‘1’. LUT cell.

3–functions cell

The 3–functions cell, whose schematic is shown in Figure 5.14, can be di-
vided in 6 states, one for each logic functions for which the FeFETs can be
programmed together with the data stored. Therefore, the variation of the
input X is associated to the output Vout.
Moreover, Figure 5.37, Figure 5.38 and Figure 5.39 show waveforms from the
Liberty simulation of the cell.

XOR cell

The XOR cell, recalling Figure 5.21, can be divided in 2 states, one for each
value of the data stored. Therefore, the variation of the input X is associated
to the output Vout.
Moreover, Figure 5.40 and Figure 5.41 show waveforms from the Liberty
simulation of the cell.

120

5.4 – Liberty characterization for Logic in Memory

Figure 5.33: Average dynamic power (µW), state XOR, cell data ‘0’ and X
switching from ‘0’ to ‘1’. LUT cell.

Figure 5.34: LiM output, state XOR, cell data ‘0’ and X switching from ‘0’
to ‘1’. LUT cell.

121

5 – Programmable FeFET–based Logic in Memory

Figure 5.35: Low to high propagation delay (ns), state AND, cell data ‘1’
and X switching from ‘0’ to ‘1’. AND–OR cell.

Full Adder cell

The Full Adder cell, recalling Figure 5.23, can be divided in 2 states, one
for each value of the data stored. Nevertheless, due to the presence of two
external inputs, each measurement has to take into account that the other
input might affect the outputs. Thus, 8 states for each output signal can be
individuated. Then, the variation of the two inputs A and Cin is associated
to the outputs Sum and Cout.
Moreover, Figure 5.42 and Figure 5.43 show waveforms from the Liberty
simulation of the cell.

Majority voter cell

The Majority Voter cell, shown in Figure 5.26, can be divided in 2 states, one
for each value of the data stored. Nevertheless, due to the presence of two
external inputs, each measurement have to take into account that the other
input might affect the outputs. Thus, 8 states can be individuated. Then,
the variation of the two inputs B and C is associated to the output Vout.
Moreover, Figure 5.44 and Figure 5.45 show waveforms from the Liberty

122

5.5 – Results

Figure 5.36: Average static power (nW), state AND, cell data ‘1’ and Vout
low. AND–OR cell.

simulation of the cell.

5.5 Results
At the end of the Liberty characterization performed in section 5.4, some
consideration can be made by considering the extracted data. Therefore,
for each measurement and each cell, a sample of data is randomly selected
among one of the input–output combinations and then the worst value from
all the available data is considered.
For what concerns the correlation number of transistors – number of func-

tions (Figure 5.46), the LUT cell is clearly the most performant, although it
provides only one output. Therefore, it is the most versatile. The Full Adder
cell, instead, has the largest number of transistor but guarantees two outputs
and an above the average number of functions.
Regarding the timing performance (Figure 5.47), the falling propagation de-
lay appears to be always greater than the rising propagation delay. This

123

5 – Programmable FeFET–based Logic in Memory

Figure 5.37: Low to high propagation delay (ns), state AND, cell data ‘1’
and X switching from ‘0’ to ‘1’. 3–functions cell.

aspect might be due to the fact that the output circuit in each cell is com-
posed by a pull–up active load, as discussed in section 5.2. Thus, the output
is driven to VL with a greater effort.
Furthermore, a correlation exists between the peak power during a positive
and a negative transition (Figure 5.48) and the distribution of the number
of transistor. That is, the more transistors contribute to the logic function,
the more instantaneus power is generated during the transitions.
As far as the average dynamic power during a falling transition is regarded,
the power dissipated by the Full Adder cell and the Majority Voter cell is
larger than the power dissipated by the other cells. This could be associated
to the greater number of inputs and outputs with respect to the other cells.

5.6 Conclusions and future work

Logic in Memory cells have been realized exploiting the electrical properties
of the ferroelectric field effect transistor, in the field of technologies beyond

124

5.6 – Conclusions and future work

Figure 5.38: Low to high transition peak power (µW), state AND, cell data
‘1’ and X switching from ‘0’ to ‘1’. 3–functions cell.

the conventional CMOS. Six different cells have been characterized in Ca-
dence Virtuoso in order to extract timing and power parameters for a Liberty
file. Therefore, the concpet of Liberty characterization has been introduced
in section 5.4.
The aforementioned cells have been presented at the schematic level and sim-
ulated. Results are shown in section 5.3.
Nevertheless, conventional memory arrays based on the ferroelectric transis-
tor have been designed to propose an alternative to standard CMOS memo-
ries. These have been realized in different dimensions to discuss the effects
of the scaling. Also, analog pheriperal circuits have been made. Results are
discussed in subsection 4.5.1 and subsection 4.5.2.
Moreover, considerations regarding the LiM cells have been made in sec-
tion 5.5.
Finally, this work could inspire future works and improvements, such as:

• in order to characterize the LiM cells in a more formal and automatized
way, efforts might be made in the direction of converting the Verilog–
A model of the FeFET into a SPICE description. Thus, Liberate tool

125

5 – Programmable FeFET–based Logic in Memory

Figure 5.39: Power profile (µW), state AND, cell data ‘1’ and X switching
from ‘0’ to ‘1’. 3–functions cell.

Figure 5.40: Low to high propagation delay (ns), cell data ‘0’ and X switching
from ‘0’ to ‘1’. XOR cell.

126

5.6 – Conclusions and future work

Figure 5.41: LiM output, cell data ‘0’ and X switching from ‘0’ to ‘1’. LUT
cell. XOR cell.

would be able to read it and to generate the Liberty file which can be
read by a synthesis tool;

• more LiM cells could be designed in order to expand the space of solu-
tions for Logic in Memory which this work already offers;

• the use of a synthesis tool to generate a complete memory array starting
from a LiM cell. Thus, a precise comparison between the performance of
this LiM array and the conventional array discussed in chapter 4 becomes
possible;

• a layout description of the FeFET, in first place, and of the LiM cells,
secondly, is out of the goals of this work, but necessary to obtain more
accurate measurements for the Liberty characterization;

• a more accurate physical model of the FeFET would provide a more
realistic behavior of the device in terms of simulations. That is, the
Preisach model mentioned in subsection 3.1.2 could be translated to a
Verilog–A or SPICE model.

127

5 – Programmable FeFET–based Logic in Memory

Figure 5.42: Low to high propagation delay (ns), cell data ‘0’, A = 1 and Cin
switching from ‘0’ to ‘1’. Full Adder cell.

128

5.6 – Conclusions and future work

Figure 5.43: Average dynamic power (µW), cell data ‘0’, A = 1 and Cin
switching from ‘0’ to ‘1’. Full Adder cell.

129

5 – Programmable FeFET–based Logic in Memory

Figure 5.44: Low to high propagation delay (ns), cell data ‘0’, C = 1 and B
switching from ‘0’ to ‘1’. Majority Voter cell.

Figure 5.45: Cell data profile switching from ‘0’ to ‘1’. Majority Voter cell.

130

5.6 – Conclusions and future work

Figure 5.46: Prospect of cell size, number of functions, number of inputs and
number of outputs from the different LiM cells.

Figure 5.47: Prospect of the timing measurements from the different LiM
cells.

131

5 – Programmable FeFET–based Logic in Memory

Figure 5.48: Prospect of the power measurements from the different LiM
cells.

132

Appendix A

FeFET model Verilog–A
source code

A.1 Ferroelectric capacitor
1 // //////////////////////////////////
2 // Copyright @ 2015 Purdue University
3

4 // The terms under which the software and associated
documentation (the Software) is provided are as the
following :

5

6 // The Software is provided "as is", without warranty of any
kind , express or implied , including but not limited to the

warranties of merchantability ,
7 // fitness for a particular purpose and noninfringement . In

no event shall the authors or copyright holders be liable
for any claim , damages or other

8 // liability , whether in an action of contract , tort or
otherwise , arising from , out of or in connection with the
Software or the use or other dealings

9 // in the Software .
10

11 // Purdue grants , free of charge , to any users the right to
modify , copy , and redistribute the Software , both within
the user ’s organization and

12 // externally , subject to the following restrictions :
13

14 //1. The users agree not to charge for the code itself but
may charge for additions , extensions , or support .

15

133

A – FeFET model Verilog–A source code

16 //2. In any product based on the Software , the users agree to
acknowledge the Negative capacitor model Research Group

that developed the software . This
17 // acknowledgment shall appear in the product documentation .
18

19 //3. The users agree to obey all U.S. Government restrictions
governing redistribution or export of the software .

20

21 //4. The users agree to reproduce any copyright notice which
appears on the software on any copy or modification of
such made available to others .

22

23 // Agreed to by
24 // Muhammad A. Wahab and Muhammad Ashraf Alam , Purdue

University
25 // May 10, 2015
26 // //
27

28 /* ** */
29 // revision log
30 /* ** */
31 // Deployed on 04/05/2016 as a part of verilog -a NCFET model

version 1.1.0 by Muhammad A. Wahab
32 // Added dipole response
33 /* ** */
34 /* ** */
35 // Deployed on 11/29/2015 as a part of verilog -a NCFET model

version 1.0.0 by Muhammad A. Wahab
36 /* ** */
37

38 // ///
39 // Verilog -A version of Potential Model for negative

capacitor
40 // Implemented on May 10, 2015 by Muhammad A. Wahab
41 // Default parameters are from References of the manual
42

43 ‘include " constants .vams"
44 ‘include " disciplines .vams"
45

46 module neg_cap_3t (ncp ,ncn , qg_as_v);
47 inout ncp , ncn , qg_as_v ;
48 electrical ncp , ncn , qg_as_v ;
49

50

51 parameter real alpha = -1.05 e11 from (-inf:
inf);

134

A.2 – MOSFET

52 parameter real beta = 1e17 from (-inf:inf)
;

53 parameter real gamma = 6e29 from (-inf:
inf);

54 parameter real rho = 25 from [0: inf);
55 parameter real tFE = 100e-7 from [0: inf);
56 parameter real W = 1e-4

from (0: inf);
57 parameter real L = 45e-7

from (0: inf);
58 parameter real eps0 = 8.8542e -10 from (0: inf);
59

60 real C0;
61 real A;
62

63

64 branch (ncp , ncn) fecap , c0;
65

66

67 analog begin
68 A = W*L;
69 C0 = eps0*A/tFE;
70

71

72 // Potential across the ferroelectric capacitor , eq (5)
of the manual

73 //1e-6 is used for unit conversion of charge : uCoul to
Coul

74

75 V(fecap) <+alpha*tFE *(V(qg_as_v)*1e -6) + beta*tFE*pow ((V(
qg_as_v)*1e -6) ,3.0) + gamma*tFE*pow ((V(qg_as_v)*1e -6) ,5.0)
;

76 V(fecap) <+ rho*tFE*ddt(V(qg_as_v)*1e -6);
77 I(c0) <+ C0*ddt(V(c0));
78

79 end
80 endmodule

Listing A.1: Ferroelectric capacitor in Verilog–A description. Reference to
[29].

A.2 MOSFET

1 // //
2 // Copyright @ 2015 Purdue University
3

135

A – FeFET model Verilog–A source code

4 // The terms under which the software and associated
documentation (the Software) is provided are as the
following :

5

6 // The Software is provided "as is", without warranty of any
kind , express or implied , including but not limited to the

warranties of merchantability ,
7 // fitness for a particular purpose and noninfringement . In

no event shall the authors or copyright holders be liable
for any claim , damages or other

8 // liability , whether in an action of contract , tort or
otherwise , arising from , out of or in connection with the
Software or the use or other dealings

9 // in the Software .
10

11 // Purdue grants , free of charge , to any users the right to
modify , copy , and redistribute the Software , both within
the user ’s organization and

12 // externally , subject to the following restrictions :
13

14 //1. The users agree not to charge for the code itself but
may charge for additions , extensions , or support .

15

16 //2. In any product based on the Software , the users agree to
acknowledge the Negative capacitor model Research Group

that developed the software . This
17 // acknowledgment shall appear in the product documentation .
18

19 //3. The users agree to obey all U.S. Government restrictions
governing redistribution or export of the software .

20

21 //4. The users agree to reproduce any copyright notice which
appears on the software on any copy or modification of
such made available to others .

22

23 // Agreed to by
24 // Muhammad A. Wahab and Muhammad Ashraf Alam , Purdue

University
25 // May 10, 2015
26 // //
27

28 /* ** */
29 // revision log
30 /* ** */
31 // Deployed on 04/05/2016 as a part of verilog -a NCFET model

version 1.1.0 by Muhammad A. Wahab

136

A.2 – MOSFET

32 // Declared the variables
33 // Modified Id leakage expression so that Id=0 at Vds =0
34 // Added a selector to inlcude or exclude the Id leakage
35 /* ** */
36 /* ** */
37 // Deployed on 11/29/2015 as a part of verilog -a NCFET model

version 1.0.0 by Muhammad A. Wahab
38 // Added a dummy node to output the gate charge
39 // Added Id leakage with Id -Vgs of the previous MVS model
40 /* ** */
41

42 // ///
43 /* This file is for education and personal use only and is

subject to the copyright of orginal publisher */
44 // Modified on May 10, 2015 by Muhammad A. Wahab to use as a

part of NCFET model
45

46 /* ** */
47 /* Original version of the MVS_1_0_1 model (collected from

NEEDS nanohub website) */
48 /* ** */
49 // VerilogA for virtual - source (VS) based self - consistent

transport / capacitance model for Si MOSFET
50 // transport model: A. Khakifirooz , et al , p. 1674 , T-ED

2009.
51 // charge model: L. Wei et al , p. 1263 , T-ED 2012.
52 // Implemented on July 15, 2013 by S. Rakheja
53 // Modified on Sep. 19, 2013 by S. Rakheja
54 /* ** */
55

56 ‘include " constants .vams"
57 ‘include " disciplines .vams"
58

59 module mvs_5t_mod (d, g, s, b, qg_as_v);
60 inout d, g, s, b, qg_as_v ;
61 electrical d, g, s, b, qg_as_v ;
62 electrical di , si;
63

64 // Original VS parameters
65 parameter real version = 1.01;

// MVS model version = 1.0.1
66 parameter integer type = 1 from [-1 : 1] exclude

0; // type of transistor . nFET type =1; pFET type =-1
67 parameter real W = 1e-4 from (0: inf);

// Transistor width [cm]

137

A – FeFET model Verilog–A source code

68 parameter real Lgdr = 80e-7 from (0: inf);
// Physical gate length [cm]. // This is the

designed gate length for litho printing .
69 parameter real dLg = 10.5e-7 from (0: inf);

// Overlap length including both source and
drain sides [cm]

70 parameter real Cg = 2.2e-6 from (0: inf);
// Gate -to - channel areal capacitance at

the virtual source [F/cm ^2]
71 parameter real etov = 1.3e-3 from (0: inf);

// Equivalent thickness of dielectric at S/D-G
overlap [cm]

72 parameter real delta = 0.10 from [0: inf);
// Drain -induced -barrier - lowering (DIBL) [V/

V]
73 parameter real n0 = 1.5 from [0: inf);

// Subthreshold swing factor [unit -less] {
typically between 1.0 and 2.0}

74 parameter real Rs0 = 100 from (0: inf);
// Access resistance on s- terminal [Ohms -

micron]
75 parameter real Rd0 = 100 from (0: inf);

// Access resistance on d- terminal [Ohms -
micron]

76

// Generally , Rs0 = Rd0 for
symmetric source and drain

77 parameter real Cif = 1e -12 from [0: inf);
// Inner fringing S or D capacitance [F/cm]

78 parameter real Cof = 2e -13 from [0: inf);
// Outer fringing S or D capacitance [F/cm]

79 parameter real vxo = 0.765 e7 from (0: inf);
// Virtual source injection velocity [cm/s]

80 parameter real mu = 200 from (0: inf);
// Low -field mobility [cm ^2/V.s]

81 parameter real beta = 1.7 from (0: inf);
// Saturation factor . Typ. nFET =1.8 , pFET =1.6

82 parameter real Tjun = 298 from [173:
inf); // Junction temperature [K]

83 parameter real phib = 1.2;
// ~abs (2* phif) >0 [V]

84 parameter real gamma = 0.0 from [0: inf);
// Body factor [sqrt(V)]

85 parameter real Vt0 = 0.486;
// Strong inversion threshold voltage [V

]

138

A.2 – MOSFET

86 parameter real alpha = 3.5;
// Empirical parameter for threshold

voltage shift between strong and weak inversion .
87 parameter real mc = 0.2 from [0.01 : 10];

// Choose an appropriate value between
0.01 to 10

88

// For , values outside of this
range , convergence or accuracy of results is not guaranteed

89 parameter integer CTM_select = 1 from [1 : inf
); // If CTM_select = 1, then classic
DD -NVSAT model is used

90

// For CTM_select other than 1,
blended DD -NVSAT and ballistic charge transport model is
used

91 parameter real CC = 0 from [0: inf
); // Fitting parameter to adjust Vg -
dependent inner fringe capacitances (Not used in this
version)

92 parameter real nd = 0 from [0: inf
); // Punch - through factor [1/V]

93

94 parameter integer leak_select = 1 from
[0:1]; // If leak_select = 1, off -
state leakage current saturation (with respect to Vgs) is
included

95

96 ‘define SMALL_VALUE (1e -10)
97 ‘define LARGE_VALUE (40)
98

99 real Rs , Rd , Vds , Vgs , Vgsraw , Vgd , Vgdraw , Vbs , Vdsi , Vgsi ,
Vgdi , Vbsi , dir;

100 real Leff , me , S, phit;
101 real n, nphit , aphit , Vtpcorr , eVgpre , FFpre , ab , Vcorr ,

Vgscorr , Vbscorr , Vt0bs , Vt0bs0 , Vtp , Vtp0;
102 real eVg , FF , eVg0 , FF0 , Qref , eta , eta0;
103 real Qinv , Qinv_corr , vx0 , Vdsats , Vdsat ,Vdratio , Vdbeta ,

Vdbetabeta , Fsat , Id ;
104 real Vgt , psis , Vgta , Vdsatq , Fsatq , x, den;
105 real qsc , qdc , qi , kq , kq2 , kq4 , tol , qsb , qdb , qs , qd , Qs ,

Qd;
106 real Qb , etai , Qinvi , dQinv , dibl_corr ;
107 real Qinvs , Qinvd , Qsov , Qdov , Vt0x , Vt0y , Fs_arg , Fs , Fd_arg

, Fd , FFx , FFy , Qsif , Qdif , Qg , a, Cofs , Cofd;
108

139

A – FeFET model Verilog–A source code

109 real Vt0bs0_vgs0 , eVg_vgs0 , FF_vgs0 , eta_vgs0 , Qinv_corr_vgs0
, Vdsat_vgs0 , Vdratio_vgs0 , Vdbeta_vgs0 , Vdbetabeta_vgs0 ,
Fsat_vgs0 , Id_vgs0 ;

110

111 analog begin
112

113 // Voltage definitions
114 Vgsraw = type * (V(g) - V(si));
115 Vgdraw = type * (V(g) - V(di));
116 if (Vgsraw >= Vgdraw) begin
117 Vds = type * (V(d) - V(s));
118 Vgs = type * (V(g) - V(s));
119 Vbs = type * (V(b) - V(s));
120 Vdsi = type * (V(di) - V(si));
121 Vgsi = Vgsraw ;
122 Vbsi = type * (V(b) - V(si));
123 dir = 1;
124 end
125 else begin
126 Vds = type * (V(s) - V(d));
127 Vgs = type * (V(g) - V(d));
128 Vbs = type * (V(b) - V(d));
129 Vdsi = type * (V(si) - V(di));
130 Vgsi = Vgdraw ;
131 Vbsi = type * (V(b) - V(di));
132 dir = -1;
133 end
134

135

136 // Parasitic element definition
137 Rs = 1e -4/ W * Rs0;

// s- terminal resistance [ohms]
138 Rd = Rs;

// d- terminal resistance [ohms] For symmetric
source and drain Rd = Rs.

139 //Rd = 1e -4/ W * Rd0;
// d- terminal resistance [ohms] { Uncomment

for asymmetric source and drain resistance .}
140 Cofs = (0.345e -12/ etov) * dLg/ 2.0 + Cof;

// s- terminal outer fringing cap [F/cm]
141 Cofd = (0.345e -12/ etov) * dLg/ 2.0 + Cof;

// d- terminal outer fringing cap [F/cm]
142 Leff = Lgdr - dLg;

// Effective channel length [cm]. After
subtracting overlap lengths on s and d side

143

140

A.2 – MOSFET

144 phit = $vt(Tjun);
// Thermal voltage , kT/q [V]

145 me = (9.1e -31) * mc;
// Carrier mass [Kg]

146 n = n0 + nd * Vds;
// Total subthreshold swing factor taking

punchthrough into account [unit -less]
147 nphit = n * phit;

// Product of n and phit [used as one variable
]

148 aphit = alpha * phit;
// Product of alpha and phit [used as one

variable]
149

150

151 // Correct Vgsi and Vbsi
152 // Vcorr is computed using external Vbs and Vgs but internal

Vdsi , Qinv and Qinv_corr are computed with uncorrected
Vgs , Vbs and corrected Vgs , Vbs respectively .

153 Vtpcorr = Vt0 + gamma * (sqrt(abs(phib - Vbs))- sqrt(
phib))- Vdsi * delta;// Calculated from extrinsic Vbs

154 eVgpre = exp ((Vgs - Vtpcorr)/ (aphit * 1.5));
// Calculated from extrinsic Vgs

155 FFpre = 1.0/ (1.0 + eVgpre); //
Only used to compute the correction factor

156 ab = 2 * (1 - 0.99 * FFpre) * phit;
157 Vcorr = (1.0 + 2.0 * delta) * (ab/ 2.0) * (exp(

-Vdsi/ ab)); // Correction to intrinsic Vgs
158 Vgscorr = Vgsi + Vcorr; // Intrinsic Vgs

corrected (to be used for charge and current computation)
159 Vbscorr = Vbsi + Vcorr; // Intrinsic Vgs

corrected (to be used for charge and current computation)
160 Vt0bs = Vt0 + gamma * (sqrt(abs(phib - Vbscorr)) -

sqrt(phib)); // Computed from corrected intrinsic Vbs
161 Vt0bs0 = Vt0 + gamma * (sqrt(abs(phib - Vbsi)) -

sqrt(phib)); // Computed from uncorrected intrinsic
Vbs

162 Vtp = Vt0bs - Vdsi * delta - 0.5 * aphit;
// Computed from corrected intrinsic Vbs and intrinsic
Vds

163 Vtp0 = Vt0bs0 - Vdsi * delta - 0.5 * aphit;
// Computed from uncorrected intrinsic Vbs and intrinsic
Vds

164 eVg = exp ((Vgscorr - Vtp)/ (aphit)); //
Compute eVg factor from corrected intrinsic Vgs

165 FF = 1.0/ (1.0 + eVg);

141

A – FeFET model Verilog–A source code

166 eVg0 = exp ((Vgsi - Vtp0)/ (aphit)); //
Compute eVg factor from uncorrected intrinsic Vgs

167 FF0 = 1.0/ (1.0 + eVg0);
168 Qref = Cg * nphit;
169 eta = (Vgscorr - (Vt0bs - Vdsi * delta - FF *

aphit))/ (nphit); // Compute eta factor from
corrected intrinsic Vgs and intrinsic Vds

170 eta0 = (Vgsi - (Vt0bs0 - Vdsi * delta - FFpre *
aphit))/ (nphit); // Compute eta0 factor from
uncorrected intrinsic Vgs and internal Vds.

171 // Using FF instead of FF0 in eta0
gives smoother capacitances .

172

173

174 // Charge at VS in saturation (Qinv)
175 if (eta <= ‘LARGE_VALUE) begin
176 Qinv_corr = Qref * ln(1.0 + exp(eta));
177 end
178 else begin
179 Qinv_corr = Qref * eta;
180 end
181 if (eta0 <= ‘LARGE_VALUE) begin
182 Qinv = Qref * ln(1.0 + exp(eta0)); //

Compute charge w/ uncorrected intrinsic Vgs for use later
on in charge partitioning

183 end
184 else begin
185 Qinv = Qref * eta0;
186 end
187

188 // Transport equations
189 vx0 = vxo;
190 Vdsats = vx0 * Leff/ mu;
191 Vdsat = Vdsats * (1.0 - FF) + phit * FF; //

Saturation drain voltage for current
192 Vdratio = abs(Vdsi/ Vdsat);
193 Vdbeta = pow(Vdratio , beta);
194 Vdbetabeta = pow(1.0 + Vdbeta , 1.0/ beta);
195 Fsat = Vdratio / Vdbetabeta ; // Transition

function from linear to saturation .
196 // Fsat = 1 when Vds >>Vdsat; Fsat=

Vds when Vds <<Vdsat
197

198 // Total drain current
199 // ****** Thermionic current at zero gate bias (Vgs =0)

*********//

142

A.2 – MOSFET

200 // added by Muhammad A. Wahab of Purdue University on May
10, 2015 , revised on Mar 31, 2016

201 if (leak_select == 1) begin
202 Vt0bs0_vgs0 = Vt0 + gamma * (sqrt(abs(phib -

Vbs)) - sqrt(phib));
203 eVg_vgs0 = exp ((0 - (Vt0bs0_vgs0 - Vds *

delta -0.5* aphit))/ (aphit));
204 FF_vgs0 = 1.0/ (1.0 + eVg_vgs0);
205 eta_vgs0 = (0 - (Vt0bs0_vgs0 - Vds * delta -

aphit* FF_vgs0))/ (nphit);
206 Qinv_corr_vgs0 = Qref * ln(1.0 + exp(eta_vgs0

));
207

208 Vdsat_vgs0 = Vdsats * (1.0 - FF_vgs0) + phit *
FF_vgs0 ; // Saturation drain voltage for current at
Vgs =0

209 Vdratio_vgs0 = abs(Vds/ Vdsat_vgs0);
210 Vdbeta_vgs0 = pow(Vdratio_vgs0 , beta);
211 Vdbetabeta_vgs0 = pow(1.0 + Vdbeta_vgs0 , 1.0/

beta);
212 Fsat_vgs0 = Vdratio_vgs0 / Vdbetabeta_vgs0 ;

// Transition function from linear to saturation at
Vgs =0

213 Id_vgs0 = Qinv_corr_vgs0 * vx0 *
Fsat_vgs0 * W;

214

215 end
216 else begin
217 Id_vgs0 = 0;
218 end
219

220

221 // ****** Total drain current *********//
222 Id = Qinv_corr * vx0 * Fsat * W + Id_vgs0 ;
223

224 // Calculation of intrinsic charge partitioning factors (qs
and qd)

225 Vgt = Qinv/ Cg; // Use charge computed
from uncorrected intrinsic Vgs

226

227 // Approximate solution for psis is weak inversion
228 if (gamma == 0) begin
229 a = 1.0;
230 if (eta0 <= ‘LARGE_VALUE) begin
231 psis = phib + phit * (1.0 + ln(ln(1.0

+ ‘SMALL_VALUE + exp(eta0))));

143

A – FeFET model Verilog–A source code

232 end
233 else begin
234 psis = phib + phit * (1.0 + ln(eta0));
235 end
236 end
237 else begin
238 if (eta0 <= ‘LARGE_VALUE) begin
239 psis = phib + (1.0 - gamma)/ (1.0 + gamma)

* phit * (1.0 + ln(ln(1.0 + ‘SMALL_VALUE + exp(eta0)
)));

240 end
241 else begin
242 psis = phib + (1.0 - gamma)/ (1.0 + gamma

) * phit * (1.0 + ln(eta0));
243 end
244 a = 1.0 + gamma/ (2.0 * sqrt(abs(psis - (Vbsi

))));
245 end
246 Vgta = Vgt/ a; // Vdsat in strong

inversion
247 Vdsatq = sqrt(FF0 * aphit * aphit + Vgta * Vgta);

// Vdsat approx . to extend to weak inversion ;
248 // The multiplier of phit has

strong effect on Cgd discontinuity at Vd =0.
249

250 // Modified Fsat for calculation of charge partitioning
251 //DD -NVSAT charge
252 Fsatq = abs(Vdsi/ Vdsatq)/ (pow(1.0 + pow(abs(

Vdsi/ Vdsatq), beta), 1.0/ beta));
253 x = 1.0 - Fsatq;
254 den = 15 * (1 + x) * (1 + x);
255 qsc = Qinv *(6 + 12 * x + 8 * x * x + 4 * x * x * x)/

den;
256 qdc = Qinv *(4 + 8 * x + 12 * x * x + 6 * x * x * x)/

den;
257 qi = qsc + qdc; // Charge in the channel
258

259

260 //QB charge
261 kq = 0.0;
262 tol = (‘SMALL_VALUE * vxo/ 100.0) * (‘SMALL_VALUE

* vxo/ 100.0) * me/ (2 * ‘P_Q);
263 if (Vdsi <= tol) begin
264 kq2 = (2.0 * ‘P_Q/ me * Vdsi)/ (vx0 * vx0) *

10000.0;
265 kq4 = kq2 * kq2;

144

A.2 – MOSFET

266 qsb = Qinv * (0.5 - kq2/ 24.0 + kq4/ 80.0);
267 qdb = Qinv * (0.5 - 0.125 * kq2 + kq4/ 16.0);
268 end
269 else begin
270 kq = sqrt(2.0 * ‘P_Q/ me * Vdsi)/ vx0 * 100.0;
271 kq2 = kq * kq;
272 qsb = Qinv * (asinh(kq)/ kq - (sqrt(kq2 + 1.0) -

1.0)/ kq2);
273 qdb = Qinv * ((sqrt(kq2 + 1.0)- 1.0)/ kq2);
274 end
275

276

277 // Flag for classic or ballistic charge partitioning :
278 if (CTM_select == 1) begin // Ballistic

blended with classic DD -NVSAT
279 qs = qsc; // Calculation of " ballistic

" channel charge partitioning factors , qsb and qdb.
280 qd = qdc; // Here it is assumed that

the potential increases parabolically from the
281 end // virtual source point , where

Qinv_corr is known to Vds -dvd at the drain.
282 else begin // Hence carrier velocity

increases linearly by kq (below) depending on the
283 qs = qsc * (1 - Fsatq * Fsatq) + qsb * Fsatq * Fsatq

; // efecive ballistic mass of the carriers .
284 qd = qdc * (1 - Fsatq * Fsatq) + qdb * Fsatq * Fsatq

;
285 end
286

287

288 // Body charge based on approximate surface potential (psis)
calculation with delta =0 using psis=phib in Qb gives

continuous Cgs , Cgd , Cdd in SI , while Cdd is smooth anyway
.

289 Qb = -type * W * Leff * (Cg * gamma * sqrt(abs(psis
- Vbsi)) + (a - 1.0)/ (1.0 * a) * Qinv * (1.0 - qi

));
290

291 // DIBL effect on drain charge calculation .
292 // Calculate dQinv at virtual source due to DIBL only. Then:

Correct the qd factor to reflect this channel charge
change due to Vd

293 // Vt0bs0 and FF=FF0 causes least discontinuity in Cgs and
Cgd but produces a spike in Cdd at Vds =0 (in weak
inversion . But bad in strong inversion)

294 etai = (Vgsi - (Vt0bs0 - FF * aphit))/ (nphit);

145

A – FeFET model Verilog–A source code

295 if (etai <= ‘LARGE_VALUE) begin
296 Qinvi = Qref * ln(1.0 + exp(etai));
297 end
298 else begin
299 Qinvi = Qref * etai;
300 end
301 dQinv = Qinv - Qinvi;
302 dibl_corr = (1.0 - FF0) * (1.0 - Fsatq) * qi * dQinv;
303 qd = qd - dibl_corr ;
304

305

306 // Inversion charge partitioning to terminals s and d
307 Qinvs = type * Leff * ((1 + dir) * qs + (1 - dir) *

qd)/ 2.0;
308 Qinvd = type * Leff * ((1 - dir) * qs + (1 + dir) *

qd)/ 2.0;
309

310

311 // Outer fringing capacitance
312 Qsov = Cofs * (V(g) - V(si));
313 Qdov = Cofd * (V(g) - V(di));
314

315

316 // Inner fringing capacitance
317 Vt0x = Vt0 + gamma * (sqrt(abs(phib - type * (V(b)

- V(si)))) - sqrt(phib));
318 Vt0y = Vt0 + gamma * (sqrt(abs(phib - type * (V(b)

- V(di)))) - sqrt(phib));
319 Fs_arg = (Vgsraw - (Vt0x - Vdsi * delta * Fsat) +

aphit * 0.5)/ (1.1 * nphit);
320 if (Fs_arg <= ‘LARGE_VALUE) begin
321 Fs = 1.0 + exp(Fs_arg);
322 FFx = Vgsraw - nphit * ln(Fs);
323 end
324 else begin
325 Fs = 0.0; // Not used
326 FFx = Vgsraw - nphit * Fs_arg ;
327 end
328 Fd_arg = (Vgdraw - (Vt0y - Vdsi * delta * Fsat) +

aphit * 0.5)/ (1.1 * nphit);
329 if (Fd_arg <= ‘LARGE_VALUE) begin
330 Fd = 1.0 + exp(Fd_arg);
331 FFy = Vgdraw - nphit * ln(Fd);
332 end
333 else begin
334 Fd = 0.0; // Not used

146

A.2 – MOSFET

335 FFy = Vgdraw - nphit * Fd_arg ;
336 end
337 Qsif = type * (Cif + CC * Vgsraw) * FFx;
338 Qdif = type * (Cif + CC * Vgdraw) * FFy;
339

340

341 // Partitioned charge
342 Qs = -W * (Qinvs + Qsov + Qsif); // s-

terminal charge
343 Qd = -W * (Qinvd + Qdov + Qdif); // d-

terminal charge
344 Qg = -(Qs + Qd + Qb); // g- terminal

charge
345

346

347 //Sub - circuit initialization
348 I(di ,si) <+ type * dir * Id;
349 I(d,di) <+ (V(d) - V(di))/ Rd;
350 I(si ,s) <+ (V(si) - V(s))/ Rs;
351

352 I(si ,b) <+ ddt(Qs); // charge term:
node si to node b

353 I(di ,b) <+ ddt(Qd); // charge term:
node di to node b

354 I(g,b) <+ ddt(Qg); // charge term:
node g to node b

355

356 // ****** units of Qg and length are Coul and cm ,
respectively . V has unit of uCoul/cm^2 ******//

357 // added by Muhammad A. Wahab of Purdue University on May
10, 2015

358 V(qg_as_v) <+ Qg/W/Lgdr *1e6;
// 1e6 is used for unit conversion of charge : Coul to
uCoul

359

360

361 end
362 endmodule

Listing A.2: MOSFET virtual–source based self–consistent
transport/capacitance model in Verilog–A description. Reference to [29].

147

148

Appendix B

Python scripts for the
array management

B.1 Operations script
1 #! /usr/bin/env python
2 import sys
3 #from idlelib . colorizer import prog
4 #from anaconda_navigator .utils. encoding import write
5

6 # parameters
7 t0 = 5e-9
8 t_rise = t0 /100
9 Vdd = 1

10 array_dim = 8
11 V_high =500e-3
12 hex_or_bin =1
13 operation = str(sys.argv [1])
14 cycle = int(sys.argv [4])
15 duration = int(sys.argv [5])
16 word = str(sys.argv [3])
17 col = int(sys.argv [2])
18 time_offset =int(sys.argv [6])
19

20 def array_op (operation , word , col , cycle , duration ,
time_offset):

21

22 if operation == "prog":
23 if hex_or_bin ==0:
24 # convert hex to bin
25 len_word =4* len(word)

149

B – Python scripts for the array management

26 word=int(word ,16)
27 word=bin(word)
28 word=word [2:]. zfill(len_word)
29 else:
30 len_word =len(word)
31 #open files
32 file_SL =[]
33 file_WL =[]
34 for j in range(len_word):
35 file_SL . append (open (("SL_" + str(j) + ".csv"), ’a

’))
36 file_WL . append (open (("WL_" + str(j) + ".csv"), ’a

’))
37

38 # initialize
39 if time_offset ==0:
40 for j in range(len_word):
41 file_WL [j]. write(’0’ + " " + ’0’ + "\n")
42 file_SL [j]. write(’0’ + " " + ’0’ + "\n")
43

44 t=1+ time_offset
45 while t <= duration :
46 # WL now
47 for wl in range(len_word):
48 if wl== col and t== cycle:
49 file_WL [wl]. write(str ((t -1)*t0 + t_rise) +

" " + ’3’ + "\n")
50 file_WL [wl]. write(str(t*t0) + " " + ’3’ +

"\n")
51 else:
52 file_WL [wl]. write(str ((t -1)*t0 + t_rise)

+ " " + ’0’ + "\n")
53 file_WL [wl]. write(str(t*t0) + " " + ’0’ +

"\n")
54 # SL now
55 for sl in range(len_word):
56 if t== cycle:
57 if int(word[sl])== 0:
58 file_SL [sl]. write(str ((t -1)*t0 +

t_rise) + " " + ’3’ + "\n")
59 file_SL [sl]. write(str(t*t0) + " " + ’

3’ + "\n")
60 elif int(word[sl])== 1:
61 file_SL [sl]. write(str ((t -1)*t0 +

t_rise) + " " + ’0’ + "\n")

150

B.1 – Operations script

62 file_SL [sl]. write(str(t*t0) + " " + ’
0’ + "\n")

63 else:
64 file_SL [sl]. write(str ((t -1)*t0 + t_rise)

+ " " + ’0’ + "\n")
65 file_SL [sl]. write(str(t*t0) + " " + ’0’ +

"\n")
66

67 t=t+1
68 #close files now
69 for j in range(len_word):
70 file_WL [j]. close ()
71 file_SL [j]. close ()
72

73 if operation == "erase":
74 #open files
75 file_SL =[]
76 file_WL =[]
77 for j in range(array_dim):
78 file_SL . append (open (("SL_" + str(j) + ".csv"), ’a

’))
79 file_WL . append (open (("WL_" + str(j) + ".csv"), ’a

’))
80

81 # initialize
82 if time_offset ==0:
83 for j in range(array_dim):
84 file_WL [j]. write(’0’ + " " + ’0’ + "\n")
85 file_SL [j]. write(’0’ + " " + ’0’ + "\n")
86

87 t=1+ time_offset
88 while t <= duration :
89 # WL now
90 for wl in range(array_dim):
91 if wl== col and t== cycle:
92 file_WL [wl]. write(str ((t -1)*t0 + t_rise) +

" " + ’-5’ + "\n")
93 file_WL [wl]. write(str(t*t0) + " " + ’-5’ +

"\n")
94 else:
95 file_WL [wl]. write(str ((t -1)*t0 + t_rise)

+ " " + ’0’ + "\n")
96 file_WL [wl]. write(str(t*t0) + " " + ’0’ +

"\n")
97 #SL now
98 for sl in range(array_dim):

151

B – Python scripts for the array management

99 file_SL [sl]. write(str ((t -1)*t0 + t_rise) + "
" + ’0’ + "\n")

100 file_SL [sl]. write(str(t*t0) + " " + ’0’ + "\n
")

101 t=t+1
102 #close files
103 for j in range(array_dim):
104 file_WL [j]. close ()
105 file_SL [j]. close ()
106

107 if operation == "read":
108 #open files
109 file_Sel =[]
110 file_Sel_ref =open(" Sel_ref .csv", ’a’)
111 for j in range(array_dim):
112 file_Sel . append (open (("Sel_" + str(j) + ".csv"),

’a’))
113

114 # initialize
115 if time_offset ==0:
116 file_Sel_ref .write(’0’ + " " + ’0’ + "\n")
117 for j in range(array_dim):
118 file_Sel [j]. write(’0’ + " " + ’0’ + "\n")
119

120 t=1+ time_offset
121 while t <= duration :
122 # Sel_ref now
123 if t== cycle:
124 file_Sel_ref .write(str ((t -1)*t0 + t_rise) + "

" + str(V_high) + "\n")
125 file_Sel_ref .write(str(t*t0) + " " + str(

V_high) + "\n")
126 else:
127 file_Sel_ref .write(str ((t -1)*t0 + t_rise) + "

" + ’0’ + "\n")
128 file_Sel_ref .write(str(t*t0) + " " + ’0’ + "\

n")
129 #Sel now
130 for sel in range(array_dim):
131 if sel == col and t== cycle:
132 file_Sel [sel]. write(str ((t -1)*t0 + t_rise

) + " " + str(V_high) + "\n")
133 file_Sel [sel]. write(str(t*t0) + " " + str

(V_high) + "\n")
134 else:

152

B.2 – Signals script

135 file_Sel [sel]. write(str ((t -1)*t0 + t_rise
) + " " + ’0’ + "\n")

136 file_Sel [sel]. write(str(t*t0) + " " + ’0’
+ "\n")

137

138 t=t+1
139

140 #close files
141 file_Sel_ref .close ()
142 for j in range(array_dim):
143 file_Sel [j]. close ()
144

145 array_op (operation , word , col , cycle , duration , time_offset)

Listing B.1: Python script for generating the drivers of the memory in case
of writing and reading.

B.2 Signals script

1 #! /usr/bin/env python
2 import sys
3

4 # parameters
5 t0=5e-9
6 t_rise =t0 /100
7 Vdd =1
8 array_dim =8
9 Vclk_low =500e-3

10 V_high =500e-3
11 # variables
12 signal =str(sys.argv [1])
13 start=int(sys.argv [2])
14 stop=int(sys.argv [3])
15 duration =int(sys.argv [4])
16 time_offset =int(sys.argv [5])
17

18 def signal_op (signal , start , stop , duration , time_offset):
19

20 if signal ==" WL_ref ":
21 #open file
22 file_wlref =open(" WL_ref .csv", ’a’)
23 if time_offset ==0:
24 # initialize
25 file_wlref .write(’0’ + " " + ’0’ + "\n")
26

27 t=1+ time_offset

153

B – Python scripts for the array management

28 while t <= duration :
29 if t>= start and t<= stop:
30 file_wlref .write(str ((t -1)*t0 + t_rise) + " "

+ ’3’ + "\n")
31 file_wlref .write(str(t*t0) + " " + ’3’ + "\n"

)
32 else:
33 file_wlref .write(str ((t -1)*t0 + t_rise) + " "

+ ’0’ + "\n")
34 file_wlref .write(str(t*t0) + " " + ’0’ + "\n"

)
35 t=t+1
36

37 #close file
38 file_wlref .close ()
39

40 if signal =="clk":
41 #open file
42 file_clk =open("clk.csv", ’a’)
43 if time_offset ==0:
44 # initialize
45 file_clk .write(’0’ + " " + str(Vdd) + "\n")
46

47 t=1+ time_offset
48 while t <= duration :
49 if t>= start and t<= stop:
50 file_clk .write(str ((t -1)*t0 + t_rise) + " " +

str(Vclk_low) + "\n")
51 file_clk .write(str(t*t0) + " " + str(Vclk_low

) + "\n")
52 else:
53 file_clk .write(str ((t -1)*t0 + t_rise) + " " +

str(Vdd) + "\n")
54 file_clk .write(str(t*t0) + " " + str(Vdd) + "

\n")
55 t=t+1
56

57 #close file
58 file_clk .close ()
59

60 signal_op (signal , start , stop , duration , time_offset)

Listing B.2: Python script for generating the signals of the sense amplifier
in case of reading.

154

Bibliography

[1] G. Santoro, Exploring New Computing Paradigms, PhD thesis, Politec-
nico di Torino, 2019.

[2] N. Piano, DExIMA: a Design Explorer for In-Memory Architectures, Tesi
di Laurea Magistrale, Politecnico di Torino, 2019.

[3] U. Casale, Programmable LiM: a Modular and Reconfigurable Approach
to the Logic in Memory, Tesi di Laurea Magistrale, Politecnico di Torino,
2020.

[4] D. Ielmini,H.-S. Philip Wong, In-memory computing with resistive switch-
ing devices, Nature Electronics, 2018.

[5] J.Joshua Yang, Dmitri B. Strukov, Duncan R. Stewart, Memristive de-
vices for computing, nature technology, 2012.

[6] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart,
R. S. Williams, ‘Memristive’ switches enable ‘stateful’ logic operations
via material implication, Nature Letters, 2010.

[7] Simone Raoux, Wojciech Wełnic, Daniele Ielmini, Phase Change Mate-
rials and Their Application to Nonvolatile Memories, Chemical Reviews,
2010.

[8] MRAM-Info: the MRAM experts, SOT-MRAM: Introduction and market
status, 19 February 2019.

[9] MRAM-Info: the MRAM experts, STT-MRAM: Introduction and market
status, 19 February 2019.

[10] G. Prenat, K. Jabeur, G. Di Pendina, O. Boulle, G. Gaudin, Beyond
STT-MRAM, Spin Orbit Torque RAM SOT-MRAM for High Speed and
High Reliability Applications, Springer International Publishing Switzer-
land, 2015.

[11] P. Gambardella, Introduction to spin torques and spin-orbit torques in
metal layers, Department of Materials, ETH Zurich, Switzerland, 2015.

[12] H. Kimura, T. Hanyu, M. Kameyama, Y Fujimori, T. Nakamura,
H. Takasu, Complementary Ferroelectric-Capacitor Logic for Low-Power

155

Bibliography

Logic-in-Memory VLSI, IEEE Journal of Solid-State Circuits, 2004.
[13] Alex P. James, Linu R.cV. J. Francis, and Dinesh S. Kumar, Resistive

Threshold Logic, IEEE transaction on very large scale integration (VLSI)
systems, 2014.

[14] N. Talati, S. Gupta, P. Mane, S. Kvatinsky, Logic Design within Mem-
ristive Memories Using Memristor Aided loGIC (MAGIC), IEEE trans-
actions on nanotechnology, 2016.

[15] S. Kvatinsky, M. Ramadan, E. Friedman, A. Kolodny, VTEAM: A gen-
eral model for voltage-controlled memristors IEEE Trans. Circuits Syst.,
2015.

[16] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, K. N. Salama, Memristor-
based memory: The sneak paths problem and solutions, Microelectronics
Journal, 2013.

[17] J. Wang, H. Meng, Jian-P. Wang, Programmable spintronics logic device
based on a magnetic tunnel junction element, Journal of Applied Physics,
2005.

[18] H. Kimura, T. Hanyu, M. Kameyama, Y. Fujimori, T. Nakamura,
H. Takasu, Complementary Ferroelectric-Capacitor Logic for Low-Power
Logic-in-Memory VLSI, IEEE Journal of Solid-State Circuits, 2004.

[19] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M.J. Kastner, N. Nagel,
M. Moert, C. Mazure, FeRAM technology for high density applications,
Microelectronics Reliability, 2001.

[20] Myoung-J.Lee, Chang B. Lee, D. Lee, Seung R. Lee, M. Chang, Ji
H. Hur, Young-B. Kim, Chang-J. Kim, David H. Seol, S. Seo, U-In Chung,
In-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile mem-
ory device made from asymmetric Ta2 O5-x /TaO2-x bilayer structures,
Nature Materials, 2011.

[21] B. Choi, A. Torrezan, J. Strachan, P. G. Kotula, A. J. Lohn, M.
J. Marinella, Z. Li, R. Williams, J. Yang, High-Speed and Low-Energy
Nitride Memristors, Advanced Functional Materials Journal, 2016.

[22] E. T. Breyer, H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, Recon-
figurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI
FeFET technology, IEEE Journal of Solid-State Circuits, 2017.

[23] E. T. Breyer, H. Mulaosmanovic, S. Slesazeck, T. Mikolajick, Demon-
stration of versatile nonvolatile logic gates in 28nm HKMG FeFET tech-
nology, IEEE Journal of Solid-State Circuits, 2018.

[24] D. Reis, M. T. Niemer, X. S. Hu, A Computing-in-Memory Engine for
Searching on Homomorphically Encrypted Data, IEEE Journal on Ex-
ploratory Solid-State Computational Devices and Circuits, 2019.

156

Bibliography

[25] Y. Long, D. Kim, E. Lee, P. Saha, B. A. Mudassar, X. She, A. I. Khan, S.
Mukhopadyhyay, A Ferroelectric FET-Based Processing-in-Memory Ar-
chitecture for DNN Acceleration, IEEE Journal on Exploratory Solid-
State Computational Devices and Circuits, 2019.

[26] E. T. Breyer, H. Mulaosmanovic, J.Trommer, T. M. Dunkel, M.
Trentzsch, S. Beyer, S. Slezazeck, T. Mikolajick, Compact FeFET Cir-
cuit Building Blocks for Fast and Efficient Nonvolatile Logic-in-Memory,
Journal of the Electron Devices Society, 2020.

[27] X. Yin, A. Aziz, J. Nahas, S. Datta, S. Gupta, M. Niemier , X. S.
Hu, Exploiting Ferroelectric FETs for Low-Power Non-Volatile Logic-in-
Memory Circuits, Conference Paper, 2016.

[28] K. Ni, M. Jerry, J. A. Smith, S. Datta, A Circuit Compatible Accurate
Compact Model for Ferroelectric-FETs, Symposium on VLSI Technology
Digest of Technical Papers, 2018.

[29] M. A. Wahab, M. A. Alam, A Verilog-A Compact Model for Negative
Capacitance FET, Purdue University, 2016.

[30] F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday, Resistive Random Access
Memory (RRAM): an Overview of Materials, Switching Mechanism, Per-
formance, Multilevel Cell (mlc), Storage, Modelling and Applications,
Nanoscale Research Letters, 2020.

[31] T. Endoh, H. Honjo, A recent Progress of Spintronics Devices for Inte-
grated Circuit Applications, Journal of Low Power Electronics and Appli-
cations, 2018.

[32] A. Aziz, S. Ghosh, S. Datta, S. K. Gupta, Physics-Based Circuit-
Compatible SPICE Model for Ferroelectric Transistors, IEEE Electron
Device Letters, Vol. 37, No. 6, June 2016.

[33] A. G. Maslovskayaa, L. I. Moroza, A. Yu Chebotarevbc, A. E. Kov-
tanyukbc, Theoretical and numerical analysis of the Landau–Khalatnikov
model of ferroelectric hysteresis, Communications in Nonlinear Science
and Numerical Simulation, 2021.

[34] Y.-H. Chen, T. Krishna, J. Emer, V. Eyeriss, An energy-efficient re-
configurable accelerator for deep convolutional neural networks, IEEE J.
Solid-State Circuits, 2017.

[35] N. Jouppi et al, In–datacenter performance analysis of a tensor process-
ing unit, Proc. 44th Int. Symp. Comp. Architecture (ISCA), 2017.

[36] J. T. Pawlowski, Hybrid memory cube (HMC), IEEE Hot Chips 23
Symp., 2011.

[37] D. U. Lee et al, A 1.2 V 8Gb 8-channel 128GB/s high–bandwidth memory
(HBM) stacked DRAM with effective microbump I/O test methods using

157

Bibliography

29 nm process and TSV, IEEE Int. Solid-State Circuits Conf. Digest Tech.
Papers, 2014.

[38] M-F. Chang, S-S. Sheu, K-F. Lin, C-W. Wu, C-C. Kuo, P-F. Chiu,
Y-S. Yang, Y-S. Chen, H-Y. Lee, C-H. Lien, F. T. Chen, K-L. Su, T-
K. Ku, M-J. Kao, M.-J. Tsa, High-Speed 7.2-ns Read-Write Random
Access4-Mb Embedded Resistive RAM (ReRAM) MacroUsing Process–
Variation–Tolerant Current–ModeRead Schemes, IEEE JOURNAL OF
SOLID-STATE CIRCUITS, 2013.

[39] J. Cooke, Introduction to Flash Memory (T1A), Micron Technology, Inc.,
2008.

[40] N. Ohtsuka, S. Tanaka, J. Miyamoto, S. Saito, S. Atsumi, K. Imamiya,
K. Yoshikawa, N. Matsukawa, S. Mori, N. Arai, T. Shinagawa, Y. Kaneko,
J. Matsunaga, T. IIzuka, A 4-Mbit CMOS EPROM, IEEE JOURNAL OF
SOLID-STATE CIRCUITS, 1987.

[41] D. Baderna, A. Cabrini, G. De Sandre, F. De Santis, M. Pasotti,
A. Rossini, G. Torelli, A 1.2 V Sense Amplifier for High-Performance
Embeddable NOR Flash Memories, STMicroelectronics, 2005.

[42] D. Arora, A. K. Gundu, M. S. Hashmi, A High Speed Low Voltage Latch
Type Sense Amplifier for Non-Volatile Memory, Indraprastha Institute of
Information Technology, Delhi, 2016.

[43] L. Jiang et al., A low-voltage sense amplifier for high-performance em-
bedded flash memory, SEMICONDUCTOR INTEGRATED CIRCUITS,
2010.

[44] J. K. Yadav, Sense Amplifier for Flash Memories: Architectural Explo-
ration and Optimal Solution, Indraprastha Institute of Information Tech-
nology, 2015.

[45] UMBC Maryland, Liberty Timing File (LIB), Advanced VLSI Design.

158

	Abstract
	State of the art
	Logic–in–Memory
	Von Neumman architecture
	LiM with standard CMOS technology

	Beyond–CMOS technologies
	Memory devices
	Smart cells and logic

	FeFET SPICE model
	Physics–based FeFET model
	Landau-Khalatnikov equation
	Preisach model

	FeFET experimental calibration
	FeFET simulation and characterization
	Schematic and testbench
	The impact of the ferroelectric thickness
	Hysteresis frequency response
	Other measurements

	Basic FeFET–based memory cell

	FeFET–based memory array
	The topology
	NAND architecture
	NOR architecture

	NOR FeFET memory array: schematics
	8x8 memory array
	Larger dimension memory array
	Writing schemes
	Reading schemes

	Sense Amplifier
	Schematic
	Testing and performance

	NOR FeFET memory array: Testbench and scripts
	Python scripts

	NOR FeFET memory array: measurements and performances
	Delays
	Power consumption

	Programmable FeFET–based Logic in Memory
	Overview
	LiM: template
	Schematic
	Testbench

	LiM: circuits for computing
	LUT cell
	AND–OR cell
	3–functions cell
	XOR cell
	Full Adder cell
	Majority voter cell

	Liberty characterization for Logic in Memory
	Purposes
	Liberty file template
	Measurements
	LiM cells

	Results
	Conclusions and future work

	FeFET model Verilog–A source code
	Ferroelectric capacitor
	MOSFET

	Python scripts for the array management
	Operations script
	Signals script

	Bibliography

