
POLITECNICO DI TORINO
Master’s Degree in Electronics Engineering

Department of Electronics and Telecommunications

Master’s Degree Thesis
Design and simulations of a class D

audio amplifier featuring novel
digital modulations

Supervisors:
Prof. Francesco Musolino
Prof. Paolo Stefano Crovetti

Candidate:
Samuele Gisonno

Academic Year 2020-2021
July 2021

Tutto ciò che è comodo,
è stupido

2

Ringraziamenti

Senza le persone, un lavoro tecnico perde di senso. La vicinanza, la pazienza e il
supporto morale di tante persone hanno permesso la realizzazione di questo lavoro
di tesi. In particolare, i miei pensieri di gratitudine vanno

• a mio Padre e a mia Madre che hanno sostenuto economicamente il mio per-
corso, hanno avuto pazienza e hanno creduto in me più di quanto non lo facessi
io;

• a mia Sorella che è stata una figura di d’esempio per fare sempre meglio secondo
la mia coscienza e mi ha ispirato a vedere il mondo con occhi diversi;

• a Michele Ferrero, Riccardo Placenti e Marta Prelli per aver condiviso con
me le mie preoccupazioni, sopportato i miei limiti e capito l’importanza che
questo percorso ha avuto per me;

• a Davide Gualtieri e Davide Belgradi, da sempre compagni di viaggio, senza i
quali conoscerei meno il mondo e me stesso e mi insegnano che "nella vita si
vive una volta sola...";

• ad Elena Perrone, che ha sempre saputo ascoltare, suggerirmi e ha creduto in
me incondizionatamente;

• a Nonno Nicola, che mi ha sempre mostrato che attraverso la Volontà, l’Intraprendenza,
la Determinazione e l’Adattamento si raggiungono gli obiettivi;

• ad Arianna Di Guida, che mi ha permesso di crescere come uomo e fare espe-
rienza di un aspetto della vita non comprensibile con la ragione e la matem-
atica, ma ben più folle, misterioso e affascinante.

Un ringraziamento particolare al professor Francesco Musolino e al professor Paolo
Stefano Crovetti per l’umanità e la professionalità mostrate e per avermi sostenuto,
stimolato e consigliato sempre in maniera costruttiva, aiutandomi a crescere a livello
professionale.

3

Contents

1 Introduction 10
1.1 What is an audio system . 10
1.2 Output stage limitations . 12
1.3 Thesis goals and outline . 13

2 Class D amplifiers 14
2.1 Structure of class D audio amplifiers 15

2.1.1 Pulse-width modulator . 15
2.1.2 Output stage . 18
2.1.3 Other output stage configuration 21
2.1.4 Amplification factor of class D amplifier 22
2.1.5 Gate drivers . 24

2.2 Audio amplifier parameters . 25
2.2.1 Efficiency . 25
2.2.2 Distortion . 29
2.2.3 Signal To Noise Ratio (SNR) 31
2.2.4 PSRR (Power Supply Rejection Ratio) and PS-IMD 31
2.2.5 Intermodulation products (IMD) 32

2.3 Closed-loop configurations and other modulation techniques 32
2.4 Electromagnetic Interference . 36

2.4.1 EMI-Reduction techniques . 37
2.5 Digital modulations (DPWM) . 39

2.5.1 DPWM counter and comparator-based implementation 40
2.5.2 Alternative implementations of DPWM 42
2.5.3 Digital Sigma-Delta modulation 43
2.5.4 Limit Cycle Oscillation (LCO) 45

2.6 Dyadic Digital Pulse Modulation (DDPM) 46
2.6.1 Dyadic sequence . 46
2.6.2 Dyadic sequence of an integer number 47
2.6.3 Spectral analysis of DDPM 48

4

CONTENTS

2.6.4 Output filter requirement . 49
2.7 Dyadic Digital Pulse-Width Modulation (DDPWM) 50
2.8 Devices technology . 52

2.8.1 Body diode effect . 53
2.8.2 GaN devices . 54
2.8.3 GaN physical structure . 55
2.8.4 GaN FET polarization . 55
2.8.5 Electrical characteristics . 56
2.8.6 GaN FET in Class D amplifier applications 58

2.9 Class D amplifier designs . 62
2.9.1 Analog filterless design . 63
2.9.2 Loop filter design . 64

2.10 Digital designs . 66
2.10.1 ADC in feedback path . 67
2.10.2 ADC error sampling . 68
2.10.3 Comparisons among solutions 71

2.11 Class D amplifier: new frontiers and digital architecture approach . . 72

3 Design of a class D amplifier 73
3.1 Proposed digital model . 73
3.2 Specifications of the designed amplifier 74

3.2.1 Design of output stage power supply 75
3.3 Closed-loop system structure and advantages 76

3.3.1 Differences and limits of the models 77
3.4 Amplifier models for simulation purposes 78

3.4.1 Analog to digital converter . 79
3.4.2 Output filter . 80
3.4.3 DPWM . 80
3.4.4 Proposed block diagram for class D amplifier 81
3.4.5 Open-loop gain and binary representation of ADC code 82

3.5 Closed-loop design methodology . 83
3.5.1 Loop compensator filter design without output filter in the loop 84
3.5.2 Zero-order hold model and PWM spectrum 87
3.5.3 Design of loop compensator filter with output filter in the loop 91

3.6 Verification of design strategies . 94
3.6.1 Implementation of loop design of the amplifier with anti-aliasing

filter in feedback path . 95
3.6.2 Quantization noises . 101

5

CONTENTS

3.6.3 Implementation of loop design of system with output filter in
feedback path . 103

3.7 Simulink® models . 111
3.7.1 ADC model . 111
3.7.2 Truncation gain . 114
3.7.3 Noise shaping . 115
3.7.4 Truncation and noise shaping test 116
3.7.5 DPWM blocks scheme . 118
3.7.6 Dead time model . 119
3.7.7 Open-loop DC error . 122

3.8 Simulation data management . 125
3.8.1 Simulation stop time parameter of the simulations 125
3.8.2 Simulation integration time 125
3.8.3 Decimation factor and data storage 126

3.9 Class D audio amplifier model with DPWM modulation 128
3.9.1 Open-loop results . 128
3.9.2 Closed-loop results of system with anti-aliasing filter in the loop132
3.9.3 Closed-loop system with output filter in the feedback path . . 136
3.9.4 Comparison between the two solutions 138

3.10 Class D amplifier model with DDPWM modulation 139
3.10.1 DDPM model . 139
3.10.2 DDPWM model . 140
3.10.3 DDPWM modulator applied to CDA model 143

3.11 DDPM-DPWM combination . 145
3.11.1 DDPM-DPWM combination applied to class D amplifier model146

3.12 Results conclusion . 149

4 Conclusions 151

5 Appendix 153
5.1 Spectra . 156

5.1.1 DPWM open-loop system spectra 156
5.1.2 DPWM closed-loop spectra 157
5.1.3 DDPWM spectra . 159
5.1.4 DDPM-DPWM combination closed-loop system spectra 159

5.2 Codes . 161
5.2.1 Code for design of system with DPWM modulator and anti-

aliasing filter in feedback path 161

6

CONTENTS

5.2.2 Code for design of system with DPWM modulator and output
filter in feedback path . 167

5.2.3 Code for design of system with DDPWM modulator 172
5.2.4 Code for design of system with DDPM-DPWM combination

modulator . 178
5.2.5 Code for theoretical SNR evaluation 184
5.2.6 Code for DDPM algorithm . 184
5.2.7 Code to set simulation parameters 185
5.2.8 Code for the time analysis of system with DPWM modulator

working at fsw ∼ 500 kHz . 187
5.2.9 Code for the time analysis of system with DPWM modulator

working at fsw ∼ 1MHz . 193
5.2.10 Code to compute spectra . 199
5.2.11 Code to compute SNR from simulations data 216
5.2.12 Code to compute THD from simulations data 224

Bibliography 229

7

Abstract

In recent years there has been an increasing demand of portable electronic devices,
from mobile phones to personal computers, from MP3 players to hearing-aid sys-
tems which have to be smart, light and low-power consuming. As far as the power
dissipation is concerned, the audio power results one of the most critical. For this
reason, a lot of research has been carried out to find out solutions that allow to
reach very high power efficiency, without reducing the audio quality. In fact, even
if traditional linear amplifier classes (e.g. A, B, AB) can reach high performance in
terms of audio quality, with low distortion, they have severe limitations in terms of
efficiency, dissipated heat and weight (in particular for high power levels). Class D
audio switching amplifiers, proposed in 1958, can reach 100% power efficiency (in
real cases about 80%-90%) against 75% of class AB (in real cases about 30%-40%).
The increase in power efficiency has an impact both in terms of less heat generation
and lower weight, increasing the portability of the system in which they operate.
Moreover, advances in research and development of semiconductor technology have
allowed the integrability of those amplifier circuits and higher switching frequency.
One of the main drawback of class D amplifiers is the generation of higher distortion
level of amplified signal with respect to that of traditional classes. To reduce this
distortion, solutions have been proposed most of which exploit the features of closed
loop negative feedback. In this context, control laws implemented through digital
programmable circuits it is preferred to analog implementations both in terms of
noise immunity and in terms of higher flexibility since the control can be specified
in terms of software.
In this thesis, a class D audio amplifier has been designed taking advantage of the
most recent state of the art architectural and technological solutions. In particular,
the modulation section is analyzed in detail, highlighting the limitation of this sec-
tion implemented in digital way by means of DPWM and DDPWM and overcome
them by means of a new proposed modulator that is a combination of DPWM and
DDPM modulation techniques. The models of the open- and closed-loop amplifier,
implemented in MATLAB, are designed under some specifications and a rigorous
methodology design for closed-loop system is shown. Then, a comparison among

8

CONTENTS

the proposed solutions is done, highlighting the differences among them in terms
of distortion, noise and speed, which influence the efficiency of the overall system.
Finally, a possible physical implementation is suggested using GaN and MOS tran-
sistors, to compare in future the effect of different technology on the experimental
performances of a class D amplifier.

9

Chapter 1

Introduction

The applications of audio systems are very numerous and cover the major part of our
daily life aspects: entertainment field, like games, videos, films (where the role of the
audio in the entire production cover the 50% of the work), music, communication
applications like video-calls, video-conferences and calls; even in medical applica-
tions is extremely important, from hearing-aid devices to therapies to remove the
perception of tinnitus or to treat the autism in children; in mobile phone, where
the audio is important not only for call, but even to give commands and instruc-
tions to apps and to interface the phone by use of own voice. All these applications
are requiring an increasing demand for better audio quality and more portability.
Moreover, in a world where renewable energy is becoming always more important,
to reduce energetic environmental impact and wastes, the efficiency of electronic
systems is fundamental. In this context, main characteristics of audio system have
to be

• portability;

• high audio quality;

• energy efficiency.

1.1 What is an audio system

“The audio is an electronic information that represents the sound”[1]. This definition
put in evidence the difference between sound and audio

• with audio is intended an electrical information related to sound;

• with sound is referred to a wave propagation in an elastic mean (like air) due
to a oscillating object (like a string of a guitar).

10

1.1. WHAT IS AN AUDIO SYSTEM

Both entities bring information because the sound is the variation of a bias pressure
condition and the audio is related to the sound, so it brings the same information
of the sound. The difference between the two stays in how this information is
propagated: sound moves the information through the elastic mean (e.g. air, water)
while audio moves the information through electrical physical quantity (e.g. voltage,
current). In other words, the audio information is a translation of sound information
in electrical world. This translation is called transduction and it is made by a sensor
(e.g. microphone); the opposite transduction, from electrical to mechanical world,
is done by the actuator (e.g. speaker). A generic audio system to play music or to
amplify voice consists in these sections (fig. 1.1)

• sensor : generally is the microphone (indicated as MIC in figure 1.1) and allows
to transduce the sound in electrical physical quantity (generally voltage);

• ADC (analog-to-digital converter): convert analog information from analog
to digital domain; in this way it is possible to process the converted signal
by mean of algorithms; generally, analog-to-digital converter includes ampli-
fication section to adapt the dynamic of the signal to the dynamic of the
converter;

• DSP : it is a digital block that processes, elaborates, edits and modifies the
digital information provided by the ADC in order to get specific goals; this
could be a typical configuration of studio recording; the advantage of signal
elaboration by means of digital strategies has strong advantage in terms of
configurability, flexibility and cost;

• DAC (Digital-to-Analog converter): opposite to ADCs, it allows to convert
the digital audio signal, modified by the DSP, back to analog domain;

• output stage: is the amplifier driven by the output signal of DA and provides
the nominal power to the load (the speaker);

• speaker : is the transducer that has the opposite function of microphone; tras-
duces an electric signal in sound.

This general scheme in figure 1.1 could include, depending on the applications,
crossover filters placed after or before the output stage to avoid the damage of
speaker; in fact depending on the driven speaker (twitters, mid-range, woofers, sub-
woofers), if the bandwidth of the signal is not adequate, the speaker could be dam-
aged, so it is necessary limit the band of the signal.
The quality of the final product depends on different aspects starting from the po-
sition of the microphone to record the instruments, the quality of microphone, am-
plifier, ADC converter and the algorithm to manipulate the recorded audio (DSP,

11

CHAPTER 1. INTRODUCTION

ADC DSP DAC
OUTPUT STAGE

SPEAKERMIC

Figure 1.1: General scheme of an audio system

plugin, DAW, Digital Audio Workstation): so, even if the presence of qualified audio
technicians is a must, in these productions, to obtain a good result, it’s important
that all the electroacustic chain has high quality, in particular the hardware part.
In fact, the quality of the trasducers (speaker), sensors (microphone), ADC and
amplifier influence the quality of the transduced sound information. The electroa-
custic chain inevitably introduces a modification of the original signal, even if no
DSP algorithm is applied to original signal. In fact non-linear effects, the resolution
of ADC, the thermal noise, the frequency response of sensors, have an impact on
the transduction of sound information.

1.2 Output stage limitations

In a system similar to that of figure 1.1, one of the most problematic section is the
output stage. In fact, it is one of the main responsible of output signal distortion
and, against the goals of low-power system consuming, one of the most power con-
suming section. This drawback is particularly important for portable applications
because reduces the battery duration and increases the heat generation. These is-
sues are particularly evident when the output stage is implemented by using linear
amplifier classes which characteristics are in contrast with the requirements of en-
ergy efficiency and portability.
For these reasons, switching amplifiers are replacing the traditional linear classes
thanks to their power efficiency, high portability and integration. Particularly im-
portant are becoming class D audio amplifiers, more and more used in hearing-aid
devices, phones, MP3, TV, multimedia applications. The working principle of these
amplifiers is the same of buck converters: the audio input signal is sampled by means
of a comparation with high frequency (switching frequency) triangular waveform,
which result is a PWM signal that drives the power transistors of the output stage,
amplifying the PWM signal. Finally this signal is filtered by an output filter (typ-
ically a second order one) and the amplified audio information is recovered. The
use of this architecture allows to reach very high power efficiency and high den-
sity. The PWM modulator can be easily implemented in digital way: the input

12

1.3. THESIS GOALS AND OUTLINE

signal is sampled and hold at switching frequency into a N bits register and the
resulting code is compared with the one generated by a N bits free-running counter
that works at switching frequency, giving as output an high value if input code is
lower than counter one or low value if it’s the contrary. This is the so-called uni-
form digital PWM modulation (DPWM). Moreover, recent works have introduced
digital-assisted structure for closed-loop class D amplifiers that have increased the
performances in terms of distortion and SNR (Signal-to-Noise Ratio) thanks to the
possibility to design the complex compensator transfer function in terms of software,
by mean of FPGA or microcontroller.

1.3 Thesis goals and outline

In this overview, the goals of the thesis is to implement a model of a switching class D
amplifier, both in open- and closed-loop configurations. The main goals is to evaluate
the impact of the modulator on the amplifier performances. In particular, two types
of modulation are considered: DPWM and DDPWM, one of the most recent kind of
modulation introduced in literature in power converter field. The first chapter, Class
D amplifiers, covers a detail review of characteristics, properties and literature
works about class D amplifiers; than, in Design of a class D amplifier chapter,
are shown the results of MATLAB design and Simulink simulations starting from
design specs and varying some system parameters and configurations; in particular,
configurations with DPWM, DDPWM and a new combination between DPWM and
DDPM modulation are implemented and tested in closed- and open-loop comparing
their performances and drawbacks; in chapter Conclusions are summarized the
results found in the thesis, suggesting future works and possible studies.

13

Chapter 2

Class D amplifiers

Class D amplifier topology was proposed the first time in 1958. The main differ-
ence among this class and the traditional ones (A, B, AB) is the operating mode of
active device: considering MOS transistor as active devices, in linear amplifiers they
operate in saturation region, while in class D amplifiers they operate in linear or
cutoff regions [2]. “This condition of operation allows class D amplifiers to achieve
higher efficiency than linear amplifiers. When the output transistor is completely
on, it shows almost no voltage drop, and if it is completely off, it presents an almost
null current, and thus the power dissipation is negligible. Therefore, ideally the ef-
ficiency can reach 100%” [2]. Due to its high efficiency and thanks to development
of technologies, this kind of amplifiers have become widely use in portable systems
like hearing-aids devices [2].
In audio system is not only important the efficiency: even audio quality is a fun-
damental requirement. For this reason, because of the open-loop configuration of
class D amplifiers shows very high distortion obtaining a relatively low audio qual-
ity, closed-loop topologies are developed. These topologies are much complex to
design, but thanks to the feedback and improvement of integration technologies, it
is obtained high efficiency and low-distortion class D amplifiers [3][2][4].
Among the different types of analog modulations [5][6], in recent years digital ar-
chitectures are developed adding lot of advantages in terms of reliability, cost and
design difficulties. In particular digital approach has allowed a better control on
EMI emission: in fact, due to high switching frequency, in particular of the output
stage, this kind of circuits induce lot of high frequency noise that can create electro-
magnetic compatibility problems. Digital techniques allows to reduce those problems
in different ways: by changing modulation type (ternary scheme [7]), using digital
spread spectrum modulation [8] or even reducing crosstalk effect between different
channels [9].
In this chapter the working principles, the topologies and the studies done about

14

2.1. STRUCTURE OF CLASS D AUDIO AMPLIFIERS

VIN

VC

VPS

L

C RL

Vd
VPWM

Figure 2.1: Analog CDA in open-loop configurations

class D amplifiers (CDA) in literature are analyzed, enlightening the advantages and
disadvantages of each of them. Moreover, the main parameters traditionally used to
analyze the performances of amplifiers are described. Finally, particular attettion
is paid on similarities and differences among analog and digital topologies and to
PWM and DPWM modulations due to their intensive used in power applications
and the advantage of the implementation of the innovative DDPWM one on it.

2.1 Structure of class D audio amplifiers

The class D audio amplifier which scheme is shown in figure 2.1 is even known as
switching power amplifier, due to the presence of switching devices as output stage.
The working principle is the following: the analog input signal VIN (see figure 2.1)
is modulated by an high frequency signal VC generating a pulse-width modulated
signal VPWM . This signal is basically a square wave with variable duty cycle, where
the average value corresponds to the input signal, as shown in figure 2.2. This signal
drives two power switches that amplify the driving signal. Finally, appropriately
filtering the amplified signal, it is possible to recover the amplified input signal.

2.1.1 Pulse-width modulator

Pulse-width modulated (PWM) signal is generated by a comparison between the
input signal VIN (which has a band fi) and a carrier signal at frequency fsw ≫ fi.
Due to the Shannon theorem, in principle fsw should be 2fi. In practical cases,
due to non-idealities of the circuit components, fsw > 10fi [3]. Considering that
the input signal is in the audio band (20 − 20 000Hz), fsw > 200 kHz. Generally,
switching frequency of amplifiers designed and described in literature are between
300 kHz− 1MHz [3], but using digital architecture can reach 2MHz [10].
Because of the switching frequency is much higher than the input signal maximum
one, a graphical analysis of the PWM modulator can be done considering the input
signal constant (fig. 2.2). VPWM is the output voltage of differential amplifier. The

15

CHAPTER 2. CLASS D AMPLIFIERS

Vsw

t

Vtr

t

Vin

Figure 2.2: Two-level pulse width modulated signal

Figure 2.3: dual edge (on the left) and leading edge (on the right) triangular wave-
form

comparison is done taking the difference between carrier signal and input signal

Vd = Vin − Vtr ⇒ VPWM =

VH for Vd > 0

VL for Vd < 0
(2.1)

where VH is the maximum voltage that amplifier can give (basically its power supply
voltage), VL is the lowest one (in single power supply, ground), Vd the differential
input of differential amplifier (see fig. 2.1). In figure 2.2 it is shown a trailing edge
triangular waveform for the carrier signal, but other kind of waveforms can be used

• leading edge triangular waveform;

• dual edge triangular waveform;

Different studies have shown that the waveform used as carrier signal modifies the
amount of distortion of the output signal: in particular, for the same switching
frequency, DC voltage offset and modulation index, the number of harmonics is
much higher for trailing edge carrier than dual edge [5]. Considering a sinewave
input signal, the modulation index, ma is the ratio between the peak-to-peak
voltage of input signal (Vpeak,ref) and the peak-to-peak voltage of the triangular
waveform (Vpeak,carrier)

ma =
Vpeak,ref

Vpeak,carrier

∈ (0, 1) (2.2)

Comparators for pulse width modulator, in analog design should have the following
characteristics

• high slew rate (to minimize propagation delay);

16

2.1. STRUCTURE OF CLASS D AUDIO AMPLIFIERS

M3 M4

VDD

M1 M2
VI−VI+

VDD

M5

VDD VDD

M8

M6

M7

Vo

Itail

Figure 2.4: Three current mirror transconductance amplifier with push-pull output
stage [5, p.97]

• high Power Supply Rejection Ratio (PSRR) to suppress the noise contribution
from power supply.

In [5], a design for integrated circuit (IC) architecture is shown, using a three current
mirror transconductance amplifier with push-pull output stage (fig. 2.4). Resuming,
this stage, the pulse-width modulator, gives information about the input signal
through the variation of duty cycle of generated PWM signal : so the transfer func-
tion is the ratio between the duty cycle d and the input signal Vin. In particular,
depending on the power supply used for the differential stage, there are two possible
transfer functions:

• Single power supply
The stage is supplied between 0V and a non-zero voltage power supply VDD,
generally positive: this means that the input signal Vin and VC have to stay
between 0V and VDD (neglecting the limitation due to common mode input
range of the differential input pair). In this condition

- if Vin = VC = VDD ⇒ Vd = 0 ⇒ d = 1;

- if Vin = 0 ⇒ Vd = VC ⇒ d = 0.

The transfer function can be expressed by a proportion, where VC = Vtr is the
peak-to-peak amplitude of carrier signal

1 : Vtr = d : Vin ⇒ GM =
d

Vin

=
1

Vtr

(2.3)

where GM is the modulator gain, related to the duty cycle.

• Dual power supply
The stage in supplied by a negative and a positive power voltage, −VDD and

17

CHAPTER 2. CLASS D AMPLIFIERS

d

Vin

−Vtr

2
Vtr

2

1

d

Vin
0 Vtr

1

Figure 2.5: Transfer function of pulse-width modulator with single (on the right)
and double power supply (on the left)

VDD respectively. In a similar way to the previous case, the two input signal
can have a voltage range [−VDD, VDD]. In this condition the output voltage of
the comparator could be

– if Vin = VC = −VDD ⇒ VPWM = −VDD ⇒ d = 0;

– if Vin = VC = VDD ⇒ VPWM = VDD ⇒ d = 1;

As before, the transfer function is linear again, but with an offset of 1/2 (see
fig. 2.5). It can be written as

d =
1

Vtr

Vin +
1

2
(2.4)

2.1.2 Output stage

The Output stage shown in figure 2.1 is an half bridge stage: basically when
VPWM = VH , the low-side transistor (an NMOS transistor) conducts, while, if
VPWM = VL is the high-side one (a PMOS transistor) that conducts. So the two
transistors works as complementary switches : they do not work in saturation region,
differently from traditional classes. This working mode reduces power losses because
when the transistors are conducting, they show a small on resistance while when
they are not conducting show a very high resistance (> 1MΩ), obtaining (ideally)
a zero current flow: basically this stage is an inverter that amplifies and inverts the
driving signal

Vsw =

VPS if VPWM = VL

0 if VPWM = VH

(2.5)

where Vsw is the voltage at the drains of the switches. The main disadvantages due
to the presence of the switches are two:

• because of the output signal of the output stage is basically a square wave, an
output filter is necessary to recover the amplified input signal and reducing

18

2.1. STRUCTURE OF CLASS D AUDIO AMPLIFIERS

the effect of higher harmonics due to PWM modulator; this increases the cost
of the system and the occupied area on Printed-Circuit Board (PCB);

• the switches generate high dv
dt

and di
dt

and this induces electromagnetic interfer-
ence that can affect devices like ADC, radio frequency devices, voltage and/or
current supply; so techniques like spread-spectrum modulation are often used
to limit this drawback; even changing the type of modulation can reduce the
electromagnetic interference (EMI).

As said before, ideally the CDA can reach 100% efficiency. Anyway due to non-
ideality of the switches and of the other components of the amplifier, power losses
are present. In particular [5]

Ploss ≃ PQ + PCL + PSW + PBD (2.6)

where

• PQ: quiescent power ;

• PCL: conduction losses ;

• PSW : switching losses ;

• PBD: body-diode losses.

Conduction losses are related to the conduction time of the transistors, when they
behave as a resistance of value RdsON : so they are basically ohmic losses related to
the drain-source resistance. This dissipated power is dominant when the amount of
output power (and of the output current) is large respect to the maximum achievable
value. Switching losses are related to the transition between ON and OFF states of
the switch, in particular to the charging and discharging of the parasitic MOSFET
capacitances. Body-diode losses occur due to body-diode conduction and reverse
recovery charge. Power losses can be written as [5]

PCL = I2o,RMSRdsON (2.7)

PSW =
∑
i

(fsw · V 2
CPCPi

) + VDD · Io,pk ·
2ttrans
tsw

(2.8)

PBD ≃ VSD · fsw · (Io,pktdead + Irrmtrr) (2.9)

where

• Io,RMS: mean root square of output
current ;

• fsw: switching frequency ;

• CPi
: i-th parasitic capacitance;

• VCP : parasitic capacitance CPi
volt-

age drop;

• Io,pk: peak output current ;

• VSD: body-diode source-drain volt-

19

CHAPTER 2. CLASS D AMPLIFIERS

VPWM

VPS

L

C RL

DB2

DB1 CP2
CP1

Figure 2.6: Class-D output stage with parasitic elements [5, p.33]

age;

• ttrans: ON/OFF state transistion
time;

• tdead: dead time (to avoid shortcir-

cuit between VPS and ground);

• Irrm: maximum reverse recovery
current ;

• trr: reverse recovery time.

All the parasitic elements are shown in figure 2.6 in red
The efficiency can be characterized by three different regions (fig. 2.7), depending

on the amount of output power respect to the maximum achievable one:

• for low power levels : switching losses and quiescent losses dominate and
the efficiency is the minimum;

• for medium power levels : all power losses contributions have more or less
the same impact on the efficiency;

• for high power levels : conduction and body-diode power losses dominate
the reduction of efficiency, due to high amount of output current.

Figure 2.7: Power vs efficiency with power losses regions

20

2.1. STRUCTURE OF CLASS D AUDIO AMPLIFIERS

VPS

L

C RL
VPWM

Cs VoSE

Vsw

(a) Single-ended configuration with
single power supply

VPS

L

C RL
VPWM

−VPS

VoSE
Vsw

(b) Single-ended configuration with dual
power supply

VPS

L

C

RL

VPWM

VPS

L

CVPWM

Vo

Vsw

Vsw

V +
oSE

V −
oSE

(c) Bridge-Tied Load configuration

Figure 2.8: Output stage configurations

2.1.3 Other output stage configuration

The half-bridge configuration described in figure 2.1 is a single-ended (SE) topology:
basically one terminal of the load is connected to the output of the amplifier, while
the second one is connected to ground. In this case the power supply of the output
stage should be single or dual. In the first case, if power supply is VPS, the output
voltage of output stage shows a DC component that should be block because it
must not reach the speaker to avoid damages. This means that is necessary to add
an additional capacitor in series to the load: as a consequence, cost and occupied
area increases. Moreover, even if with dual power supply this problem should be
theoretically removed (VswDC

= 0 if the system is perfectly symmetric), two power
supplies are not so simple to obtain. To overcome these limitations, a differential
configuration, Bridge-Tied Load (BTL) configuration is used, in particular for
general speaker applications. The topology is based on Full-bridge output stage

21

CHAPTER 2. CLASS D AMPLIFIERS

and have three main advantages with respect to the single ended one

1. it need a single power supply;

2. for same power supply, can reach output power four times higher than the
single ended configuration;

3. does not require a series capacitor to block the DC component; in fact, being
a differential configuration, the load has a terminal connected to a branch
and one terminal connected to the other branch (fig. 2.8c) so common mode
contribution are basically null (in perfect symmetric condition).

2.1.4 Amplification factor of class D amplifier

Ideally, the amplified input signal can be measured after the output filter. The
amplification factor is related to the PWM gain and to the power supply of output
stage. Let’s consider the amplifier as two gain stages in cascade:

• PWM stage: the gain of this stage, as shown in formula 2.3 and 2.4, is related
to duty cycle d of the generated PWM signal and it depends on power supply
(single or dual)

• output stage and filter: the output of this stage VoSE
is the average value

of Vsw voltage (fig. 2.8);

So, for single-ended stage, depending on the power supply of output stage, there are
two possible cases.

• Single ended power supply (fig. 2.8a)
In this case the output voltage is given by

VoSE
= Vsw = 0d+ VPS(1− d) = VPS(1− d) = VPS︸︷︷︸

bias

−VPSd︸ ︷︷ ︸
signal

(2.10)

It is possible to see that a DC offset appears (VPS); the other term is the
one related to the amplification of the useful signal. Because of the input
signal of output stage comes from the output of PWM stage, this signal gives
information through duty cycle. This means that the gain of output stage is
the ratio between the output voltage and the duty cycle of the PWM signal.
In formula

A =
VoSE

d
= −VPS (2.11)

From a system point of view, a single ended stage with single power supply
can be consider as a stage of gain A = −VPS. To obtain the overall gain of

22

2.1. STRUCTURE OF CLASS D AUDIO AMPLIFIERS

the amplifier, it has to be considered the PWM stage gain. Because all the
system can be considered as supplied by a single power supply, the gain of
PWM is the one in equation 2.3. Replacing the gain of the PWM in 2.11 can
be obtained

VoSE
= Vin(−VPSd) = Vin(−VPS · 1

Vtr

) ⇒ VoSE

Vin

= A ·GM = −VPS

Vtr

(2.12)

It can be observed that using an inverter gate with the same PWM signal that
drives high-side and low-side switches, the output signal results with opposite
phase respect to the input signal. If the switches are driven so that

Vsw =

VPS if VPWM = H

0 if VPWM = L
(2.13)

the minus sign in 2.11 disappears and there’s no phase inversion.

• Dual power supply
From figure 2.8b the output voltage can be calculated as

VoSE
= Vsw = −VPSd+ VPS(1− d) = VPS(1− 2d) = (2.14)

=︸︷︷︸
2.4

VPS

[
1− 2

(1

Vtr

Vin +
1

2

)]
= −2VPS

Vtr

Vin (2.15)

⇒ VoSE

Vin

= −2VPS

Vtr

⇒ A = −2VPS, GM =
1

Vtr

(2.16)

where A is the gain of output stage block and GM is the PWM block gain.
The overall gain of a dual stage single ended amplifier is double that the
single-ended one.

For BTL configuration the voltage on the load is given by the difference of output
voltages of two single-ended output stage. This means that to avoid zero voltage at
the output, the PWM signal of low-side single-ended stage has to be phase inverted
(see fig. 2.8c, VPWM signals). In this way the voltage on the load is

Vo = V +
oSE

− V −
oSE

= V +
oSE

+ V +
oSE

=︸︷︷︸
V +
oSE

=VoSE

2VoSE
(2.17)

From this equation it can be seen that for the same single power supply the BTL
configuration gives an amplification two times higher than single-ended configura-
tion. As a consequence the output power is four times higher than single-ended

23

CHAPTER 2. CLASS D AMPLIFIERS

configuration. In formula

PoBTL
=

(2VoSE
)2

RL

=
4V 2

oSE

RL

(2.18)

PoSE
=

(VoSE
)2

RL

(2.19)

⇒ PoBTL
= 4PoSE

(2.20)

where PoBTL
and PoSE

are respectively the power on the load for single-ended
(fig.2.8a) and bridge-tied load (fig. 2.8c) configurations.

2.1.5 Gate drivers

In the basic schemes shown until now one important element is missing: the gate
drivers . They are circuits that drive the transistors of output stage gates correctly.
The PWM comparator generally cannot reach the correct value of voltage and cur-
rent to charge the capacitances of output stage switches. In particular gate drivers
should have the following characteristics:

• minimize the transition time between ON and OFF state (or viceversa) of
switches;

• allowing a dead time to avoid the simultaneous conduction of the output
switches;

• amplify control signal from PWM modulator to correctly drive the switch
gates.

In integrated topologies, most of the time the gate drivers are designed together with
the output stage like in [5, p. 101] and in [2] where the output stage is designed with
a Fixed Taper Buffer structure (fig. 2.9a). It consists in making the n-th couple
of transistors M1/N times larger than the couple n − 1, where N is the number of
couples between the first couple and the output filter and M is the size ratio of the
last transistors couple in the buffer. In this way it can be obtained the best trade-off
between power and speed because the first (small) transistors have lower parasitic
capacitances and can drive less current for the next stage, while the last stage (the
biggest one) is the slower, but can provide the correct power to the load. In this
case, even if it is not specified in the article [2], the dead time is obtained due to
the different number of stages for the two branches (8 for the high-side, 7 for the
low-side): this modifies the propagation delay of the two branches, introducing, as a
consequence, a dead time. On the other hand an example of gate driver for discrete
design is shown in figure 2.9b. In conclusion, a possible complete schematic of an
open loop bridge-tied load class D amplifier can be seen in figure below (2.10).

24

2.2. AUDIO AMPLIFIER PARAMETERS

(a) Fixed Tapered Buffer [2]

(b) Discrete driver [11]

Figure 2.9: Gate drivers examples

VPS

L

C

RL

VPWM

VPS

L

CVPWM

Vo

Vsw

Vsw

V +
oSE

V −
oSE

VIN

VC VPWM

Vd

Figure 2.10: Bridge-tied load class D amplifier

2.2 Audio amplifier parameters

Performances of amplifier are mainly characterized by two parameters

1. distortion ;

2. efficiency .

2.2.1 Efficiency

Efficiency is defined as

η =
Po

Po + Ploss

(2.21)

25

CHAPTER 2. CLASS D AMPLIFIERS

Genre
Max power levels
3W 10W 100W

Rock 9.73% 26.3% 75.2%
House 14.0% 34.9% 81.3%
Hip Hop 14.7% 36.3% 82.1%
Jazz 1.79% 5.73% 37.5%

Figure 2.11: Efficiency for different music genres and output power levels

where Po is the output power and Ploss is the dissipated power due to non-idealities
and quiescent power. η is always less than 1 and depends on the power losses:
higher the power losses, lower the efficiency. In class D amplifier the efficiency
can reach 90% (and higher in recent designs like [10][2][4]). Generally, efficiency
reaches higher values for high output power near to the maximum achievable by the
amplifier. Moreover, in [12] it is shown that the efficiency of amplifier depends not
only on the output power, but even on the musical genre (so more in general on the
kind of input signal). This behaviour is related to the amount of compression of
the input signal: music with higher dynamic, so without a strong compression (like
jazz), have a medium volume lower than musics with higher amount of compression
(like pop or house). High compressed input signal has a larger RMS value, which
means that input power is higher than signal with lower one; as a consequence, to
reach the same output power, high RMS input signal requires less average current
to the output to be amplified, increasing the efficiency.
Other elements that reduce the efficiency, in addition to the parasitic of the output
stage transistors described in subsection 2.1.2, are

• Filter losses , in particular

– Equivalent series resistance (ESR) of output capacitor: these losses can
be minimized choosing output capacitors with low ESR;

– magnetic core losses : due to ripple current through inductor; inductor
losses depend on material of magnetic core and the value of inductor. In
particular in [12] is shown that

∗ increasing inductance value, switching losses are increased;

∗ reducing inductance value, inductor losses are increased.

Considering both effects, the overall efficiency is reduced due to the larger
value of inductor losses. To reduce these losses, magnetic core should be
removed. Using an air core inductor, the core losses become basically
null. Moreover, because switching losses are lower reducing inductance
value, it can be possible take a low inductance value. The problem is
that air core inductors occupy large area.

26

2.2. AUDIO AMPLIFIER PARAMETERS

(a) Switching losses vs inductance value
for GaN FET switching device [12]

(b) Inductance losses vs inductance value
for GaN FET switching device [12]

Figure 2.12: Switching and inductance losses at varying of inductance value

• Switching device : material of the switching devices (e.g GaN, Si, SiC) has
strong impact on the performances of amplifiers in terms of efficiency and
distortion. The main parameters to consider are

– RdsON : the source-drain resistance influences the efficiency for high power
values, where the main losses are the conduction ones; lower RdsON ,
higher the efficiency;

– Qg: is the total gate charge related to parasitic capacitances of the switch-
ing device; in datasheet is generally given as a function of command volt-
age (Vgs); total gate charge has two main contributes:

∗ Qgs: is the charge accumulated in Cgs when VGS < VTH , where VTH

is the threshold voltage of the device;

∗ Qgd: the charge accumulated in Cgd, usually even called Miller charge
[11].

In [11] a total charge less than 20 nC is recommended for mid- and high
power full-bandwidth amplifiers. Moreover, Qg is related to speed of
the amplifier and so to its distortion: with a lower Qg, the amplifier
can operate at larger frequency and, as a consequence, higher switching
frequency can be used, reducing distortion, but increasing the switching
losses [11].

• Reverse recovery charge : as mentioned before, is the charge related to
the body-diode conduction. In particular, the body-diode conducts during the

27

CHAPTER 2. CLASS D AMPLIFIERS

Figure 2.13: Qg vs VGS of a GaN FET device [13]

dead time to allow the continuity of the current in the inductor (fig. 2.14); after
dead time, the high-side switch is turned on and VD voltage, the voltage drop
on low-side body-diode, becomes negative, so a reverse current start to flow in
the diode discharging the junction capacitance; the same phenomenon happens
to the body-diode of the high-side switch during the dead time between the
turn off of the high-side switch and the turn on of the low-side switch. The
main parameters that describe this phenomenon are

– Qrr: total charge accumulated in the junction capacitance during trr;

– trr: time during diode conducts reversely; it is considered the time nec-
essary to reach the 10% of Irr;

– Irr: peak value of the reverse diode current.

A descriptive graph of this phenomena is reported in figure 2.14. As far as
this parameter is concerned, a strong advantage of GaN FET is the absence
of Qrr because no body-diode exists between source/drain and substrate [13].

• Stray PCB inductance and package of switching devices : parasitic
inductance due to PCB and the package inductance have a strong impact on
the efficiency. A graph of a manufacturer of GaN transistors (figure 2.15)
shows how the simulated efficiency of a power converter with GaN switching
device is reduced and converges to experimental values if parasitic elements of
PCB and drivers non-idealities are taken into account.

• modulation index : efficiency increases exponentially with modulation index
[3].

28

2.2. AUDIO AMPLIFIER PARAMETERS

IF

t
trr

Irr

toff
10%Irr

Qrr

VPS

DEADTIME

VPS

HIGH SIDE SWITCH: ON

IL

IFIF

Figure 2.14: Descriptive graph of reverse recovery charge phenomena

Figure 2.15: EPC simulation of power
vs efficiency with different parasitic el-
ements and experimental results [13] Figure 2.16: Output power vs modu-

lation index [3]

2.2.2 Distortion

The distortion is usually measured by the total harmonic distortion (THD)
defined as

THD =

√
V 2
2 + V 3

3 + · · ·+ V 2
n

V1

(2.22)

where Vi with i = 1, 2, . . . n is the amplitude voltage of the i-th harmonics. Ideally,
amplifier should increase the voltage only of the fundamental harmonic V1, but due
to non-linear effects of the system, higher harmonics are generated. Lower THD,
lower distortion and higher accurate reproduction of audio signal at the output. [6].
Most of the time the parameter considered is total harmonic distortion + noise
(THD+N) that takes into account the contribution of amplifier noise floor; it is
defined as

THD +N =

√∑N
i=2 V

2
i + V 2

n

V1

(2.23)

where Vn is the integrated noise RMS voltage [5]. Since THD and THD+N vary of
several order of magnitude, they are expressed in logarithmic scale or percentage.

29

CHAPTER 2. CLASS D AMPLIFIERS

In particular [5]

THD +N(dB) = 20 · log THD +N(%)

100
(2.24)

THD +N(%) = 100 · 10
(

THD+N(dB)
20

)
(2.25)

(a) Frequency vs THD [4]

(b) Output spectra voltage output to measure the THD from harmonics amplitude [4]

Figure 2.17

Elements and parameters that influence THD are

• parasitic elements : presence of stray inductance and parasitic capacitance
introduce non-ideality that increase the non-linearities (and so the distortion)
of the whole system;

• switching device characteristics : parameters described in previous subsec-
tion (2.2.1) like Qg, dead time, Qrr introduce differences from ideal behaviour
that increase distortion;

30

2.2. AUDIO AMPLIFIER PARAMETERS

• configuration of loop: in open-loop class D amplifier the effect of non-
linearities are totally shown at the output; in closed-loop configuration, thanks
to feedback connection, the non-linearities are much reduced: this is the main
reason why the most part of amplifiers are designed in closed-loop configura-
tion.

THD can be measured at a fixed audio input tone (generally 1 kHz), at varying the
output power or applying an input sweep at the input from 20Hz to 20 kHz and
fixing the output power: with the first method, THD vs output power is measured;
with the second one, THD vs frequency is obtained. In [14][4][15] these kind of
measurements are taken.

2.2.3 Signal To Noise Ratio (SNR)

SNR is a parameter that defines the ratio between the signal power (the useful
power) to the noise power (the useless one). The noise power is the sum of all noises
introduced in the system like power supply noise, switching noise, thermal noise,
radio frequency interference [3]. It is evaluated integrating the noise floor of the
output signal in the audio frequency range, with no audio signal at the input [5]. In
formula [5]

SNR = 10 log
Po

Pn

= 20 log
Vo

Vn

= 20 log Vo − 20 log Vn (2.26)

where Po is the output power, Pn the noise power and Vo and Vn respectively the
output voltage and the noise voltage.

2.2.4 PSRR (Power Supply Rejection Ratio) and PS-IMD

PSRR describes the capability of an amplifier to be immune to power supply noise.
It is defined as [3]

PSRR = 20 log
Vn

Vo

(2.27)

Generally it is measured at 217Hz because it’s the frequency related to GSM burst
used for device communication [5]. In practical terms, often is applied a small volt-
age amplitude square wave at frequency 217Hz, as it is done in [4][16].
Another parameter related to the power supply noise is the power supply inter-
modulation (PS-IMD). Applying a noise tone to the power supply (e.g. fn =

217Hz) the output shows intermodulation products related to the input signal tone.
In particular, considering an input tone of fin = 1kHz at output can be measured

fin − fn = 783Hz (2.28)

fin + fn = 1217Hz (2.29)

31

CHAPTER 2. CLASS D AMPLIFIERS

as it happens in [4], in figure 2.18.

2.2.5 Intermodulation products (IMD)

When more than one audio tone at are applied to the input signal, other unwanted
tones related to the ones applied at the input are generated. This happens due
to non-linearities of the system, “but sometimes” they “may be low enough to be
imperceptible” [6]. In formula it is defined as [6]

IMD =

√∑∞
n=1

∑∞
m=1[Vo(mf1 + nf2) + Vo(mf1 − nf2)]2

Vo(f2)
(2.30)

where f1 and f2 are the two input tone. An example of IMD measurement is in
figure 2.19.

Figure 2.18: PS-IMD example [4] Figure 2.19: IMD measurement [14]

2.3 Closed-loop configurations and other modula-
tion techniques

Due to non-idealities and switching noises, the open-loop configuration described so
far, often gives high THD and low SNR that are often unacceptable. To increase
the performances most of the closed-loop configuration are typically employed which
presence reduces the effect of non-idealities and parasitic noises. The use of feedback
needs the design of a compensator to ensure strong stability. Typically, in CDA the
compensator consists of an integrator because it allows to reach a null feedback
error and better performances in terms of distortion and SNR due to its high loop
gain [6]. Therefore, higher loop gain, lower distortion is generated, so less power
at unwanted harmonics. Increasing the order of integrator, the performances of the
system improve. In practical analogue design, the order of compensator is typically
not larger than 2 [4][5][9, fig. 3], leading to the use of different kinds of modulations

32

2.3. CLOSED-LOOP CONFIGURATIONS AND OTHER MODULATION
TECHNIQUES

and topologies. In particular, “CDA can be classified into four general types based
on different modulations schemes” [6]:

• Pulse Width Modulation (PWM), seen in previous section: is the most
employed due to its simple hardware and ease of design; moreover, it allows to
obtain low power dissipation. Two blocks schemes, one in open-loop and the
other in closed-loop configurations are shown in figures 2.20.

(a) Open-loop configuration CDA with
PWM modulation [6]

(b) Closed-loop configuration CDA with
PWM modulation [6]

Figure 2.20: PWM configurations for CDA

• Sigma-Delta Modulation (SDM): this kind of modulation is well known
due to its low non-linearities and noise shaping that allows to obtain higher
SNR respect to previous modulation [5]; two topologies are possible:

– synchronous : after the quantizer, there is a flip-flop with fixed clock that
determines the sampling frequency; this technique allows to reduce non-
linearities and quantization noise;

– asynchronous : an hysteresis comparator is used as quantizer: in this way
the quantization error becomes, theoretically, zero; the problem is that
the switching frequency is varying and there could be “undesired coupling
for multiple channel designs on a single IC” [6].

The main problems of this kind of modulation scheme is the high power dissi-
pation and the lower sample frequency respect to the PWM modulation. Block
schemes diagrams are shown in figures 2.21.

33

CHAPTER 2. CLASS D AMPLIFIERS

(a) Closed-loop configuration CDA with
Synchronous SDM modulation [6]

(b) Closed-loop configuration CDA with
asynchronous SDM modulation [6]

Figure 2.21: SDM configurations for CDA

• Bang-bang control: it is the most efficient power structure; it consists in an
hysteresis comparator and a feedback network to achieve the stability; the main
advantage is that is the most low-power consumption configuration, because
only the hysteresis comparator is the quiescent power dissipating block (see
fig. 2.22).

Figure 2.22: Bang-bang control CDA [6]

• Self-oscillating: this modulation is possible only with a feedback path be-
cause it is based on oscillator operation mode. The feedback network has to
be designed to oscillate at the switching frequency. The drawback is that the
self-oscillating CDA design is much more complex than the previous modula-
tions.

Figure 2.23: Self-oscillating block scheme CDA [6]

There are different ways to start the oscillation, but all of them do not require
any external waveform generator. The general idea of all these architectures
is to have an open loop transfer function that is a first order integrator (which
have a 90◦ phase shift over all the band) and adding a delay time in closed-
loop fashion to obtain a 180◦ phase and unitary loop gain at the oscillation
frequency. The oscillation techniques are the following [17]:

34

2.3. CLOSED-LOOP CONFIGURATIONS AND OTHER MODULATION
TECHNIQUES

Figure 2.24: Current mode hysteresis modulator [17]

– Hysteresis modulator (current mode): because of the inductor cur-
rent is the integral of its drop voltage, the feedback signal is the measured
value of inductor current: the error signal it is obtained by the subtrac-
tion between the voltage reference and the inductor current. This signal
feds an hysteresis comparator that generates the PWM signal to drive the
switch (fig. 2.24); the oscillation frequency depends on the delay time due
to the hysteresis comparator

td =
Vhyst

αcarrier

[17] (2.31)

where Vhyst is the height of hysteresis window and αcarrier the slope of
the carrier. The switching frequency depends on modulation index M the
ratio between output voltage and power supply voltage [17], the inductance
value L, the delay time td, the power supply Vs and the height hysteresis
window Ihyst [17]

fs(M) =
Vs

4

1−M2

L · Ihyst + 1
2
tdVs(1 +M2)

[17] (2.32)

– Hysteresis modulator (voltage mode): the working principle is the
same of the current mode, but the feedback signal is the input voltage
of inductor (the PWM signal generated by the switch) that has to be
integrated. So, a first order integrator is added and is fed by the error
signal, the difference between the reference signal and the inductor input
voltage (fig. 2.26). In this case the switching frequency is

fs(M) =
Vs

4

1−M2

τint · Vhyst +
1
2
· tdVs(1 +M2)

[17] (2.33)

where τint is the integrator time constant.

– 1st order fixed delay self oscillating modulator : the additional
phase shift is reached adding in the feedback a delay line to obtain the
Barkhausen condition at the required frequency. In this case the switch-
ing frequency becomes

fs(M) =
1

2

1−M2

td(1 +M2)
[17] (2.34)

35

CHAPTER 2. CLASS D AMPLIFIERS

• Controlled oscillation modulator (COM): the hysteresis comparator is
removed and the closed-loop transfer function is shaped adding high frequency
poles to obtain the Barkhausen condition at the switching frequency (fig. 2.25).

Figure 2.25: Block diagram of COM
modulator [17]

Figure 2.26: Voltage mode hysteresis
modulator [17]

Another important feature to be considered to decide the modulation technique
to implement in a class D amplifier is the electromagnetic interference: in fact at
the changing of modulation techniques and the noise shape and the high frequency
harmonics that can be generated in RF band.

2.4 Electromagnetic Interference

Electromagnetic noise in electronic systems is not a marginal problem: in fact, the
Federal Communications Commission (FCC) and European Union (EU) rules about
the electromagnetic compatibility (respectively in USA and EU) must be respected
to sell the system [18]. This is one of main problems and drawback in switch-mode
amplifiers.
ElectroMagnetic Compatibility (EMC) problems are concerned it is common to de-
fine two types of disturbances:

DM = OutA− outB DIFFERENTIAL MODE NOISE (2.35)

CM =
OutA+OutB

2
COMMON MODE NOISE (2.36)

as shown in [7], where OutA and OutB are the two output of a Bridge-Tied Load
class D amplifier. While the differential mode noises can be attenuated by a symmet-
ric structure, the common mode noise can be reduced only by adding extra filtering
[7]. Depending on modulation type, different classes of amplifiers are defined:

• Class AD : “A speaker that is connected to these two output lines will always
see an excitation voltage of ±VDD causing maximum current flow” [7]. This

36

2.4. ELECTROMAGNETIC INTERFERENCE

voltage stress so much the speaker because the output current is very high. To
improve the efficiency and reduce the stresses, an output filter is added to both
branches of amplifiers, reducing the power dissipation. With this modulation
scheme (that is basically the natural PWM) both in presence and absence of
a signal, the common mode noise is theoretically half of the power stage power
supply, so basically no CM harmonics. In fig. 2.28a it can be seen that CM
components are not null: this is due to the asymmetry of the two stage and
the effect of switching delay of the two branches;

• Class BD : this class exploits the fact that the speaker already works as a
low pass filter. Changing the modulation scheme (fig. 2.27b) it is possible
to avoid the use of the output filter, increasing the efficiency and recovering
area on the board: for those motivations this amplifier class is even called
filterless Class D and it is widely used in mobile applications. This modulation
scheme allows to nullify differential output voltage when no signal is applied,
increasing the efficiency of the system; on the other hand, the common mode
noise is increased, too(fig. 2.27b). Observing the spectrum of CM “at duty
cycle 50%, the odd harmonics have a maximum amplitude, while the even
harmonics disappear” [7].

• Ternary scheme : it is a development of the class BD scheme and is composed
by a digital logic; it allows to reduce the CM noise respect to BD scheme (fig.
2.27c), doubling the fundamental frequency of the CM signal when the audio
signal is applied at the input; the other advantage is the possibility to remove
the output filter because with no audio signal only short pulses are shown in
DM waveform (fig. 2.27c). Observing the CM waveform, decomposing the
signal with Fourier series, it can be seen that odd and even harmonics of twice
the PWM frequency are generated.

2.4.1 EMI-Reduction techniques
EMI has a strong impact in mobile and integrated applications like phones because
it can influence the functionality of other circuits like converters, source currents,
voltage references. EMI problems could not be neglected in filterless amplifiers, so
techniques for reducing EMI are developed, both in analog and digital ways. The
digital solutions are used in integrated class D amplifiers because the analog ones
are difficult to be implemented in integrated products [8]. Three EMI reduction
techniques implemented by digital mean are shown in [8]:

• Common-mode (CM) modulation : the idea is to modulate the common
mode component of a tri-level PWM (class BD modulation scheme): inverting
and swapping pseudo-randomly the two output of a bridge tied-load amplifier,
the common mode can be nullified without affecting the differential mode (fig.
2.29).

37

CHAPTER 2. CLASS D AMPLIFIERS

(a) Output signal of class AD
modulation scheme [7]

(b) Output signal of class BD
modulation scheme [7]

(c) Output signal of Ternary modulation
scheme [7]

Figure 2.27: Output signal of different modulation schemes

(a) Class AD modulation scheme CM
spectrum [7]

(b) Class BD modulation scheme CM
spectrum [7]

(c) Ternary modulation scheme CM
spectrum [7]

Figure 2.28: CM spectra of different modulation schemes
38

2.5. DIGITAL MODULATIONS (DPWM)

Figure 2.29: Waveform comparison between tri-level PWM and tri-level PWM with
CM modulation [8]

• Spread-spectrum modulation : it is a very simple technique that is used in
many implementation like USB3.0 [8]; the idea is to distribute over a wider
frequency range the energy of the disturbances; the drawbacks is that the
clock jitter is increased; in digital implementation is difficult to obtain good
performances since “due to the digital clock division the frequency deviation for
the PWM signal is relatively small” [8].

• Digital spread-spectrum modulation : digital implementation of the pre-
vious modulation.

• Digital spread-spectrum modulation with additional common mode
modulation : this technique implements together, in a digital fashion, the
common mode and the spread spectrum modulation, avoiding the impact on
audio quality and the reducing EMI noise, as shown in [8].

The procedure to measure electromagnetic disturbances is defined in the standard
IEC61967-4 and it is used in the works [7][8].

2.5 Digital modulations (DPWM)

The PWM modulation is the simplest modulation technique. For this reason in
several works [19][20][16][21][22][14] it is implemented and studied to improve the
performances of the class D amplifier. In fact, the possibility to digitalize this
techniques brings lot of advantages:

1. allows to reach higher switching frequency improving the performances of the
whole system;

39

CHAPTER 2. CLASS D AMPLIFIERS

2. in closed-loop fashion, the integrator and filter can be implemented with much
more complex transfer functions without adding any extra external hardware;

3. the integration of the whole system is much easier;

4. the area occupied is much lower than in analog implementations;

5. the system, and in particular the modulation section, is more protected by
external noise, being digital.

On the other hand, the digital implementations show several drawbacks and bot-
tlenecks, in particular resolution of a digital PWM is a trade-off with the switching
frequency, clock frequency and area and could generate LCO (Limit Cycle Oscil-
lation)[19][20][21][23][24].
So due to all these reasons, different implementations of DPWM (Digital Pulse-
Width Modulation) are studied.

2.5.1 DPWM counter and comparator-based implementation

The most simple implementation of a DPWM converter in made by

• Free-running counter : it’s a n bit digital counter that works at a clock
frequency fclk. From those two parameters the switching frequency fsw can be
derived as

fsw = fclk/2
n (2.37)

This circuit substitutes a triangular trailing edge oscillator in analog imple-
mentation of PWM ;

• input register : is the register where the input digital code is stored and
sampled at fsw;

• comparator : it compares the register code with the number reached by the
counter; than it output a high value if the register code is higher than the
counter code, or a low value otherwise.

An example of DPWM converter is shown in figure 2.30. The output signal is
composed by

• n "ones";

• 2N − n "zeros

40

2.5. DIGITAL MODULATIONS (DPWM)

where N is counter and input register number of bits and n the converted number.
So the resulting waveform is a square wave with a frequency fsw = fclk/2

N and a
duty cycle D = n/2N .

Figure 2.30: Example of architecture
and output signal of a DPWM DAC
converter [20]

Figure 2.31: DPWM spectrum

So the output waveform can be expressed as [20]

vDPWM,n(t) = VDD

k=+∞∑
k=−∞

Π

(
t

nTclk

− 1

2
− 2N

n
k

)
(2.38)

where [20]

Π(x) =

1 |x| < 1

2

1
2

|x| = 1
2

0 |x| > 1
2

(2.39)

and its spectrum results [20]

Vdpwm(f) = VDD

k=+∞∑
k=−∞

ck,nδ(f − kf0) (2.40)

ck,n = Dsinc(kD)ejπkD =
n

2N
sinc

(kn
2N

)
e−

jπkn

2N (2.41)

with sinc(x) = sin (πx)/x, f0 = 2N 1
Tclk

and Tclk is the clock period of the counter.
This architecture is simple to be implemented and requires a minimum hardware
area. The main problem, as it is shown in [20], is the filter requirement to recover
the input information. As a matter of fact, the highest harmonic component of the
output spectrum Vdpwm(f) is f0(k = 1) with a factor α0 = 1/π below VDD. The
attenuation filter at this frequency should be that the f0 amplitude has to be below

41

CHAPTER 2. CLASS D AMPLIFIERS

the quantization error ϵ = VDD

2N+1 . So the output voltage of output filter OF should
be

OF < ϵ ⇒ αFα0VDD <
VDD

2N+1
⇒ αF

1

π
VDD <

VDD

2N+1
⇒ αF <

π

2N+1
(2.42)

where αF is the attenuation filter, that is a function of frequency. Considering the
order of filter P , can be found the corner frequency fc of the filter by

α(f) = (fc/f)
P ⇒

(
fc
f

)P

<
π

2N+1

⇒ fc <
P
√
π2−

N+1
P f0 =

P
√
π2−

N+1
P fclk2

−N =

= P
√
π2−

N+1
P fclk2

−N−1−PN
P = P

√
πfclk2

−N(P+1)+1
P (2.43)

Expression 2.43 shows that for a given clock frequency fclk the resolution N

is a trade-off with corner frequency fc. Moreover the implementation of this
filter is difficult because it requires large resistors and capacitors (fig. 2.30). Let’s
consider the following examples

• fclk = 100MHz, P = 1, N = 8 ⇒ fc = 2.4 kHz

• fclk = 100MHz, P = 1, N = 12 ⇒ fc = 37.45Hz

It can be observed that increasing the resolution N , fc has to decrease, reducing
the reliability of the filter in integrated applications and requiring large area even in
discrete application because filter component should be large (e.g. 2nd order filter
with inductor and capacitor).
This important drawback has brought different implementations of DPWM, increas-
ing the resolution and overcoming the fclk and fsw trade-off.

2.5.2 Alternative implementations of DPWM

The increase of resolution in the DPWM implementation shown before, needs an
increase in clock frequency, especially in high switching frequency applications. For
this reason, different implementations of DPWMs are developed

• delay lines-based DPWM : it consists in a set of delay elements to “achieve
sub-clock cycle resolution”[21], but requires large area on silicon and it is very
dependent on temperature, parameter variation and power supply[21][25];

• thermometric dithering : it consists in a variation of duty cycle of one LSB
over pre-defined patterns [21] controlling the average duty cycle with a sub-
LSB resolution. The idea is shown in figure 2.32. “[...]the digitally quantized

42

2.5. DIGITAL MODULATIONS (DPWM)

Figure 2.32: High resolution DPWM by thermometric duty cycle dithering over
switching periods [21]

duty cycle is (n + 1)/2N in the first m switching periods of a 2M dithering
pattern and n/2N in the remaining periods, so that an average duty cycle
(n ·2M +m)/2N+M quantized over N +M bits can be achieved, thus increasing
the effective DPWM resolution of M bits”[21]. This solution is inexpensive and
needs a simple architecture, but introduces switching frequency sub-harmonics
that cannot be properly filtered out.

2.5.3 Digital Sigma-Delta modulation

Another solution adopted to solve the resolution limitations is to shape the quan-
tization noise: the idea is to move the low frequency quantization noise to higher
frequencies, reducing its effect in the band of interest. This technique is called noise
shaping and Sigma Delta modulation (Σ∆) is one of the most used implemen-
tation of this technique. Usually, this kind of modulation is applied in analogue-
to-digital converter, “in digital-to-analog converter and in digital signal processing
(DSP) to reduce the number of bit of binary representation, without reducing the
information of the signal”[25]. The parameters that characterize Σ∆ converter are:

• oversampling ratio (OSR): is the ratio between the sample frequency of the
modulator fclk and the Nyquist frequency 2fs related to the band of the signal
fs

OSR =
fclk
2fs

(2.44)

Larger is OSR, larger is the SNR;

43

CHAPTER 2. CLASS D AMPLIFIERS

Figure 2.33: DPWM vs Σ∆ modulation spectra

• modulator order : Σ∆ modulator is based on the presence of an integra-
tor that has the function to reduce quantization noise in signal bandwidth;
increasing the order of the integrator is more effective on quantization noise
reduction;

• resolution of quantizer : increasing the number of bit of Σ∆ converter, SNR
increases.

Quantitatively, SNR of Σ∆ converter can be expressed as a function of OSR = 2r1,
amplitude of input sinusoidal signal A, power supply of ADC VDD and number of
bits b [5]

SNR [dB] = 20 log
A

VDD

+ 6.02b+ 3.01r + 1.76 (2.45)

This solution is applied in [25], where a Σ∆ modulator is used to control a MOSFET
switch of a step-down converter in a DC-AC converter. The solution is compared
with another one that use a DPWM converter. The spectral results, in figure 2.33,
show that solution with Σ∆ modulation has a spread noise at high frequency, differ-
ently from DPWM modulator, where the fundamental, harmonics of clock frequency
and intermodulation products are visible. Moreover, at low frequency, spurious tones
are generated in particular with DPWM modulation. The problems of Σ∆ modu-
lation are that the implementation is more complex and required area and power
dissipation are larger. Moreover, the clock sample frequency is generally lower than
DPWM one.

1generally the oversampling ratio is set as a power of 2

44

2.5. DIGITAL MODULATIONS (DPWM)

2.5.4 Limit Cycle Oscillation (LCO)

In a closed-loop systems with quantizers like ADCs and DPWMs in the loop, un-
desirable oscillations may occur on output voltage due to the resolution limitation.
This behaviour is called Limit Cycle Oscillation (LCO). An example of this kind
of system is shown in figure 2.34. Qualitatively, with figure 2.35 as reference, the
oscillation on the output is due to the fact that DPWM resolution is less than the
ADC one and “there is no DPWM level that can be mapped into the ADC bin cor-
responding to the reference voltage Vref ”[24]. In this situation, what happen is that
the digital controller tries to drive Vout to the zero-error bin, but the lower resolution
of DPWM does not permit this correction, triggering an oscillation on the output:
this means that the first step toward eliminating limit cycles is to ensure that under
all circumstances there is a DPWM level that maps into the zero-error bin[24].

Figure 2.34: Block diagram of a digitally controlled buck converter [24]

(a) (b)

Figure 2.35: a) LCO phenomena in case of DPWM resolution lower than ADC; b)
LCO phenomena in case of DPWM resolution higher than ADC

As shown in [24] the conditions to remove the LCO are

1. DPWMres>ADCres;

45

CHAPTER 2. CLASS D AMPLIFIERS

2. Integrator gain 0<Ki<1 ;

3. Nyquist criterion must be ensured.

If the last two conditions can be easily respected by proper compensator design, the
first depends on quantization of ADC and DPWM, influencing the clock frequency
of DPWM. Given a switching frequency fsw, considering a DPWM solution based
on comparator and free-running counter of N bits, the necessary clock frequency
fclk is given by

fclk = 2Nfsw (2.46)

The equation 2.46 highlights that increasing the resolution N , clock frequency rises
up. For example, given fsw = 1MHz and N = 10, clock frequency overcomes 1GHz

that could be not so easy to reach in microcontrollers[26]. Moreover, increasing the
clock frequency means higher power dissipation.

2.6 Dyadic Digital Pulse Modulation (DDPM)

As shown in subsection 2.5.1 the output filter requirements for digital-to-analog
conversion with DPWM are very stringent and create problems in integrated circuits
implementations because it needs large capacitors and resistors. Moreover, as shown
in eq. 2.46, increasing the switching frequency to attenuate the requirement of
output filter, is a trade-off with the resolution and the clock frequency. Even if the
resolution can be increased with thermometric dithering technique, “it may introduce
noise at switching frequency sub-harmonics, which cannot be properly rejected by the
converter output filter”[23]. To overcome these problems, it can be observed that
the mean value of DPWM stream is n/2NVDD, where n is the number of "ones" of
the output digital stream, N the DPWM number of bits and VDD the power supply
of digital architecture (fig.2.30): the idea developed in [20] is to change the output
waveform of a non-DPWM modulator without changing the mean value.

2.6.1 Dyadic sequence

“The strict requirement for the output filter of DDPWM DAC are due to the fact that
most of the harmonic content of DPWM signal is concentrated at the fundamental
frequency f0 = fclk/2

N ”[20]. The worst case for the output of a DPWM modula-
tor is when the input code is such that the output digital stream is a square wave
with 50% duty cycle: in this case the first harmonic (the one with highest power,
f0 = fclk/2

N) has an amplitude of 1
π
VDD[20]. The input code that generates this

waveform is 2N−1 and in particular the output digital stream is made by 2N−1 "ones"

46

2.6. DYADIC DIGITAL PULSE MODULATION (DDPM)

and 2N−1 "zeros" (SN−1 = 1111...10000). If this input code (2N−1) is associated to
the output sequence SN−1 = ...10101010..., the fundamental of this signal is increase
at f0 = fclk/2 (instead of fclk/2N of DPWM sequence) reducing the requirement of
the output filter. Moreover, the resulting DC components does not change because
the number of "ones" and "zeros" is the same.
In a similar way, the DPWM pattern associated to the input code 2N−2 is composed
by 1

4
N of "ones" and 3

4
N of "zeros". This pattern can be rearranged in the output

sequence SN−2 = ...10001000..., maintaining the same DC component of DPWM
sequence and increasing the fundamental frequency to f0 = fclk/4.
This pattern can be recursively applied down to LSB. In general, the pattern as-
sociated to the code 2N−x (N ≤ x < 0 ∈ N) is a sequence with the following
characteristics

• 2N−x periods;

• each period is composed by a "one" (Tclk duration) and 2x−1 zeros (each zero
of duration Tclk).

Example: DPWM vs DDPM sequences

• N = 4 ⇒ 2N = 24 = 16 sequences

Sequence DPWM DDPM
S0 = 20(0001) 1000000000000000 0000000100000000
S1 = 21(0010) 1100000000000000 0001000000010000
S1 = 22(0100) 1111000000000000 0100010001000100
S2 = 23(1000) 1111111100000000 1010101010101010

Sequence f0DPWM
f0DDPM

S0 = 20(0001) fclk/16 fclk/16

S1 = 21(0010) fclk/16 fclk/8

S2 = 22(0100) fclk/16 fclk/4

S3 = 23(1000) fclk/16 fclk/2

Si = 2i fclk/2
N fclk/2

N−i

This kind of sequence is called dyadic and an example with N = 4 is shown is figure
2.36.

2.6.2 Dyadic sequence of an integer number

Observing the figure 2.36 it can be seen that the sequences that represents the 2N−x

numbers are orthogonal (there’s not superposition among all the ones). Starting

47

CHAPTER 2. CLASS D AMPLIFIERS

from this, any integer number n ∈ [0, 2N) can be represented by a proper sum of
the dyadic sequences. In terms of binary representation can be written as [20]

n =
N−1∑
i=0

bi,n2
i (2.47)

where bi,n is the i-th bit of the binary code. The related dyadic sequence of n is [20]

Σn =
N−1∑
i=0

bi,nSi (2.48)

where Si is the dyadic sequence associated to 2i.

Example: DDPM sequence

• n = 10 ⇒ 1010

Applying the 2.48

Σ10 =
4−1∑
i=0

bi,102
i =

3∑
i=0

bi,102
i = 0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 = 2 + 8 = 10

Sequence DDPM
S1 = 21(0010) 0001000000010000
S2 = 23(1000) 1010101010101010
Σ10 = S1 + S2 1011101010111010

Figure 2.36: Dyadic sequences with N=4 bits [20]

2.6.3 Spectral analysis of DDPM

The spectral analysis reported in [20] shows interesting advantages of the DDPM
over standard DPWM. “The DDPM sequence associated to a constant input code n

48

2.6. DYADIC DIGITAL PULSE MODULATION (DDPM)

Figure 2.37: Dyadic Digital Pulse Modulation spectrum, N=16 bit resolution [20]

corresponds to a digital waveform [20]

vDDPM,n(t) = VDD

+∞∑
k=−∞

xn(t− 2NkTclk) [20] (2.49)

where [20]

xn(t) =
N−1∑
i=0

2i−1∑
h=0

bi,n
∏(t

Tclk

− 2N−ih− 2N−i−1 − 1

2

)
(2.50)

with a spectrum[20]

Vddpm,n(f) = VDD

+∞∑
k=−∞

ck,n sinc
(k

2N

)
δ(f − kf0) (2.51)

where f0 = 1/T0 = fclk/2
N and [20]

ck,n =
N−1∑
i=0

bi,n2
i−N

2N−i−1∑
m=0

δ[k − 2im]e−jπm(1+2i−N) (2.52)

with δ[·] is the Kroenecker function defined as [20]

δ[n] =

1 n = 0

0 n ̸= 0
(2.53)

A graphical representation of DDPM spectrum is shown in figure 2.37. As expected
the DC component is not changed (n/2NVDD) with respect to DPWM. Moreover,
harmonics amplitude increases of 20 dB/dec (linearly scaled by 2i) and frequencies
are spaced by 2if0.

2.6.4 Output filter requirement

The spectral distribution of the DDPM pattern modifies the requirements for the
output filter. In particular, looking at fig. 2.40, it can be seen that to attenuate the

49

CHAPTER 2. CLASS D AMPLIFIERS

f0 = fclk/2
N (the lowest harmonic) under quantization error ϵ, it is necessary only

an attenuation of 6 dB at f0, with a slope of −20 dB/dec at least. In fact

α|f=f0 = α0 = 2−NVDD

⇒ αFα0 < ϵ ⇒ αFα0 <
VDD

2N+1

αF
1

2N
<

1

2N+1
⇒ αF <

1

2
⇒ αF |dB = −6 dB

where α0 is the amplitude of the lowest harmonics, αF the attenuation of output
filter and ϵ the quantization error. Considering an RC filter

|H(jf)|f=f0 =

√√√√ 1

1 +
(

f
fc

)2
∣∣∣∣∣
f=f0

<
1

2
⇒ fc <

f0√
3

(2.54)

Example: DPWM vs DDPM

• N = 16, P = 1, fclk = 100MHz

Applying 2.43
fcDPWM

< 37mHz

Applying 2.54

fcDDPWM
<

fclk
2N

/
√
3 =

100MHz

216
/
√
3 = 2.65 kHz

The requirements for DDPM output filter are much less stringent.

2.7 Dyadic Digital Pulse-Width Modulation (DDPWM)

In [23] the DDPM is applied to DPWM to increase the effective resolution of DPWM
and reducing the spurious effect of sub-harmonics in baseband due to the thermomet-
ric dithering technique, without affecting DC components. This technique is called
Dyadic Digital Pulse-Width Modulation. It consists in modulating the DPWM signal
between two adjacent quantization levels [23]

D0 =
n

2N
and D1 = D0 + 1LSBDPWM =

n+ 1

2N
(2.55)

where n is the value represented by the first N MSBs of input code. The duty cycle
D0 is applied 2M −m times while D1 is applied the remaining m times, where M

are the LSBs of the digital input. Using this technique, the average duty cycle is
given by [23]

D =
n

2N
2M −m

2M
+

n+ 1

2N
m

2M
=

n · 2M +m

2N+M
(2.56)

50

2.7. DYADIC DIGITAL PULSE-WIDTH MODULATION (DDPWM)

(a) N + M bit Dyadic Digital Pulse Width Modulation (DDPWM) [23]

(b) Comparison between DDPWM spec-
tra and thermometric dithering DPWM
(switching voltage) [23]

(c) Comparison between DDPWM spec-
tra and thermometric dithering DPWM
(output voltage) [23]

Figure 2.38: DDPWM pattern and comparisons between DDPWM and thermomet-
ric dithering DPWM spectra

Comparing the obtained duty cycle with the one shown in subsection 2.5.2 with
thermometric dithering, the results are the same. The difference is that in ther-
mometric dithering D1 is applied m consequtive times, while in DDPWM D1 is
generated by means of a DDPM architecture that receives the M LSBs (fig. 2.38a).
This characteristics has a direct effect on output signal spectrum. The advantage
of the DDPWM can be observed in spectra comparison (fig. 2.38)

• the lowest sub-harmonic component results the minimum one for DDPWM
modulation, contrary to thermometric dithering where is the maximum one
and higher sub-harmonics decrease with 20 dB/dec;

• the highest sub-harmonic of DDPWM is at fsw/2 where the attenuation of the
filter is higher; as a consequence, the output voltage ripple is reduced.

Another advantage of DDPWM is LCO suppression due to the fact that an higher

51

CHAPTER 2. CLASS D AMPLIFIERS

(a) DPWM output with LCO phenomena
[23]

(b) DDPWM output with suppresion of
LCO phenomena [23]

Figure 2.39: Comparison between DPWM and DDPWM output voltage where the
LCO is put in evidence

resolution can be easily achieved with a suitable clock frequency. This effect is shown
in [23], where “the output voltage of the buck converter with NADC = 8 bit ADC op-
erated fs = 100 kHz switching frequency by a plain DPWM modulator clocked at
fclk = 3.2MHz, resulting in a N = 5 bit resolution” is measured and compared with
a DDPWM modulation with M = 4 and N = 5, using the same switching frequency
and the same clock frequency for DPWM. The results show that the LCO-free op-
eration is not reached by DPWM modulator because its resolution (N = 5) is lower
than the ADC one (NADC = 8). On the other hand, the DDPWM suppresses the
LCO phenomena because its effective resolution is N +M = 9, one bit higher than
the ADC one (fig. 2.39).
In conclusion, DDPWM modulation allows to reach better performances than other
kind of modulations like DPWM. In particular, in closed-loop system LCO-free op-
eration can be reached and a better accuracy on DC output voltage can be obtained
[23]. Moreover, the requirements on the output filter and the bottleneck between
resolutions and clock frequency are reduced.

2.8 Devices technology

One of the main goals of power systems is to increase the efficiency. This aim can be
achieved by the use of proper architecture (e.g. switching mode driving), but even
through an appropriate technology that limits some non-idealities of devices. At the
state of the art of class D amplifiers, the most employed power devices for power
stage are MOSFETs. In this active devices, the limitations are related to parasitic
capacitances and body diode, which reduce the speed of the device and increase

52

2.8. DEVICES TECHNOLOGY

n-

S

D

G

p p

n+

n+ n+

DDS
DSS

Figure 2.40: MOSFET structure

the power consumptions. Those two effects have direct impact both on distortion
and power efficiency. In fact, as mentioned on page 27, parasitic capacitances (e.g.
Cgs) need to be charged with a charge (e.g. Qg) depending on value capacitance and
voltage drop on it. Moreover, the presence of body diode influences the efficiency and
the speed, which is related to the reverse recovery charge that has to be considered
when the device change state during dead time (from ON to OFF or from OFF to
ON) (see page 27). On the other hand, the body diode is not a perfect short circuit
when it conducts, but there’s a voltage drop on it and, as a consequence, a power
consumption during conduction time[27][28].

2.8.1 Body diode effect

Considering an n-channel MOSFET, the cross section of physical structure is the
one shown in figure 2.40. As it can be observed, the p-substrate and the n-wells
(source and drain) form two pn-junctions and, as consequence, two parasitic diodes.
If substrate and source are short circuited, the only diode that could conduct is
the one formed by the substrate (p-well) and the drain (n-well), DDS. To point out
when DSD conducts, the circuit in figure 2.41 is considered. Basically, it is an output
stage with output filter of a class D amplifier. During dead time, both transistor are
turned-off. Because of the current that flows through the inductor must continue to
flow (due to the continuity condition of the current), the body diode of the low-side
transistor is forced to conduct and a negative voltage drop falls on it. A qualitative
graphical representation of VDS behaviour is shown in figure 2.41. Because of the
voltage drop on the diode and the inductor current flows through it, during dead
time there’s a power dissipation which depends on dead time duration. In a similar
way, this happens to the body diode of high-side transistor when the current flowing
through the inductor is negative. Consequently, the presence of body diodes are
necessary to the correct behaviour of class D output stage, but they increase power

53

CHAPTER 2. CLASS D AMPLIFIERS

L

C

VPS
VDS

t
VD DDS conducts

VDS

DDS

iL

Figure 2.41: Dead time VDS behaviour and DDS conduction

Parameter Silicon GaN SiC
Band Gap Eg (eV) 1.12 3.39 3.26
Critical Field Ecrit (MV/cm) 0.23 3.3 2.2
Electron Mobility (cm2/Vs) 1400 1500 950

Figure 2.42: Comparison among Si, GaN and SiC technologies characteristics

dissipation.

2.8.2 GaN devices

In recent years, in power applications have been introduced active devices based on
different materials and technologies like Silicon Carbide (SiC) and Gallium Nitride
(GaN) FETs. In particular, the last ones are becoming a valid alternative to MOS
technology because their physical characteristics allow to reach

• power losses reduction;

• system size reduction;

• higher efficiency;

• system cost reduction;

• higher speed.

A comparison among Silicon, GaN and SiC technologies is shown in table 2.42. GaN
devices are characterized by a higher bandgap value with respect to the two com-
petitors, obtaining the capability to work at higher temperature before performance
degradation. Moreover, GaN devices have higher critical field and so, as a conse-
quence, a larger breakdown voltage: this characteristic allows the reduction of size
device. Finally, larger mobility means faster device.

54

2.8. DEVICES TECHNOLOGY

Figure 2.43: Band diagram of an heterostructure formed by AlGaAs and GaAs
alloys [29]

2.8.3 GaN physical structure

Differently from MOS, GaN devices are characterized by heterostructure of AlxGaN1-xN
alloy growth on GaN substrate. The parameter x influences the bandgap and lattice
constant structure. In this kind of technology, one of the key characteristics of the
matarials is the large bandgap difference of the alloys used: in fact, considering the
graph in figure 2.43, putting in contact two alloys of AlGaAs and GaAs, at contact
interface between the two materials a quantum well is formed. The electrons of
the n-type doped barrier layer collected in the quantum well are commonly referred
as two dimensional electron gas (2DEG), since they behave as free particles in two
directions (in the plane of the interface) while their motion is quantized only in or-
thogonal direction. The separation of electrons from their donor atoms ND reduces
the Coulomb scattering and leads to a high mobility of the electrons in the 2DEG [29].
This structure increases significantly the mobility of electrons due to the absence of
ionized impurities that in MOS structure cause scattering events. As a results, the
speed of the device is larger than the MOSFET one.

2.8.4 GaN FET polarization

When there’s no voltage applied to the structure, the system is at equilibrium. This
equilibrium derives from the fact that when the AlGaN and GaN alloys are put in
contact, electrons flow from AlGaN to GaN. This mechanism leaves ionized positive
charge in the AlGaN layer at the interface between the two materials (see fig. 2.44a).
Applying a voltage to the structure, the 2DEG becomes the source of electrons to
make current flow (fig. 2.44b). The conduction of a FET can be controlled in two
ways, depending on the physical design:

55

CHAPTER 2. CLASS D AMPLIFIERS

(a) HEMT at equilibrium
(b) HEMT polarized

(c) Depletion mode polarization GaN
FET device

(d) Enhancement mode polarization
GaN FET device

Figure 2.44

• depletion mode (D-mode): the channel of electrons is already formed at
equilibrium condition, so that without any VGS applied the current can flow;
this kind of conduction is called normally-on because the device conducts cur-
rent without any command voltage (VGS) application; to stop the conduction,
a negative VGS has to be applied (fig. 2.44c). Due to the need of negative volt-
age, these kinds of devices are not so frequently used in power applications;

• Enhancement mode (E-mode): contrary to depletion mode devices, the
channel has to be formed by a positive VGS voltage application (normally-off)
(fig. 2.44d); for this reason, these kind of devices are mostly used in power
applications.

2.8.5 Electrical characteristics

Similarly to Si MOS devices, the basic transistor GaN parameters are:

• On-resistance Ron: it is related to the equivalent 2DEG resistance and the
source and drain contact resistances; it’s variation in temperature is similar
to the silicon MOSFETs [13] (fig. 2.46a); in general, the Ron of GaN FET is
lower than that of silicon MOSFET [12][15];

• Threshold voltage Vth: it is the voltage necessary to turn on the device; as
happens for MOSFET, it has a negative sensitivity to temperature, but the
slope is not so steep than MOSFET one[13] (fig. 2.46b);

• capacitance: CGS, CDS and CGD are the three main capacitances that char-
acterize GaN transistors; observing figure 2.46c, it can be seen a drop in the

56

2.8. DEVICES TECHNOLOGY

S

D

G

VGD

VGS

VDS

(a) Forward conducted GaN

S

D

G
VDG

VSG

VSD

(b) Reverse conducted GaN

Figure 2.45: Forward and reverse conducted voltages on GaN FET

capacitance value at increasing of VDS value: this is due to the depletion
charges in the 2DEG near the surface at increasing of VDS[13];

• reverse conduction: as shown in subsection 2.8.1, MOS transistors have
intrinsic parasitic diodes; on the contrary, for GaNs, the absence of drain
and source wells makes impossible the formation of parasitic pn-junctions:
this allows to drive the GaN FETs in reverse direction by only changing the
driving voltage from VGS to VGD. To point out this behaviour, figure 2.45 can
be considered.

In forward conduction, the device can conduct when VGS > VTH . In this
condition all the voltages are positive (fig. 2.45a). The voltages equation are

VGD − VGS + VDS = 0

VGD = VGS − VDS

VDS = VGS − VGD

Suppose VGS < 0 and VDS < 0 (fig. 2.45b). If VS is made more and more
positive, VDG increases: when VDG = −VGD reaches the threshold voltage VTH2

the device starts to conduct in reverse direction. The subscript 2, in VTH2

notation, indicates the fact that in reverse conduction the threshold voltage
in general is not equal to the threshold voltage VTH1 of forward conduction
(VTH1 ̸= VTH2).
As a consequence, the advantage of GaNs over MOSFETs in reverse conduction
is the absence of power dissipation due to the presence of parasitic diodes. This
means an increase in power efficiency. Moreover, the reverse recovery charge
is zero (Qrr = 0): this increases the speed of device because the parasitic
capacitance related to the pn-junction does not exist.

57

CHAPTER 2. CLASS D AMPLIFIERS

2.8.6 GaN FET in Class D amplifier applications

Due to their advantageous physical characteristics, GaN FETs are becoming a valid
alternative to the traditional technologies like Si or SiC. In particular, for class D
amplifier some studies are done in literature to evaluate the performance in terms
of efficiency, distortion and sensitivity to temperature [12][15].
In [12], a class D amplifier in half-bridge open-loop configuration is taken into con-
sideration to investigate what are the elements that causes an efficiency reduction.
The specification of the designed system is in table 2.47.

(a) Ron Si and GaN FETs comparison
[13]

(b) Vth vs ID Si and GaN FETs compar-
ison [13]

(c) Capacitances vs VDS for GaN devices
[13]

(d) MOSFET physical structure (e) GaN FET physical structure [30]

Figure 2.46

58

2.8. DEVICES TECHNOLOGY

(a) Efficiency comparison among differ-
ent devices [12]

Device VDS IDS RdsON Coss

IRF4019H-117P (Conventional) 150V 8.7A 80mΩ 100 pF

EPC2016 (GaN) 100V 11A 16mΩ 225 pF

C3M0065090J (SiC) 900V 35A 65mΩ 60 pF

(b) Electrical characteristics of devices
used in [12]

Figure 2.48

Rated power 100W RMS
Switching frequency 400 kHz

Supply voltage ±45V

Freq. response 20Hz− 20 kHz

Load impedance 8Ω

Modulation index ≤ 0.9

Figure 2.47: Specifications for simulated amplifiers designed in [12]

The paper shows that one of the main section that influences the system power
dissipation is the output stage. In particular, comparing three different devices
made in three different technologies (GaN, Si, SiC), GaN is the most efficient one
(fig. 2.48a). Comparing the electrical characteristics in table 2.48b, it can be seen
that GaN RdsON is the lowest one and, as a consequence, the power dissipation is
lower, in particular for higher output power.
In [15], two class D amplifiers in open-loop full-bridge configuration are designed
and performances in terms of efficiency, distortion and sensitivity to temperature
are evaluated. The output stage of the first amplifier is designed using Si MOSFET,
while the other one with GaN FET devices. Audio data are streamed into FPGA
at 48 kHz, up-sampled at 12.5MHz for the second order Σ∆ modulator (fig. 2.49a).
The employed modulation, differently from most part of literature systems, is Pulse
Densisty Modulation (PDM). Two switching frequencies are tested:

• fsw = 1.1MHz;

• fsw = 360 kHz.

The TI drivers used are LM5113 for GaN FET and UCC27211 for Si FET config-
uration. THD+N and efficiency versus output power and efficiency versu output
power are measured:

59

CHAPTER 2. CLASS D AMPLIFIERS

(a) CDA block diagram [15]

GaN Silicon
Manufacturer GaNSystems Texas Instrument
Part Number GS61004B CSD19537Q3
Voltage rating 100V 100V

Ron 15mΩ 12.1mΩ

Qg 6.6 nC 16 nC

Vth 1.3V 3V

FOM 9.9× 10−11Ω·C 1.94× 10−10Ω·C

(b) Devices characteristics in [15]

Figure 2.49

• at 20W output power, third harmonic has less power in GaN solution (figs
2.51a and 2.51b); this means that GaN FETs give better audio performances
than Si competitors;

• GaN output stage has better performances at output power level greater than
0.5W (see fig. 2.51c); distortion on output signal is reduced using GaN devices
for the most part of the output dynamic range; at low power level (less than
0.5W) MOSFETs output stage solution show less THD+N;

• efficiency is better in GaN output stage for output power levels up to 20W

(fig. 2.51c); as shown in [12], [15] has confirmed the better performances in
terms of efficiency of GaN FETs, thanks to lower RdsON (fig. 2.51c);

• switching performances show that GaN devices are faster, having lower
rising and falling time;

GaN Si
trise tfall trise tfall

8 ns 6 ns 11 ns 21 ns

Figure 2.50: Switching performances of devices measured in [15]

• temperature GaN case is 20 − 25 °C lower than Si transistors in this test;
this is a consequence of less power dissipation;

Performances at different temperature are evaluated, too. In particular the systems
performances are measured after 1 min and 15 min. The same measurements are
performed applying an air forced cooling system. Measurements are resumed in the
tables 2.52. The following considerations can be done:

• for GaN output stage, efficiency is approximately the same at changing of tem-
perature T : this can be explained considering that the increase of temperature
also increases the Vth of the device; if Vth increases, the moment when the de-
vice is turned-on is delayed, so the dead time becomes larger than the nominal

60

2.8. DEVICES TECHNOLOGY

(a) Single-tone spectrum of the GaN output stage [15]

(b) Single-tone spectrum of the silicon output stage [15]

(c) Efficiency and THD+N versus output power with 1 kHz tone [15]

(d) THD+N vs frequency at 10W output power [15]

Figure 2.51: Measured results in [15]
61

CHAPTER 2. CLASS D AMPLIFIERS

Figure 2.52: Performances at varying of temperature with no cooling system (left
table) and with cooling system (right) [15]

designed value. From this consideration, efficiency should increase. But be-
cause of RdsON has a positive sensitivity to temperature, if T increases, RdsON

increases and, as a consequence, efficiency η is reduced[15]. The reasoning can
be schematized as below

if T ↑⇒ Vth ↑ 2 ⇒ tdead ↑ 3 ⇒ η ↑ ...

but T ↑⇒ RdsON ↑⇒ η ↓⇒ η ≃
• in a similar way, the variation of THD and efficiency of amplifier with MOS-

FET can be explained considering that Vth goes down while RdsON goes up as
increases T . As a consequence, the dead time increases, reducing THD and,
due to RdsON variation, efficiency goes down, too [15]. Schematizing

if T ↑ Vth ↓ , RdsON ↑⇒ THD ↓ , η ↓ .

• in case of air-forced cooling system, the performances of the two amplifiers
do not show particular variation in time. Again, GaN FET performances are
better than Si FET ones, both in terms of efficiency and distortion.

GaN FETs: a new frontier in class D power amplifiers

As shown in previous sections, GaN devices have lot of advantages in terms of costs,
occupied area, efficiency and, in audio field, distortion. Even if in literature these
devices are not so much investigated for audio systems, the researches reviewed
in subsection 2.8.6 have shown that their characteristics can lead an improvement
in efficiency and audio quality of sound systems, promoting them as new possible
devices for realization of high-fidelity low-consumption class D power amplifiers.

2.9 Class D amplifier designs

The main goals of class D amplifier design is to achieve higher power efficiency with
respect to the traditional classes, without sacrificing the audio quality. These two

3Vth has positive temperature coefficient

62

2.9. CLASS D AMPLIFIER DESIGNS

specifications are contradictory[6]. For this reason the design is complex, in par-
ticular for high fidelity applications. However, some design steps are very common
among literature designs [6][14][10][4][2][5]

1. Choosing the basic scheme modulation, depending on the applications, cost,
area, complexity and specifications requirements (e.g. maximum output power,
signal fidelity, noise immunity[6]);

2. switching frequency (generally taken > 500 kHz): increasing switching fre-
quency means in general reducing THD+N and increasing SNR and PSRR,
at the price of higher EMI[6];

3. closed- or open-loop architecture: depending on the specifications, open or
closed-loop design can be done; anyway, do to high non-linearity of this am-
plifiers, to obtain acceptable performances, lot of literature designs are done
in closed-loop [14][4][10][9].

Starting from these steps, other factors can influence the design choices, in particular
if the design is fully analog like in [4][3][5] or with global feedback and digital control
[10][16][14].

(a) Conventional analog closed-loop class
D amplifier with PWM [4]

(b) Analog closed-loop class D amplifier
with UPWM [4]

Figure 2.53: Comparison between analog closed-loop architecture with PWM and
UPWM

2.9.1 Analog filterless design

An example of analog design is shown in [4]. In this design, a filterless closed-loop
architecture is implemented with CMOS technology. One of the main problem of
conventional closed-loop class D amplifier architecture (fig. 2.53a) with PWM mod-
ulation is due to the aliasing caused by the feedback ripple when sampled by PWM [4]:
when the PWM signal is feedback to evaluate the error signal, it is re-sampled by

63

CHAPTER 2. CLASS D AMPLIFIERS

the triangular waveform. The error signal has a spectrum that contains baseband
audio and PWM components and is filetered by the loop filter: as a consequence,
when the compensator output signal is sampled by the PWM comparator triangular
waveform, due to residual ripple at fsw, the Nyquist criterion is not respected and
aliasing happens, increasing THD.
To overcome this problem, a Uniform PWM (UPWM) architecture (fig. 2.53b) is
implemented: the idea is to sample and hold (SAH) the output compensator sig-
nal at switching frequency fsw before the PWM sampling. Sampling and hold at a
determined frequency (e.g fsw) means introducing infinite attenuation at sampling
frequency and its harmonics (e.g. fsw, 2fsw, 3fsw, . . .) as shown in figure 2.54. In
this way, when the compensator output signal is sampled and hold, the harmonic
components related to the PWM are nullified, reducing the effect of aliasing.

Figure 2.54: PWM and UPWM transfer function [4]

2.9.2 Loop filter design

The loop filter is designed as an active second-order integrator with two RC-pole
and one zero to obtain the correct phase margin. The full circuit is shown in figure
2.55

Figure 2.55: Closed-loop circuit of [4] with UPWM

64

2.9. CLASS D AMPLIFIER DESIGNS

The open-loop transfer function of the loop-filter is

HLF (s) =
1 +R4C2s

R3C2R1C1s2
[4] (2.57)

while the closed-loop results

H(s) = − R2GPWM(1 +R4C2s)

R1(GPWM +GPWMR4C2s+R3C2R2C1s2)
[4] (2.58)

where GPWM is the product of modulator and output stage gain Vbat/Vpwm, with Vbat

the power supply of power stage and Vpwm is the power supply of PWM modulator.
In particular, Vpwm = Vbat

2
obtaining GPWM = 2. The unity gain of the first and

second integrating stages are set at [4]

fUG1 =
1

2πR1C1

= 110 kHz (2.59)

fUG2 =
1

2πR3C2

= 221 kHz (2.60)

and the zero has been located at [4]

fzero =
1

2πR4C2

= 147 kHz (2.61)

Let’s observe that for s → 0 the eq.2.58 becomes

H(s → 0) = −R2

R1

GPWM

GPWM

= −R2

R1

(2.62)

R2 is set equal to 2R1 to fix the gain in audio band to 2 (6 dB). Qualitatively, the
open-loop filter transfer function is shown in figure 2.56.

Figure 2.56: Qualitatively open-loop transfer function of a first- and second-order
loop filter [4]

65

CHAPTER 2. CLASS D AMPLIFIERS

The resulting open-loop transfer function has 127 dB gain at 100Hz, 114 dB at
217Hz and 87 dB at 1 kHz. The attenuation at switching frequency (Fclk = 1MHz)
is 16 dB and 23 dB at 2Fclk = 2MHz. The amplifier performances are resumed in
the following table, extracted from [4].

SNR (dB), A-weigthed 103
THD+N(%)@100 Hz 0.00093
THD+N(%) @ 1 kHz 0.00122
PSRR (dB) @ 217 Hz 96

Max. η (%), 8Ohm Load 93
Fs (kHz) 1000

Max. Pout (W), @1kHz
3.1

THD+N<1%, Min. Load

Figure 2.57: Resuming table of amplifier performances designed in [4]

Block Poles Zeros
G1(z) fp1 = fp2 = 700 kHz fz1 = fz2 = 70 kHz

G2(z) fp1 = fp2 = 1MHz /

G3(z)
fp1 = fp2 = 11.3 kHz fz1 = fz2 = 31.2 kHz

fp3 = fp4 = 18.6 kHz fz3 = fz4 = 41.6 kHz

zp = 1

LPF fp1 = fp2 = 70 kHz /

(a) Parameters of the filters in [14] de-
sign

Block fclk fsample

DPWM (7bit) 98.304MHz 768 kHz

Loop 19.6608MHz 19.6608MHz

A/D 19.6608MHz 19.6608MHz

(b) Parameters of design in [14]

Figure 2.58: Parameters of filters and design in [14]

2.10 Digital designs

In recent years have been developed solutions of closed-loop switching amplifiers
with global feedback and digital control. With respect to analog designs there are
some architectural differences:

• the presence of an ADC; this circuit is used to sample the PWM signal at the
output of power stage, as in [14] or to sample the error, as [16];

• PWM modulator is replaced with a DPWM modulator; this difference, with
respect to analog design, introduces a problem about the SNR, due to the
resolution of DPWM;

• depending on the ADC position in the loop, some additional filters have to
be added to reduce the effect of high frequency noises, in particular aliasing
and non-linear effects that can trigger instability [14]; this increase the design
complexity of closed-loop system.

66

2.10. DIGITAL DESIGNS

The block diagrams of digital designs in [16] and [14] are respectively shown in fig.
2.59a and 2.59b.

(a) Block diagram of [16] design

(b) Block diagram of [14] design

Figure 2.59: Digital design architectures of [16] and [14]

2.10.1 ADC in feedback path

The model of digital system in [14], fig. 2.59b, consists in different blocks:

• DPWM modulator: it is modelled as a linear component that introduces a
noise N1(z) due to the finite number of bit;

• the output stage is modelled as a gain block of A = Vd

2
;

• ADC Sigma Delta converter is modelled with a delay transfer function, H(z) =

z−1, with the added shaped quantization noise N2(z);

• the digital loop filter consist in:

– G1(z): it provides the zero-pole cancellation of the output filter double
pole; moreover, it has two high frequency poles to reduce the quantization
noise of ADC;

67

CHAPTER 2. CLASS D AMPLIFIERS

– G2(z): its main goals is to attenuate the quantization noise of ADC; it is
a second order Chebyshev filter;

– G3(z): is a chain of five integrators, with two double poles and a pole in
the origin.

A ripple compensation is added after G1(z) and the stability of the system is strictly
dependent on the presence of this block. The main parameters of the filters and
system are resumed in the table 2.58a and 2.58b respectively. The open-loop filter
compensation transfer function is shown in figure 2.60.
The digital design is implemented with FPGA programmed in VHDL. The resulting
THD+N is 0.0009% at 15W output power.

2.10.2 ADC error sampling

The main problem of previous solution is the design complexity due to the presence
of zero to compensate the poles of output filter and the high number of poles to
reduce the quantization noise of ADC. In [16], the idea is to implement in digital
way the architecture of [4]. This means to replace the transfer function H(s) with an
ADC (that mimics the differential function of the amplifier in [4]) and a digital filter.
Moreover, the analog switching capacitance circuit that provides uniform sampling,
can be easily replaced with digital solutions.

Figure 2.60: Open-loop transfer function of design in [14] (G1(z)G2(z)G3(z)F (z))

Placing the ADC to sample the error signal gives different advantages

1. the error signal has a lower dynamic excursion respect to the PWM signal of
output stage, relaxing the dynamic input requirement of ADC;

2. the output swing of the closed loop ADC amplifier(s) is also relatively small,
which eases its design requirements and allows implementation even in low
supply voltage domains [10];

68

2.10. DIGITAL DESIGNS

Figure 2.61: Block diagram of system in [16]

3. a front-end ADC can be implemented with a first-order one-bit resolution
Sigma Delta modulator, reducing the problems with additional noises and
spurious tones.

About the loop transfer function design, the first requirement is to obtain a very
high loop gain in audio band. In this prototype, loop gain is designed with these
specs

|T (z = 0)|dB = 100 dB

|T (f < 20 kHz)|dB > 60 dB

In this way can be obtain

• suppression of DPWM non-idealities;

• reduction of non linearities of output driver;

• high PSRR.

The model of the amplifier is shown in figure 2.61. The functions of each block are
the following

• ADC: sigma-delta ADC, implemented in switching capacitance fashion;

• B(s): RC differential filter, to reduce aliasing of output switching signal;

• H(z): filter to improve PSRR and linearities;

• D(z) & DPWM: compensate feedback loop and generates PWM.

The design is made considering that the output signal y(z) is [16]

y(z) = STF · x(z) +NTF · q(z) + PTF · p(z) (2.63)

where [16]

STF =
H(z)D(z)

1 +H(z)D(z)B(z)
(2.64)

NTF =
H(z)D(z)(1− z−1)N

1 +H(z)D(z)B(z)
(2.65)

PTF =
1

1 +H(z)D(z)B(z)
(2.66)

69

CHAPTER 2. CLASS D AMPLIFIERS

The loop transfer function is designed considering the effect of the previous transfer
function

• STF : is designed to make pass the audio band unaltered;

• NTF : this function is designed to reduce the quantization error of the ADC;
can be observed that this transfer function can be described with a parameter
N , the order of the Sigma Delta converter;

• PTF : shaping accurately this function can be reduced the quantization noise
of the DPWM and the THD of the amplifier.

Figure 2.62: Loop transfer function of the design in [16]

The parameters of the filters are designed in the following way

• H(Z): first-order integrator

H(z) =
1

1− z−1
(2.67)

• D(z):

- 2 poles: p1 = 1MHz, p2 = 15MHz

- 1 zero: z1 = 400 kHz (to improve loop phase margin)

The coefficients are determined by bilinear transformation

s =
2Fs(z − 1)

1− z−1
(2.68)

70

2.10. DIGITAL DESIGNS

• B(s): differential RC circuit

B(s) =
G

s+ p
(2.69)

where G = 0.4, p = 100 kHz ⇒ R1 = 30 kΩ, R2 = 40 kΩ, CFB/2 = 25 pF

The overall loop gain is a 4-th order system (four poles). The resulting closed-loop
transfer function is shown in figure 2.62. The measured main performances consists
in SNR=105 dB and THD+N=0.0031%

[4] [16] [14]4

Integrator order 2 1 5
Poles number 2 4 11
Zeros number 2 1 6

Fsw 1MHz 2.133MHz 768 kHz

Fclock / 51.2MHz 19.6608MHz

Fclock PWM / 400MHz 98.304MHz

Output stage H-bridge (BTL) H-Bridge (BTL) H-bridge (SE)
VPS 2.5− 5V 2.5− 5.5V 25V

Modulation UPWM three-level DPWM DPWM
Pout MAX@1 kHz 2W 1.5W 15W

Technology 0.25 µm CMOS 55nm CMOS Discrete

Figure 2.63: Design parameters

2.10.3 Comparisons among solutions

A resuming table (2.63) with the main characteristics, parameters and performances
of the amplifiers designed in [4], [14] and [16]([10]) is shown. Some observations can
be done about the differences among designs

• the design in [14] can provide higher power than the two competitors;

• the digital design of [16] use larger sample and switching frequency than [14],
requiring faster hardware;

• the number of poles and zeros of [14] is much higher than the two competi-
tors, increasing the design complexity and requiring the presence of the ripple
compensation to be stable;

• power supplies of designs [4] and [16] make them useful for portable applica-
tions (like phones or PCs);

• the digital version ([16]) of the design in [4] has a THD+N a bit less than the
analog version.

4not considered ripple compensation

71

CHAPTER 2. CLASS D AMPLIFIERS

Finally, the presence of quantization noise increases the complexity of digital loop
because it is necessary a much larger low frequency gain of the loop transfer function.
This increases the difficult to stabilize the system and choose the crossover frequency.

2.11 Class D amplifier: new frontiers and digital
architecture approach

In this review are described the basic characteristics of class D amplifiers, showing
the motivations of the advantages in terms of power efficiency. Due to the PWM
driving method for the switching transistors of the output stage, open-loop class D
amplifiers show much higher distortion than their competitors of traditional linear
classes. For these reasons, most of the literature and industrial systems are designed
in closed-loop. The difficult to stabilize and obtain good performances in closed-
loop is strictly related to the aliasing of the PWM ripple in the loop and to the
switching frequency: higher the switching frequency, better the performances of the
amplifier (e.g. lower THD+N). A higher switching frequency is not so simple to
obtain by adopting analog implementations by analog architectures and MOSFETs
have speed limitations that can be overcome by GaN technology. For this reason,
alternative digital architectures are implemented using DPWM, even simplifying
the design of modulation section thanks to programmable devices (e.g. FPGA,
microcontroller). The resolution of the DPWM and the quantization noise due to
ADC conversion result the main bottleneck of the system, requiring very high low
frequency loop gain that can be easily obtained with digital design. On the other
hand, the DPWM resolution can be increased by using different implementation like
the new DDPWM, overcoming the trade-off between resolution and clock frequency.
In conclusion, the advantages of new technologies like GaN transistors which allow
to reach higher switching frequency and new architectures to increase the resolution
of DPWM are moving class D amplifier toward new design strategies and control
architectures.

72

Chapter 3

Design of a class D amplifier

In this chapter, the design of a class D audio amplifier starting from a set of speci-
fications will be described. The architecture of the amplifier will be selected taking
into account the vantages and the disadvatages of the different digital solutions illus-
trated in the previous Chapter. Open- and closed-loop configurations are designed,
verifying by mean of simulation the performances of the systems to support and
validate the designs. Particular focus is given to modulator section which is inves-
tigated in order to highlight the bottleneck of different implementations (DPWM,
DDPWM) and proposing an alternative one (DDPM-DPWM combination).

3.1 Proposed digital model

In this section is described the proposed model of an almost fully-digital architecture
of a class D amplifier in open-and closed-loop fashion. The basic idea is to implement
the PWM of analog architectures in digital way, substituting it with a DPWM one.
The main point is that the analog signal has to be converted in digital one to be
sampled by DPWM and so a front-end ADC has to be inserted before the DPWM
section. Then, after DPWM, drivers and output stage have to be added, connected
the last one to a second order output filter. This is the basic architecture shown in
figure 3.1. It can be observed in figure 3.1 the presence of two identical structures
to obtain a Bridge-Tied Load class D amplifier. The dashed line indicates how it is
possible to implement a closed-loop system by taking the output stage PWM signal.
To be precise this simple closed-loop architecture has some limitations:

• depending on the ADC input dynamic range, it is necessary an attenuation
of the feedback PWM signal to adapt the dynamic of signal to the ADC one;
moreover, this attenuation determines the overall voltage gain of the amplifier
in audio band;

73

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

Vsw Vop

VPS

VPS

DRIVER

ADC

ADC

×(−1)

Vin

FPGA

-

-
+

+

Vodiff = Vop − Von

VDD

VDD

VDD

+VDD

2

+VDD

2

Vctr2

Vctr1

Von

Figure 3.1: CDA schemes proposed

• to avoid the aliasing effect, as shown in [16] an anti-aliasing filter is necessary.

Moreover, the digital control and DPWM generation can be specified in terms of
software, using FPGA or microcontroller. The architecture results very similar to
the one in [16].

3.2 Specifications of the designed amplifier

The specifications of the designed amplifier are chosen considering low power appli-
cations, for example for PC audio or portable application like [31]. In particular, this
device [31] can be a good comparison for specifications because it used by profes-
sional sound technicians to check the quality of an audio production on a commercial
system. The design specs are

• POMAX
≥ 2.5W;

• VDD = 5V: digital part and ADC power supply;

• RL = 8Ω, load nominal resistance;

• fsw ≃ 500− 1000 kHz;

• fclkSY S
≃ 16MHz.

Moreover, as suggested by [5], a good audio amplifier should have SNR > 80 dB

and THD > 0.1%, PSRR > 80 dB and a power efficiency η > 80%. A table with
some reference designs taken from [5] is shown in 3.2.

74

3.2. SPECIFICATIONS OF THE DESIGNED AMPLIFIER

Parameters A B C D E
Supply (VDD) [V] 5 5 5 5 3.6

IQ [mA] 7 1.42 6.5 4.2 2.7
PQ [mW] 35 7.1 32.5 21 9.7

Efficiency [%] 85 90 85 90 85
THD+N [%] 0.65 0.02 0.02 0.08 0.01
Po, max [W] 1.2 1.7 1.4 1.7 2.3
PSRR [dB] 65 88 85 93 88
SNR [dB] 83 98 96 89 97
Fsw [kHz] 250 192 420 300 300

Figure 3.2: Typical specifications for commercial class-D audio amplifiers [5]

3.2.1 Design of output stage power supply

The power supply of the output stage depends on the output power requested on the
load. Considering equation 2.20, for a bridge-tied load amplifier and a pure sinewave
on the load (neglecting switching frequency ripple and distortion) the single-ended
stage output power is given by

PoSE
=

V 2
oSEpk

2RL

⇒ VoSEpk
=
√

2PoSE
RL (3.1)

where VoSEpk
is the peak voltage of the sinewave at the output of output filter. As it

has been seen in 2.1.4, the gain of open-loop single-ended CDA with single positive
power supply is given by

GMA =
VPS

VDD

(3.2)

where GM is the modulator gain and A the output stage gain. As a consequence,
the peak voltage of the output sinewave is given by

VoSEpk
=

VPS

VDD

Vinpk
(3.3)

Substituting 3.3 in 3.1, then in 2.20 and inverting the formula can be obtained

PoBTL
= 4

(VPS

VDD

Vinpk

)2
︸ ︷︷ ︸

VoSEpk

1

2RL

⇒ VPS =

√
PoMAX

RL

2

VDD

Vinpk

(3.4)

Because of Vinpk
depends on the input dynamic of ADC can be done some consider-

ations:

• ADC has a VDD single power supply, so the input has to be biased with an
offset of VDD/2 to obtain the largest dynamic range;

75

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

• without considering CMIR limitations and non-linearities, the input dynamic
range is [0, VDD].

A graphical explanation of this fact is qualitatively shown in figure 3.5. As a conse-
quence

Vinpk
<

VDD

2
(3.5)

Substituting in equation 3.4 the specifications can be obtained

VPS =

√
2.5W · 8Ω

2

5V

2V
≃ 7.9V

⇒ VPS = 10V (3.6)

where Vinpk
= VDD

2
is considered equals to 2V, roughly estimating 0.5V of CMIR.

3.3 Closed-loop system structure and advantages

Even if open-loop class D amplifiers are relatively easy to implement and have low
cost and high efficiency, the main drawback is the high distortion of the output signal
and presence of non-linearities that most of the time are not acceptable, in particular
in high-fidelity audio system. For this reason open-loop amplifiers are typically used
in systems that implement alarms, buzzers, toys [5]. To achieve acceptable audio
performances, closed-loop CDA are typically implemented, for example for audio
section of cell phones, .
Generally speaking, a closed-loop system can be described with the following transfer
function

Vo

Vin

=
A(s)

1 + A(s)β(s)
=

A(s)

1 + T (s)
(3.7)

where A(s) is the open-loop transfer function, β(s) the feedback transfer function
and T (s) the loop-transfer function. Two of the main characteristics of this kind of
systems are

1. if β(s) is chosen as a linear block, then the closed-loop system will have a
linear behaviour;

2. the higher is |T (s)|, the lower are non linearities.

Two possible examples of closed-loop analog systems are shown in figures 3.3 and
3.4. In both cases, the compensator filters the error signal, modulating the command
signal in order to get a null error signal. For this reason the compensator is most of

76

3.3. CLOSED-LOOP SYSTEM STRUCTURE AND ADVANTAGES

the time designed as an integrator.
Then, the command is sampled with PWM signal so that

Vsw =

HIGH if Vocomp − Vtr > 0

LOW if Vocomp − Vtr < 0
(3.8)

where Vsw is the output signal from Relay [32] block that simulates the power output
stage, Vocomp is the output signal from compensator block of figure 3.3 and 3.4 and
the value HIGH and LOW are respectively the positive and negative power supply
that the output voltage of the output stage can assume.

Figure 3.3: Closed-loop system with output filter in loop

Figure 3.4: Closed-loop system without output filter in the loop

3.3.1 Differences and limits of the models

The main difference between the two schemes stays in the presence or not of the
output filter in the loop. If the scheme in figure 3.3 can give better performances
in terms of distortion and SNR because of the PWM signal is filtered before comes
back to the feedback path, the main drawback is the complexity of loop design
transfer function, in particular for stabilization and control of command dynamic;

77

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

on the other hand, the design in 3.4 is less complex because the double pole of the
output filter is not present in the loop. Anyway, the PWM signal is not filtered,
so the performances of the amplifier are worse than previous case. Moreover, the
effect of aliasing due to the ripple sampling [33] is less attenuated respect to the
solution with output filter in the feedback, because the attenuation depends only on
the compensator filter.
Both models have some limitations:

• the deadtime is not considered, so the distortion due to this effect can not be
evaluated;

• the triangular waveform is not affected by non linear effect due to the real
exponential behaviour of analog triangular generator [5];

• the drivers are not considered and the output stage is considered with infinite
bandwidth so the parasitic capacitances related to the gate are not considered;

• elements like body diodes and RdsON are not modelled.

3.4 Amplifier models for simulation purposes

To design the closed-loop system, reaching a good stability and good performances
in terms of THD and SNR, first it is necessary knowing the models of all the blocks
in the loop.
In this section is described the models of each block shown in the circuit in figure
3.1. In particular the models considered are

• ADC;

• compensator;

• DPWM;

• output stage;

• output filter;

The model of final stage is the same shown in 2.1.4; the compensator is modeled
with its digital transfer function using a sampling time fclkSY S, the same of ADC.

78

3.4. AMPLIFIER MODELS FOR SIMULATION PURPOSES

3.4.1 Analog to digital converter

The aim of this block is to convert the analog signal into a digital one. Depend-
ing on the considered topology (open- or closed-loop) the ADC samples the input
signal or the error one. Independently on the type of ADC chosen for the physical
implementation (e.g. Sigma Delta, SAR, Flash), the effect of this block is to ap-
ply a quantization on the sampled signal that depends on the number of bits. In
particular, the characteristic can be represented as in figure 3.6.

ADC

VDD

+

VDD

2

nbitADC

(a) Single-ended input ADC

ADC

IN-

VDD

+

VDD

2

nbitADC

IN++

VDD

2

(b) Differential input ADC

Figure 3.5: ADC models

CODE

Vin1111

1101

0000

1110

0010
0011

0001

0100

Figure 3.6: ADC characteristic

It can be seen that the representation of the numbers is considered in 2’s com-
plement. This means that the output dynamic of the generated code is

[−2nbitADC−1 , 2nbitADC−1 − 1] (3.9)

where nbitADC is the number of bit of ADC. Considering a positive voltage power
supply VDD and a differential ADC, the differential input voltage can assume values
in the range

Vd = V+ − V− ∈ [−VDD, VDD] (3.10)

with V+ and V− are respectively the positive and negative input of ADC.
So the transfer function of the ADC (neglecting the error offset, quantization error
and other non-linearities) can be considered as a gain function, that is the angular

79

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

coefficient GADC of the blue line in figure 3.6. Mathematically

GADC =
2nbitADC−1 − 1 + 2nbitADC−1

VDD − (−VDD)
≃ 2 · 2

nbitADC−1

2VDD

⇒ GADC =
2nbitADC

2VDD

(3.11)

To take into account the sampling, a zero-order hold filter that works at fclkSY S is
implemented.

3.4.2 Output filter

The analog output filter is implemented as a maximum-flat second-order filter with
a double pole at 20 kHz. Its transfer function F (s) is the following

F (s) =
1

1 + s
2πfpf

(3.12)

where fpf = 20 kHz is the pole of the filter.

3.4.3 DPWM

The implementation of DPWM is based on a free-running counter that counts from
0 to 2nbitDPWM − 1, where nbitDPWM is the number of bits of the counter (see figure
2.30). Moreover, the output code from ADC (in case of open-loop system) and
from compensator (in case of closed-loop system) could be represented on nbit >

nbitDPWM ; as a consequence, the output signal from ADC/compensator has to
be truncated on nbitDPWM . The truncation has to be made on the LSBs, so the
nbitDPWM MSBs of the output signal from ADC/compensator has to be send to
digital modulator. To understand the block that makes the truncation, consider an
example of truncation from 4 bits to 2 bits, shown in tables 3.7.
In the table 3.7a can be seen that the truncation consists in taking the N MSBs,
where N is the number of bits which represents the truncated code. On the other
hand, in the table 3.7b there is the decimal conversion of truncated binary numbers:
it can be seen that in decimal representation, the operation of truncation consists
in the following operation

nt =
⌊
n · 2

Nt

2N

⌋
(3.13)

where N is the number of bits on which the number to truncate n is represented,
Nt the number of bits on which the truncated number nt is represented. To show

80

3.4. AMPLIFIER MODELS FOR SIMULATION PURPOSES

an example taken from the tables, let’s consider the following one

• (N = 4) 0101 → 5

(N = 3) ▷ 010 → 2 =
⌊
5
23

24

⌋
=
⌊
5/2
⌋
=
⌊
2.5
⌋

(N = 2) ▷ 01 → 1 =
⌊
5
22

24

⌋
=
⌊
5/4
⌋
=
⌊
1.25

⌋
In practice, the truncation block can be modelled has a gain block with a gain of 2M

2N
,

where N and M are respectively the number of bits of the input and output code of
truncation gain block and M < N . Similarly to the analog PWM gain (1/VDD, as
shown in 2.1.4), DPWM gain GM is related to the numeric dynamic of the counter

GM =
1

2nbitPWM
(3.14)

N=4 N=3 N=2
0000

000
00

0001
0010

001
0011
0100

010
01

0101
0110

011
0111
1000

100
10

1001
1010

101
1011
1100

110
11

1101
1110

111
1111

(a) Binary representation of truncated
code

N=4 N=3 N=2
0

0
0

1
2

1
3
4

2
1

5
6

3
7
8

4
2

9
10

5
11
12

6
3

13
14

7
15

(b) Decimal conversion of truncated
number

Figure 3.7: Example of truncation from 4 to 3 and 2 bits

3.4.4 Proposed block diagram for class D amplifier

The overall block diagram of open- and closed-loop class D amplifier are shown in
figures 3.8a and 3.8b.
It can be seen that in closed-loop system an anti-aliasing filter and a feedback
attenuation are added. In particular

• feedback attenuation is necessary because the output voltage of the output
stage is a PWM signal that can assume two values: VPS and 0V. This signal
has to be conditioned for the input dynamic range of the differential ADC.

81

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

Ideally, the maximum input voltage that can be applied to IN+ and IN- of
ADC is VDD, as shown in figure 3.5. Because of VDD = 5V = VPS

2
= 10V

2
, the

attenuation gain G has to be G = 1
2
;

• the anti-aliasing filter is added to remove the effect of higher harmonics of
PWM that cannot be correctly sampled by ADC, in particular the ones larger
than ∼ fclkSY S

2
= 16MHz

2
= 8MHz; the frequency of lower pole is set to fp =

225 kHz;

• the truncation gain is the block K.

3.4.5 Open-loop gain and binary representation of ADC code

Considering the models of each block of the open-loop system in figure 3.8b, the
overall gain related to the single-ended output can be computed as

VoSE

Vin

= GADCKGMA =
2nbitADC

2VDD

2nbitPWM

2nbitADC

1

2nbitPWM
VPS =

VPS

2VDD

̸= VPS

VDD

(3.15)

ADC
GM A

G

-
OUTPUT

ANTI-ALIASING

+

+
VDD

2

+

ADC

G

-

+

+
VDD

2

+

×− 1

-
+

FILTER

FILTER

K

GM AK

TRUNCATION

Gc(s)

Gc(s)
Vin

Verr

Vsw

(a) Closed-loop block diagram

ADC
GM A OUTPUT

+
VDD

2

+

ADC
+

VDD

2

+

×− 1

-
+

FILTER
K

GM AK

TRUNCATION
VoSE

(b) Open-loop block diagram

Figure 3.8: Closed- and open-loop models

This added terms 2 is due to the 2’s complement representation of the output
code of ADC. Considering that the input signal of ADC in always positive, only
2nbitADC−1 codes are used for the representation of the positive dynamic range, while

82

3.5. CLOSED-LOOP DESIGN METHODOLOGY

the others 2nbitADC−1 are used for the negative dynamic of the signal. As a conse-
quence, the effective number of bits used for the conversion of the input signal are
nbitADC − 1. Consequently, the truncation K factor has to become K = 2nbitPWM

2nbitADC−1 .
With this correction the overall gain becomes the one expected

VoSE

Vin

= GADCKGMA =
2nbitADC

2VDD

2nbitPWM

2nbitADC−1

1

2nbitPWM
VPS =

VPS

VDD

(3.16)

3.5 Closed-loop design methodology

Once defined the model of each block in the closed- and open-loop systems, the
compensator transfer function has to be designed. The first aim of the compensator
transfer function is to obtain null error after the transient (fig. 3.8a)

Verr

Vin

=
1

1 +Gc(s)GMAKGADC

→ lim
s→0

sVerr(s) = lim
s→0

s
1

s

1

1 +Gc(s)GMAKGADC

= 0

⇒ Gc(s) =
1

sn

A first order integrator (n = 1) has strong trade-off between unit gain frequency
(UGF or ωu) and switching frequency (fsw). In particular

• if UGF is reduced, THD increases (more power for higher harmonics in band)
because the integrator effect happens for narrower frequency range;

• if UGF is increased, IMD increases because of the attenuation of fsw tone, its
harmonics and related side-bands (due to intermodulation with input tone)
are less attenuated[5]; this intermodulation in band increases the THD;

As a consequence, the switching frequency should be increased to allow larger UGF

and higher linearity; the drawbacks are that

• in analog design, increasing switching frequency is not so easy due to limitation
of oscillators;

• higher switching frequency means larger power dissipation;

To improve the performance of the integrator and overcome the trade-off between
switching frequency and UGF , the integrator order can be increased. This choice
requires to add a zero to reach the correct stability; moreover, increasing integrator
order means increasing overshoot and settling time. In particular, larger overshoot
can bring problems about the linearity of the system: if overshoot is too large, it
can exceed the maximum value that command (the compensator output) can reach,
triggering an instability. This is the main problem of designing closed-loop system
with output filter in the loop.

83

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

3.5.1 Loop compensator filter design without output filter in
the loop

Referring to the methodology design shown in [5], the compensator transfer function
of the system in figure 3.8a is designed by shaping the loop transfer function, starting
from the non-compensated loop transfer function TNC(jω) that is given by

TNC(jω) = GADCKGMAG
1

1 + j ω
ωph

(3.17)

where ωph > ωu is the pole of the anti-aliasing filter. Because the goal is to obtain
an integrator transfer function, the idea is to recover the transfer function of com-
pensator C(jω) knowing the desired loop transfer function T (jω). Mathematically
speaking this means

C(jω) =
T (jω)

TNC(jω)
(3.18)

This is shown graphically in figure 3.9 where the non-compensated loop, compen-
sator and desired loop transfer functions are shown: multiplying the red and black
curve the blue loop transfer function is obtained.

| · |

ω

GADCKGMAG

ωph

Non compensated T

1

ωu

T desired
p

1

M + 1

Compensator

0

p

1

M

ωz ωp2

Figure 3.9: Loop, compensator and non-compensated loop transfer functions

Some observations and considerations about this graph:

• the slopes indicated are considered as ±n · 20dB/dec, where n is the read
number and ± depends on the positivity of the slope. For example, on T
desired transfer function, the p slope has to be read −p · 20dB/dec;

• ωz is the zero to add at the compensator to obtain the correct stability and in
particular is related to the phase margin that one wants to obtain;

• because of the order of compensator is p and the transfer function has to cross
the 0 dB level with a slope of −20 dB/dec, the order of the zero has to be
p − 1. For example, if p = 3 (−60 dB/dec), two zeros are needed: in fact,
−60 dB/dec + 40 dB/dec = −20 dB/dec;

84

3.5. CLOSED-LOOP DESIGN METHODOLOGY

• the pole of anti-aliasing filter is compensated by the compensator transfer
function; this brings an advantage in terms of stability because this pole has
no effect on the phase, but increases the IMD due to the fsw carrier, harmonics
and side-bands tones; to reduce the effect of this drawback an M-th order high
frequency pole is added to the compensator.

The loop transfer function with the compensator can be written in this way

T (jω) = GADCGMAGK
1

1 + s
ωph︸ ︷︷ ︸

FAA(s)

(1 + s
ωph

)(1 + s
ωz
)(p−1)

(τps)p
1

(1 + s
ωp2

)M︸ ︷︷ ︸
C(s)

1

1 + sT
2︸ ︷︷ ︸

ZOH register

=

(3.19)

= GADCGMAGK
(1 + s

ωz
)(p−1)

(τps)p
1

(1 + s
ωp2

)M
1

1 + sT
2

(3.20)

where FAA(s) is the transfer function of anti-aliasing filter. From this equation it
can be inferred that the compensation of the anti-aliasing pole avoids the impact of
this pole on the compensator design, in particular on stability and integrator gain.
Moreover, the ZOH register transfer function models the down-sampling before the
PWM modulator that allows the Uniform PWM modulation; T = 1

fsw
.

The first parameter to design is the crossover frequency ωu. According to the liter-
ature [4][5][14] and considering the trade-off between THD and IMD

ωu =
1

10
ωsw (3.21)

where ωsw = 2πfsw. Once this frequency has been chosen, the position of the zero is
decided in order to obtain the desired phase margin PM. Mathematically, neglecting
the high frequency pole ωp2 of the compensator

PM = 180◦ + ∠T (jωu) = 180◦ − p90◦ + (p− 1) tan−1 ωu

ωz

− tan−1 ωu

2fsw︸ ︷︷ ︸
phase contribution
due to ZOH REG

→ (p− 1) tan−1 ωu

ωz

= PM − 180◦ + p90◦ + tan−1 ωu

2fsw

→ tan−1 ωu

ωz

=
PM − 180◦ + p90◦ + tan−1 ωu

2fsw

p− 1

⇒ ωz =
ωu

tan
(

PM−180◦+p90◦+tan−1 ωu
2fsw

p−1

) (3.22)

It can be observed that increasing the integrator order p, ωz decreases. This means
that at increase of compensator order, the zero tends to be inside the audio band,

85

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

reducing the p order integrator effect to first order inner in audio band. This means
that for high frequency audio range, the effect of integrator is of the first order and
not of the p order; as a consequence, for this range of frequency, THD and SNR are
worsened. To better explain this fact, a qualitative graph is shown in figure 3.10.
The integrator time constant τp can be found by the following calculation, observing
figure 3.9.

|T (jωz)|
1

=
ωu

ωz

⇒ |T (jωz)| =
ωu

ωz

⇒ |C(jωz)| =
|T (jωz)|

GADCKGMAG
=

ωu

ωz

1

GADCKGMAG

|C(jωz)|
1

=

(
1
τp

ωz

)p

⇒ |C(jωz)|ωp
z =

(1

τp

)p
→ |C(jωz)|

1
pωz =

1

τp

→
(ωu

ωz

1

GADCKGMAG

) 1
p
ωz =

1

τp
⇒ τp =

(GADCKGMAG

ωu

) 1
p 1

ω
1− 1

p
z

(3.23)

| · |

ω

p

ωz1

1

ωz2 1

p+ 1

Figure 3.10: Qualitative loop transfer function at varying of p

where

GADCKGMAG =
2nbitADC

VDD

2nbitPWM

2nbitADC

1

2nbitPWM
VPS

1

2
=

VPS

VDD

1

2
(3.24)

From equation 3.24 can be seen that the integrator time constant does not depends
on the number of bits. As a consequence, varying the number of bits of DPWM
the performances of the compensator do not change: it makes sense, because the
performances of compensator have to be related only to the switching frequency
(that is the reference to choice the crossover frequency ωu) and to the gain of the
modulator and output stage.

86

3.5. CLOSED-LOOP DESIGN METHODOLOGY

3.5.2 Zero-order hold model and PWM spectrum

The effect of zero-order hold (ZOH) filter models the sampling effect of

1. ADC;

2. Uniform sampling of DPWM;

3. controller transfer function discretization[34].

As shown in [35], the transfer function of the ZOH is given by

ZOH(s) =
1

T

1− e−Ts

s
≃︸︷︷︸

Pade’
approximation

[36]

1

T

T

1 + sT
2

=
1

1 + sT
2

(3.25)

where T is the sampling period of the considered block, in particular for ADC and
compensator T = 1

fclkSY S
and for DPWM uniform sampling T = 1

fsw
. In practical

case, the ZOH for uniform sampling of DPWM can be implemented by mean of a
register that works at fsw.

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
4

10
5

10
6

10
7

10
8

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

ZOH ADC

ZOH REG

ZOH Padè approximation

Frequency (Hz)

(a) Padè approximation ZOH transfer functions

-400

-300

-200

-100

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

ZOH ADC

ZOH REG

ZOH transfer functions

Frequency (Hz)

(b) ZOH transfer function

Figure 3.11: ZOH transfer functions; ZOH REG is referred to DPWM register
(fsw ∼ 500 kHz)

87

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

The Padè approximation is necessary because the non-approximated transfer
function is not linear, so it cannot be taken into account in the loop design. From
previous equation can be observed that

• below the sample frequency the gain is constant;

• the phase starts to decrease at ∼ 1
100

1
T
.

• ZOHs influence the phase of the system, not the gain; in particular, ZOH that
models the input register of DPWM should be considered for stability and
phase margin;

Figure 3.12: Uniform PWM spectra generated with trailing edge triangular wave-
form[37]

ZOH that models the ADC has no substantial effect on phase margin and loop
gain in audio band.

A graphical representation of the transfer functions is shown in figure 3.11. This
is the reason why in the design it is considered also the effect of DPWM ZOH: to
recover the phase which is lost by the sampling and holding.
Moreover, observing the transfer function in figure 3.11b, the effect of uniform sam-
pling can be better understood: ZOH filter has notch zeros with infinite attenuation
at the switching frequency and its harmonics; this is a strong advantage in closed-
loop system. Let’s consider the system in figure 3.8a: the PWM signal generated
by the output stage is filtered by the anti-aliasing filter, then the filtered signal is
sampled by the ADC, after is filtered by the compensator and then down-sampled
by DPWM. The command signal generated by the compensator has side-bands and
residual PWM harmonics; thanks to ZOH, all the PWM harmonics of the command

88

3.5. CLOSED-LOOP DESIGN METHODOLOGY

are infinitely attenuated. Because of the Nyquist theorem, the maximum frequency
that can be correctly sampled by DPWM is fsw/2: as a consequence, the residual
side-bands are aliased in audio band, increasing harmonic distortion, but thanks to
ZOH (and so, uniform sampling) the harmonics of PWM are eliminated before the
PWM sampling of the command, avoiding their aliasing in audio band.
The spectrum of uniform sampling PWM with trailing edge triangular waveform
is shown in figure 3.12, where the side-bands due to the intermodulation with the
input tones are generated and could be aliased in audio band when re-sampled by
PWM in a closed-loop system. Once the phase margin has been designed, the inte-
grator time constant and the stabilization zeros are computed by implementing the
equations 3.23 and 3.22. What is missing are

• high frequency pole of the compensator;

• consideration on the aliasing due to harmonics of PWM sampled by ADC.

High frequency poles The high frequency pole (figure 3.9) is chosen to be of the
second order (M = 2) with an angular frequency of

ωp2 = 9ωu (3.26)

This pole is not considered during the design of the stabilization zero: this means
that it reduces the phase margin, obtaining PM∗ < PM = 60◦, where PM∗ is the
effective obtained phase margin. The aim of this pole is to reduce the aliasing effect
due to the PWM sidebands, before the command is sampled by DPWM (see 3.5.2).
Higher attenuation means reducing the stability of the overall system because ωp2

should be reduced.

PWM aliasing due to ADC sampling The ADC samples a PWM signal filtered
by a low pass filter. In particular, the maximum frequency components that ADC
can correctly sample is fclkSY S/2, the Nyquist frequency. This means that this
component and all the higher ones of PWM signal, have to be characterized by a
level which must be under the quantization noise of the ADC. Considering figure
3.8a, an additional pole has to be added to the anti-aliasing filter. The spectrum
of PWM signal is very complex because depends on Bessel functions, modulation
index and, as a consequence, on the input signal amplitude. To roughly estimate
the second pole it is assumed that the PWM is a square wave. The Fourier series
of a square wave can be written as

VPWM =
4

π

∞∑
k=1,3,5...

1

k
sin 2πnf (3.27)

89

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

From this equation, can be seen that only odd components are presents in square-
wave spectrum and they decrease with a factor of 4

πk
where k is the k-th odd har-

monic. This means that given a sampling frequency fclkSY S of ADC and a switching
sampling frequency fsw the harmonic to consider is

k =
fclkSY S

2

fsw
(3.28)

As a consequence, the second pole of anti-aliasing filter can be computed considering
the following inequality

4

πk

VPS

2
αcαp <

VDD

2nbitADC−1
(3.29)

where

• αc =
fc

kfsw
;

• αp =
(

fp
kfsw

)q
, with q the degree of

the pole;

• VPS

2
= VDD = 5V;

Solving the equation 3.29 for fp with q = 2 can be obtained

4

πk

VPS

2

fc
kfsw

(fp
kfsw

)2
<

VDD

2nbitADC−1

4

πk

f 2
p

k3f 3
sw

<
2

2nbitADC

fp < k2fsw

√
πfsw

2fc2nbitADC
(3.30)

where k = 9 for fsw = 1MHz, k = 17 for fsw = 500 kHz, VPS/2 = VDD = 5V

and fc = 225 kHz is the first pole of anti-aliasing filter. Placing these parameters in
equation 3.30 can be obtained

• fsw = 500 kHz →

fp < 172 · 500 kHz ·
√

π · 500 kHz
2 · 225 kHz · 216

≃ 1.05MHz

• fsw = 1MHz →

fp < 92 · 1MHz ·
√

π · 1MHz

2 · 225 kHz · 216
≃ 836 kHz

Because of the estimation with square wave assummption is too conservative, the
estimated harmonics are higher than the real one of PWM and a pole of 1MHz is
sufficient to attenuate 8-th harmonic of PWM signal at fsw ≃ 1MHz.
This filter has another effect on the aliasing and distortion in band: it attenuates
the side-bands due to intermodulation with input tone, reducing the aliasing effect

90

3.5. CLOSED-LOOP DESIGN METHODOLOGY

due to the PWM sampling of command. For this reason fp is designed fp = 500 kHz

for fsw ≃ 500 kHz and fp = 1MHz for fsw = 1MHz. In this way, the results are
comparable because in both cases the first harmonic of PWM over Nyquist frequency
of ADC (fclkSY S

/2) is under quantization noise and the most problematic side-bands
related to the fundamental of PWM (fsw) are attenuated of the same amount by
the filter.

3.5.3 Design of loop compensator filter with output filter in
the loop

Differently from previous design where the output filter is left out from the loop,
another tested design consists in leaving the output filter inside the loop. Theoreti-
cally, this solution has better performances in terms of SNR and THD[5], but it has
problems related to the dynamic of the command.
The adopted design methodology is the same used for the solution without output
filter in the loop: the compensator transfer function is designed by starting from non
compensated transfer function and the loop transfer function desired. The reference
block diagram is shown in figure 3.13.
The transfer functions in figure 3.14 are parametrized as in figure 3.9. Can be
observed that

• the double pole of the output filter ωpf is compensated with a double zero by
the compensator; the exact zero-pole cancellation is not necessarly required,
but due to the stability of the overall system compensator zeros have to be
placed in proximity of the output filter poles;

• ωz is necessary to obtain the correct phase margin, as explained for the previous
design;

• the transfer function of compensator results with a p-order pole in the origin,
a zero of order 2 and a zero of order p− 1; as a consequence there are p poles
and p+1 zeros: the transfer function is improper and not feasible; at least one
extra pole at high frequency is needed to make the transfer function proper.

The designed compensator transfer function, considering the high frequency extra
poles, is the one shown in figure 3.15. Depending on the order of poles ωph1 and
ωph2, the slopes of the last two segments of transfer function change. In particular:

• ωph1, M -th order pole ⇒ slope = (M − 1) · 20 dB/dec;

• ωph2, N -th order pole ⇒ slope = (M +N − 1) · 20 dB/dec;

91

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

ADC
GM A

G

-
OUTPUT

+

+
VDD

2

+

ADC

G

-

+

+
VDD

2

+

×− 1

-
+

FILTER

FILTER

K

GM AK

TRUNCATION

Gc(s)

Gc(s)
Vin

Verr

Vsw

Figure 3.13: Block diagram of closed-loop system with output filter in the loop

The position and the order of the poles influence different parameters of the system

• if the order of the poles is high and/or the frequencies of the poles are too
low, they reduce the phase margin, leading to instability of control loop: in
fact, the effect on the phase due to the poles, starts to act more than one
decade before pole and this effect is much strong at increasing of the order
pole. Schematically

if ωph1(ωph2) ↓⇒ PM ↓
if M(N) ↑⇒ PM ↓

• if the poles are placed at too high frequencies, the compensator band increases
due to the effect of the zeros; as a consequence, the overshoot of the compen-
sator increases, exceeding the dynamic range.

| · |

ω

GADCKGMAG

ωpf ωz

B

Non compensated T

2

ωu

T desired
p

1

Compensator

p

p− 2

1

Figure 3.14: Compensator, loop non-compensated and loop compensated transfer
functions with output filter in feedback path

92

3.5. CLOSED-LOOP DESIGN METHODOLOGY

| · |

ω
ωpf ωz ωph1 ωph2

p
Compensator

p− 2

1

M − 1

N +M − 1

Figure 3.15: Compensator transfer function with high frequency poles

Referring to figure 3.14, neglecting the ZOH of ADC that models the sampling
event, the loop transfer function T (jω) is

T (s) = GADCKGMAG
1

(1 + s/ωpf)2︸ ︷︷ ︸
F (s)

(1 + s/ωpf)
2 (1 + s/ωz)

(p−1)

(τps)p︸ ︷︷ ︸
C(s)

1

1 + sT
2︸ ︷︷ ︸

ZOH register

(3.31)

The compensator zero ωz should be placed to obtain the properly phase margin PM

PM = 180◦ + ∠T (jωu) = 180◦ − p90◦ + (p− 1) tan−1 ωu

ωz

− tan−1 ωu

2fsw︸ ︷︷ ︸
phase contribution
due to ZOH REG

→ (p− 1) tan−1 ωu

ωz

= PM − 180◦ + p90◦ + tan−1 ωu

2fsw

→ tan−1 ωu

ωz

=
PM − 180◦ + p90◦ + tan−1 ωu

2fsw

p− 1

⇒ ωz =
ωu

tan
(

PM−180◦+p90◦+tan−1 ωu
2fsw

p−1

) (3.32)

where ωu =
1

10
2πfsw is the crossover frequency.

Now, τp has to be properly designed. Observing fig. 3.14 can be done the following
computations

|F (jωz)|
GADCKGMAG

=
(ωpf

ωz

)2
⇒ |F (jωz)| = GADCKGMAG

(ωpf

ωz

)2
|T (jωz)|

1
=

ωu

ωz

⇒ |T (jωz)| =
ωu

ωz

⇒ |C(jωz)| =
|T (jωz)|
|F (jωz)|

=
ωu

ωz

1

GADCKGMAG

ω2
z

ω2
pf

=
ωuωz

ω2
pf

1

GADCKGMAG

93

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

|C(jωpf)|
|C(jωz)|

=
(ωz

ωpf

)p−2

⇒ |C(jωpf)| = |C(jωz)|
(ωz

ωpf

)p−2

=

=
ωuωz

ω2
pf

1

GADCKGMAG

ωp−2
z

ωp−2
pf

=
ωu

GADCKGMAG

ωp−1
z

ωp
pf

|C(jωpf)|
1

=

(
1
τp

ωpf

)p

⇒ |C(jωpf)|ωp
pf =

(1

τp

)p
(3.33)

→ |C(jωpf)|
1
pωpf =

1

τp(ωu

GADCKGMAG

ωp−1
z

ωp
pf

) 1
p
ωpf =

1

τp

⇒ τp =
(GADCKGMAG

ωu

) 1
p 1

ω
1− 1

p
z

(3.34)

Comparing equations 3.23 and 3.34 can be seen that there’s no differences between
them: this because all the extra poles due to analog filters (respectively the anti-
aliasing and the output filter) are compensated with a zero-pole compensation, nul-
lifying their effect on the loop transfer function. Similar considerations, can be
formulated about the ωz (equations 3.32 and 3.22): the phase effect of anti-aliasing
filter and output filter poles is nullified by the zero-pole compensation, so they do
not appear in the formula of the zero and do not have any effect on system stability.
For this design no anti-aliasing filter is added in feedback path because this function
is already implemented by the output filter.

3.6 Verification of design strategies

The methodology applied for the two different solutions is implemented in MATLAB
(see Appendix, 5.2.2, 5.2.4, 5.2.1), verifying that the transfer functions desired are
the ones obtained. Once computed the compensator, the sensitivity, input/output
and input/compensator output transfer functions, the step response of the command
and the output are computed to observe the transient and the difference between
analog and digital compensator response. Then, noises derived from quantization of
ADC and DPWM are computed, evaluating even the effect of the closed-loop on the
reduction of the DPWM one. Finally, SNR due to quantization noises is computed
using trapezoidal numerical integration.
The phase margin PM to obtain a good stability is chosen to be PM = 60◦; the
order of the compensator is chosen p = 3. From now on, to simplify the notation, the
values of switching frequencies fswGaN

and fswMOS
will be referred to fsw ∼ 500 kHz

and fsw ∼ 1MHz respectively. The compensator transfer function is design in s

domain and then bilinearly transformed in z domain by means of c2d MATLAB

94

3.6. VERIFICATION OF DESIGN STRATEGIES

function, using matched option. A comparison between analog and digital results is
made for all the different transfer functions and step responses, to make in evidence
that the difference between the two is negligible.

fswGaN 1 048 576Hz

fswMOS 524 288Hz

#bit ADC 16
fclkSYS 16 777 216Hz

Triangular waveform Trailing Edge
Output stage

10V
power supply (VPS)
DPWM and ADC

5V
power supply (VDD)

Tone test 1 kHz

Amplitude tone test 2.25V (90%VDD

2
)

(a) Main parameters of simulations

Compensator

τp =
(

GADCKGMAG
ωu

) 1
p 1

ω
1− 1

p
z

ωz =
ωu

tan

(
PM−180◦+p90◦+tan−1 ωu

2fsw
p−1

)
ωp2 = 9ωu (M = 2)

ωu = 1
10
ωsw

Anti-aliasing fph = 225 kHz

filter ωph2 ≃ ωsw (q = 2)

(b) Filters parameters in closed-loop sys-
tem

Figure 3.16: Parameters of the class D amplifier

3.6.1 Implementation of loop design of the amplifier with
anti-aliasing filter in feedback path

The solution with anti-aliasing filter in feedback path (shown in figure 3.8a) is im-
plemented in MATLAB. The main parameters of the closed-loop system are shown
in table 3.16a. The input voltage signal is taken at 90% of the maximum possible
dynamic to test the amplifier at maximum of its capability, without exiting from
the linear condition. The integrator time constant, zeros and poles frequency of
compensator and anti-aliasing filter are shown in the table 3.16b.

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Output filter transfer function

Frequency (Hz)

Figure 3.17: Output filter transfer function

95

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

-180

-135

-90

-45

0
P

h
a
s
e
 (

d
e
g
)

NTF PWM

NTF ADC

Noise transfer function open-loop

Frequency (Hz)

Figure 3.18: Open-loop transfer function (without compensator)

The notation fswGaN
and fswMOS

are related to the fact that the switching fre-
quency are more suitable respectively for GaN and MOS transistors [15], but there
are MOS devices that allow to reach fsw ≃ fswGaN

[4][16].
In practice, because p = 3 and compensator needs p − 1 = 2 zeros, they are taken
around the designed one ωz: in this way the phase does not change so abruptly. In
particular the zeros are taken

ωz1 =
9

10
ωz

ωz2 =
11

10
ωz

The resulting transfer functions and step responses are shown in the figures 3.19,
3.21 and 3.20, 3.22, both for fsw ∼ 500 kHz and fsw ∼ 1MHz. In particular from
figures 3.20b and 3.19b can be seen that the crossover frequency is very similar to the
one expected (fu = ωu

2π
= 1

10
fsw); the phase margins result lower than the goal (PM):

this is due to the fact that during the design the effect of high frequency poles is
neglected; the step responses does not exceed the dynamic range, both for the output
and compensator; in fact, the maximum reachable value for the output stage is the
power supply (10V), while for the compensator is 2nbitADC = 216 = 65536 > 20000.
In table 3.24 are shown the phase margins, crossover frequencies and step response
parameters for systems working at both switching frequencies, evaluated respectively
with the MATLAB functions margin and stepinfo. As expected gain margins are
equal between them and f(∠180◦) of system designed with fsw ∼ 1MHz is twice the
f(∠180◦) of system working at fsw ∼ 500 kHz. Moreover, also the time responses
(figures 3.22, 3.21) are coherent: because of the crossover frequency of the system
working at fsw ∼ 1MHz is twice the crossover frequency of the system working at
fsw ∼ 500 kHz, the rise time of the faster system is half of the slower one; similarly,
the settling time of faster system is half of the slower one and the same for the peak
time; on the other hand, peak voltages and overshoots are the same.

96

3.6. VERIFICATION OF DESIGN STRATEGIES

-400

-200

0

200

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-270

-225

-180

-135

-90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Compensator transfer function

Frequency (Hz)

(a) Compensator transfer function

-200

-100

0

100

200

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-720

-540

-360

-180

0

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Loop function with anti-alising filter in loop

Frequency (Hz)

System: Digital

Frequency (Hz): 4.95e+04

Magnitude (dB): -0.0798

System: Digital

Frequency (Hz): 4.95e+04

Phase (deg): -144

(b) Loop transfer function

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Sensitivity function with anti-alising filter in loop

Frequency (Hz)

(c) Sensitivity transfer function

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-450

-360

-270

-180

-90

0

90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Input-output with anti-alising filter in loop

Frequency (Hz)

(d) Input/output transfer function

Figure 3.19: Closed-loop transfer functions of the system working at fsw ∼ 500 kHz

97

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

-400

-200

0

200

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-270

-225

-180

-135

-90

-45

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Compensator transfer function

Frequency (Hz)

(a) Compensator transfer function

-200

-100

0

100

200

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-720

-540

-360

-180

0

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Loop function with anti-alising filter in loop

Frequency (Hz)

System: Digital

Frequency (Hz): 9.65e+04

Magnitude (dB): -0.0346

System: Digital

Frequency (Hz): 9.66e+04

Phase (deg): -144

(b) Loop transfer function

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Sensitivity function with anti-alising filter in loop

Frequency (Hz)

(c) Sensitivity transfer function

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-450

-360

-270

-180

-90

0

90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Input-output with anti-alising filter in loop

Frequency (Hz)

(d) Input/output transfer function

Figure 3.20: Closed-loop transfer functions of the system working at fsw ∼ 1MHz

98

3.6. VERIFICATION OF DESIGN STRATEGIES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s] 10
-4

0

0.5

1

1.5

2

A
m

p
lit

u
d

e
 [

V
]

10
4 Step response of compesator with anti-alising filter in loop

Digital

Analog

(a) Step response of compensator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

0

0.5

1

1.5

2

2.5

3

A
m

p
lit

u
d

e
 (

V
)

Step response with anti-alising filter in loop

Digital

Analog

(b) Step response of system output

Figure 3.21: Step responses of compensator and system output (fsw ∼ 500 kHz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

0

0.5

1

1.5

2

2.5

C
o

d
e

10
4 Command step response with anti-aliasing filter in loop

Digital

Analog

(a) Step response of compensator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

0

0.5

1

1.5

2

2.5

3

3.5

A
m

p
lit

u
d

e
 (

V
)

Output step response with anti-aliasing filter in loop

Digital

Analog

(b) Step response of system output
Figure 3.22: Step responses of compensator and system output (fsw ∼ 1MHz)

99

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

-400

-300

-200

-100

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-720

-540

-360

-180

0

180

360

P
h
a
s
e
 (

d
e
g
)

NTF PWM

NTF ADC

Digital noise transfer function closed-loop

Frequency (Hz)

(a) Noise transfer functions of system with fsw ∼ 500 kHz

-400

-300

-200

-100

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-720

-540

-360

-180

0

180

360

P
h
a
s
e
 (

d
e
g
)

NTF PWM

NTF ADC

Digital noise transfer function closed-loop

Frequency (Hz)

(b) Noise transfer functions of system with fsw ∼ 1MHz

Figure 3.23: Noise transfer functions of closed-loop system

fsw∼500 kHz fsw∼1 MHz
PM 36.2◦ 36.38◦

UGF 49 077Hz 96 216Hz

GM (gain margin) 2.7 dB 2.63 dB

f(∠180◦) 106 562Hz 209 246Hz

(a) Loop transfer functions parameters

Step responses system output
fsw∼500 kHz fsw∼1 MHz

Rise time 2.6µs 1.1µs

Settling time (1%) 33.7µs 15.6µs

Overshoot 50.6% 55.34%

Peak 2.997V 3.106V

Peak time 7.69µs 3.52µs

(b) Step responses system output
Step responses compensator output

fsw∼500 kHz fsw∼1 MHz
Rise time 2.18µs 0.82µs

Settling time (1%) 32.8µs 15.1µs

Overshoot 52.6% 56.6%

Peak 19913 20521

Peak time 6.61µs 2.92µs

(c) Step responses compensator

Figure 3.24: Systems parameters

100

3.6. VERIFICATION OF DESIGN STRATEGIES

An observation about the sensitivity and noise transfer functions (figures 3.19c,
3.20c, 3.23b, 3.23a): the positive slope in audio band depends only on the com-
pensator order; this means that the reduction of PWM quantization noise in band
depends only on the performances of the integrator: larger the integrator gain in
audio band, stronger reduction of PWM quantization noise can be obtained. Any-
way, larger integrator gain means larger crossover frequency and, as a consequence,
larger switching frequency (ωu = 1

10
ωsw), requiring transistors that are suitable to

be driven at high frequency and reducing power efficiency.

3.6.2 Quantization noises

There are two sources of quantization noises: AD converter and DPWM. In partic-
ular, considering a uniform distribution of quantization noise, the power noises can
be evaluated as

σ2
nADC

=
(2VDD)

2

12 · 22nbitADC
=

4 · 25V2

12 · 22·16
≃ 5.15× 10−10V2 ⇒ σ2

n

∣∣∣
dB

≃ −87 dB (3.35)

σ2
nPWM

=
V 2
DD

12 · 22·nbitPWM
=

25V2

12 · 22·10
≃ 1.98 · 10−6V2 ⇒ σ2

n

∣∣∣
dB

≃ −57.01 dB1 (3.36)

To evaluate what is the most problematic noise, it is needed extract the power
spectral density, multiply it with the square of the transfer function that describes
the noise path and then integrate in audio band. Mathematically

Pn =

∫ 20 kHz

20Hz

Sn|H(jf)|2df (3.37)

where Sn is the considered power spectral density and |H(jf)| the transfer function
of noise path. Considering the noise transfer functions (NTF) of open-loop system
for ADC and DPWM (figure 3.18) can be obtained

NTF (s)
∣∣∣
DPWM

=
VPS

VDD

1(
1 + s

spf

) = NTF (s)
∣∣∣
ADC

(3.38)

The power spectral density can be obtained by the following formula

Sn =
V 2
DD

6 · 22Nfs
(3.39)

where N and fs are respectively nbitADC and fclkSY S if power spectral density of
ADC noise is considered or nbitPWM and fsw is DPWM quantization noise is con-
sidered. Combining 3.39 and 3.38 in 3.37, the theoretical noises of open-loop system
and SNR are evaluated using trapezoidal numerical integration in MATLAB (trapz

1The best case is with nbitPWM=10, when DPWM quantization noise is the minimum

101

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

#bitPWM PnADC PnPWM

10 -87.12 -57.01
8 -87.12 -44.98
7 -87.12 -38.96
6 -87.12 -32.94
5 -87.12 -26.92

(a) Quantization noise of ADC and
PWM

#bitPWM fsw∼ 500 kHz fsw∼ 1MHz

PnADC PnPWM PnADC PnPWM

10 -108.32 -84.79 -108.92 -97.71
8 -108.32 -72.75 -108.92 -85.68
7 -108.32 -66.73 -108.92 -79.66
6 -108.32 -60.71 -108.92 -73.64
5 -108.32 -54.68 -108.92 -67.61

(b) Noises in audio band in closed-loop
systems

#bitPWM fsw∼ 500 kHz fsw∼ 1MHz

PnADC PnPWM PnADC PnPWM

10 -109.25 -64.09 -109.25 -67.10
8 -109.25 -52.05 -109.25 -55.06
7 -109.25 -46.03 -109.25 -49.04
6 -109.25 -40.01 -109.25 -43.02
5 -109.25 -34.00 -109.25 -37.00

(c) Noises in audio band in open-loop
systems

Figure 3.25: Noises of systems with anti-aliasing filter in feedback path

function).
In a similar way, the integral of equation 3.37 is applied for closed-loop system. In
this case the noise transfer functions are the ones represented in figures 3.23b and
3.23a. In particular

NTF (s)
∣∣∣
PWM

=
VPS

VDD

1

1 + T (s)
FLP (s) (3.40)

NTF (s)
∣∣∣
ADC

=
VPS

VDD

Gc(s)

1 + T (s)
FLP (s) (3.41)

where Gc(s) and T (s) = GADCGMAGc(s)FAA(s)G are respectively the compensator
and the loop transfer functions and FLP (s) is the output filter transfer function.
Remembering that the number of bits of ADC is fixed at 16 and the fclkSY S ∼
16MHz, tables 3.25b, 3.25c and 3.25a show the MATLAB theoretical results. The
results are coherent with the ones expected:

• quantization noise of PWM increases of 6 dB reducing of one the number of
bits (table 3.25a);

• in open-loop system, in audio band the limitation is given by the PWM noise
that decreases of 6 dB thus reducing by one the number bits of DPWM; more-
over, the DPWM noise results 3 dB lower at fsw ∼ 1MHz than the case at
fsw ∼ 500 kHz because the frequency is doubled;

• in closed-loop system, PWM noise is reduced thanks to the effect of the inte-
grator (see figure 3.23b, 3.23a); in particular there’s a reduction of about 20 dB

102

3.6. VERIFICATION OF DESIGN STRATEGIES

for the case at fsw ∼ 500 kHz and of about 30 dB for the case at fsw ∼ 1MHz;
this is due to the fact that the crossover frequency for the second case is twice
the first and, as a consequence, the integrator effect last for a large range of
frequency;

• on the other hand, for closed-loop system, the noise of ADC in band is in-
creased of about 1 dB; this is related to the roll-off presents in audio band (see
figures 3.20d, 3.19d); this roll-off is not clearly visible in NTFs of figures 3.23b
and 3.23a because the output filter pole attenuates the magnitude increase
around 20 kHz;

• in all these cases, open- and closed-loop systems, the performances noise lim-
itation are due to DPWM resolutions.

3.6.3 Implementation of loop design of system with output
filter in feedback path

Similarly to the previous solution discussed in section 3.6.1, a MATLAB code is
written to evaluate the transfer functions and the step responses of the solution
with output filter in feedback path (see figure 3.13). The main parameters of the
system are the same in table 3.16a; on the other hand, the compensator has different
high frequency poles.

Compensator

τp =
(

GADCKGMAG
ωu

) 1
p 1

ω
1− 1

p
z

ωz =
ωu

tan

(
PM−180◦+p90◦+tan−1 ωu

2fsw
p−1

)
ωzx = 9

10
ωpf

ωzy = ωpf

ωph1 = 9ωu (N = 1)

ωph1 = 10ωu (M = 1)

Figure 3.26: Compensator filter parameters

In table 3.26, ωzx and ωzy are the zeros that compensate the double pole of the
output filter. The two high frequency poles inserted to make the transfer function
proper (ωph1) and to close the band (ωph2) are chosen to be of the first order to
reduce their effect on the phase margin. The compensation zeros are chosen as in
previous design (section 3.26), so ωz1 =

9
10
ωz and ωz2 =

11
10
ωz. The resulting transfer

function and step responses at fsw ∼ 500 kHz and fsw ∼ 1MHz are shown in figures
3.28, 3.30, 3.29 and 3.31. The overshoot of the compensator is very large (fig. 3.30a,
3.31a) with respect to the previous solution: this is due to the fact that the band-
width of the compensator is very large and in particular it does not reach the zero
magnitude level and high frequency range is amplified (fig. 3.28a, 3.29a). This is a
problem because the number of bits of the compensator are limited and saturation

103

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

of the command signal can be obtained, exiting from the linearity condition.
Theoretical noises are evaluated with the same methodology used for previous de-
sign. What changes here are the NTFs, in particular

NTF
∣∣∣
PWM

=
VPS

VDD

FLP (s)

1 + T (s)
(3.42)

NTF
∣∣∣
ADC

=
VPS

VDD

Gc(s)FLP (s)

1 + T (s)
(3.43)

where T (s) = GADCKGMGFLP (s)Gc(s).

#bit fsw∼500 kHz fsw∼1 MHz
PnADC PnPWM PnADC PnPWM

8 -106.43 -71.90 -106.68 -81.89
7 -106.43 -65.89 -106.68 -75.87
6 -106.43 -59.87 -106.68 -69.85
5 -106.43 -53.85 -106.68 -63.83

Figure 3.27: Noises in audio band in closed-loop
Theoretical results of noises shown in table 3.27 are similar to the ones found in

table 3.25b: this similarity is due to the fact that the noise in audio band depends
on the integrator gain that is the same of previous solution (τp for the two solutions
has the same formula, see 3.23 and 3.34); the difference is due to the presence
of zero to compensate the output filter pole, that in previous solution with anti-
aliasing filter in feedback path is at higher frequency, over ωu (fp = 225 kHz). This
consideration further emphasizes the fact that the main parameter to reach high
SNR is the integrator gain.

Effect of increasing order of compensator high frequency poles

As shown in subsection 3.5.3, increasing the order of high frequency poles of the
compensator reduces the overshoot of the command signal (compensator output)
but at the same time reduces the phase margin of the loop transfer function. A
demonstration of this fact is shown in the results of the following design, caried out
in the same way it has been shown in subsection 3.6.3 at fsw ∼ 500 kHz, with the
difference that the order of high frequency poles ωph1 and ωph2 is set to M = N = 3.
Comparing this solution with the previous one with N = M = 1, can be observed
that (figures 3.34, 3.35):

• phase margin of the higher order system results to be lower than the previous
one, as expected at increasing the order of high frequency poles;

• the overshoot of command signal (fig. 3.35b) is reduced of about 50% about
(even if overcomes the maximum dynamic range);

• the overshoot of the output signal is increased because the phase margin is
reduced;

104

3.6. VERIFICATION OF DESIGN STRATEGIES

20

40

60

80

100

M
a
g
n
it
u
d
e
 (

d
B

)

10
3

10
4

10
5

10
6

10
7

10
8

-270

-180

-90

0

90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Compensator transfer function

Frequency (Hz)

(a) Compensator transfer function

-100

0

100

200

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-540

-450

-360

-270

-180

-90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Loop function with output filter in feedback

Frequency (Hz)

(b) Loop transfer function

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

Sensitivity function with output filter in feedback

Frequency (Hz)

(c) Sensitivity transfer function

-100

-80

-60

-40

-20

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-540

-360

-180

0

180

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Input-output with output filter in feedback

Frequency (Hz)

(d) Input/output transfer function

Figure 3.29: Closed-loop transfer function of the system working at fsw ∼ 1MHz

105

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

0

50

100

150

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-270

-180

-90

0

90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Compensator transfer function

Frequency (Hz)

(a) Compensator transfer function

-200

-100

0

100

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-540

-450

-360

-270

-180

-90

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Loop function with output filter in feedback

Frequency (Hz)

System: Digital

Frequency (Hz): 5.45e+04

Magnitude (dB): -0.00969

System: Digital

Frequency (Hz): 5.44e+04

Phase (deg): -127

(b) Loop transfer function

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

Sensitivity function with output filter in feedback

Frequency (Hz)

(c) Sensitivity transfer function

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-540

-360

-180

0

180

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Input-output with output filter in feedback

Frequency (Hz)

(d) Input/output transfer function

Figure 3.28: Closed-loop transfer function of the system working at fsw ∼ 500 kHz

106

3.6. VERIFICATION OF DESIGN STRATEGIES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

C
o

d
e

10
5 Command step response with output filter in loop

Digital

Analog

(a) Step response of compensator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

0

0.5

1

1.5

2

2.5

A
m

p
lit

u
d

e
 (

V
)

Output step response with output filter in loop

Digital

Analog

(b) Step response of system output
Figure 3.30: Step responses of compensator and system output (fsw ∼ 500 kHz)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

-4

-2

0

2

4

6

8

10

12

14

16

C
o

d
e

10
5 Command step response with output filter in loop

Digital

Analog

(a) Step response of compensator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

0

0.5

1

1.5

2

2.5

A
m

p
lit

u
d

e
 (

V
)

Output step response with output filter in loop

Digital

Analog

(b) Step response of system output
Figure 3.31: Step responses of compensator and system output (fsw ∼ 1MHz)

107

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

-300

-200

-100

0

M
a

g
n

it
u

d
e

 (
d

B
)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

-540

-360

-180

0

180

360

P
h

a
s
e

 (
d

e
g

)

NTF PWM

NTF ADC

Digital noise transfer function

Frequency (Hz)

(a) Noise transfer functions of system with fsw ∼ 500 kHz

-200

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
3

10
4

10
5

10
6

10
7

10
8

-540

-360

-180

0

180

360

P
h
a
s
e
 (

d
e
g
)

NTF PWM

NTF ADC

Digital noise transfer function

Frequency (Hz)

(b) Noise transfer functions of system with fsw ∼ 1MHz

Figure 3.32: Noise transfer functions of closed-loop system

fsw∼500 kHz fsw∼1 MHz
PM 53.42◦ 51.2◦

UGF 54 411Hz 109 612Hz

GM (gain margin) 4.8 dB 4.36 dB

f(∠180◦) 173 940Hz 328 301Hz

(a) Loop transfer functions parameters

Step responses system output
fsw∼500 kHz fsw∼1 MHz

Rise time 3.01µs 1.51µs

Settling time (1%) 64.8µs 53.5µs

Overshoot 21.8% 21.7%

Peak 2.39V 2.44V

Peak time 7.87µs 3.94µs

(b) Step responses system output
Step responses compensator output

fsw∼500 kHz fsw∼1 MHz
Rise time 14.1 ns 2 ns

Settling time (1%) 8.2µs 4.1µs

Overshoot 2797% 10647%

Undershoot 235% 1752%

Peak 373820 1410272

Peak time 0.41µs 0.23µs

(c) Step responses compensator

Figure 3.33: Systems parameters

108

3.6. VERIFICATION OF DESIGN STRATEGIES

-1500

-1000

-500

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-540

-360

-180

0

180

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Compensator transfer function

Frequency (Hz)

(a) Compensator transfer function

-200

-100

0

100

200

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-1080

-720

-360

0

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Loop function with output filter in feedback

Frequency (Hz)

System: Digital

Frequency (Hz): 5.34e+04

Magnitude (dB): -0.031

System: Digital

Frequency (Hz): 5.35e+04

Phase (deg): -151

(b) Loop transfer function

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

Sensitivity function with output filter in feedback

Frequency (Hz)

(c) Sensitivity transfer function

-200

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

10
2

10
3

10
4

10
5

10
6

10
7

-1080

-720

-360

0

360

P
h
a
s
e
 (

d
e
g
)

Analog

Digital

Input-output with output filter in feedback

Frequency (Hz)

(d) Input/output transfer function

Figure 3.34: Closed-loop transfer function of the system working at fsw ∼ 500 kHz,
M = N = 3 109

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

0

0.5

1

1.5

2

2.5

3

3.5

A
m

p
lit

u
d

e
 (

V
)

Output step response with output filter in loop

Digital

Analog

(a) Step response of compensator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) 10
-4

-1

-0.5

0

0.5

1

1.5

2

2.5

C
o

d
e

10
5 Command step response with output filter in loop

Digital

Analog

(b) Step response of system output

Figure 3.35: Step responses of compensator and system output (fsw ∼ 500 kHz,
M = N = 3)

In conclusion, high frequency poles in loop transfer function have negative effect
on stability of the loop. This is the reason why in these designs high frequency poles
are set first or, at least, second order and with angular frequency around 10ωu, since
in this way the phase margin is reduced about 10◦ with respect to the one desired.

PM 29.45◦

UGF 53 276Hz

GM (gain margin) 1.77 dB

f(∠180◦) 84 909Hz

(a) Loop transfer functions parameters

Step response system output
Rise time 2.78µs

Settling time (1%) 61.74µs

Overshoot 61.3%

Peak 3.16V

Peak time 9.18µs

(b) Step response system output
Step response compensator output

Rise time 201.18 ns

Settling time (1%) 33.4µs

Overshoot 1492%

Undershoot 450%

Peak 205579

Peak time 1.87µs

(c) Step response compensator

Figure 3.36: Systems parameters with fsw ∼ 500 kHz, N = M = 3

110

3.7. SIMULINK® MODELS

Figure 3.37: ADC Simulink® model blocks

3.7 Simulink® models

In this section are shown the Simulink® models of different blocks, in particular

• ADC;

• DPWM;

• output stage;

• truncation gain;

• dead time model.

3.7.1 ADC model

As shown in section 3.4.1, the main blocks that model the ADC are the gain block (to
map analog value in digital world) and the zero-order hold (to model the sampling
event). Moreover, has to be taken in consideration that the ADC introduces a
quantization (as shown in graph 3.6) so a quantizer has to be added before the
amplification block. The Simulink® model is shown in figure 3.37. The quantizer
has the function to quantize the input signal depending on the number of bits and
on the power supply of the ADC; in particular

q =
VDD

2nbitADC
if power supply is single and positive

q =
2VDD

2nbitADC
if power suppply is symmetrical (positive and negative)

where q is the quantization interval. As a consequence the parameter Quantization
interval of the quantizer is set to

VPSp − VPSn

2nbitADC
(3.44)

where VPSp is the positive power supply and VPSn is the negative power supply.
In particular, VPSn = −VPSp if the ADC has dual input dynamic or is differential,
otherwise, if VPSn = 0, the ADC works correctly only with input signal in range
[VPSp , 0]. Can be observed that in case of differential ADC, the negative power

111

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

(a) Subsystem of modelled Uniform ADC

(b) Mask of modelled Uniform ADC

Figure 3.38: Simulink® ADC subsystem model

supply really corresponds to the minimum differential voltage input that can be
applied.
The output signal of the quantizer is an analog quantized signal. To be mapped in
digital word, an amplifier has to be added. In particular this amplification factor
(parameter gain of the Gain block) is given by

2nbitADC

VPSp − VPSn

(3.45)

Comparing this formula with the ADC gain one (equation 3.11) they are the same if
power supplies are considered VPSp = −VPSn = VDD. The output of the gain block
provides the digital code that represents the quantized input signal.
To take into account that when a number of bits is given, the maximum and the
minimum value are respectively 2nbitADC−1 − 1 and −2nbitADC−1, a limiter is added.
In this way, when the input signal overcomes the power supply, there is a saturation
of the output code. Moreover, if there’s only a single power supply, the saturation
values are 2nbitADC −1 and 0. The choice of the these limiting values implies that the
representation of the output code is done in 2’s complement if ADC is differential,
otherwise, if the ADC is single-ended, the representation of output code is unsigned
Finally, a zero-order hold working at fclkSY S models the sampling.
All these blocks are grouped in a subsystem that through a mask asks to the user to
insert positive and negative power supply, number of bits and sampling frequency
(figure 3.38).

112

3.7. SIMULINK® MODELS

Figure 3.39: Test scheme of Uniform ADC

ADC test

To test the model of ADC, it is compared with the Idealized ADC quantizer of
Simulink® native library. Because this block only performs only the quantization,
a ZOH block samples its output. The system tested is shown in figure 3.39. The
system is tested in three ways with a sinewave signal and VDD ADC power supply:

1. input signal is set to be strictly positive and it must cover the entire dynamic
of ADCs; in this case amplitude of input signal is set to VDD/2 and it is biased
with VDD/2;

2. the input signal can be positive or negative and it has to cover the entire
dynamic of ADCs; the amplitude of the input signal is VDD, with no bias;

3. input signal overcomes the input dynamic of the ADCs and the saturation to
the maximum/minimum value is verified

The parameters of ADC are the following:

• positive power supply: 5V

• negative power supply: −5V (if ADC has dual power supply) or 0V (in case
of ADC can sample only strictly positive signals);

• sample frequency: fs = 500 kHz;

• bits number: 4.

The figure 3.40 shows the three tests. The first result to observe is that in all
simulations the Idealized ADC quantizer output is superimposed with the Unifrom
ADC one, that is a first check of the ADC model correctness. Then, analyzing
in detail each test, the codes obtained are the expected ones. In fact, from figure
3.40a, the maximum and minimum reached values are respectively 2nbitADC−1 − 1 =

2(4−1)−1 = 7 and −2nbitADC−1 = −2(4−1) = −8; in a similar way in figures 3.40b and
3.40c the minimum value is 0 and the maximum one is 2nbitADC − 1 = 24 − 1 = 15

113

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

with the only difference that in the case where input signal overcomes the ADC
input dynamic, the time for which the maximum/minimum code is generated by
ADC is larger: the saturation is reached.

(a) Test with input signal with positive and negative dynamic

(b) Test with input signal with positive dynamic

(c) Test with positive signal that exceed the ADCs dynamic

Figure 3.40: ADCs tests results

3.7.2 Truncation gain

As shown in subsection 3.4.3, the operation of truncation is necessary to adapt
the dynamic of the output code of ADC/comparator to the one of DPWM, which
generally has a lower number of bits than ADC/comparator. This operation can
easily done with a gain block with gain of

2nbitADC

2nbitPWM
(3.46)

114

3.7. SIMULINK® MODELS

(a) Truncation gain block

(b) Truncation gain block parameters

Figure 3.41: Truncation gain block and parameters

where nbitADC becomes nbitADC − 1 in case of open-loop system for the motiva-
tions shown in subsection 3.4.5. Moreover, to make the floor operation of equation
3.13 and to limit the representation of the number on nbitPWM , the parameters
Signal attributes/Integer rounding mode and Signal attributes/Output data type are
respectively set to Floor and fixdt(0, nbit_PWM, 0).

3.7.3 Noise shaping

To increase the SNR, instead to increase the number of bit of DPWM (which require
larger clock frequency), should be applied a noise shaping on the truncated signal,
before it is sampled by DPWM. A block diagram of the noise shaping algorithm
[38], is shown in figure 3.42a. The idea is to recover the LSBs that are truncated
before DPWM sampling at n-1th step and sum them to the nth output code from
compensator.

GM

to output stagefrom ADC

K MSBs

TRUNCATION

Gc(s)

z−1

+
+

LSBs

(a) Noise shaping applied to the closed-
loop model

(b) Noise shaping of [38]

Figure 3.42: Noise shaping technique

In the simulated circuit, the problem is to recover the LSBs. The idea that has

115

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

been implemented is the following one: let’s consider to recover M LSBs from a
number n represented on N > M bits; if the representation of the numbers is finite
and with non-saturated representation (so overflow is accepted), multiplying n by
2(N−M) the resulting number nx has the M MSBs equal to the LSBs of n and the
remaining N − M LSBs are all zeros. Then, dividing nx by 2(N−M) the resulting
number nt is composed by N − M MSBs as zeros and the LSBs are the MSBs of
nx. As a consequence nt can be represented on M bits because all the MSBs are
zeros and the LSBs are recovered. Let’s consider and example where M = 2 LSBs
are recovered from a number (11, decimal) represented on N = 4 bits

• 11
∣∣
dec

→ 1011
∣∣
bin

⇒ 1100
∣∣
bin

→ 12
∣∣
dec

=
(
11 · 2

N

2M
= 11 · 2

4

22

)
⇒ 0011

∣∣
bin

→ 3
∣∣
dec

=
(
12 · 2

M

2N
= 12 · 2

2

24

)
(3.47)

Limiting the representation of 0011 on two bits, the LSBs 11 can be represented on
M = 2 bits.

3.7.4 Truncation and noise shaping test

To test the truncation and the LSBs recovering operations, a fully positive sinusoidal
signal is converted in digital by the Uniform ADC. Then, the generated code is
truncated and LSBs are extracted, obtaining the timing diagram shown in figure
3.44. The tested block diagram is shown in figure 3.43, where the gain blocks for
the truncation and LSBs recovering are shown. In particular the gain blocks have
the following parameters

• Trunc Gain MSBs :

– Gain: 2nbit_PWM

2nbit_ADC ;

– Output data type: fixdt(0, nbit_PWM, 0);

– Rounding mode: Floor.

• Trunc Gain 3:

– Gain: 2nbit_ADC

2nbit_PWM ;

– Output data type: fixdt(0, nbit_ADC, 0);

– Rounding mode: Floor.

• Trunc Gain 4:

116

3.7. SIMULINK® MODELS

Figure 3.43: Block diagram to test truncation and LSBs recovering

Figure 3.44: Timing diagram of truncation and LSBs recovering

– Gain: 2nbit_PWM

2nbit_ADC ;

– Output data type: fixdt(0, nbit_PWM, 0);

– Rounding mode: Floor.

• Sum:

– Output Data Type: fixdt(0, nbit_ADC, 0).

In the test nbitADC = 4 and nbitPWM = 2 and observing the timing diagram 3.44
when the output code of ADC is 11 the LSBs and the MSBs are exactly the ones
shown in example 3.47. Moreover, to test noise shaping and to verify that no
signal saturates, the block diagram of figure 3.45 is simulated, obtaining the timing
diagram in figure 3.46. Can be seen that the output of the sum node (Sum16) does
not exceed the maximum possible dynamic (23 = 8) and consists in the same signal
generated by ADC with a superimposition of an high frequency error signal (LSBs).
Moreover, when the output of ADC reaches the maximum value, the output of the
Sum block comes back to lowest values: this is due to the fact the adder works
on nbitADC = 4 bits, obtaining overflow when the maximum value is reached. The
delay line works at the same frequency of ADC (100 kHz).

117

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

Figure 3.45: Noise shaping test scheme

Figure 3.46: Noise shaping test results (nbitADC = 4, LSBs = 2, MSBs =

nbitPWM = 2)

3.7.5 DPWM blocks scheme

The block diagram of DPWM is implemented in Simulink® in a way which is similar
with the model in figure 3.3 and 3.4. The only difference is that the triangular
waveform is not a dual edge, but a trailing edge generated by means of a free-
running counter where the resolution and the clock frequency are the parameters of
the block. It can be noted that the effective PWM signal comes from output stage,
because after the sum node there’s a signal with no physical meaning that has
the only function to drive the output stage (the Relay block). The block diagram
and results of a simulation tested for ten PWM periods at fsw ∼ 500 kHz and
nbitPWM = 5 are shown in figures 3.47 and 3.48. As expected, the DPWM counter
is reset after 2nbitPWM − 1 = 25 = 31 and the output of Relay is high until the
PWM counter is lower that the input DPWM code, while it becomes low when the
DPWM counter is larger than the input code. Moreover can be observed the uniform
sampling: the input code (in_DPWM) remains constant for all the switching period.
Because of the free-running counter has the number of bits and the clock frequency
as parameters, the clock frequency is derived as

fclkDPWM
= fsw · 2nbitDPWM (3.48)

The block convert is needed to have same data type at the inputs of the sum node.

118

3.7. SIMULINK® MODELS

Figure 3.47: Block diagram of DPWM and output stage

Figure 3.48: DPWM test (nbitPWM = 5, fsw ∼ 500 kHz)

3.7.6 Dead time model

In figure 3.47 is also shown the block that simulates the dead time. Dead time is
needed to avoid the short circuit between power supply and ground and it is an
amount of time where both transistors do not conduct. The duration of dead time
influences efficiency and distortion: in particular, if dead time is large the power
dissipation is reduced, but distortion increases; on the other hand, reducing the
dead time duration, THD is reduced, but power consumptions increase.
Consider a bridge-tied load class D amplifier and what happens at the output of
each half-bridge stage. In particular, let’s consider a half-bridge HHS (high-side
stage) the stage that generates the voltage on the positive node of the load and HLS

(low-side stage) the stage that generates the voltage on negative node of the load.
Moreover, for the sake of simplicity, let’s consider constant the input voltage of the
amplifier Vin and the current IO > 0 at the output of HHS stage. The situation is
shown in figure 3.49, where architecture of HHS and a qualitative timing diagram

119

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

M1

M2

Vsw

VPS

Vctr2

Vctr1

D2

D1

IO

(a) HHS output stage

Vctr1

t

t

Vctr2

Vswreal

t

Vtr

t

Vin

Vswideal

terr

t

M2

D1

M2

D1

D1

(b) Qualitative timing diagram of con-
ductive devices of HHS

Figure 3.49

of the gate voltages and output stage voltage are considered. The timing diagram
shows the different behaviour of output stage voltage in ideal condition and in case
of dead time.

• Ideal condition

– Vctr2 = H, Vctr1 = L: M2 is on, so it is the conductive device; current
flows from power supply through M2 and goes to the output;

– Vctr2 = L, Vctr1 = H: M2 is off; because of IO > 0, M1 cannot conduct,
so it’s the body diode that makes the current flow to the output.

• Real condition
in this case a dead time (red regions) is removed

– Vctr2 = H, Vctr1 = L: M2 is on, so it is the conductive device; the
condition is the same of the ideal case;

– Vctr2 = L, Vctr1 = L: both M1 and M2 are off but the continuity condition
of the inductor currents makes conduct D1;

– Vctr2 = L, Vctr1 = H: M2 is off, D1 is conductive, M1 is on, same condition
of ideal case;

The error signal is defined as

error = Vswideal
− Vswreal

(3.49)

120

3.7. SIMULINK® MODELS

and occurs on rising edge of Vsw: in particular Vswreal
has the rising edge shifted

ahead by the dead time with respect to the rising edge of Vswideal
.

M3

M4

Vsw

VPS

Vctr2

Vctr1

D4

D3

IO

(a) HLS output stage

Vctr1

t

t

Vctr2

Vswreal

t

Vtr

t

Vin

Vswideal

terr

t

D4

D4

M3

D4

(b) Qualitative timing diagram of con-
ductive devices of HLS

Figure 3.50

Now, if the output current of HHS is IO > 0 then the output current of HLS is
IO < 0. Considering this fact, a similar analysis made for HHS can be made for
conductive devices HLS, referring to figure 3.50. Both ideal and real (with dead
time, highlighted with blue region) cases are considered

• Ideal condition

– Vctr2 = H, Vctr1 = L: M4 is on, but because IO < 0 the conductive device
is D4; M3 is off;

– Vctr2 = L, Vctr1 = H: M2 is off, M3 is on and is the conductive device
because the current flows from the inductor and enters in the drain of
M3;

• Real condition

– Vctr2 = H, Vctr1 = L: M4 is on, D4 is the conductive devices, M3 is off;
same situation of the ideal case;

– Vctr2 = L, Vctr1 = L: both M4 and M3 are off but the continuity condition
of the inductor current makes conduct D4;

121

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

– Vctr2 = L, Vctr1 = H: M4 is off, D3 is on, M3 is on; same condition of
ideal case;

Similarly to HHS, the error occurs only on falling edge and in particular falling edge
of Vswreal

is shifted ahead by the dead time with respect to the falling edge of Vswideal
.

3.7.7 Open-loop DC error

Depending on the current direction, considering continuous input voltage Vin, the
output voltage is affected by an error on DC component that basically depends on
the duty cycle of error signal. In particular, the DC component V̄error of error signal
Verror(t) is given by

V̄error =

∫ T

0

Verror(t)dt =

∫ ∆t

0

Verrpkdt = (3.50)

=
∆t

T
Verrpk (3.51)

where Verrpk = VPS if IO > 0 or Verrpk = −VPS if IO < 0, ∆t is the dead time and VPS

the power supply of output stage. As a consequence, the error on DC component is
given by

V̄error =

∆t
T
VPS if IO > 0

−∆t
T
VPS if IO < 0

(3.52)

Therefore, the real DC component due to dead time presence is lower by a factor
∆t
T
VPS with respect to the ideal one if IO > 0, otherwise is ∆t

T
VPS larger than ideal

condition. Finally if ∆t ≪ T the dead time can be considered negligible.

Vin(t)

Vinshift
(t)

t

t

t

VDD/2

VDD/2

Figure 3.51: Input signal and output signal of the half-bridge output stages

122

3.7. SIMULINK® MODELS

IO(t)

t

IO > 0

IO < 0

IO

Vodiff

RL

IO

Vodiff

Von

Vop

Figure 3.52: Current and characteristic IO-Vodiff on the load

Load current

Ideally, by considering only a sinusoidal signal as input of the amplifier Vin(t), the
output differential voltage on the load Vodiff (t) is still a sinusoidal waveform at
the same frequency. Mathematically, considering open-loop stage and single power
supply for the half-bridge output stages, results

Vin(t) = Vin sin(ωt+ Φ)

⇒ Vinshift
= Vin sin(ωt+ Φ) +

VDD

2
(3.53)

⇒ Vop =
VPS

VDD

[
Vin sin(ωt+ Φ)

]
+

VPS

VDD

VDD

2
(3.54)

=
VPS

VDD

[
Vin sin(ωt+ Φ)

]
+

VPS

2
(3.55)

Von = − VPS

VDD

[
Vin sin(ωt+ Φ)

]
+

VPS

VDD

VDD

2
= − VPS

VDD

[
Vin sin(ωt+ Φ)

]
+

VPS

2

⇒ Vodiff = Vop − Von = 2
VPS

VDD

[
Vin sin(ωt+ Φ)

]
(3.56)

As a consequence, considering purely resistive load, the current on the load as the
following characteristics

• has no DC components;

• sign changes in time;

Putting together the considerations on half-bridge stages and load current, can be
concluded that for half period of the output signal the current IO comes out from
the output stage HHS and comes into HLS (IO > 0), while for the other half period
of output signal, when IO < 0, the output current comes out from HLS and comes
into HHS. In this way, the average current on the load is zero.

Dead time model limitations

Due to the change of sign in time, even the effect of the deadtime changes in time
on the half-bridge stages. In particular, when the current on the load IO > 0

123

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

(fig. 3.52), the situation is the one described in 3.7.6, while when IO < 0 the
behaviour is inverted so HLS works as HHS when IO > 0 and HHS works as HLS

when IO > 0. This means that in order to know the behaviour of each half-bridge
stage, the information of the current and in particular the sign is required: this is
a limitation in Simulink® model because only voltage signal can be simulated. So
an approximated model is used. In particular, the current is considered for both
stages with the same sign IO > 0. This creates only a shift on the DC components
in open-loop system and no substantial differences in the output of the closed-loop
system due to the infinite attenuation at s → 0 of the NTFs 3.32 and 3.23.

(a) Dead time test

(b) Dead time test detail of rising edge shifting

Figure 3.53: Dead time test (fsw ∼ 500 kHz, nbitPWM = 5, t∆ ≃ 15 ns)

Dead time model description and test

The idea of the deadtime model (fig. 3.47) is to chose a current direction out from
the half-bridge stages and then set the dead time by means of the block On-Off
delay : in particular, if the output current is considered IO > 0, On-delay parameter
is set with the dead time chosen and the Off delay one is set to 0; on the other
hand, if IO < 0, the On delay is set to 0 while the Off delay is set to the dead time.

124

3.8. SIMULATION DATA MANAGEMENT

Because of the On-Off delay block can receive only boolean data input and generate
boolean data output, the output signal of Relay is converted in boolean data: if the
Relay output is high then the output of boolean converter is 1, otherwise is 0. After
the conversion the rising edge is delayed by the dead time (i.e. IO > 0 is considered)
and then re-converted in double format. Finally, because of the output signal of
double converter is a two-level signal than can assume only 1 or 0 values, a Gain
block with VPS gain is added, to obtain at the output a two-level signal that can
assume VPS and 0 values. In figures 3.53a and 3.53b is shown the result of simulation
at fsw ∼ 500 kHz, nbitPWM = 5, t∆ ≃ 15 ns, comparing the ideal waveform with the
real one (with dead time). In particular, in figure 3.53b can be clearly observed the
dead time shifting of the rising edge, as expected from the analysis done previously.

3.8 Simulation data management

In this section are described the parameters of the simulations to obtain good spec-
tral estimation and analysis of the main amplifiers parameters, like distortion and
SNR.

3.8.1 Simulation stop time parameter of the simulations

To obtain a good estimation of power spectra from simulations data, the frequency
resolution in audio band should be at least of 1Hz or lower. In terms of simulation
time, this means that the Stop time parameter of the simulations must be at least
of 1 s; because of the fft can be applied only to periodic signals, the initial transient
of the simulation has to be excluded: the duration of the transient is mainly related
to the larger time constant of the system, which depends on the poles of the blocks.
In particular, the block with the lower pole is the output filter (fpf = 20 kHz) from
which can be derived a time constant τpf = 1

2πfpf
≃ 8 µs. To take in consideration

this transient, the Stop time is taken 1.5 s: the first 500ms are excluded from the
frequency analysis because the transient is included, while the other second of signals
is used to make the frequency analysis at 1Hz resolution. 500ms are reasonably
enough to consider that the initial transient (estimated as 10τpf = 80 µs) is ended.

3.8.2 Simulation integration time

The integration time step tint (set in Simulink® in Model Settings/Solver/Fixed-
step size (fundamental sample time) menu) is set fixed and it is related to the
minimum sample period in the system. In particular two main sample frequencies
are present: fclkSY S

and fclkPWM
, where the second one is the clock frequency of the

125

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

free-running counter. To be sure to reach at least 2fclkSY S
in the frequency spectrum,

the integration time is set as

tint = min
(1

4fclkSY S

,
1

fclkPWM

)
(3.57)

where fclkPWM
= fsw2

nbitPWM changes at varying of PWM number of bits. As a
consequence, at reducing of the number of bits, tint is limited at 1

4fclkSY S

if fclkPWM
<

4fclkSY S
.

3.8.3 Decimation factor and data storage

Because of the Stop time and tint are different of about 8-9 orders of magnitude, the
number of samples for each is of the order of ∼ 108 when tint = tintmax = 1

4fclkSY S

and has to be saved in a file. To do so, in menu Model Setting/Data Import/Ex-
port/Configure Signal Log are selected the data to log out and decimation factor DF

is applied to the analog signals. For these output and input signals, the frequency
analysis has to be done in audio band and around the PWM harmonics. In partic-
ular, because of the maximum fsw ≃ 1MHz, making the frequency analysis up to
2fclkSY S

is sufficient. As a consequence, the analog input and output signals of the
systems (in particular Vin, Vinshift

, Vop and Vodiff , outAAfilter, see figures 3.55, 3.56,
3.57) can be sampled and saved at 4fclkSY S

in the datastore. This means that if the
tint <

1
4fclkSY S

, a decimation of data output has to be performed and in particular
the decimation factor DF is

DF =
1

tint

4fclkSY S

(3.58)

It can be seen that from equation 3.57, if tint = 1
4fclkSY S

the decimation factor
DF = 1. These settings of integration time and Stop time are managed by means
of MATLAB code (see Appendix, 5.2.2, 5.2.4, 5.2.1, 5.2.7).
Actually, the analog signals could be sampled and saved in datastore [39] at tint, but
this creates two performance problems:

• the size of the file in uselessly enlarged because saving larger amount of samples
allows to make frequency analysis up to 1

2tint
> 2fclkSY S

≃ 32MHz that is
useless;

• frequency analysis requires more time and the size of timetables of each signal
could overloading RAM.

As a consequence, outputs like Vin, Vinshift
, Vop and Vodiff , outAAfilter (see figures

3.56, 3.57,3.55) are sampled at 4fclkSY S
while the other signals are sampled at 1/tint

(that could be equals to 4fclkSY S
for equation 3.57). The resulting file is a Datastore

126

3.8. SIMULATION DATA MANAGEMENT

with the data extracted from the nodes shown in figures 3.55, 3.56, 3.57 with a
like-wifi symbol.

fclkSYS=16777216 Hz
fsw=1048576 Hz

#nbitPWM int. time [ns] dec. int. time [ns] dec. fac fclkPWM [MHz]
10 0.931 14.9 16 ∼ 1074

8 3.73 14.9 4 268435456
7 7.45 14.9 2 134217728
6 14.9 14.9 1 67108864
5 14.9 14.9 1 33554432

(a) Simulation parameters for fsw ∼ 1MHz

fclkSYS=16777216 Hz
fsw=524288

#nbitPWM int. time [ns] dec. int. time [ns] dec. fac fclkPWM [MHz]
10 1.81 14.9 8 536870912
8 7.45 14.9 2 134217728
7 14.9 14.9 1 67108864
6 14.9 14.9 1 33554432
5 14.9 14.9 1 16777216

(b) Simulation parameters for fsw ∼ 500 kHz

Figure 3.54: Simulation parameters at varying of fsw and nbitPWM

Each signal stored in the file has a timetable, with Time and Data fields. Each
simulation generates a file that can overcome 40 GB size, that is not possible to
manage by means of RAM. As a consequence, a code that manages these kind of
files (Datastore) is written (Appendix, subsection 5.2.9, 5.2.8, 5.2.10), allowing the
reading of portion of file and signals, without overloading RAM. In the tables 3.54
are shown the integration time and the time at which analog signals are sampled and
saved in datastore: these times are evaluated by means of the script shown Appendix,
subsections 5.2.4, 5.2.1, 5.2.2 and depend on the number of bits of DPWM and
switching frequency because fclkPWM

= 2nbitPWMfsw (see equation 3.57). Can be
seen that the integration time (int. time) coincides with the sampling time of analog
outputs (dec. int. time) when the clock frequency of DPWM (fclkPWM

) becomes
equal or lower than the sampling frequency of ADC and comensator (fclkSY S

); as
a consequence, the decimation factor (dec. fac.) becomes equal to 1. Moreover,
the down-sampling time (dec. int. time) is always the same and coincides with

1
4fclkSY S

, obtaining the same number of samples for each simulation at varying of
PWM bit number. As a consequence, the resolution and the Nyquist frequency for
the frequency analysis is the same for all analog signals, making comparable the
different spectra.
Because of Simulink® accepts only multiple sampling time of the integrator time
and because of fclkPWM

∝ 2N all the sampling times in the system are chosen as

127

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

multiple of 2N : this is the reason why the switching frequency, the sampling time of
ADC and compensator fclkSY S

and the deadtime ∆t ∼ 15 ns are chosen with these
numbers (see table 3.16a).

3.9 Class D audio amplifier model with DPWM mod-
ulation

The designed models of closed-loop (both with and without output filter in the
feedback path) and open-loop class D amplifiers are shown in figures 3.55, 3.56,
and 3.57. In particular, can be seen the differential output node which makes the
difference of the two single-ended output voltages of the half-bridge models. The
input signal is biased with VDD/2, as shown in figure 3.5, to be sure that input
signal (in case of open-loop system) or error signal (in case of closed-loop one) are
inside dynamic input range of ADC. Moreover, an inverting amplification is applied
to the input signal for the low-side half-bridge; in figure 3.56 can be seen also the
commented noise shaping block diagram: this block can be uncommented to activate
the noise shaping effect on the loop.
Simulations are performed with the parameters listed in table 3.16a, varying the
PWM number of bits between 5 and 8 for open-loop systems and adding a simulation
with 10 bit for closed-loop ones. The dead time is set to ∆t ∼ 15 ns.

3.9.1 Open-loop results

From open-loop datastores are extracted different data to plot. From figures 3.58
it can be seen that at varying of PWM bits number the peak value of triangular
waveforms changes and reach the value 2nbitPWM −1, as expected from the behaviour
of a free-running counter. About the output analog signals, both single-ended and
differential voltages are shown (fig. 3.59 and 3.60): the single-ended output is the
amplified input sinusoidal signal with an offset, as expected from equation 3.55;
moreover, also the differential voltage is the one expected from equation 3.56 where
the amplitude of sinusoidal signal is twice the single-ended one and the DC compo-
nent is zero. In particular, considering the parameters of table 3.16a the theoretical

128

3.9. CLASS D AUDIO AMPLIFIER MODEL WITH DPWM MODULATION

Figure 3.55: Open-loop class D amplifier model

Figure 3.56: Closed-loop class D amplifier model with anti-aliasing filter in feedback
path

Figure 3.57: Closed-loop class D amplifier model with output filter in feedback path

129

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

0 1 2 3 4 5 6 7

time [s] 10
-6

 sec

0

200

400

600

800

1000

1200

A
m

p
lit

u
d
e
 [
V

]

Triangular waveforms trailing edge f
sw

500 kHz

nbitPWM=10

nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(a) fsw ∼ 500 kHz

0 0.5 1 1.5 2 2.5 3 3.5

time [s] 10
-6

 sec

0

200

400

600

800

1000

1200

A
m

p
lit

u
d
e
 [
V

]

Triangular waveforms trailing edge f
sw

 1 MHz

nbitPWM=10

nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(b) fsw ∼ 1MHz

Figure 3.58: Trailing edge triangular waveform

output peak voltage is given by

Vopk = Vinpk

VPS

VDD

+
VDD

2

VPS

VDD

= Vinpk
GMA+

VPS

2

= 2.25V
10V

5V︸ ︷︷ ︸
VoSEpk

+5V = 9.5V2

⇒ Vodiff,peak = 2VoSEpk
= 9V

Moreover, it can be observed that at reducing of PWM bits number, the distortion
increases and it is lower for higher switching frequency. Open-loop differential
spectra are shown in Appendix, at DPWM open-loop system spectra . Basing on
these spectra, THD and SNR are evaluated by means of snr and thd functions,
obtaining the results shown in table 3.61. Some observations can be done:

• theoretical SNR is reduced by 6 dB increasing by one the DPWM bit number
and by 3 dB when switching frequency is doubled, as expected from the theory;

2The dead time effect is considered negligible because ∆t ∼ 15 ns ≪ 1
fswmax

∼ 1
1MHz < 0.9µs

130

3.9. CLASS D AUDIO AMPLIFIER MODEL WITH DPWM MODULATION

0 1 2 3 4 5

time [s] 10
-3

 sec

0

2

4

6

8

10

A
m

p
lit

u
d
e
 [
V

]

Single-ended output open-loop (f
sw

 500 kHz) nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(a) fsw ∼ 500 kHz

0 1 2 3 4 5

time [s] 10
-3

 sec

0

2

4

6

8

10

A
m

p
lit

u
d
e
 [
V

]

Single-ended output open-loop (f
sw

 1 MHz)
nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(b) fsw ∼ 1MHz

Figure 3.59: Open-loop single-ended outputs

0 1 2 3 4 5

time [s] 10
-3

 sec

-10

-5

0

5

10

A
m

p
lit

u
d
e
 [
V

]

Differential output open-loop (f
sw

 500 kHz)
nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(a) fsw ∼ 500 kHz

0 1 2 3 4 5

time [s] 10
-3

 sec

-10

-5

0

5

10

A
m

p
lit

u
d
e
 [
V

]

Differential output open-loop (f
sw

 1 MHz)
nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(b) fsw ∼ 1MHz

Figure 3.60: Open-loop differential outputs

131

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

bits fsw∼500 kHz fsw∼1 MHz
SNR [dB] SNR theory [dB] THD [dB] SNR [dB] SNR theory [dB] THD [dB]

8 64.09 66.08 -70.67 70.40 68.09 -47.26
7 61.41 59.06 -75.74 64.66 62.07 -57.40
6 55.23 53.04 -52.47 62.45 56.05 -51.27
5 53.87 47.02 -45.83 60.92 50.03 -45.53

Figure 3.61: Open-loop results DPWM (differential output)

• theoretical and simulated SNRs are different among them because the non-
linearities due to the PWM are not attenuated in band;

• non-linearities increase by reducing the PWM bits; in fact, comparing theo-
retical and simulation SNR, the difference between the two is larger when the
number of these bits is reduced;

• as expected, the even harmonics included in the spectrum of the differential
output are attenuated a lot, so only odd harmonics contribute to THD;

• THD increases by reducing the PWM bits number; this behaviour means that
the linearity of the system is related to the number of PWM bits.

Theoretical SNR on single-ended output is computed as shown in subsection 3.6.2,

making the ratio between the input power signal (
V 2
opk

2
) and the total power noise

(see Appendix, Code for theoretical SNR evaluation). The SNR of differential output
is derived adding 3 dB to the single-ended one, because the differential tone is twice
the single-ended one (6 dB larger) and power noise increases by 3 dB, therefore the
net theoretical SNR increases of 3 dB.

3.9.2 Closed-loop results of system with anti-aliasing filter in
the loop

Similarly to open-loop model, even with closed-loop configuration with anti-aliasing
filter in the feedback path, the simulations are performed by using the parameters
in table 3.16a by varying the number of PWM bits from 10 to 5. The designed
transfer functions of compensator, anti-aliasing filter and output filter are discussed
in subsection 3.6.1. The single ended and differential output voltages in time domain
are shown in figures 3.62 and 3.63 . As expected, the DC error is zero due to
triple zero in the origin of the noise transfer function (fig. 3.23b, 3.23a). On the
other, dead time cannot be increased too much, otherwise the compensator saturates.
The simulations of differential output voltage spectra are shown in the Appendix,
DPWM closed-loop spectra and from them SNR and THD of simulated systems
are computed; similarly to open-loop system, theoretical SNR is evaluated too.

132

3.9. CLASS D AUDIO AMPLIFIER MODEL WITH DPWM MODULATION

0 1 2 3 4 5

time [s] 10
-3

 sec

0

2

4

6

8

10

A
m

p
lit

u
d
e
 [
V

]

Single-ended output closed-loop (f
sw

 500 kHz) nbitPWM=10

nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(a) fsw ∼ 500 kHz

0 1 2 3 4 5

time [s] 10
-3

 sec

0

2

4

6

8

10

A
m

p
lit

u
d
e
 [
V

]

Single-ended output closed-loop (f
sw

 1 MHz) nbitPWM=10

nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(b) fsw ∼ 1MHz

Figure 3.62: Closed-loop single-ended outputs

0 1 2 3 4 5

time [s] 10
-3

 sec

-10

-5

0

5

10

A
m

p
lit

u
d
e
 [
V

]

Differential output closed-loop (f
sw

 500 kHz)
nbitPWM=10

nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(a) fsw ∼ 500 kHz

0 1 2 3 4 5

time [s] 10
-3

 sec

-10

-5

0

5

10

A
m

p
lit

u
d
e
 [
V

]

Differential output closed-loop (f
sw

 1 MHz)
nbitPWM=10

nbitPWM=8

nbitPWM=7

nbitPWM=6

nbitPWM=5

(b) fsw ∼ 1MHz

Figure 3.63: Closed-loop differential outputs

133

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

bits fsw∼500 kHz fsw∼1 MHz
SNR [dB] SNR theory [dB] THD [dB] SNR [dB] SNR theory [dB] THD [dB]

10 92.69 97.82 -90.58 105.67 110.45 -102.64
8 80.36 85.80 -87.25 94.24 98.71 -101.73
7 75.57 79.78 -87.52 87.69 92.70 -102.32
6 68.39 73.76 -83.45 81.40 86.68 -89.22
5 62.18 67.74 -77.60 73.85 80.66 -86.61

Figure 3.64: Closed-loop results DPWM (differential output)

The results obtained for differential output voltages are shown in table 3.64. Some
considerations can be done on these data:

• there’s a constant difference of 6 dB about between theoretical and simulated
SNR: this is due to the PWM aliasing; in fact the output signal from compen-
sator has a band [0, fclkSY S

/2] while fsw ∼ 1MHz/fsw ∼ 500 kHz; as a conse-
quence ADC quantization noise over fsw/2 is aliased; to reduce this non-linear
effect can be increased the number and/or the order of the high frequency
poles of the compesator trasfer function (reducing stability) and/or the loop
gain of the feedback system (increasing ωu and fsw, obtaining larger power
dissipation);

• non-linearities due to the PWM resolution are reduced by the compensator
filter and their effect is shown in figures 3.66a and 3.88b, where the spectra
of output anti-aliasing filter is shown for simulation at fsw ∼ 1MHz with
nbitPWM = 5, nbitPWM = 8 and nbitPWM = 10; it can be observed that in the
range between 10 kHz and 100 kHz the distribution of noise is different among
the spectra and in particular spurious tones have higher power (over −100 dB)
when nbitPWM = 8, while, when nbitPWM = 10, their power does not overcome
−100 dB; similarly, when nbitPWM = 5 the high frequency spurious tones are
very large, reaching almost −50 dB; therefore, varying the PWM bits, not only
quantization noise, but even non-linear effects increase;

• as expected, THD is lower for system working at larger fsw; low THDs are
reached in both systems thanks to the effect of anti-aliasing filter that atten-
uates high frequency PWM harmonics, reducing the aliasing due to ADC and
PWM sampling.

Compensator output is shown in figures 3.67 and 3.68, both for systems working at
fsw ∼ 500 kHz and fsw ∼ 1MHz. The behaviour at changing of PWM bits number
can be observed in the detail (fig. 3.67b and 3.68b): reducing the resolution of PWM,
compensator command signal has more oscillations. This is a non-linear effect due

134

3.9. CLASS D AUDIO AMPLIFIER MODEL WITH DPWM MODULATION

to the different resolution between ADC and DPWM. Moreover, the oscillations are
reduced for fsw ∼ 1MHz.

fsw=500 kHz fsw=1 MHz
SNR [dB] THD [dB] SNR [dB] THD [dB]

94.45 -90.80 112.29 -103.53

Figure 3.65: Differential output voltages performances with noise shaping
(nbitPWM = 8)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-250

-200

-150

-100

-50

0

50

P
o
w

e
r

[d
B

]

Spectum anti-aliasing filter output

nbitDPWM=8, nbitADC=16, f
sw

 1 MHz

(a) nbitPWM = 8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-300

-250

-200

-150

-100

-50

0

50

P
o
w

e
r

[d
B

]

Spectum anti-aliasing filter output

nbitDPWM=10, nbitADC=16, f
sw

 1 MHz

(b) nbitPWM = 10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-250

-200

-150

-100

-50

0

50

P
o
w

e
r

[d
B

]

Spectum anti-aliasing filter output

nbitDPWM=5, nbitADC=16, f
sw

 1 MHz

(c) nbitPWM = 5

Figure 3.66: Output anti-aliasing filter (fsw ∼ 1MHz)

135

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

However, command signal never exceeds the possible dynamic range, both dur-
ing the transient and at steady-state.
In conclusions, the performances of these systems reach the specifications suggested
by [5] when the number of PWM bits is higher then 7; the problem is that fclkPWM

is very large, in particular for the solution at fsw ∼ 1MHz with 7 and 8 DPWM
bits, increasing power dissipation. Moreover, the low resolution of PWM reduces the
SNR, requiring the increase of compensator loop gain in band, at the price of com-
plicated design [25] or switching frequency increasing [16], again loosing efficiency.

Noise shaping

Simulations at fsw ∼ 500 kHz and fsw ∼ 1MHz with nbitPWM = 8 and first-
order noise shaping is performed. As shown in figure 3.56, the truncated LSBs
are recovered and delayed by Tsw and summed to the next sample processed by
DPWM. This solution has the effect to increase the SNR in audio band, moving to
high frequency the quantization noise. Due to the presence of loop, this additional
high frequency noise can be injected in audio band due to aliasing effect; therefore,
the theoretical increase of SNR is higher than the results of simulations (table 3.65).
Spectrum results are shown Appendix, DPWM closed-loop spectra.

3.9.3 Closed-loop system with output filter in the feedback
path

The solution in figure 3.57, which has been designed as shown in subsection 3.6.3, is
tested with the parameters simulation in table 3.16a. As previuosly pointed out, the
large compensator bandwidth has the consequence to increase the overshoot of the
command signal, creating saturation problem during the transient that can bring
instability. This is what happens for system working at fsw ∼ 1MHz: the overshoot
is so high that the compensator cannot recover from non-linear condition. On the
other hand, the solution at fsw ∼ 500 kHz results stable after the initial transient.
This instability can be reduced in two ways:

• reducing the integrator order: this means reducing the effect on PWM quan-
tization noise in band;

• increasing the order of the high frequency pole: this means reducing the sta-
bility of the overall system.

In the designed case (where integrator order p = 3) SNR and THD parameters are
evaluated only for the case at fsw ∼ 500 kHz with nbitPWM = 8. Comparing table
3.69 with table 3.64, it can be seen that the SNRs are very similar: this is due

136

3.9. CLASS D AUDIO AMPLIFIER MODEL WITH DPWM MODULATION

(a) Command signal

(b) Detail around the peak of command signal

Figure 3.67: Command signal (fsw ∼ 500 kHz)

(a) Command signal

(b) Detail around the peak of command signal

Figure 3.68: Command signal (fsw ∼ 1MHz)

137

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

fsw∼ 500 kHz

#bitPWM SNR [dB] SNR theory [dB] THD [dB]
8 79.20 84.94 -69.51

Figure 3.69: SNR and THD of differential voltage of solution with output filter in
feedback path

(a) Output voltages fsw ∼ 500 kHz

(b) Output voltages fsw ∼ 1MHz

Figure 3.70: Output voltages with nbitPWM = 8

to the fact that the integrator design strategies are the same in the two solutions.
On the other hand, the difference on THD is due to the absence of high frequency
pole of anti-aliasing filter: in fact, this double pole allows to attenuate higher PWM
harmonics, further reducing PWM aliasing effect.
The spectrum of differential output of simulated solution at fsw ∼ 500 kHz, nbitPWM =

8 (in figure 3.70a) is shown in Appendix, DPWM closed-loop spectra: as in the spec-
tra of differential output in the solution with anti-aliasing filter in feedback path,
the even harmonics result have low amplitudes, making THD strongly dependent
on the power of the odd harmonics.

3.9.4 Comparison between the two solutions

Comparing the proposed solutions in subsections 3.9.2 and 3.9.3, the one with anti-
aliasing filter in feedback path results with lower THD. Actually, this parameter can

138

3.10. CLASS D AMPLIFIER MODEL WITH DDPWM MODULATION

Figure 3.71: DDPM model

be improved also for the solution in subsection 3.9.3 adding the same anti-aliasing
filter in the feedback path, with a weak reduction of phase margin. Anyway, the
problem of the overshoot that trigger non-linearities, makes the design of solution
with output filter in feedback path strongly dependent on the high frequency poles
and integrator order of the compensator and, as a consequence, on the switching
frequency fsw. On the other hand, the solution of subsection 3.9.2 results more
stable at varying of fsw, integrator order and non-linearities, obtaining a command
signal that does not exceed the possible dynamic range. Therefore, this solution is
the one used from now on to investigate the effect of different modulation type on
the designed class D amplifier model.

3.10 Class D amplifier model with DDPWM mod-
ulation

The implementation of in Simulink® environment of the model of the DDPM and
DPWM modulators basing respectively on [20] and [23] is described in this section.
Then the models are simulated and results are compared with those reported in
[20],[21],[23]; after that, DDPWM is inserted into the model of class D amplifier
with anti-aliasing filter in feedback path and performances are compared with those
obtained by the configuration that include the DPWM modulator reported in section
3.9.

3.10.1 DDPM model

The DDPM modulator is implemented with a MATLAB function block that mimics
the operation of the hardware architecture based on priority multiplexer shown in
[20]. The code of the function is shown and commented in Appendix, 5.2.6. The
tested model is shown in figure 3.71 and the testbench scheme is shown in figure
3.72 The Mask parameters of DDPM block are

139

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

Figure 3.72: DDPM testbench

Figure 3.73: DDPM architecture with priority multiplexer [20]

• switching frequency fsw of the free-running counter, from which the clock fre-
quency fclk = 2nbitDDPMfsw is set;

• Number of bits nbitDDPM of the free-running counter;

• power supply VPS to obtain at the output a DDPM signal which can be as-
sumed 0 or VPS values.

Given these parameters, the DDPM converter MATLAB function block works as a
priority multiplexer, generating the DDPM pattern corresponding to the input code
(Step function). DDPM modulator is tested setting 4 bits resolution and a clock
frequency fclk = 100MHz. In order to make a comparison with DDPM code shown
in [20] (fig. 2.36) the simulations are performed for 8, 4, 2, 1, 10 input code. As
shown in figures 3.74 the results fully agree with those reported of literature, with
the only difference that the last zero of DDPM pattern of [20] becomes the first in
the simulation results.

3.10.2 DDPWM model

The DDPWM Simulink® model (figure 3.75b) is based on the architecture shown
in figure 3.75a and requires the DDPM subsystem (figure 3.75b). The architecture
in [23] and the Simulink® model are the same with the only difference that the
input register (modelled by a ZOH) is left out the modulator and the MSBs and the

140

3.10. CLASS D AMPLIFIER MODEL WITH DDPWM MODULATION

(a) Input code 1

(b) Input code 2

(c) Input code 10

(d) Input code 4

(e) Input code 8

Figure 3.74: DDPM code at varying of input code

141

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

recover of LSBs is made by using the gain block as shown in subsection 3.7.2. In
particular, given N MSBs and M LSBs, the MSBs are recovered by multiplying the
input code by 1

2M
, with the output number represented on N bits unsigned, while

LSBs are recovered multiplying input code by 2N and limiting the representation
on N + M bits and then multiplying the resulting number by 1

2N
, limiting the

representation of the input code to DDPM converter to M bits. The ZOH at the
output of DDPM converter works at fclkPWM

2N
, the same frequency of DDPM counter

and the gain block with gain = 1
VPS

allows to scale the dynamic of DDPM sequence
between 1 and 0 (so in digital value).

(a) DDPWM architecture of [23][21]

(b) DDPWM Simulink® model

Figure 3.75: Comparison between DDPWM architecture and model

The parameters of DDPWM model are

• Power supply ;

• Clock frequency fclkPWM
of DPWM counter;

• LSBs number M , from which the DDPM clock frequency is internally com-
puted;

• MSBs number N , that are sent to DPWM section.

142

3.10. CLASS D AMPLIFIER MODEL WITH DDPWM MODULATION

Figure 3.76: Timing diagram of DDPWM test (M = 4, N = 5, fclkPWM
= 100MHz)

In particular, to test the DDPWM model, M is set to 4, N = 5, power supply is
set to 5V and DPWM clock frequency fclkPWM

= 100MHz. To compare the results
with the ones shown in [23], the input code is set to 100100101 (i.e. 293 in decimal
representation) and the Stop time of simulation is set to 1

fclkPWM

2N+M to visualize
an entire period of DDPWM conversion. The timing diagram of the simulation is
shown in figure 3.76. Can be observed that the DPWM counter works effectively
at fclkPWM

and the DDPM counter reaches the value of 2M − 1 after 2M periods of
DPWM counter, as expected from [23]. Moreover, the DDPWM pattern is the same
of the one shown in figure 2.38a, confirming the correctness of the model.

3.10.3 DDPWM modulator applied to CDA model

The DPWM modulator is replaced by the DDPWM one (figures 3.77a, 3.77b) and
simulations are performed. Nothing changes about the loop design: the gain model
of DDPWM remains the same of the DPWM (GM = 1/2nbitDPWM). The only param-
eter that changes is the truncation gain which becomes 2N+M

2nbitADC
for closed-loop and

2N+M

2nbitADC−1
. The results of simulations at fsw ∼ 500 kHz for closed- and open-loop

are shown in table 3.78, where the number of LSBs is fixed to M = 4 and N is 5 or
8. Therefore, the DDPWM resolution results respectively of 9 and 12 bits.
Comparing with tables 3.64 and 3.61 there is a reduction of performances, both in
open- and closed loop configurations

• SNR is reduced in both configurations; this effect can be explained observing
the timing diagram of figure 3.79; because of DDPWM input changes each
Tsw, it changes too much rapidly to be modulated by the DDPM. In fact
input code has to be constant at least one period of DDPM, otherwise the
DDPWM modulation lost its advantages;

• the THD of open loop CDA is increased instead, and higher harmonics results

143

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

under the noise level;

• in closed-loop system, there are no substantial differences with respect to
DPWM solution.

Moreover, simulation with nbitADC
= 7 and N = 7 and M = 2 are performed

applying a constant input signal. The results in time domain are shown in figure
3.80a, where it is visible the LCO behaviour on output voltages: higher resolution
has not solved the LCO problem. This is due to the fact that the three conditions
to eliminate LCO suggested in [24] are derived for a PID controller, while, in this
case, the transfer function of designed controller is an IIR; moreover, the condition
on integrator gain (Ki < 1) is not respected: integrator gain of class D amplifier has
to be as larger as possible to reduce distortion and non-linearities in audio band.
Even on compensator signal LCO phenomena is clearly visible (figure 3.80b).

(a) Closed-loop CDA model with DDPWM modulator

(b) Open-loop CDA model with DDPWM modulator

Figure 3.77: CDA model with DDPWM modulator

MSBs (N) SNR [dB] THD[dB]
5 43.14 dB −79.13 dB

8 60.25 dB −93.29 dB

(a) DDPWM open-loop system (M=4)

MSBs (N) SNR [dB] THD[dB]
5 59.72 dB −75.64 dB

8 77.28 dB −88.65 dB

(b) DDPWM closed-loop system (M=4)

Figure 3.78: Noise and distortion parameters of CDA with DDPWM simulations
(differential output voltages, fsw ∼ 500 kHz)

144

3.11. DDPM-DPWM COMBINATION

Figure 3.79: Detail of DDPWM modulation

(a) DC output voltage

(b) DC output compensator

Figure 3.80: DC simulation results (nbitADC
= 7, M = 5, N = 5)

3.11 DDPM-DPWM combination

To overcome the limitation of DDPWM modulation in class D amplifier, a combina-
tion between DDPM and DPWM modulations is proposed: the idea is to modulate
the N MSBs of the input code with DPWM modulator working at switching fre-

145

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

quency fsw = 2NfclkPWM
and the N LSBs with a DDPM modulator working with

a clock frequency fclkPWM
; the output stream of DPWM modulator drives the fi-

nal stage, assuming 0 or VPS (output stage power supply) values, while the DDPM
stream can assume 0 and VPS/2

N values, driving a low-power power stage (e.g. out-
put logic port of an FPGA/microcontroller). Then the two streams are summed and
sent to the output filter and feedback path (in case of closed-loop system). In this
way the effective resolution is increased of 2N working at the same clock frequency
of DPWM; moreover, differently from DDPWM modulation the DDPM stream is
concluded each Tsw period.
To test this modulator the testbench shown in figure 3.82 is used with the parame-
ters listed in table 3.81.
The gain blocks are used to recover the LSBs and the MSBs. The results of timing
digram in figure 3.83 are coherent with the ones expected: because the input code
is 10101010 the MSBs and the LSBs are the same number (1010, 10 in decimal
representation) and in the timing diagram they appear superimposed. The DDPM
sequence is exactly the same shown in figure 3.74c and the maximum value reached
is VPS/2

N = 5V/16 = 0.3125V. Moreover, the DDPM sequence ends each Tsw,
showing that DPWM and DDPM sections are synchronized.

fsw 100Hz

fclkPWM 1600Hz

nbitDPWM 4

nbitDDPM 4

IN code 10101010 (170
∣∣
dec

)

Figure 3.81: DDPM-DPWM combination test parameters

Figure 3.82: Testbench of DDPM-DPWM combination modulation

3.11.1 DDPM-DPWM combination applied to class D am-
plifier model

The modulation section of the class D amplifier model in closed-loop configuration
is implemented with DDPM-DPWM combination and simulations with different

146

3.11. DDPM-DPWM COMBINATION

Figure 3.83: Testbench results

number of bits of DPWM section (8, 7, 6, 5) and switching frequencies (fsw ∼
500 kHz, fsw ∼ 1MHz) are performed. Because of the DDPM section works with
the same LSBs number of DPWM section, the effective resolution of the modulator
is twice the number of bits of DPWM. Therefore, with 8, 7, 6, 5 number of bits of
DPWM the total resolution is respectively 16, 14, 12, 10 bits. The simulated model
is shown in figure 3.85 and the results in terms of SNR and THD are shown in table
3.87. Differential output spectra are shown in Appendix, 5.1.3.
The first gain block, in the gain chain before DDPM, is needed to truncate input
code on 2N+N bits and then, the next two gain blocks, recover the LSBs as shown
in figure 3.82. Can be seen that the final stage is only driven by the DPWM
modulator, so works at fsw. To further test the correctness of the modulator model,
a short simulation is performed on open-loop CDA model with nbitADC

= 8 and
nnbiPWM

= nbitDDPM
= 4. The results are the one expected, shown in figure 3.86

Figure 3.84: Open-loop CDA with DDPM-DPWM combination modulator

147

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

Figure 3.85: Closed-loop CDA with DDPM-DPWM combination modulator

Figure 3.86: Test of DDPM-DPWM combination modulator applied on open-loop
CDA (nbitADC

= 8, nnbiPWM
= nbitDDPM

= 4)

bits fsw∼500 kHz fsw∼1 MHz
SNR [dB] SNR theory [dB] THD [dB] SNR [dB] SNR theory [dB] THD [dB]

8 102.91 121.14 -92.58 119.78 121.96 -105.88
7 100.64 118.63 -92.80 118.31 121.75 -106.03
6 98.07 109.58 -93.16 113.66 119.36 -106.00
5 86.15 97.82 -69.01 100.43 110.45 -80.34

Figure 3.87: Closed-loop results DDPM-DPWM combination

Results of closed-loop system on differential output show a strong increase of
performances (tabel 3.87):

• for fsw ∼ 1MHz and high number of bits of modulator (8, 7) the perfor-
mances are very similar to the theoretical one; reducing the number of bits
the non-linearities of DPWM resolution becomes not negligible and the differ-
ence between theoretical and simulation SNR increases;

148

3.12. RESULTS CONCLUSION

• for fsw ∼ 500 kHz the difference between theoretical and simulation results are
larger because the compensator integrator gain is lower than the case working
at high switching frequency, therefore non-linearities are less attenuated;

• comparing the case at 5 bits with DDPM-DPWM combination (so 10 bits
resolution) with the case at 10 bits DPWM in table 3.64 the difference be-
tween simulation results is about 5 dB. This effect can be explained observing
the spectra of anti-aliasing filter output of DDPM-DPWM combination and
DPWM both at 10 bits resolution (figures 3.88); it can be observed that in
DDPM-DPWM combination case spurious tones are much larger than DPWM
case; this is due to the fact that the resolution of DPWM in DDPM-DPWM
combination case is of 5 bits, so non-linearities are much stronger than a pure
DPWM modulation working at 10 bits; therefore the SNR is limited by the
non-linearities DPWM resolution;

• THD is reduced of about 4 dB for 6, 7, 8 DPWM number of bits; for 10 bit
resolution (5 bits for DPWM and 5 bit for DDPM) THD dramatically decreases
with respect to DPWM solution at 10 bits; again, this is due to the non-linear
effect of low resolution DPWM, which inject spurious tones in audio band.

Concluding, this new modulation that combines DDPM and DPWM has brought lot
of advantages in terms of noise and distortion because the resolution can be easily
increased without increasing switching and clock frequency. As a consequence, even
power dissipation due to turn on and turn off events remains basically the same.

3.12 Results conclusion

In this chapter are shown the models used to implement a class D amplifier with
global digital feedback, from ADC to DPWM, from output stage to ZOH, compen-
sator and analog filters. Then a design methodology described step by step is shown
and applied to two possible feedback architectures: one with the output filter in
feedback path, taking the feedback signal at the output of the filter, and the other
which consists into taking the feedback signal from output stage and filtering it by
an anti-aliasing filter. For both solutions are illustrated advantages and disadvan-
tages, showing that the first one have problem of stability due to the large overshoot
of the command while the second one results more independent from switching fre-
quency parameter and the command never reaches the maximum value (2nbitADC).
At the same time, the bottleneck of this kind of systems is shown: resolution of
DPWM reduces the performances in terms of SNR and THD. In particular, due to
non linear effects, DPWM resolution influences both THD and SNR. Due to the

149

CHAPTER 3. DESIGN OF A CLASS D AMPLIFIER

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-250

-200

-150

-100

-50

0

50

P
o

w
e
r

[d
B

]

Spectum anti-aliasing filter output DDPM-DPWM combination

nbitDPWM=5, nbitDDPM=5, nbitADC=16, f
sw

 1 MHz

(a) nbitDPWM
= 5, nbitDDPM

= 5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-300

-250

-200

-150

-100

-50

0

50

P
o

w
e
r

[d
B

]

Spectum anti-aliasing filter output

nbitDPWM=10, nbitADC=16, f
sw

 1 MHz

(b) nbitPWM
= 10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-300

-250

-200

-150

-100

-50

0

50

P
o

w
e
r

[d
B

]

Spectum anti-aliasing filter output DDPM-DPWM combination

nbitDPWM=8, nbitDDPM=8, nbitADC=16, f
sw

 1 MHz

(c) nbitDPWM
= 8, nbitDDPM

= 8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Frequency [Hz]

-250

-200

-150

-100

-50

0

50

P
o

w
e
r

[d
B

]

Spectum anti-aliasing filter output

nbitDPWM=8, nbitADC=16, f
sw

 1 MHz

(d) nbitPWM
= 8

Figure 3.88: Anti-aliasing filter output spectra (DPWM vs DDPM-DPWM
combination)

limitation in switching frequency, compensator gain cannot be increased so much,
as done in [16] where the switching frequency is over 2MHz; as a consequence dif-
ferent type of modulations are investigated and applied to this class D amplifier
structure. In particular, DDPWM, which is applied to buck converter overcoming
the trade-off between switching frequency and resolution of DPWM [23][21], in class
D amplifier model has not produced any particular increase of performances because
of the different compensator design methodology and large variation of input sig-
nal (sinusoidal wave), differently from buck (DC input voltage). To overcome the
limitation of DDPWM a combination between DDPM and DPWM is suggested,
showing that advantages in terms of SNR and THD can be reached without increas-
ing switching and clock frequency of modulator and, therefore, without increasing
power dissipation.

150

Chapter 4

Conclusions

By means of simulations and Simulink® models, a new kind of modulation scheme
based on DDPM and DPWM is implemented, reaching high performances without
increasing switching frequency and with a relative low loop gain in audio band.
In particular, starting from results and designs found in the literature, it is shown
that class D amplifiers have lot of advantages in terms of portability and power
efficiency with respect to linear classes. This allows to use this kind of amplifiers
in many applications like cell phones, medical acoustic applications, personal com-
puters and portable devices, reducing the waste of energy. Anyway the intrinsic
non-linearity of these amplifiers requires the careful design of a closed-loop system
using integrator as the compensator filter in order to reach high-fidelity audio per-
formances. This compensator has to be characterized by a very large integrator
gain in the bandwidth of audio signals, which in analog architecture is limited by
the characteristic of the employed operational amplifier [4][3][5]. In recent years, the
development of digital architectures have brought the possibility to implement very
complex transfer functions, moving this application in the field of class D amplifiers
[14][16]. From this state of the art of class D amplifiers, this thesis investiagted and
implemented a model of CDA by discussing several issues and bottlenecks and illus-
trate how to overcome them, by describing a methodology design of the closed-loop
inspired by [5]. In particular is found that the two main drawbacks of these kinds
of systems are

• requirement of large loop gain which has as a consequence the requirement of
large switching frequency [16] or very complex loop design [14];

• DPWM quantization noise is the most problematic noise and introduces non-
linearities in band;

Then, the new DDPWM modulation introduced in literature in the field of power
converter, which aim is to increase DPWM resolution overcoming the trade-off be-

151

CHAPTER 4. CONCLUSIONS

tween resolution and switching frequency, is applied to CDA model substituting the
traditional DPWM one: the results have shown that no particular improvement of
performances are introduced because the variation of the input signal is too fast with
respect to the DDPM pattern period, nullifying the advantage of DDPWM modu-
lation. Therefore, an alternative modulation scheme based on DDPM and DPWM
combination is proposed, bringing a strong increase of performances, in particular on
modulator resolution which is increased by 2N quantization levels, where 2N is the
modulator input code number of bits. As a consequence, SNR is strongly increased
with respect to previous solutions and also THD is slightly increased. In conclusions,
this new proposed combination of DDPM and DPWM modulations allows to

• increase resolution of modulator, which in DPWM traditional solution is the
bottleneck of the system in terms of SNR and THD;

• maintain the same switching and clock frequencies of DPWM solution, avoid-
ing an increasing in power dissipation;

• reduce the requirement of integrator loop gain to reduce quantization DPWM
noise.

Starting from these results, a physical implementation using GaN and MOS devices
could be designed with the further goal to investigate the effect of GaN devices in a
closed-loop fashion class D amplifier. Digital section (compensator and modulator)
could be implemented by mean of FPGA. Moreover, psychoacoustic study to com-
pare the implemented class D amplifier with one of the traditional classes (A, B or
AB) can be done, observing the perception of audio quality by human hearing.

152

Chapter 5

Appendix

In this chapter are shown all the spectra evaluated by the simulations results and the
codes used to simulate, design the systems and to make analysis on data obtained
by the simulations, in particular waveforms and spectra.
About the codes, they have to be used modifying the interesting variables (e.g.
switching frequency, number of bits of modulator); therefore the variables where the
results are saved, changes name depending on the parameters used. For example,
in code 5.2.1, the number of bits of DPWM is nbitPWM = 8 and fsw ∼ 1MHz, so
the code is the following one

17 Fsw=1e6;
18 Fsw =2^ round(log2(Fsw));%Hz; switching frequency
19 nbit_PWM =8; %number of bits for the quantized triangular waveform
20 nbit_ADC =16; %number of bits for ADC
21 fclk_PWM=Fsw*2^ nbit_PWM; %Hz clock frequency of PWM generator

...

273 èè
274 %%
275 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_PWM_dB=Pn_PWM_dB;
276 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_ADC_dB=Pn_ADC_dB;
277 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_PWM_cl=Pn_dB_PWM_cl;
278 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_ADC_cl=Pn_dB_ADC_cl;
279 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_tot_cl=Pn_tot_dB_cl;
280 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.SNR_dB_cl=SNR_dB_cl;
281 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_PWM_ol=Pn_dB_PWM_ol;
282 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_ADC_ol=Pn_dB_ADC_ol;
283 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_tot_ol=Pn_tot_dB_ol;
284 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.SNR_dB_ol=SNR_dB_ol;
285 save(’DatastoreFiles/SNRandPn_nbitADC16_TrailingEdge.mat’ ,...
286 ’SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath ’, ’-append ’)
287 %%%
288 %%
289 %save parameters simulations
290 TE_PWM8_fsw1M.Fsw=Fsw;%save switching frequency
291 TE_PWM8_fsw1M.fclk_PWM=fclk_PWM;%save PWM TE clock
292 TE_PWM8_fsw1M.t_int=t_int;%save integration time

153

CHAPTER 5. APPENDIX

293 TE_PWM8_fsw1M.dec_fac=dec_fac;%save decimation factor
294 TE_PWM8_fsw1M.t_int_dec=t_int_dec; %save sample time of system outputs (except

triangular waveform)
295 [Gm , Pm , Wcg , Wpg]= margin(T_filter_z);%evaluate gain and phase margins with

correspondent frequency
296 marginPWM8_fsw1M.Gm=Gm;
297 marginPWM8_fsw1M.Pm=Pm;
298 marginPWM8_fsw1M.Fcg=Wcg /(2*pi);
299 marginPWM8_fsw1M.Fpg=Wpg /(2*pi);
300 StepInfo_fsw1M_out=stepinfo(step_Hfilter_z ,t_step);
301 StepInfo_fsw1M_comp=stepinfo(step_Gfilter_z ,t_step);
302 save(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’ ,...
303 ’TE_PWM8_fsw1M ’, ’marginPWM8_fsw1M ’, ’fclk_SYS ’, ’StepInfo_fsw1M_out ’ ,...
304 ’StepInfo_fsw1M_comp ’, ’-append ’)%save simulation and loop tf parameters

To save the variables related to SNR, phase margin and step responses of the the-
oretical design for nbitPWM = 5 and fsw ∼ 500 kHz, the code has to change in the
following way

17 Fsw=1e6;
18 Fsw =2^ round(log2(Fsw));%Hz; switching frequency
19 nbit_PWM =8; %number of bits for the quantized triangular waveform
20 nbit_ADC =16; %number of bits for ADC
21 fclk_PWM=Fsw*2^ nbit_PWM; %Hz clock frequency of PWM generator

...
273 %%
274 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_PWM_dB=Pn_PWM_dB;
275 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_ADC_dB=Pn_ADC_dB;
276 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_dB_PWM_cl=Pn_dB_PWM_cl;
277 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_dB_ADC_cl=Pn_dB_ADC_cl;
278 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_dB_tot_cl=Pn_tot_dB_cl;
279 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.SNR_dB_cl=SNR_dB_cl;
280 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_dB_PWM_ol=Pn_dB_PWM_ol;
281 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_dB_ADC_ol=Pn_dB_ADC_ol;
282 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.Pn_dB_tot_ol=Pn_tot_dB_ol;
283 SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath.SNR_dB_ol=SNR_dB_ol;
284 save(’DatastoreFiles/SNRandPn_nbitADC16_TrailingEdge.mat’ ,...
285 ’SNRandPn_PWM5_fsw500k_AAfilterInFeedbackPath ’, ’-append ’)
286 %%%
287 %%
288 %save parameters simulations
289 TE_PWM5_fsw500k.Fsw=Fsw;%save switching frequency
290 TE_PWM5_fsw500k.fclk_PWM=fclk_PWM;%save PWM TE clock
291 TE_PWM5_fsw500k.t_int=t_int;%save integration time
292 TE_PWM5_fsw500k.dec_fac=dec_fac;%save decimation factor
293 TE_PWM5_fsw500k.t_int_dec=t_int_dec; %save sample time of system outputs (except

triangular waveform)
294 [Gm , Pm , Wcg , Wpg]= margin(T_filter_z);%evaluate gain and phase margins with

correspondent frequency
295 marginPWM5_fsw500k.Gm=Gm;
296 marginPWM5_fsw500k.Pm=Pm;
297 marginPWM5_fsw500k.Fcg=Wcg /(2*pi);
298 marginPWM5_fsw500k.Fpg=Wpg /(2*pi);
299 StepInfo_fsw500k_out=stepinfo(step_Hfilter_z ,t_step);
300 StepInfo_fsw500k_comp=stepinfo(step_Gfilter_z ,t_step);
301 save(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’ ,...
302 ’TE_PWM5_fsw500k ’, ’marginPWM5_fsw500k ’, ’fclk_SYS ’, ’StepInfo_fsw500k_out ’ ,...

154

303 ’StepInfo_fsw500k_comp ’, ’-append ’)%save simulation and loop tf parameters

Moreover, for simulation with anti-aliasing filter, the high frequency pole has to
be set to 1MHz for fsw ∼ 1MHz and 500 kHz for simulation working at fsw ∼
500 kHz. Finally, the files where the parameters are saved has to be created when the
Workspace is empty and then, at each running of the codes for different parameters,
the results found will be appended.

155

CHAPTER 5. APPENDIX

5.1 Spectra

5.1.1 DPWM open-loop system spectra

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of open-loop system

(nbitPWM=5, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) fsw ∼ 500 kHz, nbitPWM = 5

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of open-loop system

(nbitPWM=6, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) fsw ∼ 500 kHz, nbitPWM = 6

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of open-loop system

(nbitPWM=7, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(c) fsw ∼ 500 kHz, nbitPWM = 7

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

50

P
o

w
e

r
(d

B
)

Differential output power spectrum of open-loop system

(nbitPWM=8, f
sw

 500 kHz)

F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(d) fsw ∼ 500 kHz, nbitPWM = 8

Figure 5.1: Differential output power spectrum of open-loop system (fsw ∼ 500 kHz)

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of open-loop system

(nbitPWM=5, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) fsw ∼ 1MHz, nbitPWM = 5

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of open-loop system

(nbitPWM=6, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) fsw ∼ 1MHz, nbitPWM = 6

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of open-loop system

(nbitPWM=7, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(c) fsw ∼ 1MHz, nbitPWM = 7

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of open-loop system

(nbitPWM=8, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(d) fsw ∼ 1MHz, nbitPWM = 8

Figure 5.2: Differential output power spectrum of open-loop system (fsw ∼ 1MHz)

156

5.1. SPECTRA

5.1.2 DPWM closed-loop spectra

Output filter in feedback path

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Power spectrum of differential output of system with output filter in feedback path

(nbitPWM=8, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12 13
14

15

16
17 18 19 20

Fundamental

Noise

DC and Harmonics (excluded)

Figure 5.3: Differential output power spectrum of closed-loop system with output
filter in feedback path (fsw ∼ 500 kHz, nbitPWM = 8)

Anti-aliasing filter in feedback path

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=5, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) fsw ∼ 500 kHz, nbitPWM = 5

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=6, f
sw

 500 kHz)
F

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) fsw ∼ 500 kHz, nbitPWM = 6

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=7, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13
14

15
16

17

18

19
20

Fundamental

Noise

DC and Harmonics (excluded)

(c) fsw ∼ 500 kHz, nbitPWM = 7

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=8, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18
19

20

Fundamental

Noise

DC and Harmonics (excluded)

(d) fsw ∼ 500 kHz, nbitPWM = 8

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=10, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(e) fsw ∼ 500 kHz, nbitPWM = 10

Figure 5.4: Differential output power spectrum of closed-loop system with anti-
aliasing filter in feedback path (fsw ∼ 500 kHz)

157

CHAPTER 5. APPENDIX

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=5, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17
18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) fsw ∼ 1MHz, nbitPWM = 5

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=6, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) fsw ∼ 1MHz, nbitPWM = 6

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=7, f
sw

 1 MHz)
F

2

3

4

5

6

7

8
9 10

11 12 13 14 15
16

17
18 19 20

Fundamental

Noise

DC and Harmonics (excluded)

(c) fsw ∼ 1MHz, nbitPWM = 7

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=8, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(d) fsw ∼ 1MHz, nbitPWM = 8

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of system with anti-aliasing filter in feedback path

(nbitPWM=10, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(e) fsw ∼ 1MHz, nbitPWM = 10

Figure 5.5: Differential output power spectrum of closed-loop system with anti-
aliasing filter in feedback path (fsw ∼ 1MHz)

Noise shaping

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with noise shaping

(nbitPWM=8, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11
12

13
14

15
16

17
18

19
20

Fundamental

Noise

DC and Harmonics (excluded)

(a) fsw ∼ 500 kHz, nbitPWM = 8

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-300

-250

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of system with noise shaping

(nbitPWM=8, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) fsw ∼ 1MHz, nbitPWM = 8

Figure 5.6: Differential output power spectrum of closed-loop system with first-order
noise shaping with nbitPWM = 8

158

5.1. SPECTRA

5.1.3 DDPWM spectra

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)
Differential output power spectrum of open-loop system with DDPWM modulator

(N=5, M=4, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) N = 5, M = 4

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of open-loop system with DDPWM modulator

(N=8, M=4, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) N = 8, M = 4

Figure 5.7: Differential output power spectrum of open-loop system with DDPWM
modulator (fsw ∼ 500 kHz)

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of closed-loop system with DDPWM modulator

(N=5, M=4, f
sw

 500 kHz)
F

2

3

4
5 6

7
8 9 10

11

12

13
14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) N = 5, M = 4

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of closed-loop system with DDPWM modulator

(N=8, M=4, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12
13 14

15

16

17

18

19
20

Fundamental

Noise

DC and Harmonics (excluded)

(b) N = 8, M = 4

Figure 5.8: Differential output power spectrum of closed-loop system with DDPWM
modulator (fsw ∼ 500 kHz)

5.1.4 DDPM-DPWM combination closed-loop system spec-
tra

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=5, nbitDPWM=5, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) nbitDDPM = 5, nbitDPWM = 5

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=6, nbitDPWM=6, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) nbitDDPM = 6, nbitDPWM = 6

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=7, nbitDPWM=7, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(c) nbitDDPM = 7, nbitDPWM = 7

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o

w
e

r
(d

B
)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=8, nbitDPWM=8, f
sw

 500 kHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(d) nbitDDPM = 8, nbitDPWM = 8

Figure 5.9: Differential output power spectrum of closed-loop system with DDPM-
DPWM combination modulator (fsw ∼ 500 kHz)

159

CHAPTER 5. APPENDIX

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0
P

o
w

e
r

(d
B

)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=5, nbitDPWM=5, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(a) nbitDDPM = 5, nbitDPWM = 5

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=6, nbitDPWM=6, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(b) nbitDDPM = 6, nbitDPWM = 6

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=7, nbitDPWM=7, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(c) nbitDDPM = 7, nbitDPWM = 7

0 2 4 6 8 10 12 14 16 18 20

Frequency (kHz)

-200

-150

-100

-50

0

P
o
w

e
r

(d
B

)

Differential output power spectrum of closed-loop system with DDPM-DPWM combination

(nbitDDPM=8, nbitDPWM=8, f
sw

 1 MHz)
F

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fundamental

Noise

DC and Harmonics (excluded)

(d) nbitDDPM = 8, nbitDPWM = 8

Figure 5.10: Differential output power spectrum of closed-loop system with DDPM-
DPWM combination modulator (fsw ∼ 1MHz)

160

5.2. CODES

5.2 Codes

5.2.1 Code for design of system with DPWM modulator and
anti-aliasing filter in feedback path

1 clc;
2 clear;
3 close all;
4 %%
5 %Data
6 n=1;% use this variable to number plots consequentially
7 f1=1e3; %Hz; frequency of input signal
8 f2=300; %Hz; frequency of second component input signal to test IMD
9 fclk_SYS =20e6; %Hz; clock frequency of the system

10 fclk_SYS =2^ floor(log2(fclk_SYS)); %Hz; clock frequency of the system
11 VPS_OS_p =10;% $V positive power supply of output stage
12 VPS_OS_n =0;% $V negative power supply of output stage
13 Vtr_p =5;%V triangular positive peak
14 Vtr_n =0; %V triangular waveform positive peak
15 Vtr_pp=Vtr_p -Vtr_n; %V triangular waveform negative peak
16 VPS_PWM=Vtr_p; %V power supply triangular waveform generator
17 Fsw=1e6;
18 Fsw =2^ round(log2(Fsw));%Hz; switching frequency
19 nbit_PWM =8; %number of bits for the quantized triangular waveform
20 nbit_ADC =16; %number of bits for ADC
21 fclk_PWM=Fsw*2^ nbit_PWM; %Hz clock frequency of PWM generator
22 G=1/2;%attenuator in feedback path
23 %digital blocks parameters
24 VDD=VPS_PWM; %V; power supply of input ADC; I consider the supply of digital
25 %part the same of the modulator because
26 %implemented in the same digital hardware. Moreover , I
27 %consider Vtr_p=VPS_PWM
28 Amp =.9* VDD /2; %amplitude of sinewave input signal
29 A=VPS_OS_p -VPS_OS_n;
30 Adigital =2^ nbit_PWM /2^ nbit_ADC; %truncation gain
31

32 if Adigital >1%in case the nbit_PWM >nbit_ADC
33 Adigital =1;
34 end
35

36 GM=1/2^ nbit_PWM; % gain of PWM
37 G_ADC =2^ nbit_ADC /(2* VDD); %ADC gain
38 G_PWM =2^ nbit_PWM/VDD; %digital to analog scale factor; it is realted to the
39 %quatization noise of DPWM
40 Pn_PWM=VDD ^2/(12*2^(2* nbit_PWM)); %PWM power noise
41 Pn_PWM_dB=pow2db(Pn_PWM); %PWM power noise in dB
42 Sn_PWM=VDD ^2/2^(2* nbit_PWM)/(6* Fsw); %quantization noise power spectral density of

DPWM
43 Pn_ADC =(2* VDD)^2/(12*2^(2* nbit_ADC)); %ADC power noise
44 Pn_ADC_dB=pow2db(Pn_ADC); %ADC power noise in dB
45 Sn_ADC =(2* VDD)^2/2^(2* nbit_ADC)/(6* fclk_SYS); %quantization noise power spectral

density of ADC
46 PM=pi/3; %rad; phase margin chosen
47 %Simulation parameters
48 t_int=min(1/ fclk_PWM , 1/(4* fclk_SYS)); %integration time for Simulink simulation
49 dec_fac =1/ t_int /(4* fclk_SYS); %decimation factor to sample the output signal always

at 4* fclk_SYS

161

CHAPTER 5. APPENDIX

50 if dec_fac <1
51 dec_fac =1;
52 end
53 t_int_dec=t_int*dec_fac; %sample time of output signals
54 t_sim =1.5;%s
55 deadtime =2^ ceil(log2 (10e-9)); %s: deadtime to simulate the no shortcircuit of ouput

stage
56

57 s=tf(’s’);
58 %design output LPF
59 fpf =20e3; %Hz; LPF pole frequency
60 omega_pf =2*pi*fpf; %rad/s; pole frequency of output filter
61 LPF=zpk(minreal (1/(1+s/omega_pf)^2)); %tf of output filter
62 [num_LPF , den_LPF]= tfdata(LPF , ’v’);% num and den coefficients of output frequency

transfer function
63

64 %set options parameters like font size and units for time graph
65 PropGraphTime.XAxis.Label.String=’Time (s)’;
66 PropGraphTime.YAxis.Label.String=’Amplitude (V)’;
67 PropGraphTime.FontSize =17;
68 PropGraphTime.YAxis.FontSize =17;
69 PropGraphTime.XAxis.FontSize =17;
70

71 plot_LPF=bodeplot(LPF ,’r’); %define output filter plot structure
72 PropBode=getoptions(plot_LPF); %take options of graph
73 %set options parameters like font size and units for bode plot
74 PropBode.Title.FontSize =17;
75 PropBode.Xlabel.String=’Frequency ’;
76 PropBode.Xlabel.FontSize =17;
77 PropBode.Ylabel.FontSize =17;
78 PropBode.TickLabel.FontSize =17;
79 PropBode.FreqUnits=’Hz’;
80 %output filter
81 figure(n)
82 n=n+1;
83 plot_LPF=bodeplot(LPF ,’r’); %define output filter plot structure
84 PropBode.Title.String=’Output filter transfer function ’; %set title
85 setoptions(plot_LPF , PropBode); %set option of bode plot
86

87 %ZOH filter
88 T1=1/(fclk_SYS);%sample frequency of ADC
89 ZOH_ADC =1/(1+s*T1/2);%Sample&Hold related to ADC
90 ZOH_COMP=ZOH_ADC;%because of ADC and FPGA works at the same frequency , the two ZOH

tf are equal
91 T2=1/(Fsw);%switching sample time
92 ZOH_REG =1/(1+s*T2/2);%Sample&Hold related to the hold register before the PWM

sampling
93

94 figure(n)%plot transfer functions of ZOH
95 n=n+1;
96 hold on
97 plot_ZOH=bodeplot(ZOH_ADC , ’r’, ZOH_REG , ’b’);
98 PropBode.Title.String=’ZOH èPad approximation ’;
99 setoptions(plot_ZOH , PropBode)

100 legend(’ZOH ADC’, ’ZOH REG’)
101 %Transfer function of ZOH with èPad approximation
102 ZOH_ADC_NoApprox =(1-exp(-T1*s))/s*1/T1;
103 ZOH_REG_NoApprox =(1-exp(-T2*s))/s*1/T2;
104

162

5.2. CODES

105 figure(n)%plot transfer functions of ZOH
106 n=n+1;
107 hold on
108 plot_ZOH=bodeplot(ZOH_ADC_NoApprox , ’r’, ZOH_REG_NoApprox , ’b’);
109 PropBode.Title.String=’ZOH transfer functions ’;
110 setoptions(plot_ZOH , PropBode)
111 legend(’ZOH ADC’, ’ZOH REG’)
112 %%
113 %compensator with first order feedback filter (DPWM); feedback signal from output

stage
114 p=3;
115 omega_u =2*pi*Fsw *1/10;
116 GBW=omega_u /(2*pi);
117 omega_p2 =225e3*2*pi; %rad/s; pole of the feedback filter
118 omega_p2_H =1e6*2*pi; %rad/s; second pole to reduce aliasing of DPWM;
119 Gf_HF=zpk(minreal (1/(1+s/omega_p2)*1/(1+s/omega_p2_H)^2));%feedback filter transfer

function
120 [num_GfHF , den_GfHF]= tfdata(Gf_HF , ’v’);
121 omega_ph =9* omega_u; %pole to close the band
122 M=2; %order of last pole
123 extra_PM=atan(omega_u /(2* Fsw));%phase lost due to DPWM ZOH
124 omega_z1=omega_u/tan((PM -pi+p*pi/2+ extra_PM)/(p-1));%zero to obtain the correct

phase margin
125 tau_p =(GM*A*G*Adigital*G_ADC/(omega_u*omega_z1 ^(p-1)))^(1/p);%integrator
126 %time constant
127 if omega_z1 <=0 && p>1 %verify that the zero is in HLP
128 error(’The compensation zero is negative ’)
129 end
130 if p==1 %set tau_p for p=1 (the zero is not necessary
131 tau_p =(GM*A*G*G_ADC*Adigital/omega_u)^1/p;%
132 omega_z1 =1;
133 end
134 Gc_new=zpk(minreal ((1+s/(9/10* omega_z1))*(1+s/(11/10* omega_z1)*...
135 (1+s/omega_p2))*1/(tau_p*s)^p*1/((1+s/omega_ph)^M)));
136 %continuos compensator transfer function
137 [num_Gcnew , den_Gcnew]= tfdata(Gc_new , ’v’);%extract the coefficient
138 %of continuos transfer function
139 T_filter=ZOH_ADC*ZOH_REG*GM*A*Gc_new*G*Gf_HF*Adigital*G_ADC;
140 %Loop transfer function with output filter in feedback
141 P_filter =1/(1+ T_filter);%senitivity function with output filter in feedback
142 H_filter=ZOH_ADC*ZOH_REG*Gc_new*GM*A*Adigital*G_ADC /(1+ T_filter);
143 %in -out transfer function with output filter in feedback loop
144 G_filter=ZOH_ADC*Gc_new*G_ADC /(1+ T_filter);
145 %in -out_compensator transfer function; it is useful to see the
146 %overshoot of the command
147 %digital domain
148 Gc_new_z=zpk(minreal(c2d(Gc_new , 1/fclk_SYS , ’matched ’)));%digital compensator
149 [numGc_new_z , denGc_new_z]= tfdata(Gc_new_z , ’v’);
150 T_filter_z=zpk(minreal (...
151 Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*G*Gf_HF*Adigital*G_ADC));
152 P_filter_z =1/(1+ T_filter_z);
153 H_filter_z=zpk(minreal (...
154 Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*Adigital*G_ADC /(1+ T_filter_z)));
155 G_filter_z=ZOH_ADC*ZOH_COMP*Gc_new*G_ADC /(1+ T_filter);
156

157 figure(n)%plot digital and analog compensator transfer function
158 n=n+1;
159 Gcnew_plot=bodeplot(Gc_new , ’b’, Gc_new_z , ’r’);
160 PropBode.Title.String=’Compensator transfer function ’;

163

CHAPTER 5. APPENDIX

161 setoptions(Gcnew_plot , PropBode)
162 legend(’Analog ’, ’Digital ’)
163

164

165 figure(n)%plot obtained loop transfer function (analog and digital)
166 n=n+1;
167 hold on
168 PropBode.Title.String=’Loop function with anti -aliasing filter in loop’;
169 plot_Tfilter=bodeplot(T_filter , ’b’, T_filter_z , ’r’);
170 setoptions(plot_Tfilter , PropBode);
171 xlim ([100 10e6])
172 legend(’Analog ’, ’Digital ’)
173

174 figure(n)%plot sensitivity transfer function (analog and digital)
175 n=n+1;
176 hold on
177 PropBode.Title.String=’Sensitivity function with anti -aliasing filter in loop’;
178 plot_Pfilter=bodeplot(P_filter , ’b’, P_filter_z , ’r’);
179 setoptions(plot_Pfilter ,PropBode);
180 xlim ([100 10e6])
181 legend(’Analog ’, ’Digital ’)
182

183 figure(n)%in-out transfer function
184 n=n+1;
185 hold on
186 PropBode.Title.String=’Input -output with anti -aliasing filter in loop’;
187 plot_Hfilter=bodeplot(H_filter , ’b’, H_filter_z , ’r’);
188 setoptions(plot_Hfilter , PropBode);
189 xlim ([100 10e6])
190 legend(’Analog ’, ’Digital ’)
191

192 %step responses
193 t_step =0:1/ fclk_SYS :100e-6;
194 step_Hfilter_z=step(H_filter_z , t_step);
195 step_Hfilter=step(H_filter , t_step);
196

197 step_Gfilter_z=step(G_filter_z , t_step);
198 step_Gfilter=step(G_filter , t_step);
199

200 %step respnse in-out
201 figure(n)
202 n=n+1;
203 hold on
204 plot(t_step , step_Hfilter_z , ’r’, t_step , step_Hfilter , ’b’);
205 ax=gca;
206 ax.FontSize=PropGraphTime.FontSize;
207 ax.XAxis.FontSize=PropGraphTime.XAxis.FontSize;
208 ax.YAxis.FontSize=PropGraphTime.YAxis.FontSize;
209 ax.YAxis.Label.String=PropGraphTime.YAxis.Label.String;
210 ax.XAxis.Label.String=PropGraphTime.XAxis.Label.String;
211 ax.Title.String=’Output step response with anti -aliasing filter in loop’;
212 legend(’Digital ’, ’Analog ’)
213

214 %step response input/compensator
215 figure(n)
216 n=n+1;
217 plot(t_step , step_Gfilter_z , ’r’, t_step , step_Gfilter , ’b’)
218 ax=gca;
219 ax.FontSize=PropGraphTime.FontSize;

164

5.2. CODES

220 ax.XAxis.FontSize=PropGraphTime.XAxis.FontSize;
221 ax.YAxis.FontSize=PropGraphTime.YAxis.FontSize;
222 ax.YAxis.Label.String=’Code’;
223 ax.XAxis.Label.String=PropGraphTime.XAxis.Label.String;
224 ax.Title.String=’Command step response with anti -aliasing filter in loop’;
225 legend(’Digital ’, ’Analog ’)
226 %%
227 %SNR theoretical
228 NTF_PWM_filter_z=GM*A*G*G_PWM /(1+ T_filter_z)*LPF; %noise transfer function
229 %of DPWM quantization noise
230 NTF_ADC_filter_z=H_filter_z*LPF; %noise transfer function of ADC
231 %quantization noise
232 NTF_ADC_ol =2* G_ADC*GM*A*LPF*Adigital;%open -loop noise transfer function of ADC
233 NTF_PWM_ol=GM*A*G_PWM*LPF;%open loop noise transfer function of ADC
234

235 figure(’Name’, ’Digital noise transfer function closed -loop’) %bode blot of NTF
236 hold on
237 plot_NTF_PWM=bodeplot(NTF_PWM_filter_z , ’b’, NTF_ADC_filter_z , ’r’);
238 setoptions(plot_NTF_PWM ,PropBode);
239 legend(’NTF PWM’, ’NTF ADC’)
240 title(’Digital noise transfer function closed -loop’)
241

242 figure(’Name’, ’Noise transfer function open -loop’) %bode blot of NTF
243 hold on
244 plot_NTF_PWM=bodeplot(NTF_PWM_ol , ’b’, NTF_ADC_ol , ’r’);
245 setoptions(plot_NTF_PWM ,PropBode);
246 legend(’NTF PWM’, ’NTF ADC’)
247 title(’Noise transfer function open -loop’)
248 %evaluate power and SNR of PWM filtered by the system
249 DCgain =1/G;
250 Amp_out=DCgain*Amp;
251 [SNR_dB_PWM_cl , Pn_dB_PWM_cl , Ps_dB]=...
252 SNRtheory(Amp_out , Sn_PWM , NTF_PWM_filter_z , 20e3);
253 %evaluate power and SNR of ADC filtered by the system
254 [SNR_dB_ADC_cl , Pn_dB_ADC_cl , ~]=...
255 SNRtheory(Amp_out , Sn_ADC , NTF_ADC_filter_z , 20e3);
256 %evaluate power and SNR of PWM of open -loop system
257 [SNR_dB_PWM_ol , Pn_dB_PWM_ol , ~]=...
258 SNRtheory(Amp_out , Sn_PWM , NTF_PWM_ol , 20e3);
259 %evaluate power and SNR of ADC of open -loop system
260 [SNR_dB_ADC_ol , Pn_dB_ADC_ol , ~]=...
261 SNRtheory(Amp_out , Sn_ADC , NTF_ADC_ol , 20e3);
262 %Compute total power ...
263 %...of closed -loop system ...
264 Pn_tot_cl =10^(Pn_dB_PWM_cl /10) +10^(Pn_dB_ADC_cl /10);%V^2
265 Pn_tot_dB_cl=pow2db(Pn_tot_cl); %dB
266 Ps=10^(Ps_dB /10); %power signal (V^2)
267 SNR_dB_cl =10* log10(Ps/Pn_tot_cl); %SNR due to noise in system
268 %... and open -loop one
269 Pn_tot_ol =10^(Pn_dB_PWM_ol /10) +10^(Pn_dB_ADC_ol /10);%V^2
270 Pn_tot_dB_ol=pow2db(Pn_tot_ol); %dB
271 SNR_dB_ol =10* log10(Ps/Pn_tot_ol); %SNR due to noise in system
272 %save power noises and SNR in a structure
273 %%
274 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_PWM_dB=Pn_PWM_dB;
275 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_ADC_dB=Pn_ADC_dB;
276 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_PWM_cl=Pn_dB_PWM_cl;
277 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_ADC_cl=Pn_dB_ADC_cl;
278 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_tot_cl=Pn_tot_dB_cl;

165

CHAPTER 5. APPENDIX

279 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.SNR_dB_cl=SNR_dB_cl;
280 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_PWM_ol=Pn_dB_PWM_ol;
281 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_ADC_ol=Pn_dB_ADC_ol;
282 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.Pn_dB_tot_ol=Pn_tot_dB_ol;
283 SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath.SNR_dB_ol=SNR_dB_ol;
284 save(’DatastoreFiles/SNRandPn_nbitADC16_TrailingEdge.mat’ ,...
285 ’SNRandPn_PWM8_fsw1M_AAfilterInFeedbackPath ’, ’-append ’)
286 %%%
287 %%
288 %save parameters simulations
289 TE_PWM8_fsw1M.Fsw=Fsw;%save switching frequency
290 TE_PWM8_fsw1M.fclk_PWM=fclk_PWM;%save PWM TE clock
291 TE_PWM8_fsw1M.t_int=t_int;%save integration time
292 TE_PWM8_fsw1M.dec_fac=dec_fac;%save decimation factor
293 TE_PWM8_fsw1M.t_int_dec=t_int_dec; %save sample time of system outputs (except

triangular waveform)
294 [Gm , Pm , Wcg , Wpg]= margin(T_filter_z);%evaluate gain and phase margins with

correspondent frequency
295 marginPWM8_fsw1M.Gm=Gm;
296 marginPWM8_fsw1M.Pm=Pm;
297 marginPWM8_fsw1M.Fcg=Wcg /(2*pi);
298 marginPWM8_fsw1M.Fpg=Wpg /(2*pi);
299 StepInfo_fsw1M_out=stepinfo(step_Hfilter_z ,t_step);
300 StepInfo_fsw1M_comp=stepinfo(step_Gfilter_z ,t_step);
301 save(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’ ,...
302 ’TE_PWM8_fsw1M ’, ’marginPWM8_fsw1M ’, ’fclk_SYS ’, ’StepInfo_fsw1M_out ’ ,...
303 ’StepInfo_fsw1M_comp ’, ’-append ’)%save simulation and loop tf parameters

166

5.2. CODES

5.2.2 Code for design of system with DPWM modulator and
output filter in feedback path

1 clc;
2 clear;
3 close all;
4 %%
5 %Data
6 n=1;% use this variable to number plots consequentially
7 f1=1e3; %Hz; frequency of input signal
8 f2=300; %Hz; frequency of second component input signal to test IMD
9 fclk_SYS =20e6; %Hz; clock frequency of the system

10 fclk_SYS =2^ floor(log2(fclk_SYS)); %Hz; clock frequency of the system
11 VPS_OS_p =10;% $V positive power supply of output stage
12 VPS_OS_n =0;% $V negative power supply of output stage
13 Vtr_p =5;%V triangular positive peak
14 Vtr_n =0; %V triangular waveform positive peak
15 Vtr_pp=Vtr_p -Vtr_n; %V triangular waveform negative peak
16 VPS_PWM=Vtr_p; %V power supply triangular waveform generator
17 Fsw=1e6; %Hz; frequency of sawtooth (trailing edge) PWM and frequency of natural

PWM
18 Fsw =2^ round(log2(Fsw))/2;
19 nbit_PWM =8; %number of bits for the quantized triangular waveform
20 nbit_ADC =16; %number of bits for ADC
21 fclk_PWM=Fsw*2^ nbit_PWM; %Hz clock frequency of PWM generator
22 G=1/2;%attenuator in feedback path
23 %digital blocks parameters
24 VDD=VPS_PWM; %V; power supply of input ADC; I consider the supply of digital
25 %part the same of the modulator because
26 %implemented in the same digital hardware. Moreover , I
27 %consider Vtr_p=VPS_PWM
28 Amp =.9* VDD /2; %amplitude of sinewave input signal
29 A=VPS_OS_p -VPS_OS_n;
30 Adigital =2^ nbit_PWM /2^ nbit_ADC; %truncation gain
31

32 if Adigital >1%in case the nbit_PWM >nbit_ADC
33 Adigital =1;
34 end
35

36 GM=1/2^ nbit_PWM; % gain of PWM
37 G_ADC =2^ nbit_ADC /(2* VDD); %ADC gain
38 G_PWM =2^ nbit_PWM/VDD; %digital to analog scale factor; it is realted to the
39 %quatization noise of DPWM
40

41 Pn_PWM=VDD ^2/(12*2^(2* nbit_PWM)); %PWM power noise
42 Pn_PWM_dB=pow2db(Pn_PWM); %PWM power noise in dB
43 Sn_PWM=VDD ^2/2^(2* nbit_PWM)/(6* Fsw); %quantization noise power spectral density of

DPWM
44 Pn_ADC =(2* VDD)^2/(12*2^(2* nbit_ADC)); %ADC power noise
45 Pn_ADC_dB=pow2db(Pn_ADC); %ADC power noise in dB
46 Sn_ADC =(2* VDD)^2/2^(2* nbit_ADC)/(6* fclk_SYS); %quantization noise power spectral

density of ADC
47 Pn_PWM_fclk_SYS=Sn_PWM*fclk_SYS /2; %PWM quantization power noise evaluate from 0 to

fclk_SYS
48 Pn_PWM_fclk_SYS_dB=pow2db(Pn_PWM_fclk_SYS); %(the previous one in dB)
49 PM=pi/3; %rad; phase margin chosen
50 %Simulation parameters
51 t_int=min(1/ fclk_PWM , 1/(4* fclk_SYS)); %integration time for Simulink simulation

167

CHAPTER 5. APPENDIX

52 dec_fac =1/ t_int /(4* fclk_SYS); %decimation factor to sample the output signal always
at 1/t_int

53 if dec_fac <1
54 dec_fac =1;
55 end
56 t_int_dec=t_int*dec_fac; %sample time of output signals
57 t_sim =1.5;%s
58 deadtime =2^ ceil(log2 (10e-9)); %s: deadtime to simulate the no shortcircuit of ouput

stage
59 s=tf(’s’);
60 %design output LPF
61 fpf =20e3; %Hz; LPF pole frequency
62 omega_pf =2*pi*fpf; %rad/s; pole frequency of output filter
63 LPF=zpk(minreal (1/(1+s/omega_pf)^2)); %tf of output filter
64 [num_LPF , den_LPF]= tfdata(LPF , ’v’);% num and den coefficients of output frequency

transfer function
65 PropGraphTime.XAxis.Label.String=’Time (s)’;
66 PropGraphTime.YAxis.Label.String=’Amplitude (V)’;
67 PropGraphTime.FontSize =17;
68 PropGraphTime.YAxis.FontSize =17;
69 PropGraphTime.XAxis.FontSize =17;
70

71 plot_LPF=bodeplot(LPF ,’r’); %define output filter plot structure
72 PropBode=getoptions(plot_LPF); %take options of graph
73 %set options parameters like font size and units for bode plot
74 PropBode.Title.FontSize =17;
75 PropBode.Xlabel.String=’Frequency ’;
76 PropBode.Xlabel.FontSize =17;
77 PropBode.Ylabel.FontSize =17;
78 PropBode.TickLabel.FontSize =17;
79 PropBode.FreqUnits=’Hz’;
80 %output filter
81 figure(n)
82 n=n+1;
83 plot_LPF=bodeplot(LPF ,’r’);
84 PropBode.Title.String=’Output filter transfer function ’;
85 setoptions(plot_LPF ,PropBode);
86

87 %ZOH filter
88 T1=1/(fclk_SYS);%sample frequency of ADC
89 ZOH_ADC =1/(1+s*T1/2);%Sample&Hold related to ADC
90 ZOH_COMP=ZOH_ADC;%because of ADC and FPGA works at the same frequency , the two ZOH

tf are equal
91 T2=1/(Fsw);%switching sample time
92 ZOH_REG =1/(1+s*T2/2);%Sample&Hold related to the hold register before the PWM

sampling
93

94 figure(n)%plot transfer functions of ZOH
95 n=n+1;
96 hold on
97 plot_ZOH=bodeplot(ZOH_ADC , ’r’, ZOH_REG , ’b’);
98 PropBode.Title.String=’ZOH èPad approximation ’;
99 setoptions(plot_ZOH , PropBode)

100 legend(’ZOH ADC’, ’ZOH REG’)
101

102 ZOH_ADC_NoApprox =(1-exp(-T1*s))/s*1/T1;
103 ZOH_REG_NoApprox =(1-exp(-T2*s))/s*1/T2;
104 figure(n)%plot transfer functions of ZOH
105 n=n+1;

168

5.2. CODES

106 hold on
107 plot_ZOH=bodeplot(ZOH_ADC_NoApprox , ’r’, ZOH_REG_NoApprox , ’b’);
108 PropBode.Title.String=’ZOHs transfer function ’;
109 setoptions(plot_ZOH , PropBode)
110 legend(’ZOH ADC’, ’ZOH REG’)
111 %%
112 %compensator with feedback filter (DPWM). In this solution the output
113 %filter works as anti -aliasing filter
114 p=3; %integrator order
115 omega_u =2*pi*Fsw /10;
116 GBW=omega_u /(2*pi);
117 omega_ph1 =9* omega_u;%poles to realized proper feedback transfer function ...
118 omega_ph2 =10* omega_u;%...and close the band
119 omega_zx=omega_pf *9/10;%zeros to compensate the double pole of feedback filter
120 omega_zy=omega_pf;
121 M=1; %order of first high frequency pole
122 N=1; %order of second high frequency pole
123 extra_PM=atan(omega_u /(2* Fsw));
124 omega_z1=omega_u/tan((PM -pi+p*pi/2+ extra_PM)/(p-1));%zero to obtain the correct

phase margin;
125 if omega_z1 <=0
126 error(’The zero is negative ’)
127 end
128 %I consider
129 % -the ZOH_REG
130 % -neglect the ZOH_ADC
131 tau_p =(GM*A*G*Adigital*G_ADC/(omega_u))^(1/p)*(1/ omega_z1)^(1-1/p);
132 %analog domain
133 Gc_new=zpk(minreal (((1+s/omega_zx)*(1+s/omega_zy)*(1+s/(9/10* omega_z1)*(1+s/(11/10*

omega_z1))))...
134 *1/(tau_p*s)^p*1/((1+s/omega_ph1)^M*(1+s/omega_ph2)^N)));
135 [num_Gcnew , den_Gcnew]= tfdata(Gc_new , ’v’);
136 T_filter=GM*A*ZOH_ADC*ZOH_REG*Gc_new*LPF*G*G_ADC*Adigital;%Loop transfer function

with output filter in feedback
137 P_filter =1/(1+ T_filter);%senitivity function with output filter in feedback
138 H_filter=ZOH_ADC*ZOH_REG*Gc_new*GM*A*LPF*G_ADC*Adigital /(1+ T_filter);%in -out

transfer function with output filter in feedback loop
139 G_filter=ZOH_ADC*Gc_new*G_ADC /(1+ T_filter);
140 %digital domain
141 Gc_new_z=zpk(minreal(c2d(Gc_new , 1/fclk_SYS , ’matched ’)));%digital compensator
142 [numGc_new_z , denGc_new_z]= tfdata(Gc_new_z , ’v’);
143 T_filter_z=zpk(minreal(Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*LPF*G*G_ADC*Adigital));
144 P_filter_z =1/(1+ T_filter_z);
145 H_filter_z=zpk(minreal(Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*LPF*G_ADC*Adigital /(1+

T_filter_z)));
146 G_filter_z=ZOH_ADC*ZOH_COMP*Gc_new*G_ADC /(1+ T_filter);
147

148 figure(n)%compensator transfer function plot (digital and analog)
149 n=n+1;
150 Gcnew_plot=bodeplot(Gc_new , ’b’, Gc_new_z , ’r’);
151 PropBode.Title.String=’Compensator transfer function ’;
152 setoptions(Gcnew_plot , PropBode)
153 legend(’Analog ’, ’Digital ’)
154

155 figure(n)%loop filter transfer function plot (digital and analog)
156 n=n+1;
157 hold on
158 plot_Tfilter=bodeplot(T_filter , ’b’, T_filter_z , ’r’);
159 PropBode.Title.String=’Loop function with output filter in feedback ’;

169

CHAPTER 5. APPENDIX

160 setoptions(plot_Tfilter , PropBode);
161 xlim ([100 10e6])
162 legend(’Analog ’, ’Digital ’)
163

164 figure(n)%plot sensitivity transfer function
165 n=n+1;
166 hold on
167 plot_Pfilter=bodeplot(P_filter , ’b’, P_filter_z , ’r’);
168 PropBode.Title.String=’Sensitivity function with output filter in feedback ’;
169 setoptions(plot_Pfilter , PropBode);
170 xlim ([100 10e6])
171

172 figure(n)%plot in-out transfer function
173 n=n+1;
174 hold on
175 plot_Hfilter=bodeplot(H_filter , ’b’, H_filter_z , ’r’);
176 PropBode.Title.String=’Input -output with output filter in feedback ’;
177 setoptions(plot_Hfilter , PropBode);
178 xlim ([100 10e6])
179 legend(’Analog ’, ’Digital ’)
180

181 %step response input/output
182 t_step =0:1/ fclk_SYS :100e-6;
183 step_Hfilter_z=step(H_filter_z , t_step);
184 step_Hfilter=step(H_filter , t_step);
185 %step response input/compensator
186 step_Gfilter_z=step(G_filter_z , t_step);
187 step_Gfilter=step(G_filter , t_step);
188

189 figure(n)%output step response
190 n=n+1;
191 plot(t_step , step_Hfilter_z , ’r’, t_step , step_Hfilter , ’b’)
192 legend(’Digital ’, ’Analog ’)
193 ax=gca;
194 ax.FontSize=PropGraphTime.FontSize;
195 ax.XAxis.FontSize=PropGraphTime.XAxis.FontSize;
196 ax.YAxis.FontSize=PropGraphTime.YAxis.FontSize;
197 ax.YAxis.Label.String=PropGraphTime.YAxis.Label.String;
198 ax.XAxis.Label.String=PropGraphTime.XAxis.Label.String;
199 ax.Title.String=’Output step response with output filter in loop’;
200

201 figure(n)%command step response
202 n=n+1;
203 plot(t_step , step_Gfilter_z , ’r’, t_step , step_Gfilter , ’b’)
204 legend(’Digital ’, ’Analog ’)
205 ax=gca;
206 ax.FontSize=PropGraphTime.FontSize;
207 ax.XAxis.FontSize=PropGraphTime.XAxis.FontSize;
208 ax.YAxis.FontSize=PropGraphTime.YAxis.FontSize;
209 ax.YAxis.Label.String=’Code’;
210 ax.XAxis.Label.String=PropGraphTime.XAxis.Label.String;
211 ax.Title.String=’Command step response with output filter in loop’;
212 %%
213 %SNR theoretical
214 NTF_PWM_filter_z=GM*A*LPF*G*G_PWM /(1+ T_filter_z); %noise transfer function of DPWM

quantization noise
215 NTF_ADC_filter_z=H_filter_z; %noise transfer function of ADC quantization noise
216 figure(n) %bode blot of NTF
217 n=n+1;

170

5.2. CODES

218 hold on
219 plot_NTF_PWM=bodeplot(NTF_PWM_filter_z , ’b’, NTF_ADC_filter_z , ’r’);
220 PropBode.Title.String=’Digital noise transfer function ’;
221 setoptions(plot_NTF_PWM , PropBode);
222 legend(’NTF PWM’, ’NTF ADC’)
223

224 Amp_out=Amp*1/G;
225 %evaluate power and SNR of PWM filtered by the system
226 [SNR_dB_PWM , Pn_dB_PWM_InLoop , Ps_dB]=...
227 SNRtheory(Amp_out , Sn_PWM , NTF_PWM_filter_z , 20e3);
228 %evaluate power and SNR of ADC filtered by the system
229 [SNR_dB_ADC , Pn_dB_ADC_InLoop , ~]=...
230 SNRtheory(Amp_out , Sn_ADC , NTF_ADC_filter_z , 20e3);
231 %Compute total power ...
232 Pn_tot =10^(Pn_dB_PWM_InLoop /10) +10^(Pn_dB_ADC_InLoop /10); %V^2
233 Pn_tot_dB=pow2db(Pn_tot); %dB
234 Ps=10^(Ps_dB /10); %power signal (V^2)
235 SNR_dB_theory =10* log10(Ps/Pn_tot); %SNR due to noise in system
236 %save power noises and SNR in a structure
237 SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath.Pn_PWM_dB=Pn_PWM_dB;
238 SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath.Pn_ADC_dB=Pn_ADC_dB;
239 SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath.Pn_dB_PWM_LoopEffect=Pn_dB_PWM_InLoop;
240 SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath.Pn_dB_ADC_LoopEffect=Pn_dB_ADC_InLoop;
241 SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath.Pn_dB_tot_LoopEffect=Pn_tot_dB;
242 SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath.SNR_dB_theory=SNR_dB_theory;
243 save(’DatastoreFiles/SNRandPn_OFinFP ’ ,...
244 ’SNRandPn_PWM8_fsw500k_M1N1_OFinFeedebackPath ’, ’-append ’)
245 %%
246 %save parameters simulations
247 TE_PWM8_fsw500k_M1N1.Fsw=Fsw;%save switching frequency
248 TE_PWM8_fsw500k_M1N1.fclk_PWM=fclk_PWM;%save PWM TE clock
249 TE_PWM8_fsw500k_M1N1.t_int=t_int;%save integration time
250 TE_PWM8_fsw500k_M1N1.dec_fac=dec_fac;%save decimation factor
251 TE_PWM8_fsw500k_M1N1.t_int_dec=t_int*dec_fac; %save sample time of system outputs (

except triangular waveform)
252 t_int_PWM8=t_int;
253 [Gm , Pm , Wcg , Wpg]= margin(T_filter_z);%evaluate gain and phase margins with

correspondet frequency
254 marginPWM8_fsw500k_M1N1.Gm=Gm;
255 marginPWM8_fsw500k_M1N1.Pm=Pm;
256 marginPWM8_fsw500k_M1N1.Fcg=Wcg /(2*pi);
257 marginPWM8_fsw500k_M1N1.Fpg=Wpg /(2*pi);
258 StepInfo_fsw500k_out_M1N1=stepinfo(step_Hfilter_z ,t_step);
259 StepInfo_fsw500k_comp_M1N1=stepinfo(step_Gfilter_z ,t_step);
260 save(’DatastoreFiles/SimParameters_nbitADC16_OFinFP.mat’ ,...
261 ’TE_PWM8_fsw500k_M1N1 ’, ’marginPWM8_fsw500k_M1N1 ’, ’fclk_SYS ’, ’

StepInfo_fsw500k_out_M1N1 ’, ’StepInfo_fsw500k_comp_M1N1 ’, ’-append ’)%save
simulation and loop tf parameters

171

CHAPTER 5. APPENDIX

5.2.3 Code for design of system with DDPWM modulator

1 clc;
2 clear;
3 close all;
4 %%
5 %Data
6 n=1;% use this variable to number plots consequentially
7 f1 =1000; %Hz; frequency of input signal
8 f2=300; %Hz; frequency of second component input signal to test IMD
9 fclk_SYS =20e6; %Hz; clock frequency of the system

10 fclk_SYS =2^ floor(log2(fclk_SYS)); %Hz; clock frequency of the system
11 nbit_ADC =16; %ADC number of bit
12 Fsw=1e6;
13 Fsw =2^ ceil(log2(Fsw))/2;
14 VPS_OS_p =10;% $V positive power supply of output stage
15 VPS_OS_n =0;% $V negative power supply of output stage
16 Vtr_p =5;%V triangular positive peak
17 Vtr_n =0; %V triangular waveform positive peak
18 Vtr_pp=Vtr_p -Vtr_n; %V triangular waveform negative peak
19 VPS_PWM=Vtr_p; %V power supply triangular waveform generator
20 %DDPWM
21 M_DDPWM =4; %LSB of input register
22 N_DDPWM =8; %MSB of input register
23 fclk_DDPWM =2^(N_DDPWM)*Fsw;%Hz; clock frequency of DPWM
24 nbit_DDPWM=N_DDPWM+M_DDPWM;%Hz; total number of bit of DDPWM modulator
25 G_Trunc_cl =2^ nbit_DDPWM /2^ nbit_ADC;%truncation gain of closed -loop system
26 G_Trunc_ol =2^ nbit_DDPWM /2^(nbit_ADC -1);%truncation gain of open -loop system
27 if G_Trunc_cl >1
28 G_trunc_cl =1;
29 end
30 if G_Trunc_ol >1
31 G_trunc_ol =1;
32 end
33 G=1/2;%attenuator in feedback path
34 %digital blocks parameters
35 VDD=VPS_PWM; %V; power supply of input ADC; I consider the supply of digital
36 %part the same of the modulator because
37 %implemented in the same digital hardware. Moreover , I
38 %consider Vtr_p=VPS_PWM
39 Amp =.9* VDD /2; %amplitude of sinewave input signal
40 A=VPS_OS_p -VPS_OS_n;
41

42 Adigital =2^ N_DDPWM /2^ nbit_ADC; %gain to remapping the output of compensator on
nbit_PWM

43 if Adigital >1%in case the resPWM >resADC
44 Adigital =1;
45 end
46 GM=1/2^ N_DDPWM; % gain of PWM
47 G_ADC =2^ nbit_ADC /(2* VDD); %analog to digital scale factor
48 G_PWM =2^ N_DDPWM/VDD; %digital to analog scale factor
49

50 Pn_PWM=VDD ^2/(12*2^(2* nbit_DDPWM)); %PWM power noise
51 Pn_PWM_dB=pow2db(Pn_PWM); %PWM power noise in dB
52 Sn_PWM=VDD ^2/2^(2* nbit_DDPWM)/(6* Fsw); %quantization noise power spectral density

of DPWM
53 Pn_ADC =(2* VDD)^2/(12*2^(2* nbit_ADC)); %ADC power noise
54 Pn_ADC_dB=pow2db(Pn_ADC); %ADC power noise in dB
55 Sn_ADC =(2* VDD)^2/2^(2* nbit_ADC)/(6* fclk_SYS); %quantization noise power spectral

172

5.2. CODES

density of ADC
56 Pn_PWM_fclk_SYS=Sn_PWM*fclk_SYS /2; %PWM quantization power noise evaluate from 0 to

fclk_SYS /2
57 Pn_PWM_fclk_SYS_dB=pow2db(Pn_PWM_fclk_SYS); %(the previous one in dB)
58 PM=pi/3; %rad; phase margin chosen
59 %Simulation parameters
60 t_int=min ([1/ fclk_DDPWM 1/(4* fclk_SYS)]); %integration time for Simulink simulation
61 dec_fac =1/ t_int /(4* fclk_SYS); %decimation factor to sample the output signal always

at 1/t_int
62 if dec_fac <1
63 dec_fac =1;
64 end
65 t_int_dec=t_int*dec_fac; %sample time of output signals
66 t_sim =1.5;%s
67 deadtime =2^ ceil(log2 (10e-9)); %s: deadtime to simulate the no shortcircuit of ouput

stage
68

69 s=tf(’s’);
70 %design output LPF
71 fpf =20e3; %Hz; LPF pole frequency
72 omega_pf =2*pi*fpf; %rad/s; pole frequency of output filter
73 LPF=zpk(minreal (1/(1+s/omega_pf)^2)); %tf of output filter
74 [num_LPF , den_LPF]= tfdata(LPF , ’v’);% num and den coefficients of output frequency

transfer function
75

76 %output filter
77 figure(n)
78 n=n+1;
79 plot_LPF=bodeplot(LPF ,’r’);
80 setoptions(plot_LPF ,’FreqUnits ’,’Hz’);
81 title(’Output filter transfer function ’)
82

83 %ZOH filter
84 T1=1/(fclk_SYS);%sample frequency of ADC
85 ZOH_ADC =1/(1+s*T1/2);%Sample&Hold related to ADC
86 ZOH_COMP=ZOH_ADC;%because of ADC and FPGA works at the same frequency , the two ZOH

tf are equal
87 T2=1/Fsw;%switching sample time
88 ZOH_REG =1/(1+s*T2/2);%Sample&Hold related to the hold register before the PWM

sampling
89 figure(n)%plot transfer functions of ZOH
90 n=n+1;
91 hold on
92 plot_ZOHadc=bodeplot(ZOH_ADC , ’r’);
93 plot_ZOHreg=bodeplot(ZOH_REG , ’b’);
94 setoptions(plot_ZOHadc , ’FreqUnits ’,’Hz’)
95 setoptions(plot_ZOHreg , ’FreqUnits ’,’Hz’)
96 legend(’ZOH ADC’, ’ZOH REG’)
97 ZOH_ADC_NoApprox =(1-exp(-T1*s))/s*1/T1;
98 ZOH_REG_NoApprox =(1-exp(-T2*s))/s*1/T2;
99 figure(n)%plot transfer functions of ZOH

100 n=n+1;
101 hold on
102 plot_ZOHadc=bodeplot(ZOH_ADC_NoApprox , ’r’);
103 plot_ZOHreg=bodeplot(ZOH_REG_NoApprox , ’b’);
104 setoptions(plot_ZOHadc , ’FreqUnits ’,’Hz’)
105 setoptions(plot_ZOHreg , ’FreqUnits ’,’Hz’)
106 title(’ZOHs transfer function ’)
107 legend(’ZOH ADC’, ’ZOH REG’)

173

CHAPTER 5. APPENDIX

108 %%
109 %compensator with first order feedback filter (DPWM); feedback signal from output

stage
110 p=3;
111 omega_u =2*pi*Fsw *1/10;
112 GBW=omega_u /(2*pi);
113 omega_p2 =225e3*2*pi; %rad/s; pole of the feedback filter
114 omega_p2_H =1e6*2*pi/2; %rad/s; second pole to reduce aliasing of DPWM;
115 Gf_HF=zpk(minreal (1/(1+s/omega_p2)*1/(1+s/omega_p2_H)^2));%feedback filter transfer

function
116 [num_GfHF , den_GfHF]= tfdata(Gf_HF , ’v’);
117 omega_ph =9* omega_u; %pole to close the band
118 M=2; %order of last pole
119 extra_PM=atan(omega_u /(2* Fsw));
120 omega_z1=omega_u/tan((PM -pi+p*pi/2+ extra_PM)/(p-1));%zero to obtain the correct

phase margin
121 tau_p =(GM*A*G*Adigital*G_ADC/(omega_u*omega_z1 ^(p-1)))^(1/p);
122 if omega_z1 <=0 && p>1
123 error(’The compensation zero is negative ’)
124 end
125 if p==1
126 tau_p =(GM*A*G*G_ADC*Adigital/omega_u)^1/p;
127 omega_z1 =1;
128 end
129 %compensator transfer function
130 Gc_new=zpk(minreal ((1+s/(9/10* omega_z1))*(1+s/(11/10* omega_z1)*(1+s/omega_p2))*1/(

tau_p*s)^p*1/((1+s/omega_ph)^M)));
131 [num_Gcnew , den_Gcnew]= tfdata(Gc_new , ’v’);
132 T_filter=ZOH_ADC*ZOH_REG*GM*A*Gc_new*G*Gf_HF*Adigital*G_ADC;%Loop transfer function

with output filter in feedback
133 P_filter =1/(1+ T_filter);%senitivity function with output filter in feedback
134 H_filter=ZOH_ADC*ZOH_REG*Gc_new*GM*A*Adigital*G_ADC /(1+ T_filter);%in -out transfer

function with output filter in feedback loop
135 G_filter=ZOH_ADC*Gc_new*G_ADC /(1+ T_filter);%in-command gransfer function
136 %digital domain
137 Gc_new_z=zpk(minreal(c2d(Gc_new , 1/fclk_SYS , ’matched ’)));%digital compensator
138 [numGc_new_z , denGc_new_z]= tfdata(Gc_new_z , ’v’);
139 %digital loop transfer function
140 T_filter_z=zpk(minreal (...
141 Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*G*Gf_HF*Adigital*G_ADC));
142 %digital sensitivity transfer functio
143 P_filter_z =1/(1+ T_filter_z);
144 %in -out transfer function
145 H_filter_z=zpk(minreal (...
146 Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*Adigital*G_ADC /(1+ T_filter_z)));
147 G_filter_z=ZOH_ADC*ZOH_COMP*Gc_new*G_ADC /(1+ T_filter);
148

149 figure(n)%plot compensator transfer function (analog and digital)
150 n=n+1;
151 Gcnew_plot=bodeplot(Gc_new , Gc_new_z);
152 setoptions(Gcnew_plot , ’FreqUnits ’, ’Hz’)
153 legend(’Analog ’, ’Digital ’)
154 title(’Compensator transfer function ’)
155

156 figure(n)%plot loop transfer function (analog and digital)
157 n=n+1;
158 hold on
159 plot_Tfilter=bodeplot(T_filter , ’b’);
160 setoptions(plot_Tfilter ,’FreqUnits ’,’Hz’);

174

5.2. CODES

161 plot_Tfilter_z=bodeplot(T_filter_z , ’r’);
162 setoptions(plot_Tfilter_z ,’FreqUnits ’,’Hz’);
163 xlim ([100 10e6])
164 legend(’Analog ’, ’Digital ’)
165 title(’Loop function with anti -alising filter in loop’)
166

167 figure(n)%plot sensitivity transfer function (analog and digital)
168 n=n+1;
169 hold on
170 plot_Pfilter=bodeplot(P_filter , ’b’);
171 setoptions(plot_Pfilter ,’FreqUnits ’,’Hz’);
172 plot_Pfilter_z=bodeplot(P_filter_z , ’r’);
173 setoptions(plot_Pfilter_z ,’FreqUnits ’,’Hz’);
174 xlim ([100 10e6])
175 legend(’Analog ’, ’Digital ’)
176 title(’Sensitivity function with anti -alising filter in loop’)
177 figure(n)
178 n=n+1;
179 hold on
180 plot_Hfilter=bodeplot(H_filter , ’b’);
181 setoptions(plot_Hfilter ,’FreqUnits ’,’Hz’);
182 plot_Hfilter_z=bodeplot(H_filter_z , ’r’);
183 setoptions(plot_Hfilter_z ,’FreqUnits ’,’Hz’);
184 xlim ([100 10e6])
185 legend(’Analog ’, ’Digital ’)
186 title(’Input -output with anti -alising filter in loop’)
187

188 %step response input/output
189 t_step =0:1/ fclk_SYS :100e-6;
190 step_Hfilter_z=step(H_filter_z , t_step);
191 step_Hfilter=step(H_filter , t_step);
192 %step response input/compensator
193 step_Gfilter_z=step(G_filter_z , t_step);
194 step_Gfilter=step(G_filter , t_step);
195

196 figure(n)%output step response
197 n=n+1;
198 plot(t_step , step_Hfilter_z , ’r’, t_step , step_Hfilter , ’b’)
199 legend(’Digital ’, ’Analog ’)
200 xlabel(’Time [s]’)
201 ylabel(’Amplitude [V]’)
202 title(’Step response with anti -alising filter in loop’)
203

204 figure(n)%command step response
205 n=n+1;
206 plot(t_step , step_Gfilter_z , ’r’, t_step , step_Gfilter , ’b’)
207 legend(’Digital ’, ’Analog ’)
208 xlabel(’Time [s]’)
209 ylabel(’Amplitude [V]’)
210 title(’Step response of compesator with anti -alising filter in loop’)
211 %%
212 %SNR theoretical
213 NTF_PWM_filter_z=GM*A*G*G_PWM /(1+ T_filter_z)*LPF; %noise transfer function of DPWM

quantization noise
214 NTF_ADC_filter_z=H_filter_z*LPF; %noise transfer function of ADC quantization noise
215 NTF_ADC_ol =2* G_ADC*GM*A*LPF*Adigital;
216 NTF_PWM_ol=GM*A*G_PWM*LPF;
217 figure(’Name’, ’Digital noise transfer function closed -loop’) %bode blot of NTF
218 hold on

175

CHAPTER 5. APPENDIX

219 plot_NTF_PWM=bodeplot(NTF_PWM_filter_z , ’b’);
220 setoptions(plot_NTF_PWM ,’FreqUnits ’,’Hz’);
221 plot_NTF_ADC=bodeplot(NTF_ADC_filter_z , ’r’);
222 setoptions(plot_NTF_ADC ,’FreqUnits ’,’Hz’);
223 legend(’NTF PWM’, ’NTF ADC’)
224 title(’Digital noise transfer function closed -loop’)
225 figure(’Name’, ’Noise transfer function open -loop’) %bode blot of NTF
226 hold on
227 plot_NTF_PWM=bodeplot(NTF_PWM_ol , ’b’);
228 setoptions(plot_NTF_PWM ,’FreqUnits ’,’Hz’);
229 plot_NTF_ADC=bodeplot(NTF_ADC_ol , ’r’);
230 setoptions(plot_NTF_ADC ,’FreqUnits ’,’Hz’);
231 legend(’NTF PWM’, ’NTF ADC’)
232 title(’Noise transfer function open -loop’)
233 %evaluate power and SNR of PWM filtered by the system
234 [SNR_dB_PWM_cl , Pn_dB_PWM_cl , Ps_dB]=...
235 SNRtheory(Amp , Sn_PWM , NTF_PWM_filter_z , 20e3);
236 %evaluate power and SNR of ADC filtered by the system
237 [SNR_dB_ADC_cl , Pn_dB_ADC_cl , ~]=...
238 SNRtheory(Amp , Sn_ADC , NTF_ADC_filter_z , 20e3);
239 %evaluate power and SNR of PWM of open -loop system
240 [SNR_dB_PWM_ol , Pn_dB_PWM_ol , ~]=...
241 SNRtheory(Amp , Sn_PWM , NTF_PWM_ol , 20e3);
242 %evaluate power and SNR of ADC of open -loop system
243 [SNR_dB_ADC_ol , Pn_dB_ADC_ol , ~]=...
244 SNRtheory(Amp , Sn_ADC , NTF_ADC_ol , 20e3);
245 %Compute total power ...
246 %...of closed -loop system ...
247 Pn_tot_cl =10^(Pn_dB_PWM_cl /10) +10^(Pn_dB_ADC_cl /10);%V^2
248 Pn_tot_dB_cl=pow2db(Pn_tot_cl); %dB
249 Ps=10^(Ps_dB /10); %power signal (V^2)
250 SNR_dB_cl =10* log10(Ps/Pn_tot_cl); %SNR due to noise in system
251 %... and open -loop one
252 Pn_tot_ol =10^(Pn_dB_PWM_ol /10) +10^(Pn_dB_ADC_ol /10);%V^2
253 Pn_tot_dB_ol=pow2db(Pn_tot_ol); %dB
254 SNR_dB_ol =10* log10(Ps/Pn_tot_ol); %SNR due to noise in system
255 %save power noises and SNR in a structure
256 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_PWM_dB=Pn_PWM_dB;
257 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_ADC_dB=Pn_ADC_dB;
258 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_dB_PWM_cl=Pn_dB_PWM_cl;
259 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_dB_ADC_cl=Pn_dB_ADC_cl;
260 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_dB_tot_cl=Pn_tot_dB_cl;
261 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.SNR_dB_cl=SNR_dB_cl;
262 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_dB_PWM_ol=Pn_dB_PWM_ol;
263 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_dB_ADC_ol=Pn_dB_ADC_ol;
264 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.Pn_dB_tot_ol=Pn_tot_dB_ol;
265 SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath.SNR_dB_ol=SNR_dB_ol;
266 save(’DatastoreFiles/SNRandPn_nbitADC16_TrailingEdge.mat’ ,...
267 ’SNRandPn_PWM8_fsw500k_AAfilterInFeedbackPath ’, ’-append ’)
268 %%
269 %%
270 %save parameters simulations
271 TE_PWM8_fsw500k.Fsw=Fsw;%save switching frequency
272 TE_PWM8_fsw500k.fclk_PWM=fclk_PWM;%save PWM TE clock
273 TE_PWM8_fsw500k.t_int=t_int;%save integration time
274 TE_PWM8_fsw500k.dec_fac=dec_fac;%save decimation factor
275 TE_PWM8_fsw500k.t_int_dec=t_int_dec; %save sample time of system outputs (except

triangular waveform)
276 [Gm , Pm , Wcg , Wpg]= margin(T_filter_z);%evaluate gain and phase margins with

176

5.2. CODES

correspondet frequency
277 marginPWM8_fsw500k.Gm=Gm;
278 marginPWM8_fsw500k.Pm=Pm;
279 marginPWM8_fsw500k.Fcg=Wcg /(2*pi);
280 marginPWM8_fsw500k.Fpg=Wpg /(2*pi);
281 save(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’ ,...
282 ’TE_PWM8_fsw500k ’, ’marginPWM8_fsw500k ’, ’fclk_SYS ’, ’-append ’)%save simulation

and loop tf parameters

177

CHAPTER 5. APPENDIX

5.2.4 Code for design of system with DDPM-DPWM combi-
nation modulator

1 clc;
2 clear;
3 close all;
4 %%
5 %Data
6 n=100;% use this variable to number plots consequentially
7 f1 =1000; %Hz; frequency of input signal
8 f2=300; %Hz; frequency of second component input signal to test IMD
9 fclk_SYS =5e6; %Hz; clock frequency of the system

10 fclk_SYS =2^ floor(log2(fclk_SYS)); %Hz; clock frequency of the system
11 nbit_ADC =16; %ADC number of bit
12 Fsw=1e6;
13 Fsw =2^ ceil(log2(Fsw));%Hz; switching frequency
14 VPS_OS_p =10;% $V positive power supply of output stage
15 VPS_OS_n =0;% $V negative power supply of output stage
16 Vtr_p =5;%V triangular positive peak
17 Vtr_n =0; %V triangular waveform positive peak
18 Vtr_pp=Vtr_p -Vtr_n; %V triangular waveform negative peak
19 VPS_PWM=Vtr_p; %V power supply triangular waveform generator
20 %DPWM
21 nbit_DPWM =8;%number of bits of DPWM
22 fclk_DPWM=Fsw*2^ nbit_DPWM;%Hz; clock frequency of DPWM counter
23

24 G=1/2;%attenuator in feedback path
25 %digital blocks parameters
26 VDD=VPS_PWM; %V; power supply of input ADC; I consider the supply of digital
27 %part the same of the modulator because
28 %implemented in the same digital hardware. Moreover , I
29 %consider Vtr_p=VPS_PWM
30 Amp =.9* VDD /2; %amplitude of sinewave input signal
31 A=VPS_OS_p -VPS_OS_n;
32 Adigital_ol =2^ nbit_DPWM /2^(nbit_ADC -1); %gain to remapping the output of ADC on

nbit_PWM
33 Adigital_cl =2^ nbit_DPWM /2^ nbit_ADC; %gain to remapping the output of compensator on

nbit_PWM
34 if Adigital_cl >1%in case the resPWM >resADC
35 Adigital_cl =1;
36 end
37 if Adigital_ol >1%in case the resPWM >resADC
38 Adigital_ol =1;
39 end
40 GM=1/2^ nbit_DPWM; % gain of PWM
41 G_ADC =2^ nbit_ADC /(2* VDD); %analog to digital scale factor
42 G_PWM =2^ nbit_DPWM/VDD; %digital to analog scale factor
43 G_Trunc_LSBs_cl =2^(2* nbit_DPWM)/2^(nbit_ADC);%truncation gain in CL system
44 G_Trunc_LSBs_ol =2^(2* nbit_DPWM)/2^(nbit_ADC -1);%truncation gain in OL
45 if G_Trunc_LSBs_cl >1
46 G_Trunc_LSBs_cl =1;
47 end
48 if G_Trunc_LSBs_ol >1
49 G_Trunc_LSBs_ol =1;
50 end
51 Pn_PWM=VDD ^2/(12*2^(2*2* nbit_DPWM)); %PWM power noise
52 Pn_PWM_dB=pow2db(Pn_PWM); %PWM power noise in dB
53 Sn_PWM=VDD ^2/2^(2*2* nbit_DPWM)/(6* Fsw); %quantization noise power spectral density

178

5.2. CODES

of DPWM
54 Pn_ADC =(2* VDD)^2/(12*2^(2* nbit_ADC)); %ADC power noise
55 Pn_ADC_dB=pow2db(Pn_ADC); %ADC power noise in dB
56 Sn_ADC =(2* VDD)^2/2^(2* nbit_ADC)/(6* fclk_SYS); %quantization noise power spectral

density of ADC
57 PM=pi/3; %rad; phase margin chosen
58 %Simulation parameters
59 t_int=min ([1/(4* fclk_SYS) 1/ fclk_DPWM]); %integration time for Simulink simulation
60 dec_fac =1/ t_int /(4* fclk_SYS); %decimation factor to sample the output signal always

at 1/t_int
61 if dec_fac <1
62 dec_fac =1;
63 end
64 t_int_dec=t_int*dec_fac; %sample time of output signals
65 t_sim =1.5;%s
66 deadtime =2^ ceil(log2 (10e-9)); %s: deadtime to simulate the no shortcircuit of ouput

stage
67

68 s=tf(’s’);
69 %design output LPF
70 fpf =20e3; %Hz; LPF pole frequency
71 omega_pf =2*pi*fpf; %rad/s; pole frequency of output filter
72 LPF=zpk(minreal (1/(1+s/omega_pf)^2)); %tf of output filter
73 [num_LPF , den_LPF]= tfdata(LPF , ’v’);% num and den coefficients of output frequency

transfer function
74

75 %output filter
76 figure(n)
77 n=n+1;
78 plot_LPF=bodeplot(LPF ,’r’);
79 setoptions(plot_LPF ,’FreqUnits ’,’Hz’);
80 title(’Output filter transfer function ’)
81

82 %ZOH filter
83 T1=1/(fclk_SYS);%sample frequency of ADC
84 ZOH_ADC =1/(1+s*T1/2);%Sample&Hold related to ADC
85 ZOH_COMP=ZOH_ADC;%because of ADC and FPGA works at the same frequency , the two ZOH

tf are equal
86 T2=1/Fsw;%switching sample time
87 ZOH_REG =1/(1+s*T2/2);%Sample&Hold related to the hold register before the PWM

sampling
88 figure(n)%plot transfer functions of ZOH
89 n=n+1;
90 hold on
91 plot_ZOHadc=bodeplot(ZOH_ADC , ’r’);
92 plot_ZOHreg=bodeplot(ZOH_REG , ’b’);
93 setoptions(plot_ZOHadc , ’FreqUnits ’,’Hz’)
94 setoptions(plot_ZOHreg , ’FreqUnits ’,’Hz’)
95 legend(’ZOH ADC’, ’ZOH REG’)
96 ZOH_ADC_NoApprox =(1-exp(-T1*s))/s*1/T1;
97 ZOH_REG_NoApprox =(1-exp(-T2*s))/s*1/T2;
98 figure(n)%plot transfer functions of ZOH
99 n=n+1;

100 hold on
101 plot_ZOHadc=bodeplot(ZOH_ADC_NoApprox , ’r’);
102 plot_ZOHreg=bodeplot(ZOH_REG_NoApprox , ’b’);
103 setoptions(plot_ZOHadc , ’FreqUnits ’,’Hz’)
104 setoptions(plot_ZOHreg , ’FreqUnits ’,’Hz’)
105 title(’ZOHs transfer function ’)

179

CHAPTER 5. APPENDIX

106 legend(’ZOH ADC’, ’ZOH REG’)
107 %%
108 %compensator with first order feedback filter (DPWM); feedback signal from output

stage
109 p=3;
110 omega_u =2*pi*Fsw *1/10;
111 GBW=omega_u /(2*pi);
112 omega_p2 =225e3*2*pi; %rad/s; pole of the feedback filter
113 omega_p2_H =1e6*2*pi; %rad/s; second pole to reduce aliasing of DPWM;
114 Gf_HF=zpk(minreal (1/(1+s/omega_p2)*1/(1+s/omega_p2_H)^2));%feedback filter transfer

function
115 figure(n)%plot transfer functions of ZOH
116 n=n+1;
117 hold on
118 plot_AAfilter=bodeplot(Gf_HF , ’r’);
119 setoptions(plot_AAfilter ,’FreqUnits ’,’Hz’);
120 title(’Anti -aliasing filter transfer function ’)
121 [num_GfHF , den_GfHF]= tfdata(Gf_HF , ’v’);
122 omega_ph =9* omega_u; %pole to close the band
123 M=2; %order of last pole
124 extra_PM=atan(omega_u /(2* Fsw));
125 omega_z1=omega_u/tan((PM -pi+p*pi/2+ extra_PM)/(p-1));%zero to obtain the correct

phase margin
126 tau_p =(GM*A*G*Adigital_cl*G_ADC/(omega_u*omega_z1 ^(p-1)))^(1/p);
127 if omega_z1 <=0 && p>1
128 error(’The compensation zero is negative ’)
129 end
130 if p==1
131 tau_p =(GM*A*G*G_ADC*Adigital_cl/omega_u)^1/p;
132 omega_z1 =1;
133 end
134 Gc_new=zpk(minreal ((1+s/(9/10* omega_z1))*(1+s/(11/10* omega_z1)*(1+s/omega_p2))*1/(

tau_p*s)^p*1/((1+s/omega_ph)^M)));
135 [num_Gcnew , den_Gcnew]= tfdata(Gc_new , ’v’);
136 T_filter=ZOH_ADC*ZOH_REG*GM*A*Gc_new*G*Gf_HF*Adigital_cl*G_ADC;%Loop transfer

function with output filter in feedback
137 P_filter =1/(1+ T_filter);%senitivity function with output filter in feedback
138 H_filter=ZOH_ADC*ZOH_REG*Gc_new*GM*A*Adigital_cl*G_ADC /(1+ T_filter);%in-out

transfer function with output filter in feedback loop
139 G_filter=ZOH_ADC*Gc_new*G_ADC /(1+ T_filter);
140 %digital domain
141 Gc_new_z=zpk(minreal(c2d(Gc_new , 1/fclk_SYS , ’matched ’)));%digital compensator
142 [numGc_new_z , denGc_new_z]= tfdata(Gc_new_z , ’v’);
143 T_filter_z=zpk(minreal (...
144 Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*G*Gf_HF*Adigital_cl*G_ADC));%digital loop

transfer function
145 P_filter_z =1/(1+ T_filter_z);%sensitovity transfer function
146 H_filter_z=zpk(minreal (...
147 Gc_new*ZOH_ADC*ZOH_COMP*ZOH_REG*GM*A*Adigital_cl*G_ADC /(1+ T_filter_z)));
148 %in -out transfer function
149 G_filter_z=ZOH_ADC*ZOH_COMP*Gc_new*G_ADC /(1+ T_filter);
150 %in -command transfer function
151

152 figure(n)%plot compensator transfer function (digital and analog)
153 n=n+1;
154 Gcnew_plot=bodeplot(Gc_new , Gc_new_z);
155 setoptions(Gcnew_plot , ’FreqUnits ’, ’Hz’)
156 legend(’Analog ’, ’Digital ’)
157 title(’Compensator transfer function ’)

180

5.2. CODES

158

159 figure(n)%plot loop transfer function (digital and analog)
160 n=n+1;
161 hold on
162 plot_Tfilter=bodeplot(T_filter , ’b’);
163 setoptions(plot_Tfilter ,’FreqUnits ’,’Hz’);
164 plot_Tfilter_z=bodeplot(T_filter_z , ’r’);
165 setoptions(plot_Tfilter_z ,’FreqUnits ’,’Hz’);
166 xlim ([100 10e6])
167 legend(’Analog ’, ’Digital ’)
168 title(’Loop function with anti -alising filter in loop’)
169

170 figure(n)%plot sensitivity transfer function (digital and analog)
171 n=n+1;
172 hold on
173 plot_Pfilter=bodeplot(P_filter , ’b’);
174 setoptions(plot_Pfilter ,’FreqUnits ’,’Hz’);
175 plot_Pfilter_z=bodeplot(P_filter_z , ’r’);
176 setoptions(plot_Pfilter_z ,’FreqUnits ’,’Hz’);
177 xlim ([100 10e6])
178 legend(’Analog ’, ’Digital ’)
179 title(’Sensitivity function with anti -alising filter in loop’)
180

181 figure(n)%in-out transfer function
182 n=n+1;
183 hold on
184 plot_Hfilter=bodeplot(H_filter , ’b’);
185 setoptions(plot_Hfilter ,’FreqUnits ’,’Hz’);
186 plot_Hfilter_z=bodeplot(H_filter_z , ’r’);
187 setoptions(plot_Hfilter_z ,’FreqUnits ’,’Hz’);
188 xlim ([100 10e6])
189 legend(’Analog ’, ’Digital ’)
190 title(’Input -output with anti -alising filter in loop’)
191 %step response input/output
192 t_step =0:1/ fclk_SYS :100e-6;
193 step_Hfilter_z=step(H_filter_z , t_step);
194 step_Hfilter=step(H_filter , t_step);
195 %step response input/compensator
196 step_Gfilter_z=step(G_filter_z , t_step);
197 step_Gfilter=step(G_filter , t_step);
198

199 figure(n)%plot output setp response
200 n=n+1;
201 plot(t_step , step_Hfilter_z , ’r’, t_step , step_Hfilter , ’b’)
202 legend(’Digital ’, ’Analog ’)
203 xlabel(’Time [s]’)
204 ylabel(’Amplitude [V]’)
205 title(’Step response with anti -alising filter in loop’)
206

207 figure(n)%plot command step response
208 n=n+1;
209 plot(t_step , step_Gfilter_z , ’r’, t_step , step_Gfilter , ’b’)
210 legend(’Digital ’, ’Analog ’)
211 xlabel(’Time [s]’)
212 ylabel(’Amplitude [V]’)
213 title(’Step response of compesator with anti -alising filter in loop’)
214 %%
215 %SNR theoretical
216 NTF_PWM_filter_z=GM*A*G*G_PWM /(1+ T_filter_z)*LPF; %noise transfer function of DPWM

181

CHAPTER 5. APPENDIX

quantization noise
217 NTF_ADC_filter_z=H_filter_z*LPF; %noise transfer function of ADC quantization noise
218 NTF_ADC_ol =2* G_ADC*GM*A*LPF*Adigital_cl;
219 NTF_PWM_ol=GM*A*G_PWM*LPF;
220

221 figure(’Name’, ’Digital noise transfer function closed -loop’) %bode blot of NTF
222 hold on
223 plot_NTF_cl=bodeplot(NTF_PWM_filter_z , ’b’, NTF_ADC_filter_z , ’r’);
224 setoptions(plot_NTF_PWM ,’FreqUnits ’,’Hz’);
225 legend(’NTF PWM’, ’NTF ADC’)
226 title(’Digital noise transfer function closed -loop’)
227 figure(’Name’, ’Noise transfer function open -loop’) %bode blot of NTF
228 hold on
229 plot_NTF_ol=bodeplot(NTF_PWM_ol , ’b’, NTF_ADC_ol , ’r’);
230 setoptions(plot_NTF_PWM_ol ,’FreqUnits ’,’Hz’);
231 legend(’NTF PWM’, ’NTF ADC’)
232 title(’Noise transfer function open -loop’)
233 DCgain =1/G;
234 Amp_out=DCgain*Amp;
235 %evaluate power and SNR of PWM filtered by the system
236 [SNR_dB_PWM_cl , Pn_dB_PWM_cl , Ps_dB]=...
237 SNRtheory(Amp_out , Sn_PWM , NTF_PWM_filter_z , 20e3);
238 %evaluate power and SNR of ADC filtered by the system
239 [SNR_dB_ADC_cl , Pn_dB_ADC_cl , ~]=...
240 SNRtheory(Amp_out , Sn_ADC , NTF_ADC_filter_z , 20e3);
241 %evaluate power and SNR of PWM of open -loop system
242 [SNR_dB_PWM_ol , Pn_dB_PWM_ol , ~]=...
243 SNRtheory(Amp_out , Sn_PWM , NTF_PWM_ol , 20e3);
244 %evaluate power and SNR of ADC of open -loop system
245 [SNR_dB_ADC_ol , Pn_dB_ADC_ol , ~]=...
246 SNRtheory(Amp_out , Sn_ADC , NTF_ADC_ol , 20e3);
247 %Compute total power ...
248 %...of closed -loop system ...
249 Pn_tot_cl =10^(Pn_dB_PWM_cl /10) +10^(Pn_dB_ADC_cl /10);%V^2
250 Pn_tot_dB_cl=pow2db(Pn_tot_cl); %dB
251 Ps=10^(Ps_dB /10); %power signal (V^2)
252 SNR_dB_cl =10* log10(Ps/Pn_tot_cl); %SNR due to noise in system
253 ... and open -loop one
254 Pn_tot_ol =10^(Pn_dB_PWM_ol /10) +10^(Pn_dB_ADC_ol /10);%V^2
255 Pn_tot_dB_ol=pow2db(Pn_tot_ol); %dB
256 SNR_dB_ol =10* log10(Ps/Pn_tot_ol); %SNR due to noise in system
257 save power noises and SNR in a structure
258 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_PWM_dB=Pn_PWM_dB;
259 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_ADC_dB=Pn_ADC_dB;
260 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_dB_PWM_cl=Pn_dB_PWM_cl;
261 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_dB_ADC_cl=Pn_dB_ADC_cl;
262 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_dB_tot_cl=Pn_tot_dB_cl;
263 SNRandPn_DDPM8_DPWM8_fsw1M.SNR_dB_cl=SNR_dB_cl;
264 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_dB_PWM_ol=Pn_dB_PWM_ol;
265 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_dB_ADC_ol=Pn_dB_ADC_ol;
266 SNRandPn_DDPM8_DPWM8_fsw1M.Pn_dB_tot_ol=Pn_tot_dB_ol;
267 SNRandPn_DDPM8_DPWM8_fsw1M.SNR_dB_ol=SNR_dB_ol;
268 save(’DatastoreFiles/SNRandPn_nbitADC16_DDPM_DPWM_comb_fclkSYS_LOW.mat’ ,...
269 ’SNRandPn_DDPM8_DPWM8_fsw1M ’, ’-append ’)
270 %%%
271 %save parameters simulations
272 DDPM8_DPWM8_fsw1M.Fsw=Fsw;%save switching frequency
273 DDPM8_DPWM8_fsw1M.fclk_PWM=fclk_DPWM;%save PWM TE clock
274 DDPM8_DPWM8_fsw1M.t_int=t_int;%save integration time

182

5.2. CODES

275 DDPM8_DPWM8_fsw1M.dec_fac=dec_fac;%save decimation factor
276 DDPM8_DPWM8_fsw1M.t_int_dec=t_int_dec; %save sample time of system outputs (except

triangular waveform)
277 [Gm , Pm , Wcg , Wpg]= margin(T_filter_z);%evaluate gain and phase margins with

correspondet frequency
278 marginDDPM8_DPWM8_fsw1M.Gm=Gm;
279 marginDDPM8_DPWM8_fsw1M.Pm=Pm;
280 marginDDPM8_DPWM8_fsw1M.Fcg=Wcg /(2*pi);
281 marginDDPM8_DPWM8_fsw1M.Fpg=Wpg /(2*pi);
282 StepInfo_fsw1M_out=stepinfo(step_Hfilter_z ,t_step);
283 StepInfo_fswfsw1M_comp=stepinfo(step_Gfilter_z ,t_step);
284 save(’DatastoreFiles/SimParameters_nbitADC16_DDPM_DPWM_fclkSYS_LOW.mat’ ,...
285 ’DDPM8_DPWM8_fsw1M ’, ’marginDDPM8_DPWM8_fsw1M ’, ’fclk_SYS ’, ’StepInfo_fsw1M_out

’ ,...
286 ’StepInfo_fswfsw1M_comp ’, ’-append ’)%save simulation and loop tf parameters

183

CHAPTER 5. APPENDIX

5.2.5 Code for theoretical SNR evaluation

1 function [SNR_dB_theory , Pn_dB , Ps_dB]=...
2 SNRtheory(Amp , Sn, NTF , fband)
3 %evaluate and compare SNR and power noise of a uniform distributed
4 %quantization noise and input sinusoidal signal with amplitude Amp ,
5 %starting from the transfer function of the system
6 %NTF and noise power spectral density Sn;
7 %extract magnitude and frequency with a df=1 Hz
8

9 %magnitude and frequency vectore extraction
10 [magNTF , ~,freqNTF]=bode(NTF , 1*2*pi :1*2*pi:(fband+fband /2)*2*pi);
11 freqNTF=freqNTF /(2*pi); %bode gives freq in rad/s; convert to Hz
12 magNTF=magNTF(1, 1, 1:fband); %select magnitude between 0 and 20 kHz
13 %power noise computation with trapezoidal numerical integral
14 power_noise=trapz(freqNTF (1: fband), Sn.* magNTF (:) .^2);
15 Pn_dB=pow2db(power_noise); %evaluate power noise in dB
16 %power signal and SNR evaluation
17 power_signal=Amp ^2/2; %evaluate signal power
18 Ps_dB=pow2db(power_signal); %evaluate signal power in dB
19 SNR_dB_theory=pow2db(power_signal/power_noise); %evaluate SNR in dB
20 end

5.2.6 Code for DDPM algorithm

1 function DDPM=DDPM_conversion(DAC_in , counter , nbit , VDD)
2 %DAC_in: number related to the ADC conversion (encode)
3 %counter: output of a free running counter
4 %nbit: number of bit for conversion
5 DAC_in=flip(dec2bin(cast(DAC_in , ’double ’), nbit));
6 counter=dec2bin(counter , nbit);
7 DDPM=real(VDD*str2double(DAC_in(find((counter ==’1’), 1, ’last’))));
8 if(isnan(DDPM))
9 DDPM =0;

10 end
11 end

184

5.2. CODES

5.2.7 Code to set simulation parameters

1 %open loop simulation
2 sys=’CDA_openloop_DDPWM ’;
3 open_system(sys)
4 %Set the PWM with sawtooth waveform and step as input signal
5 %strcture data for set parametr for simulation
6 paramNameValStruct.SaveTime=’off’;
7 paramNameValStruct.ReturnWorkspaceOutputs=’off’;
8 paramNameValStruct.SaveState=’off’;
9 paramNameValStruct.SaveFinalState=’off’;

10 paramNameValStruct.SaveOutput=’off’;
11 paramNameValStruct.DSMLogging=’off’;
12 paramNameValStruct.ReturnWorkspaceOutputsName=’simOut_input1kHzsinewave_cl ’;
13 paramNameValStruct.SignalLogging=’on’;
14 paramNameValStruct.SignalLoggingName=’outs_openloop ’;
15 paramNameValStruct.LoggingToFile=’on’;
16 paramNameValStruct.LoggingFileName=’DatastoreFiles/

simOut_ol_1kHzsinewave_fsw500k_tsim1 .5 _nbitADC16_nbitPWM9_DDPWM_N8M4.mat’;
17 paramNameValStruct.FixedStep=’t_int ’;
18 paramNameValStruct.StopTime=’t_sim ’;
19 paramNameValStruct.Solver=’FixedStepAuto ’;
20 paramNameValStruct.SolverType=’Fixed -step’;
21 set_param(sys , ’SaveTime ’, paramNameValStruct.SaveTime ,...
22 ’ReturnWorkspaceOutputs ’, paramNameValStruct.ReturnWorkspaceOutputs

,...
23 ’FixedStep ’, paramNameValStruct.FixedStep ,...
24 ’StopTime ’, paramNameValStruct.StopTime , ...
25 ’Solver ’, paramNameValStruct.Solver ,...
26 ’SolverType ’, paramNameValStruct.SolverType ,...
27 ’SignalLogging ’, paramNameValStruct.SignalLogging ,...
28 ’SignalLoggingName ’, paramNameValStruct.SignalLoggingName ,...
29 ’LoggingToFile ’, paramNameValStruct.LoggingToFile ,...
30 ’LoggingFileName ’, paramNameValStruct.LoggingFileName ,...
31 ’SaveState ’, paramNameValStruct.SaveState ,...
32 ’SaveFinalState ’, paramNameValStruct.SaveFinalState ,...
33 ’SaveOutput ’, paramNameValStruct.SaveOutput ,...
34 ’DSMLogging ’, paramNameValStruct.DSMLogging)
35

36 %%
37 %closed loop simulation
38 sys=’CDA_closedloop_OFinFP ’;
39 open_system(sys)
40 %Set the PWM with saw tooth waveform and step as input signal
41 paramNameValStruct.SaveTime=’off’;
42 paramNameValStruct.ReturnWorkspaceOutputs=’off’;
43 paramNameValStruct.SaveState=’off’;
44 paramNameValStruct.SaveFinalState=’off’;
45 paramNameValStruct.SaveOutput=’off’;
46 paramNameValStruct.DSMLogging=’off’;
47 paramNameValStruct.SignalLogging=’on’;
48 paramNameValStruct.SignalLoggingName=’outs_closedloop ’;
49 paramNameValStruct.LoggingToFile=’on’;
50 paramNameValStruct.LoggingFileName=’DatastoreFiles/

simOut_cl_1kHzsinewave_OFinFP_fsw500k_tsim1 .5 _nbitADC16_nbitPWM8_TrailingEdge.
mat’;

51 paramNameValStruct.FixedStep=’t_int ’;
52 paramNameValStruct.StopTime=’t_sim ’;
53 paramNameValStruct.Solver=’FixedStepAuto ’;

185

CHAPTER 5. APPENDIX

54 paramNameValStruct.SolverType=’Fixed -step’;
55 set_param(sys , ’SaveTime ’, paramNameValStruct.SaveTime ,...
56 ’ReturnWorkspaceOutputs ’, paramNameValStruct.ReturnWorkspaceOutputs

,...
57 ’FixedStep ’, paramNameValStruct.FixedStep ,...
58 ’StopTime ’, paramNameValStruct.StopTime , ...
59 ’Solver ’, paramNameValStruct.Solver ,...
60 ’SolverType ’, paramNameValStruct.SolverType ,...
61 ’SignalLogging ’, paramNameValStruct.SignalLogging ,...
62 ’SignalLoggingName ’, paramNameValStruct.SignalLoggingName ,...
63 ’LoggingToFile ’, paramNameValStruct.LoggingToFile ,...
64 ’LoggingFileName ’, paramNameValStruct.LoggingFileName ,...
65 ’SaveState ’, paramNameValStruct.SaveState ,...
66 ’SaveFinalState ’, paramNameValStruct.SaveFinalState ,...
67 ’SaveOutput ’, paramNameValStruct.SaveOutput ,...
68 ’DSMLogging ’, paramNameValStruct.DSMLogging)

186

5.2. CODES

5.2.8 Code for the time analysis of system with DPWM mod-
ulator working at fsw ∼ 500 kHz

1 %set datastores and times
2 close all
3 clear
4 clc
5 t_sim =1.5;%s simulation time (Stop Time)
6 t_win =1;%s; time window to obtain 1 Hz resolution in fft analysis
7 n=1;
8 %closed loop trailing edge datastore
9 ds_cl_nbitADC16_nbitPWM10_TrailingEdge=Simulink.SimulationData.DatasetRef ...

10 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5
_nbitADC16_nbitPWM10_TrailingEdge.mat’, ’outs_closedloop ’);

11 ds_cl_nbitADC16_nbitPWM8_TrailingEdge=Simulink.SimulationData.DatasetRef ...
12 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’, ’outs_closedloop ’);
13 ds_cl_nbitADC16_nbitPWM7_TrailingEdge=Simulink.SimulationData.DatasetRef ...
14 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’, ’outs_closedloop ’);
15 ds_cl_nbitADC16_nbitPWM6_TrailingEdge=Simulink.SimulationData.DatasetRef ...
16 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’, ’outs_closedloop ’);
17 ds_cl_nbitADC16_nbitPWM5_TrailingEdge=Simulink.SimulationData.DatasetRef ...
18 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’, ’outs_closedloop ’);
19 % open loop trailing edge datastore
20 ds_ol_nbitADC16_nbitPWM8_TrailingEdge=Simulink.SimulationData.DatasetRef ...
21 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’, ’outs_openloop ’);
22 ds_ol_nbitADC16_nbitPWM7_TrailingEdge=Simulink.SimulationData.DatasetRef ...
23 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’, ’outs_openloop ’);
24 ds_ol_nbitADC16_nbitPWM6_TrailingEdge=Simulink.SimulationData.DatasetRef ...
25 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’, ’outs_openloop ’);
26 ds_ol_nbitADC16_nbitPWM5_TrailingEdge=Simulink.SimulationData.DatasetRef ...
27 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’, ’outs_openloop ’);
28 %load all t_int
29 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’ ,...
30 ’TE_PWM10_fsw500k ’, ’TE_PWM8_fsw500k ’, ’TE_PWM5_fsw500k ’ ,...
31 ’TE_PWM6_fsw500k ’, ’TE_PWM7_fsw500k ’, ’fclk_SYS ’);
32 %import t_int_dec
33 t_int_dec_PWM10=TE_PWM10_fsw500k.t_int_dec;
34 t_int_dec_PWM8=TE_PWM8_fsw500k.t_int_dec;
35 t_int_dec_PWM7=TE_PWM7_fsw500k.t_int_dec;
36 t_int_dec_PWM6=TE_PWM6_fsw500k.t_int_dec;
37 t_int_dec_PWM5=TE_PWM5_fsw500k.t_int_dec;
38 %import t_int
39 t_int_PWM10=TE_PWM10_fsw500k.t_int;
40 t_int_PWM8=TE_PWM8_fsw500k.t_int;
41 t_int_PWM7=TE_PWM7_fsw500k.t_int;
42 t_int_PWM6=TE_PWM6_fsw500k.t_int;
43 t_int_PWM5=TE_PWM5_fsw500k.t_int;
44 %%
45 %Trailing Edge
46 %define time vector; define the read

187

CHAPTER 5. APPENDIX

47 %number of sample to read 4 period of traingular waveform
48 read_size_tr_PWM10=uint64 (4*(t_int_PWM10 *2^10)/t_int_PWM10 +1);
49 read_size_tr_PWM8=uint64 (4*(t_int_PWM8 *2^8)/t_int_PWM8 +1);
50 read_size_tr_PWM7=uint64 (4*(t_int_PWM7 *2^7)/t_int_PWM7 +1);
51 read_size_tr_PWM6=uint64 (4*(t_int_PWM6 *2^6)/t_int_PWM6 +1);
52 read_size_tr_PWM5=uint64 (4*(t_int_PWM5 *2^5)/t_int_PWM5 +1);
53

54 %set ReadSize to read first 4 periods of triangular waveform
55 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM10;
56 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM8;
57 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM7;
58 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM6;
59 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM5;
60

61 %read first 4 periods of triangular waveform and extract Time data
62 time_PWM10_tr=read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values).Time;
63 time_PWM8_tr=read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values).Time;
64 time_PWM7_tr=read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values).Time;
65 time_PWM6_tr=read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values).Time;
66 time_PWM5_tr=read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values).Time;
67

68 %reset read pointer to the first sample of the signal
69 %(necessary to read fromn the start each signal)
70 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values);
71 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values);
72 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values);
73 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values);
74 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values);
75

76 %set ReadSize lenght again
77 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM10;
78 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM8;
79 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM7;
80 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM6;
81 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM5;
82

83 figure(n)%plot triangular waveform
84 n=n+1;
85 hold on
86 stairs(time_PWM10_tr , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values).Data ,

’b’)
87 stairs(time_PWM8_tr , read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values).Data , ’r

’)
88 stairs(time_PWM7_tr , read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values).Data , ’m

’)
89 stairs(time_PWM6_tr , read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values).Data , ’g

’)
90 stairs(time_PWM5_tr , read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values).Data , ’c

’)
91 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
92 title(’Triangular waveforms trailing edge f_{sw}\ sim500 kHz’)
93 xlabel(’time [s]’)
94 ylabel(’Amplitude [V]’)
95

96 %reset read pointer to the first sample of the signal
97 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values);
98 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values);
99 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values);

100 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values);

188

5.2. CODES

101 %%
102 %set time vector to plot five period of sinewave
103 T=1e-3;%s period of input/output signal (sinewave)
104 n_period =5; %number of output signal periods that we want to see
105 read_size_PWM8=uint64(T/t_int_dec_PWM8*n_period);% #samples in n_period
106 read_size_PWM7=uint64(T/t_int_dec_PWM7*n_period);
107 read_size_PWM6=uint64(T/t_int_dec_PWM6*n_period);
108 read_size_PWM5=uint64(T/t_int_dec_PWM5*n_period);
109 read_size_PWM10=uint64(T/t_int_dec_PWM10*n_period);
110 %%set ReadSize to read first n_period of single -ended output
111 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values.ReadSize=read_size_PWM10;
112 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values.ReadSize=read_size_PWM8;
113 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values.ReadSize=read_size_PWM7;
114 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values.ReadSize=read_size_PWM6;
115 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values.ReadSize=read_size_PWM5;
116 %extract Time vector
117 time_PWM10=read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values).Time;
118 time_PWM8=read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values).Time;
119 time_PWM7=read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values).Time;
120 time_PWM6=read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values).Time;
121 time_PWM5=read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values).Time;
122

123 %reset read length
124 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values);
125 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values);
126 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values);
127 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values);
128

129 figure(n)%plot single -ended output of open -loop system
130 n=n+1;
131 hold on
132 plot(time_PWM8 , read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values).Data , ’r’)
133 plot(time_PWM7 , read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values).Data , ’m’)
134 plot(time_PWM6 , read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values).Data , ’g’)
135 plot(time_PWM5 , read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values).Data , ’c’)
136

137 legend(’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
138 title(’Single -ended output open -loop (f_{sw}\sim 500 kHz)’)
139 xlabel(’time [s]’)
140 ylabel(’Amplitude [V]’)
141 %reset read pointer to the first sample of the signal
142 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values);
143 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values);
144 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values);
145 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values);
146

147 %set ReadSize to read first n_period of differential output
148 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {7}. Values.ReadSize=read_size_PWM8;
149 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {7}. Values.ReadSize=read_size_PWM7;
150 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {7}. Values.ReadSize=read_size_PWM6;
151 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {7}. Values.ReadSize=read_size_PWM5;
152 figure(n)%plot differential output (time vector is the same of single ended
153 %becuase the sample time is the same)
154 n=n+1;
155 hold on
156 plot(time_PWM8 , read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {7}. Values).Data , ’r’)
157 plot(time_PWM7 , read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {7}. Values).Data , ’m’)
158 plot(time_PWM6 , read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {7}. Values).Data , ’g’)
159 plot(time_PWM5 , read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {7}. Values).Data , ’c’)

189

CHAPTER 5. APPENDIX

160

161 legend(’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
162 title(’Differential output open -loop (f_{sw}\sim 500 kHz)’)
163 xlabel(’time [s]’)
164 ylabel(’Amplitude [V]’)
165 %reset read pointer to the first sample of the signal
166 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {7}. Values);
167 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {7}. Values);
168 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {7}. Values);
169 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {7}. Values);
170 %%
171 %plot single -ended voltages of closed -loop system
172 %set read size to read the first n_period of signle -ended signals
173 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {6}. Values.ReadSize=read_size_PWM10;
174 ds_cl_nbitADC16_nbitPWM8_TrailingEdge {6}. Values.ReadSize=read_size_PWM8;
175 ds_cl_nbitADC16_nbitPWM7_TrailingEdge {6}. Values.ReadSize=read_size_PWM7;
176 ds_cl_nbitADC16_nbitPWM6_TrailingEdge {6}. Values.ReadSize=read_size_PWM6;
177 ds_cl_nbitADC16_nbitPWM5_TrailingEdge {6}. Values.ReadSize=read_size_PWM5;
178

179 figure(n)%plot single -ended voltages of closed -loop system
180 n=n+1;
181 hold on
182 plot(time_PWM10 , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {6}. Values).Data , ’b’)
183 plot(time_PWM8 , read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {6}. Values).Data , ’r’)
184 plot(time_PWM7 , read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {6}. Values).Data , ’m’)
185 plot(time_PWM6 , read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {6}. Values).Data , ’g’)
186 plot(time_PWM5 , read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {6}. Values).Data , ’c’)
187

188 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
189 title(’Single -ended output closed -loop (f_{sw} \sim 500 kHz)’)
190 xlabel(’time [s]’)
191 ylabel(’Amplitude [V]’)
192 %reset read pointer to the first sample of the signal
193 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {6}. Values);
194 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {6}. Values);
195 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {6}. Values);
196 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {6}. Values);
197 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {6}. Values);
198 %%
199 %plot differential output of closed -loop system
200 %reset read pointer to the first sample of the signal
201 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values);
202 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values);
203 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values);
204 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values);
205 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values);
206 %set read size to read the forst n_period of the signals
207 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values.ReadSize=read_size_PWM10;
208 ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values.ReadSize=read_size_PWM8;
209 ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values.ReadSize=read_size_PWM7;
210 ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values.ReadSize=read_size_PWM6;
211 ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values.ReadSize=read_size_PWM5;
212

213 figure(n)%plot differential voltages of closed -loop system for different
214 %number of DPWM bits
215 n=n+1;
216 hold on
217 plot(time_PWM10 , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values).Data , ’b’)
218 plot(time_PWM8 , read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values).Data , ’r’)

190

5.2. CODES

219 plot(time_PWM7 , read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values).Data , ’m’)
220 plot(time_PWM6 , read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values).Data , ’g’)
221 plot(time_PWM5 , read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values).Data , ’c’)
222

223 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
224 title(’Differential output closed -loop (f_{sw} \sim 500 kHz)’)
225 xlabel(’time [s]’)
226 ylabel(’Amplitude [V]’)
227 %reset read pointer to the first sample of the signal
228 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values);
229 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values);
230 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values);
231 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values);
232 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values);
233 %%
234 %Compensator output
235 n_period =3;
236 t_int_comp =1/ fclk_SYS;%s; sample period of the compensator signal
237 read_size_PWM8_comp=uint64(T/t_int_comp*n_period);% #samples in n_period
238 read_size_PWM7_comp=uint64(T/t_int_comp*n_period);
239 read_size_PWM6_comp=uint64(T/t_int_comp*n_period);
240 read_size_PWM5_comp=uint64(T/t_int_comp*n_period);
241 read_size_PWM10_comp=uint64(T/t_int_comp*n_period);
242

243 %set read size of compensator data to read the first n_period
244 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values.ReadSize=read_size_PWM10_comp;
245 ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values.ReadSize=read_size_PWM8_comp;
246 ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values.ReadSize=read_size_PWM7_comp;
247 ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values.ReadSize=read_size_PWM6_comp;
248 ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values.ReadSize=read_size_PWM5_comp;
249 %read time vector of each compensator signal and save them in different
250 %variables
251 time_PWM10_comp=read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values).Time;
252 time_PWM8_comp=read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values).Time;
253 time_PWM7_comp=read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values).Time;
254 time_PWM6_comp=read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values).Time;
255 time_PWM5_comp=read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values).Time;
256 %reset read pointer to the first sample of the signal
257 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values);
258 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values);
259 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values);
260 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values);
261 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values);
262

263 figure(n)%plot compensator output signal (command) at varying pf DPWM number
264 %of bits
265 n=n+1;
266 hold on
267 stairs(time_PWM10_comp , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values).Data

, ’b’)
268 stairs(time_PWM8_comp , read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values).Data ,

’r’)
269 stairs(time_PWM7_comp , read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values).Data ,

’m’)
270 stairs(time_PWM6_comp , read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values).Data ,

’g’)
271 stairs(time_PWM5_comp , read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values).Data ,

’c’)
272

191

CHAPTER 5. APPENDIX

273 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
274 title(’Compensator output closed -loop (f_{sw} \sim 500 kHz)’)
275 xlabel(’time [s]’)
276 ylabel(’Code’)
277 %reset read pointer to the first sample of the signal
278 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values);
279 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values);
280 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values);
281 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values);
282 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values);

192

5.2. CODES

5.2.9 Code for the time analysis of system with DPWM mod-
ulator working at fsw ∼ 1MHz

1 %set datastores and times
2 close all
3 clear
4 clc
5 t_sim =1.5;%s; simulation time (Stop Time)
6 t_win =1;%s; time window to obtain 1 Hz resolution in fft analysis
7 n=1;
8 % closed loop trailing edge datastore
9 ds_cl_nbitADC16_nbitPWM10_TrailingEdge=Simulink.SimulationData.DatasetRef ...

10 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5
_nbitADC16_nbitPWM10_TrailingEdge.mat’, ’outs_closedloop ’);

11 ds_cl_nbitADC16_nbitPWM8_TrailingEdge=Simulink.SimulationData.DatasetRef ...
12 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’, ’outs_closedloop ’);
13 ds_cl_nbitADC16_nbitPWM7_TrailingEdge=Simulink.SimulationData.DatasetRef ...
14 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’, ’outs_closedloop ’);
15 ds_cl_nbitADC16_nbitPWM6_TrailingEdge=Simulink.SimulationData.DatasetRef ...
16 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’, ’outs_closedloop ’);
17 ds_cl_nbitADC16_nbitPWM5_TrailingEdge=Simulink.SimulationData.DatasetRef ...
18 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’, ’outs_closedloop ’);
19 % open loop trailing edge datastore
20 ds_ol_nbitADC16_nbitPWM8_TrailingEdge=Simulink.SimulationData.DatasetRef ...
21 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’, ’outs_openloop ’);
22 ds_ol_nbitADC16_nbitPWM7_TrailingEdge=Simulink.SimulationData.DatasetRef ...
23 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’, ’outs_openloop ’);
24 ds_ol_nbitADC16_nbitPWM6_TrailingEdge=Simulink.SimulationData.DatasetRef ...
25 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’, ’outs_openloop ’);
26 ds_ol_nbitADC16_nbitPWM5_TrailingEdge=Simulink.SimulationData.DatasetRef ...
27 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’, ’outs_openloop ’);
28 %load all t_int
29 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’ ,...
30 ’TE_PWM10_fsw1M ’, ’TE_PWM8_fsw1M ’, ’TE_PWM5_fsw1M ’ ,...
31 ’TE_PWM6_fsw1M ’, ’TE_PWM7_fsw1M ’, ’fclk_SYS ’);
32 %import t_int_dec
33 t_int_dec_PWM10=TE_PWM10_fsw1M.t_int_dec;
34 t_int_dec_PWM8=TE_PWM8_fsw1M.t_int_dec;
35 t_int_dec_PWM7=TE_PWM7_fsw1M.t_int_dec;
36 t_int_dec_PWM6=TE_PWM6_fsw1M.t_int_dec;
37 t_int_dec_PWM5=TE_PWM5_fsw1M.t_int_dec;
38 %import t_int
39 t_int_PWM10=TE_PWM10_fsw1M.t_int;
40 t_int_PWM8=TE_PWM8_fsw1M.t_int;
41 t_int_PWM7=TE_PWM7_fsw1M.t_int;
42 t_int_PWM6=TE_PWM6_fsw1M.t_int;
43 t_int_PWM5=TE_PWM5_fsw1M.t_int;
44 %%
45 %Trailing Edge
46 %define time vector; define the read

193

CHAPTER 5. APPENDIX

47 %number of sample to read 4 periods of traingular waveform
48 read_size_tr_PWM10=uint64 (4*(t_int_PWM10 *2^10)/t_int_PWM10 +1);
49 read_size_tr_PWM8=uint64 (4*(t_int_PWM8 *2^8)/t_int_PWM8 +1);
50 read_size_tr_PWM7=uint64 (4*(t_int_PWM7 *2^7)/t_int_PWM7 +1);
51 read_size_tr_PWM6=uint64 (4*(t_int_PWM6 *2^6)/t_int_PWM6 +1);
52 read_size_tr_PWM5=uint64 (4*(t_int_PWM5 *2^5)/t_int_PWM5 +1);
53

54 %set ReadSize to read first 4 periods of triangular waveform
55 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM10;
56 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM8;
57 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM7;
58 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM6;
59 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM5;
60

61 %read first 4 periods of triangular waveform and extract Time data
62 time_PWM10_tr=read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values).Time;
63 time_PWM8_tr=read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values).Time;
64 time_PWM7_tr=read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values).Time;
65 time_PWM6_tr=read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values).Time;
66 time_PWM5_tr=read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values).Time;
67

68 %reset read pointer to the position of the first sample (necessary to read from the
start each signal)

69 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values);
70 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values);
71 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values);
72 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values);
73 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values);
74

75 %set ReadSize lenght again
76 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM10;
77 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM8;
78 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM7;
79 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM6;
80 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values.ReadSize=read_size_tr_PWM5;
81

82 figure(n)%plot triangular waveform
83 n=n+1;
84 hold on
85 stairs(time_PWM10_tr , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {2}. Values).Data ,

’b’)
86 stairs(time_PWM8_tr , read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values).Data , ’r

’)
87 stairs(time_PWM7_tr , read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values).Data , ’m

’)
88 stairs(time_PWM6_tr , read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values).Data , ’g

’)
89 stairs(time_PWM5_tr , read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values).Data , ’c

’)
90 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
91 title(’Triangular waveforms trailing edge f_{sw}\sim 1 MHz’)
92 xlabel(’time [s]’)
93 ylabel(’Amplitude [V]’)
94

95 %reset read pointer to position of the first sample
96 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {2}. Values);
97 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {2}. Values);
98 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {2}. Values);
99 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {2}. Values);

194

5.2. CODES

100 %%
101 %set time vector to plot five period of sinewave
102 T=1e-3;%s period of input/output signal (sinewave)
103 n_period =5; %number of output signal periods that we want to see
104 read_size_PWM8=uint64(T/t_int_dec_PWM8*n_period);% #samples in n_period
105 read_size_PWM7=uint64(T/t_int_dec_PWM7*n_period);
106 read_size_PWM6=uint64(T/t_int_dec_PWM6*n_period);
107 read_size_PWM5=uint64(T/t_int_dec_PWM5*n_period);
108 read_size_PWM10=uint64(T/t_int_dec_PWM10*n_period);
109 %set ReadSize to read first n_period of single -ended output
110 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values.ReadSize=read_size_PWM10;
111 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values.ReadSize=read_size_PWM8;
112 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values.ReadSize=read_size_PWM7;
113 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values.ReadSize=read_size_PWM6;
114 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values.ReadSize=read_size_PWM5;
115 %extract Time vector
116 time_PWM10=read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values).Time;
117 time_PWM8=read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values).Time;
118 time_PWM7=read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values).Time;
119 time_PWM6=read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values).Time;
120 time_PWM5=read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values).Time;
121

122 %reset read pointer to position of the first sample
123 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values);
124 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values);
125 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values);
126 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values);
127

128 figure(n)%plot single -ended output
129 n=n+1;
130 hold on
131 plot(time_PWM8 , read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values).Data , ’r’)
132 plot(time_PWM7 , read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values).Data , ’m’)
133 plot(time_PWM6 , read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values).Data , ’g’)
134 plot(time_PWM5 , read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values).Data , ’c’)
135

136 legend(’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
137 title(’Single -ended output open -loop (f_{sw}\sim 1 MHz)’)
138 xlabel(’time [s]’)
139 ylabel(’Amplitude [V]’)
140

141 %reset read pointer to position of the first sample
142 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {5}. Values);
143 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {5}. Values);
144 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {5}. Values);
145 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {5}. Values);
146

147 %%set ReadSize to read first n_period of differential output
148 ds_ol_nbitADC16_nbitPWM8_TrailingEdge {7}. Values.ReadSize=read_size_PWM8;
149 ds_ol_nbitADC16_nbitPWM7_TrailingEdge {7}. Values.ReadSize=read_size_PWM7;
150 ds_ol_nbitADC16_nbitPWM6_TrailingEdge {7}. Values.ReadSize=read_size_PWM6;
151 ds_ol_nbitADC16_nbitPWM5_TrailingEdge {7}. Values.ReadSize=read_size_PWM5;
152 figure(n)%plot differential output (time vector is the same of single ended
153 %becuase the sample time is the same)
154 n=n+1;
155 hold on
156 plot(time_PWM8 , read(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {7}. Values).Data , ’r’)
157 plot(time_PWM7 , read(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {7}. Values).Data , ’m’)
158 plot(time_PWM6 , read(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {7}. Values).Data , ’g’)

195

CHAPTER 5. APPENDIX

159 plot(time_PWM5 , read(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {7}. Values).Data , ’c’)
160

161 legend(’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
162 title(’Differential output open -loop (f_{sw}\sim 1 MHz)’)
163 xlabel(’time [s]’)
164 ylabel(’Amplitude [V]’)
165

166 reset(ds_ol_nbitADC16_nbitPWM8_TrailingEdge {7}. Values);
167 reset(ds_ol_nbitADC16_nbitPWM7_TrailingEdge {7}. Values);
168 reset(ds_ol_nbitADC16_nbitPWM6_TrailingEdge {7}. Values);
169 reset(ds_ol_nbitADC16_nbitPWM5_TrailingEdge {7}. Values);
170 %%
171 %plot Vop closed -loop
172 %set read size
173 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {6}. Values.ReadSize=read_size_PWM10;
174 ds_cl_nbitADC16_nbitPWM8_TrailingEdge {6}. Values.ReadSize=read_size_PWM8;
175 ds_cl_nbitADC16_nbitPWM7_TrailingEdge {6}. Values.ReadSize=read_size_PWM7;
176 ds_cl_nbitADC16_nbitPWM6_TrailingEdge {6}. Values.ReadSize=read_size_PWM6;
177 ds_cl_nbitADC16_nbitPWM5_TrailingEdge {6}. Values.ReadSize=read_size_PWM5;
178

179 figure(n)
180 n=n+1;
181 hold on
182 plot(time_PWM10 , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {6}. Values).Data , ’b’)
183 plot(time_PWM8 , read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {6}. Values).Data , ’r’)
184 plot(time_PWM7 , read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {6}. Values).Data , ’m’)
185 plot(time_PWM6 , read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {6}. Values).Data , ’g’)
186 plot(time_PWM5 , read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {6}. Values).Data , ’c’)
187

188 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
189 title(’Single -ended output closed -loop (f_{sw} \sim 1 MHz)’)
190 xlabel(’time [s]’)
191 ylabel(’Amplitude [V]’)
192

193 %reset read pointer to position of the first sample
194 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {6}. Values);
195 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {6}. Values);
196 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {6}. Values);
197 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {6}. Values);
198 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {6}. Values);
199 %%
200 %reset read pointer to position of the first sample
201 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values);
202 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values);
203 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values);
204 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values);
205 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values);
206

207 %plot differential output closed -loop
208 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values.ReadSize=read_size_PWM10;
209 ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values.ReadSize=read_size_PWM8;
210 ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values.ReadSize=read_size_PWM7;
211 ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values.ReadSize=read_size_PWM6;
212 ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values.ReadSize=read_size_PWM5;
213

214 figure(n)
215 n=n+1;
216 hold on
217 plot(time_PWM10 , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values).Data , ’b’)

196

5.2. CODES

218 plot(time_PWM8 , read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values).Data , ’r’)
219 plot(time_PWM7 , read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values).Data , ’m’)
220 plot(time_PWM6 , read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values).Data , ’g’)
221 plot(time_PWM5 , read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values).Data , ’c’)
222

223 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)
224 title(’Differential output closed -loop (f_{sw} \sim 1 MHz)’)
225 xlabel(’time [s]’)
226 ylabel(’Amplitude [V]’)
227

228 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {9}. Values);
229 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {9}. Values);
230 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {9}. Values);
231 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {9}. Values);
232 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {9}. Values);
233 %%
234 %Compensator output
235 n_period =3;
236 t_int_comp =1/ fclk_SYS;
237 read_size_PWM8_comp=uint64(T/t_int_comp*n_period);% #samples in n_period
238 read_size_PWM7_comp=uint64(T/t_int_comp*n_period);
239 read_size_PWM6_comp=uint64(T/t_int_comp*n_period);
240 read_size_PWM5_comp=uint64(T/t_int_comp*n_period);
241 read_size_PWM10_comp=uint64(T/t_int_comp*n_period);
242

243 %set read size of compensator data
244 ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values.ReadSize=read_size_PWM10_comp;
245 ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values.ReadSize=read_size_PWM8_comp;
246 ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values.ReadSize=read_size_PWM7_comp;
247 ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values.ReadSize=read_size_PWM6_comp;
248 ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values.ReadSize=read_size_PWM5_comp;
249 %set time vector to plot compensator output
250 time_PWM10_comp=read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values).Time;
251 time_PWM8_comp=read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values).Time;
252 time_PWM7_comp=read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values).Time;
253 time_PWM6_comp=read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values).Time;
254 time_PWM5_comp=read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values).Time;
255

256 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values);
257 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values);
258 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values);
259 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values);
260 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values);
261

262 figure(n)
263 n=n+1;
264 hold on
265 stairs(time_PWM10_comp , read(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values).Data

, ’b’)
266 stairs(time_PWM8_comp , read(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values).Data ,

’r’)
267 stairs(time_PWM7_comp , read(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values).Data ,

’m’)
268 stairs(time_PWM6_comp , read(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values).Data ,

’g’)
269 stairs(time_PWM5_comp , read(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values).Data ,

’c’)
270

271 legend(’nbitPWM =10’, ’nbitPWM =8’, ’nbitPWM =7’, ’nbitPWM =6’, ’nbitPWM =5’)

197

CHAPTER 5. APPENDIX

272 title(’Compensator output closed -loop (f_{sw} \sim 1 MHz)’)
273 xlabel(’time [s]’)
274 ylabel(’Code’)
275 reset(ds_cl_nbitADC16_nbitPWM10_TrailingEdge {7}. Values);
276 reset(ds_cl_nbitADC16_nbitPWM8_TrailingEdge {7}. Values);
277 reset(ds_cl_nbitADC16_nbitPWM7_TrailingEdge {7}. Values);
278 reset(ds_cl_nbitADC16_nbitPWM6_TrailingEdge {7}. Values);
279 reset(ds_cl_nbitADC16_nbitPWM5_TrailingEdge {7}. Values);

198

5.2. CODES

5.2.10 Code to compute spectra

1 clc
2 clear
3 close all
4 %%
5 n=1;
6 ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10=Simulink.SimulationData.

DatasetRef ...
7 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM10_TrailingEdge.mat’ ,...
8 ’outs_closedloop ’);
9 ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8=Simulink.SimulationData.

DatasetRef ...
10 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’ ,...
11 ’outs_closedloop ’);
12 ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7=Simulink.SimulationData.

DatasetRef ...
13 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’ ,...
14 ’outs_closedloop ’);
15 ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6=Simulink.SimulationData.

DatasetRef ...
16 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’ ,...
17 ’outs_closedloop ’);
18 ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5=Simulink.SimulationData.

DatasetRef ...
19 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’ ,...
20 ’outs_closedloop ’);
21 ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10=Simulink.SimulationData.

DatasetRef ...
22 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM10_TrailingEdge.mat’ ,...
23 ’outs_closedloop ’);
24 ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8=Simulink.SimulationData.

DatasetRef ...
25 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’ ,...
26 ’outs_closedloop ’);
27 ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7=Simulink.SimulationData.

DatasetRef ...
28 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’ ,...
29 ’outs_closedloop ’);
30 ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6=Simulink.SimulationData.

DatasetRef ...
31 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’ ,...
32 ’outs_closedloop ’);
33 ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5=Simulink.SimulationData.

DatasetRef ...
34 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’ ,...
35 ’outs_closedloop ’);
36 %Noise shaping
37 ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS=Simulink.SimulationData.

199

CHAPTER 5. APPENDIX

DatasetRef ...
38 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_NS_TrailingEdge.mat’ ,...
39 ’outs_closedloop ’);
40 ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS=Simulink.SimulationData.

DatasetRef ...
41 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_NS_TrailingEdge.mat’ ,...
42 ’outs_closedloop ’);
43 %open -loop datastores
44 %fsw=1 MHz
45 ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8=Simulink.SimulationData.

DatasetRef ...
46 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’ ,...
47 ’outs_openloop ’);
48 ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7=Simulink.SimulationData.

DatasetRef ...
49 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’ ,...
50 ’outs_openloop ’);
51 ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6=Simulink.SimulationData.

DatasetRef ...
52 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’ ,...
53 ’outs_openloop ’);
54 ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5=Simulink.SimulationData.

DatasetRef ...
55 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’ ,...
56 ’outs_openloop ’);
57 %fsw =500 kHz
58 ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8=Simulink.SimulationData.

DatasetRef ...
59 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’ ,...
60 ’outs_openloop ’);
61 ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7=Simulink.SimulationData.

DatasetRef ...
62 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM7_TrailingEdge.mat’ ,...
63 ’outs_openloop ’);
64 ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6=Simulink.SimulationData.

DatasetRef ...
65 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM6_TrailingEdge.mat’ ,...
66 ’outs_openloop ’);
67 ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5=Simulink.SimulationData.

DatasetRef ...
68 (’DatastoreFiles/simOut_ol_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM5_TrailingEdge.mat’ ,...
69 ’outs_openloop ’);
70 %DDPWM
71 ds_ol_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4=Simulink.SimulationData.DatasetRef ...
72 (’DatastoreFiles/simOut_ol_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM12_DDPWM_N8M4.mat’ ,...
73 ’outs_openloop ’);
74 ds_ol_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4=Simulink.SimulationData.DatasetRef ...
75 (’DatastoreFiles/simOut_ol_1kHzsinewave_fsw500k_tsim1 .5

200

5.2. CODES

_nbitADC16_nbitPWM9_DDPWM_N5M4.mat’ ,...
76 ’outs_openloop ’);
77 ds_cl_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4=Simulink.SimulationData.DatasetRef ...
78 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM12_DDPWM_N8M4.mat’ ,...
79 ’outs_closedloop ’);
80 ds_cl_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4=Simulink.SimulationData.DatasetRef ...
81 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM9_DDPWM_N5M4.mat’ ,...
82 ’outs_closedloop ’);
83 %DDPM -DPWM combination
84 ds_ol_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8=Simulink.SimulationData.DatasetRef ...
85 (’DatastoreFiles/simOut_ol_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_nbitDDPM8.mat’ ,...
86 ’outs_openloop ’);
87 ds_cl_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8=Simulink.SimulationData.DatasetRef ...
88 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_nbitDDPM8.mat’ ,...
89 ’outs_closedloop ’);
90 ds_cl_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7=Simulink.SimulationData.DatasetRef ...
91 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM7_nbitDDPM7.mat’ ,...
92 ’outs_closedloop ’);
93 ds_cl_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6=Simulink.SimulationData.DatasetRef ...
94 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM6_nbitDDPM6.mat’ ,...
95 ’outs_closedloop ’);
96 ds_cl_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5=Simulink.SimulationData.DatasetRef ...
97 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM5_nbitDDPM5.mat’ ,...
98 ’outs_closedloop ’);
99 ds_cl_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8=Simulink.SimulationData.DatasetRef ...

100 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw1M_tsim1 .5
_nbitADC16_nbitPWM8_nbitDDPM8.mat’ ,...

101 ’outs_closedloop ’);
102 ds_cl_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7=Simulink.SimulationData.DatasetRef ...
103 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw1M_tsim1 .5

_nbitADC16_nbitPWM7_nbitDDPM7.mat’ ,...
104 ’outs_closedloop ’);
105 ds_cl_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6=Simulink.SimulationData.DatasetRef ...
106 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw1M_tsim1 .5

_nbitADC16_nbitPWM6_nbitDDPM6.mat’ ,...
107 ’outs_closedloop ’);
108 ds_cl_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5=Simulink.SimulationData.DatasetRef ...
109 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw1M_tsim1 .5

_nbitADC16_nbitPWM5_nbitDDPM5.mat’ ,...
110 ’outs_closedloop ’);
111 %OFinFP
112 ds_cl_OFinFP_fsw500k_nbitADC16_nbitPWM8=Simulink.SimulationData.DatasetRef ...
113 (’DatastoreFiles/simOut_cl_1kHzsinewave_OFinFP_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge.mat’ ,...
114 ’outs_closedloop ’);
115

116 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’, ’TE_PWM5_fsw1M ’);
117 %it is necessary import only one t_int_dec because it is constant for all
118 %simulations
119 t_int_dec=TE_PWM5_fsw1M.t_int_dec;
120 t_sim =1.5; %simulation time used
121 t_win =1; %analysis window without transient for fft

201

CHAPTER 5. APPENDIX

122 t_jump=t_sim -t_win; %window time with transient
123

124 sample_start=uint64(t_jump/t_int_dec)+1; %position of first sample in t_win
125 sample_tot=uint64(t_sim/t_int_dec)+1; %number of total sample in vector
126

127 window=rectwin(sample_tot -sample_start); %define the window analysis
128 nfft=numel(window); %define the number of samples point in the window which the fft

is done
129 window_ol=rectwin(sample_tot -1- sample_start); %define the window analysis
130 nfft_ol=numel(window_ol); %define the number of samples point in the window which

the fft is done
131 %%
132 %output filter in feedback path
133 %closed -loop
134 %fsw =500 kHz
135 Vop_OFinFP_fsw500k_nbitADC16_nbitPWM8=readall ...
136 (ds_cl_OFinFP_fsw500k_nbitADC16_nbitPWM8 {9}. Values)...
137 .Data(sample_start +1: sample_tot);
138 [PO_DIFF_OFinFP_fsw500k_nbitADC16_nbitPWM8 , freq_OFinFP_fsw500k_nbitADC16_nbitPWM8

]=...
139 pwelch(Vop_OFinFP_fsw500k_nbitADC16_nbitPWM8 -mean(

Vop_OFinFP_fsw500k_nbitADC16_nbitPWM8) ,...
140 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
141 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_OFinFP_fsw500k_nbitADC16_nbitPWM8 ’ ,...
142 ’freq_OFinFP_fsw500k_nbitADC16_nbitPWM8 ’, ’-v7.3’, ’-append ’)
143 clear PO_DIFF_OFinFP_fsw500k_nbitADC16_nbitPWM8

freq_OFinFP_fsw500k_nbitADC16_nbitPWM8 ...
144 Vop_OFinFP_fsw500k_nbitADC16_nbitPWM8
145 %%
146 %CLOSED LOOP
147 %fsw =500 kHz closed -loop
148 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10=readall ...
149 (ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 {9}. Values)...
150 .Data(sample_start +1: sample_tot);
151 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10]=...
152 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10) ,...
153 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
154 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 ’ ,...
155 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 ’, ’-v7.3’, ’-append ’)
156 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 ...
157 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10
158

159 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8=readall ...
160 (ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 {9}. Values)...
161 .Data(sample_start +1: sample_tot);
162 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8]=...
163 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8) ,...
164 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
165 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ’ ,...
166 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ’, ’-v7.3’, ’-append ’)
167 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8

202

5.2. CODES

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ...
168 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8
169

170 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7=readall ...
171 (ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 {9}. Values)...
172 .Data(sample_start +1: sample_tot);
173 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7]=...
174 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7) ,...
175 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
176 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ’ ,...
177 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ’, ’-v7.3’, ’-append ’)
178 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ...
179 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7
180

181 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6=readall ...
182 (ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 {9}. Values)...
183 .Data(sample_start +1: sample_tot);
184 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6]=...
185 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6) ,...
186 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
187 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ’ ,...
188 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ’, ’-v7.3’, ’-append ’)
189 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ...
190 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6
191

192 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5=readall ...
193 (ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 {9}. Values)...
194 .Data(sample_start +1: sample_tot);
195 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5]=...
196 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5) ,...
197 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
198 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ’ ,...
199 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ’, ’-v7.3’, ’-append ’)
200 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ...
201 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5
202 %%
203 %fsw=1 MHz closed -loop
204 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10=readall ...
205 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 {9}. Values)...
206 .Data(sample_start +1: sample_tot);
207 [PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10]=...
208 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10) ,...
209 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
210 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 ’ ,...

203

CHAPTER 5. APPENDIX

211 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 ’, ’-v7.3’, ’-append ’)
212 clear PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 ...
213 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10
214

215 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8=readall ...
216 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 {9}. Values)...
217 .Data(sample_start +1: sample_tot);
218 [PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8]=...
219 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8) ,...
220 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
221 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ’ ,...
222 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ’, ’-v7.3’, ’-append ’)
223 clear PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ...
224 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8
225

226 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7=readall ...
227 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 {9}. Values)...
228 .Data(sample_start +1: sample_tot);
229 [PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7]=...
230 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7) ,...
231 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
232 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ’ ,...
233 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ’, ’-v7.3’, ’-append ’)
234 clear PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ...
235 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7
236

237 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6=readall ...
238 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 {9}. Values)...
239 .Data(sample_start +1: sample_tot);
240 [PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6]=...
241 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6) ,...
242 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
243 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ’ ,...
244 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ’, ’-v7.3’, ’-append ’)
245 clear PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ...
246 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6
247

248 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5=readall ...
249 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 {9}. Values)...
250 .Data(sample_start +1: sample_tot);
251 [PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5]=...
252 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5) ,...
253 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
254 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

204

5.2. CODES

PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ’ ,...
255 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ’, ’-v7.3’, ’-append ’)
256 clear PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ...
257 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5
258 %%
259 %noise shaping
260 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS=readall ...
261 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS {10}. Values)...
262 .Data(sample_start +1: sample_tot);
263 [PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS]=...
264 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS) ,...
265 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
266 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS ’ ,...
267 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS ’, ’-v7.3’, ’-append ’)
268 clear PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS ...
269 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS
270

271 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS=readall ...
272 (ds_cl_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS {10}. Values)...
273 .Data(sample_start +1: sample_tot);
274 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS]=...
275 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS) ,...
276 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
277 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS ’ ,...
278 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS ’, ’-v7.3’, ’-append ’

)
279 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS ...
280 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS
281 %%
282 %OPEN -LOOP
283 %fsw=1 MHz open -loop
284 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8=readall ...
285 (ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 {7}. Values)...
286 .Data(sample_start +1: sample_tot -1);
287 [POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8]=...
288 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8) ,...
289 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
290 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ’ ,...
291 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ’, ’-v7.3’, ’-append ’)
292 clear POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ...
293 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8
294

295 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7=readall ...
296 (ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 {7}. Values)...
297 .Data(sample_start +1: sample_tot -1);
298 [POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ,

205

CHAPTER 5. APPENDIX

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7]=...
299 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7) ,...
300 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
301 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ’ ,...
302 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ’, ’-v7.3’, ’-append ’)
303 clear POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 ...
304 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7
305

306 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6=readall ...
307 (ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 {7}. Values)...
308 .Data(sample_start +1: sample_tot -1);
309 [POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6]=...
310 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6) ,...
311 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
312 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ’ ,...
313 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ’, ’-v7.3’, ’-append ’)
314 clear POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 ...
315 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6
316

317 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5=readall ...
318 (ds_ol_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 {7}. Values)...
319 .Data(sample_start +1: sample_tot -1);
320 [POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ,

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5]=...
321 pwelch(Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 -mean(

Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5) ,...
322 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
323 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ’ ,...
324 ’freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ’, ’-v7.3’, ’-append ’)
325 clear POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5

freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ...
326 Vop_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5
327 %%
328 %fsw =500k open -loop
329 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8=readall ...
330 (ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 {7}. Values)...
331 .Data(sample_start +1: sample_tot -1);
332 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8]=...
333 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ,...
334 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
335 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ’ ,...
336 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ’, ’-v7.3’, ’-append ’)
337 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 ...
338 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8
339

340 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7=readall ...
341 (ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 {7}. Values)...
342 .Data(sample_start +1: sample_tot -1);

206

5.2. CODES

343 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ,
freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7]=...

344 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 -mean(
Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7) ,...

345 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
346 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ’ ,...
347 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ’, ’-v7.3’, ’-append ’)
348 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 ...
349 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7
350

351 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6=readall ...
352 (ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 {7}. Values)...
353 .Data(sample_start +1: sample_tot -1);
354 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6]=...
355 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6) ,...
356 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
357 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ’ ,...
358 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ’, ’-v7.3’, ’-append ’)
359 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 ...
360 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6
361

362 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5=readall ...
363 (ds_ol_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 {7}. Values)...
364 .Data(sample_start +1: sample_tot -1);
365 [PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ,

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5]=...
366 pwelch(Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 -mean(

Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5) ,...
367 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
368 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ’ ,...
369 ’freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ’, ’-v7.3’, ’-append ’)
370 clear PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5

freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 ...
371 Vop_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5
372 %%
373 %DDPWM
374 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4=readall ...
375 (ds_ol_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 {8}. Values)...
376 .Data(sample_start +1: sample_tot -1);
377 [POP_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ,

freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4]=...
378 pwelch(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 -...
379 mean(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4) ,...
380 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
381 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

POP_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ’ ,...
382 ’freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ’, ’-v7.3’, ’-append ’)
383 clear POP_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4

freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ...
384 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4
385

386 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4=readall ...

207

CHAPTER 5. APPENDIX

387 (ds_cl_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 {8}. Values)...
388 .Data(sample_start +1: sample_tot);
389 [PODIFF_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ,

freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4]=...
390 pwelch(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 -mean(

Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4) ,...
391 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
392 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ’ ,...
393 ’freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ’, ’-v7.3’, ’-append ’)
394 clear PODIFF_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4

freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 ...
395 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4
396

397 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4=readall ...
398 (ds_cl_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 {8}. Values)...
399 .Data(sample_start +1: sample_tot);
400 [POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ,

freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4]=...
401 pwelch(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 -mean(

Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4) ,...
402 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
403 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ’ ,...
404 ’freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ’, ’-v7.3’, ’-append ’)
405 clear POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4

freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ...
406 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4
407

408 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4=readall ...
409 (ds_ol_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 {8}. Values)...
410 .Data(sample_start +1: sample_tot -1);
411 [POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ,

freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4]=...
412 pwelch(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 -mean(

Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4) ,...
413 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
414 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ’ ,...
415 ’freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ’, ’-v7.3’, ’-append ’)
416 clear POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4

freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 ...
417 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4
418

419 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2=readall ...
420 (MYSOL_ds_ol_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 {9}. Values)...
421 .Data(sample_start +1: sample_tot -1);
422 [POP_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ,

freq_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2]=...
423 pwelch(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 -mean(

Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2) ,...
424 window_ol , [], nfft_ol , 1/t_int_dec , ’onesided ’, ’power’);
425 save(’SpectraData/PowerSpectra_OpenLoop_MYSOL.mat’ ,...
426 ’POP_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ’ ,...
427 ’freq_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ’, ’-v7.3’, ’-append ’)
428 clear POP_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2

freq_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ...
429 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2
430

208

5.2. CODES

431 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2=readall ...
432 (MYSOL_ds_cl_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 {6}. Values)...
433 .Data(sample_start +1: sample_tot);
434 [POP_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ,

freq_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2]=...
435 pwelch(Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 -mean(

Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2) ,...
436 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
437 save(’SpectraData/PowerSpectra_ClosedLoop_MYSOL.mat’, ’

POP_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ’ ,...
438 ’freq_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ’, ’-v7.3’, ’-append ’)
439 clear POP_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2

freq_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2 ...
440 Vop_DDPWM_fsw500k_nbitADC16_nbitPWM8_N6M2
441 %%
442 Vop_DC_fsw500k_nbitADC6_nbitPWM7=readall ...
443 (ds_cl_DC_nbitADC6_nbitPWM7 {6}. Values)...
444 .Data(sample_start +1: sample_tot);
445 [POP_DC_fsw500k_nbitADC6_nbitPWM7 , freq_DC_fsw500k_nbitADC6_nbitPWM7]=...
446 pwelch(Vop_DC_fsw500k_nbitADC6_nbitPWM7 -mean(Vop_DC_fsw500k_nbitADC6_nbitPWM7)

,...
447 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
448 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’POP_DC_fsw500k_nbitADC6_nbitPWM7 ’

,...
449 ’freq_DC_fsw500k_nbitADC6_nbitPWM7 ’, ’-v7.3’, ’-append ’)
450 clear POP_DC_fsw500k_nbitADC6_nbitPWM7 freq_DC_fsw500k_nbitADC6_nbitPWM7 ...
451 Vop_DC_fsw500k_nbitADC6_nbitPWM7
452

453 Vop_DC_fsw500k_nbitADC7_nbitPWM6=readall ...
454 (ds_cl_DC_nbitADC7_nbitPWM6 {6}. Values)...
455 .Data(sample_start +1: sample_tot);
456 [POP_DC_fsw500k_nbitADC7_nbitPWM6 , freq_DC_fsw500k_nbitADC7_nbitPWM6]=...
457 pwelch(Vop_DC_fsw500k_nbitADC7_nbitPWM6 -mean(Vop_DC_fsw500k_nbitADC7_nbitPWM6)

,...
458 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
459 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’POP_DC_fsw500k_nbitADC7_nbitPWM6 ’

,...
460 ’freq_DC_fsw500k_nbitADC7_nbitPWM6 ’, ’-v7.3’, ’-append ’)
461 clear POP_DC_fsw500k_nbitADC7_nbitPWM6 freq_DC_fsw500k_nbitADC7_nbitPWM6 ...
462 Vop_DC_fsw500k_nbitADC7_nbitPWM6
463 %%
464 %DC DDPWM
465 Vop_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2=readall ...
466 (ds_cl_DC_DDPWM_nbitADC6_nbitPWM7_N5M2 {6}. Values)...
467 .Data(sample_start +1: sample_tot);
468 [POP_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2 ,

freq_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2]=...
469 pwelch(Vop_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2 -mean(

Vop_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2) ,...
470 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
471 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

POP_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2 ’ ,...
472 ’freq_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2 ’, ’-v7.3’, ’-append ’)
473 clear POP_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2

freq_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2 ...
474 Vop_DC_DDPWM_fsw500k_nbitADC6_nbitPWM7_N5M2
475

476 Vop_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2=readall ...
477 (ds_cl_DC_DDPWM_nbitADC7_nbitPWM6_N4M2 {6}. Values)...

209

CHAPTER 5. APPENDIX

478 .Data(sample_start +1: sample_tot);
479 [POP_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2 ,

freq_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2]=...
480 pwelch(Vop_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2 -mean(

Vop_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2) ,...
481 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
482 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

POP_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2 ’ ,...
483 ’freq_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2 ’, ’-v7.3’, ’-append ’)
484 clear POP_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2

freq_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2 ...
485 Vop_DC_DDPWM_fsw500k_nbitADC7_nbitPWM6_N4M2
486 %%
487 %DDPM -DPWM
488 %open -loop
489 Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8=readall ...
490 (ds_ol_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 {6}. Values)...
491 .Data(sample_start +1: sample_tot -1);
492 [PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ,

freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8]=...
493 pwelch(Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 -mean(

Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8) ,...
494 window_ol , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
495 save(’SpectraData/PowerSpectra_OpenLoop.mat’, ’

PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ’ ,...
496 ’freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ’, ’-v7.3’, ’-append ’)
497 clear PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8

freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ...
498 Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8
499 %%
500 Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8=readall ...
501 (ds_cl_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 {8}. Values)...
502 .Data(sample_start +1: sample_tot);
503 [PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ,

freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8]=...
504 pwelch(Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 -mean(

Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8) ,...
505 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
506 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ’ ,...
507 ’freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ’, ’-v7.3’, ’-append ’)
508 clear PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8

freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 ...
509 Vop_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8
510

511 Vop_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7=readall ...
512 (ds_cl_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 {8}. Values)...
513 .Data(sample_start +1: sample_tot -1);
514 [PODIFF_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 ,

freq_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7]=...
515 pwelch(Vop_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 -mean(

Vop_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7) ,...
516 window_ol , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
517 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 ’ ,...
518 ’freq_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 ’, ’-v7.3’, ’-append ’)
519 clear PODIFF_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7

freq_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 ...
520 Vop_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7

210

5.2. CODES

521

522 Vop_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6=readall ...
523 (ds_cl_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 {8}. Values)...
524 .Data(sample_start +1: sample_tot);
525 [PODIFF_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 ,

freq_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6]=...
526 pwelch(Vop_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 -mean(

Vop_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6) ,...
527 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
528 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 ’ ,...
529 ’freq_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 ’, ’-v7.3’, ’-append ’)
530 clear PODIFF_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6

freq_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 ...
531 Vop_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6
532

533 Vop_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5=readall ...
534 (ds_cl_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 {8}. Values)...
535 .Data(sample_start +1: sample_tot);
536 [PODIFF_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 ,

freq_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5]=...
537 pwelch(Vop_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 -mean(

Vop_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5) ,...
538 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
539 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 ’ ,...
540 ’freq_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 ’, ’-v7.3’, ’-append ’)
541 clear PODIFF_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5

freq_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 ...
542 Vop_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5
543

544 Vop_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8=readall ...
545 (ds_cl_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 {8}. Values)...
546 .Data(sample_start +1: sample_tot);
547 [PODIFF_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 , freq_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8

]=...
548 pwelch(Vop_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 -mean(

Vop_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8) ,...
549 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
550 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 ’ ,...
551 ’freq_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 ’, ’-v7.3’, ’-append ’)
552 clear PODIFF_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8

freq_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 ...
553 Vop_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8
554

555 Vop_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7=readall ...
556 (ds_cl_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 {8}. Values)...
557 .Data(sample_start +1: sample_tot);
558 [PODIFF_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 , freq_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7

]=...
559 pwelch(Vop_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 -mean(

Vop_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7) ,...
560 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
561 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 ’ ,...
562 ’freq_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 ’, ’-v7.3’, ’-append ’)
563 clear PODIFF_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7

freq_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 ...

211

CHAPTER 5. APPENDIX

564 Vop_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7
565

566 Vop_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6=readall ...
567 (ds_cl_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 {8}. Values)...
568 .Data(sample_start +1: sample_tot);
569 [PODIFF_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 , freq_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6

]=...
570 pwelch(Vop_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 -mean(

Vop_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6) ,...
571 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
572 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 ’ ,...
573 ’freq_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 ’, ’-v7.3’, ’-append ’)
574 clear PODIFF_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6

freq_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 ...
575 Vop_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6
576

577 Vop_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5=readall ...
578 (ds_cl_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 {8}. Values)...
579 .Data(sample_start +1: sample_tot);
580 [PODIFF_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 , freq_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5

]=...
581 pwelch(Vop_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 -mean(

Vop_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5) ,...
582 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
583 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PODIFF_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 ’ ,...
584 ’freq_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 ’, ’-v7.3’, ’-append ’)
585 clear PODIFF_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5

freq_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 ...
586 Vop_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5
587 %%
588 %%anti -alisaing filter output
589 outAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8=readall ...
590 (ds_cl_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 {3}. Values)...
591 .Data(sample_start +1: sample_tot);
592 [PoutAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 , ~]=...
593 pwelch(outAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 -mean(

outAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8) ,...
594 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
595 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PoutAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 ’ ,...
596 ’-v7.3’, ’-append ’)
597 clear PoutAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 ...
598 outAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8
599

600 outAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5=readall ...
601 (ds_cl_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 {3}. Values)...
602 .Data(sample_start +1: sample_tot);
603 [PoutAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 , ~]=...
604 pwelch(outAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 -mean(

outAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5) ,...
605 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
606 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PoutAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 ’ ,...
607 ’-v7.3’, ’-append ’)
608 clear PoutAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 ...
609 outAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5
610

212

5.2. CODES

611 outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8=readall ...
612 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 {3}. Values)...
613 .Data(sample_start +1: sample_tot);
614 [PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 , ~]=...
615 pwelch(outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 -mean(

outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8) ,...
616 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
617 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ’ ,...
618 ’-v7.3’, ’-append ’)
619 clear PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 ...
620 outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8
621

622 outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5=readall ...
623 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 {3}. Values)...
624 .Data(sample_start +1: sample_tot);
625 [PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 , ~]=...
626 pwelch(outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 -mean(

outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5) ,...
627 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
628 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ’ ,...
629 ’-v7.3’, ’-append ’)
630 clear PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 ...
631 outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5
632

633 outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10=readall ...
634 (ds_cl_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 {3}. Values)...
635 .Data(sample_start +1: sample_tot);
636 [PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 , ~]=...
637 pwelch(outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 -mean(

outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10) ,...
638 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
639 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 ’ ,...
640 ’-v7.3’, ’-append ’)
641 clear PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 ...
642 outAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10
643 %%
644 %Low frequency flck_SYS ~ 4MHz
645 ds_cl_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW=Simulink.SimulationData.DatasetRef ...
646 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge_fclkSYS_LOW.mat’ ,...
647 ’outs_closedloop ’);
648 ds_cl_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW=Simulink.SimulationData.DatasetRef ...
649 (’DatastoreFiles/simOut_cl_1kHzsinewave_AAfilterInFeedbackPath_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_TrailingEdge_fclkSYS_LOW.mat’ ,...
650 ’outs_closedloop ’);
651 ds_cl_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW=Simulink.SimulationData.DatasetRef ...
652 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw1M_tsim1 .5

_nbitADC16_nbitPWM8_nbitDDPM8_fclkSYS_LOW.mat’ ,...
653 ’outs_closedloop ’);
654 ds_cl_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW=Simulink.SimulationData.DatasetRef

...
655 (’DatastoreFiles/simOut_cl_1kHzsinewave_fsw500k_tsim1 .5

_nbitADC16_nbitPWM8_nbitDDPM8_fclkSYS_LOW.mat’ ,...
656 ’outs_closedloop ’);
657 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge_fclkSYS_LOW.mat’, ’

TE_PWM8_fsw1M ’);

213

CHAPTER 5. APPENDIX

658 %it is necessary import only one t_int_dec because it is constant for all
659 %simulations
660 t_int_dec=TE_PWM8_fsw1M.t_int_dec;
661 t_sim =1.5; %simulation time used
662 t_win =1; %analysis window without transient for fft
663 t_jump=t_sim -t_win; %window time with transient
664

665 sample_start=uint64(t_jump/t_int_dec)+1; %position of first sample in t_win
666 sample_tot=uint64(t_sim/t_int_dec)+1; %number of total sample in vector
667

668 window=rectwin(sample_tot -sample_start); %define the window analysis
669 nfft=numel(window); %define the number of samples point in the window which the fft

is done
670 %%
671 %power spectra
672 Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW=readall ...
673 (ds_cl_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW {9}. Values)...
674 .Data(sample_start +1: sample_tot);
675 [PO_DIFF_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW ,

freq_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW]=...
676 pwelch(Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW -mean(

Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW) ,...
677 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
678 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW ’ ,...
679 ’freq_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW ’, ’-v7.3’, ’-append ’)
680 clear PO_DIFF_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW

freq_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW ...
681 Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW
682

683 Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW=readall ...
684 (ds_cl_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW {9}. Values)...
685 .Data(sample_start +1: sample_tot);
686 [PO_DIFF_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW ,

freq_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW]=...
687 pwelch(Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW -mean(

Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW) ,...
688 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
689 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW ’ ,...
690 ’freq_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW ’, ’-v7.3’, ’-append ’)
691 clear PO_DIFF_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW

freq_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW ...
692 Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW
693

694 Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW=readall ...
695 (ds_cl_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW {8}. Values)...
696 .Data(sample_start +1: sample_tot);
697 [PO_DIFF_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ,

freq_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW]=...
698 pwelch(Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW -mean(

Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW) ,...
699 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power ’);
700 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ’ ,...
701 ’freq_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ’, ’-v7.3’, ’-append ’)
702 clear PO_DIFF_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW

freq_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ...
703 Vop_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW

214

5.2. CODES

704

705 Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW=readall ...
706 (ds_cl_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW {8}. Values)...
707 .Data(sample_start +1: sample_tot);
708 [PO_DIFF_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ,

freq_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW]=...
709 pwelch(Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW -mean(

Vop_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW) ,...
710 window , [], nfft , 1/t_int_dec , ’onesided ’, ’power’);
711 save(’SpectraData/PowerSpectra_ClosedLoop.mat’, ’

PO_DIFF_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ’ ,...
712 ’freq_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ’, ’-v7.3’, ’-append ’)
713 clear PO_DIFF_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW

freq_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW ...
714 Vop_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW

215

CHAPTER 5. APPENDIX

5.2.11 Code to compute SNR from simulations data

1 clc
2 clear
3 close all
4 %%
5 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’, ’TE_PWM5_fsw1M ’);
6 %it is necessary import only one t_int_dec because it is constant for all
7 %simulations
8 t_int_dec=TE_PWM5_fsw1M.t_int_dec;
9 t_sim =1.5; %simulation time used

10 t_win =1; %analysis window without transient for fft
11 t_jump=t_sim -t_win; %window time with transient
12

13 sample_start=uint64(t_jump/t_int_dec)+1; %position of first sample in t_win
14 sample_tot=uint64(t_sim/t_int_dec)+1; %number of total sample in vector
15 window=rectwin(sample_tot -sample_start); %define the window analysis
16 nfft=numel(window); %define the number of samples point in the window which the fft

is done
17 window_ol=rectwin(sample_tot -1- sample_start); %define the window analysis
18 nfft_ol=numel(window_ol); %define the number of samples point in the window which

the fft is done
19

20 %file and window
21 file_PS_cl=matfile(’SpectraData/PowerSpectra_ClosedLoop.mat’);
22 file_PS_ol=matfile(’SpectraData/PowerSpectra_OpenLoop.mat’);
23 rbw=round(enbw(window));
24 rbw_ol=enbw(window_ol);
25 %set deafult parameters of the graphs
26 set(0, ’defaultAxesFontSize ’, 20);
27 set(0, ’defaultLegendFontSize ’, 20);
28 %%
29 %SNR computation
30 %output filter in FP
31 figure(’Name’, ’SNR system with output filter in feedback path (nbitPWM=8, f_{sw} \

sim 500 kHz)’)
32 snr(file_PS_cl.PO_DIFF_OFinFP_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1) ,...
33 file_PS_cl.freq_OFinFP_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1), rbw , 20, ’power’

)
34 title ({’Power spectrum of differential output of system with output filter in

feedback path’;...
35 ’(nbitPWM=8, f_{sw} \sim 500 kHz)’})
36 %closed loop
37 %fsw =500k
38 %differential spectra
39 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM =10,

f_{sw} \sim 500 kHz)’)
40 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 (1:20005 ,

1) ,...
41 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 (1:20005 , 1),

rbw , 20, ’power’)
42 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
43 ’(nbitPWM =10, f_{sw} \sim 500 kHz)’})
44 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=8,

f_{sw} \sim 500 kHz)’)
45 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 ,

1) ,...
46 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1),

216

5.2. CODES

rbw , 20, ’power’)
47 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
48 ’(nbitPWM=8, f_{sw} \sim 500 kHz)’})
49 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=7,

f_{sw} \sim 500 kHz)’)
50 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 ,

1) ,...
51 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw , 20, ’power’)
52 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
53 ’(nbitPWM=7, f_{sw} \sim 500 kHz)’})
54 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=6,

f_{sw} \sim 500 kHz)’)
55 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 ,

1) ,...
56 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw , 20, ’power’)
57 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
58 ’(nbitPWM=6, f_{sw} \sim 500 kHz)’})
59 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=5,

f_{sw} \sim 500 kHz)’)
60 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 ,

1) ,...
61 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw , 20, ’power’)
62 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
63 ’(nbitPWM=5, f_{sw} \sim 500 kHz)’})
64 %%
65 %fsw=1M closed -loop
66 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM =10,

f_{sw} \sim 1 MHz)’)
67 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 (1:20005 , 1)

,...
68 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 (1:20005 , 1),

rbw , 20, ’power’)
69 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
70 ’(nbitPWM =10, f_{sw} \sim 1 MHz)’})
71 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=8,

f_{sw} \sim 1 MHz)’)
72 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1)

,...
73 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1),

rbw , 20, ’power’)
74 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
75 ’(nbitPWM=8, f_{sw} \sim 1 MHz)’})
76 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=7,

f_{sw} \sim 1 MHz)’)
77 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1)

,...
78 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw , 20, ’power’)
79 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...

217

CHAPTER 5. APPENDIX

80 ’(nbitPWM=7, f_{sw} \sim 1 MHz)’})
81 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=6,

f_{sw} \sim 1 MHz)’)
82 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1)

,...
83 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw , 20, ’power’)
84 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
85 ’(nbitPWM=6, f_{sw} \sim 1 MHz)’})
86 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path (nbitPWM=5,

f_{sw} \sim 1 MHz)’)
87 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1)

,...
88 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw , 20, ’power’)
89 title ({’Differential output power spectrum of system with anti -aliasing filter in

feedback path’;...
90 ’(nbitPWM=5, f_{sw} \sim 1 MHz)’})
91 %%
92 %noise shaping
93 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path , noise

shaping (nbitPWM=8, f_{sw} \sim 1 MHz)’)
94 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS (1:20005 ,

1) ,...
95 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS (1:20005 , 1),

rbw , 20, ’power’)
96 title ({’Differential output power spectrum of system with noise shaping ’;...
97 ’(nbitPWM=8, f_{sw} \sim 1 MHz)’})
98 figure(’Name’, ’SNR system with anti -aliasing filter in feedback path , noise

shaping (nbitPWM=8, f_{sw} \sim 500 kHz)’)
99 snr(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS

(1:20005 , 1) ,...
100 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS (1:20005 ,

1), rbw , 20, ’power’)
101 title ({’Differential output power spectrum of system with noise shaping ’;...
102 ’(nbitPWM=8, f_{sw} \sim 500 kHz)’})
103 %%
104 %open -loop
105 %fsw =500k
106 %differential
107 figure(’Name’, ’SNR system open -loop (nbitPWM=8, f_{sw} \sim 500 kHz)’)
108 snr(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 ,

1) ,...
109 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
110 title ({’Differential output power spectrum of open -loop system ’;...
111 ’(nbitPWM=8, f_{sw} \sim 500 kHz)’})
112 figure(’Name’, ’SNR system open -loop (nbitPWM=7, f_{sw} \sim 500 kHz)’)
113 snr(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 ,

1) ,...
114 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
115 title ({’Differential output power spectrum of open -loop system ’;...
116 ’(nbitPWM=7, f_{sw} \sim 500 kHz)’})
117 figure(’Name’, ’SNR system open -loop (nbitPWM=6, f_{sw} \sim 500 kHz)’)
118 snr(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 ,

1) ,...
119 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 , 1),

218

5.2. CODES

rbw_ol +.1, 20, ’power’)
120 title ({’Differential output power spectrum of open -loop system ’;...
121 ’(nbitPWM=6, f_{sw} \sim 500 kHz)’})
122 figure(’Name’, ’SNR system open -loop (nbitPWM=5, f_{sw} \sim 500 kHz)’)
123 snr(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 ,

1) ,...
124 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
125 title ({’Differential output power spectrum of open -loop system ’;...
126 ’(nbitPWM=5, f_{sw} \sim 500 kHz)’})
127 %%
128 %fsw=1M
129 %differential
130 figure(’Name’, ’SNR system open -loop (nbitPWM=8, f_{sw} \sim 1 MHz)’)
131 snr(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1) ,...
132 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
133 title ({’Differential output power spectrum of open -loop system ’;...
134 ’(nbitPWM=8, f_{sw} \sim 1 MHz)’})
135 figure(’Name’, ’SNR system open -loop (nbitPWM=7, f_{sw} \sim 1 MHz)’)
136 snr(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1) ,...
137 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
138 title ({’Differential output power spectrum of open -loop system ’;...
139 ’(nbitPWM=7, f_{sw} \sim 1 MHz)’})
140 figure(’Name’, ’SNR system open -loop (nbitPWM=6, f_{sw} \sim 1 MHz)’)
141 snr(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1) ,...
142 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
143 title ({’Differential output power spectrum of open -loop system ’;...
144 ’(nbitPWM=6, f_{sw} \sim 1 MHz)’})
145 figure(’Name’, ’SNR system open -loop (nbitPWM=5, f_{sw} \sim 1 MHz)’)
146 snr(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1) ,...
147 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
148 title ({’Differential output power spectrum of open -loop system ’;...
149 ’(nbitPWM=5, f_{sw} \sim 1 MHz)’})
150 %%
151 %DDPWM
152 figure(’Name’, ’SNR system open -loop DDPWM (nbitPWM =12, f_{sw} \sim 500 kHz , N=8, M

=4)’)
153 snr(file_PS_ol.POP_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1) ,...
154 file_PS_ol.freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1), rbw_ol +.1,

20, ’power ’)
155 ylim ([-200 18])
156 title ({’Differential output power spectrum of open -loop system with DDPWM modulator

’;...
157 ’(N=8, M=4, f_{sw} \sim 500 kHz)’})
158 figure(’Name’, ’SNR system closed -loop DDPWM (nbitPWM =12, f_{sw} \sim 500 kHz , N=8,

M=4)’)
159 snr(file_PS_cl.PODIFF_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1) ,...
160 file_PS_cl.freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1), rbw , 20, ’

power ’)
161 ylim ([-200 18])
162 title ({’Differential output power spectrum of closed -loop system with DDPWM

modulator ’;...
163 ’(N=8, M=4, f_{sw} \sim 500 kHz)’})
164 figure(’Name’, ’SNR system open -loop DDPWM (nbitPWM=9, f_{sw} \sim 500 kHz , N=5, M

=4)’)

219

CHAPTER 5. APPENDIX

165 snr(file_PS_ol.POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1) ,...
166 file_PS_ol.freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1), rbw_ol +.1,

20, ’power ’)
167 ylim ([-200 18])
168 title ({’Differential output power spectrum of open -loop system with DDPWM modulator

’;...
169 ’(N=5, M=4, f_{sw} \sim 500 kHz)’})
170 figure(’Name’, ’SNR system closed -loop DDPWM (nbitPWM=9, f_{sw} \sim 500 kHz , N=5,

M=4)’)
171 snr(file_PS_cl.POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1) ,...
172 file_PS_cl.freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1), rbw , 20, ’

power ’)
173 ylim ([-200 18])
174 title ({’Differential output power spectrum of closed -loop system with DDPWM

modulator ’;...
175 ’(N=5, M=4, f_{sw} \sim 500 kHz)’})
176 %%
177 %%DDPM -DPWM combination
178 %closed -loop
179 %fsw =500k
180 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=8, nbitDDPM=8, f_{sw} \sim 500 kHz)’)
181 snr(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1) ,...
182 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1), rbw , 20, ’

power ’)
183 ylim ([-200 16.1])
184 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
185 ’(nbitDDPM=8, nbitDPWM=8, f_{sw} \sim 500 kHz)’})
186 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=7, nbitDDPM=7, f_{sw} \sim 500 kHz)’)
187 snr(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1) ,...
188 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1), rbw , 20, ’

power ’)
189 ylim ([-200 16.1])
190 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
191 ’(nbitDDPM=7, nbitDPWM=7, f_{sw} \sim 500 kHz)’})
192 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=6, nbitDDPM=6, f_{sw} \sim 500 kHz)’)
193 snr(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1) ,...
194 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1), rbw , 20, ’

power ’)
195 ylim ([-200 16.1])
196 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
197 ’(nbitDDPM=6, nbitDPWM=6, f_{sw} \sim 500 kHz)’})
198 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=5, nbitDDPM=5, f_{sw} \sim 500 kHz)’)
199 snr(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1) ,...
200 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1), rbw , 20, ’

power ’)
201 ylim ([-200 16.1])
202 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
203 ’(nbitDDPM=5, nbitDPWM=5, f_{sw} \sim 500 kHz)’})
204 %fsw=1MHz
205 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=8, nbitDDPM=8, f_{sw} \sim 1 MHz)’)

220

5.2. CODES

206 snr(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1) ,...
207 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1), rbw , 20, ’power

’)
208 ylim ([-200 16.1])
209 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
210 ’(nbitDDPM=8, nbitDPWM=8, f_{sw} \sim 1 MHz)’})
211 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=7, nbitDDPM=7, f_{sw} \sim 1 MHz)’)
212 snr(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1) ,...
213 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1), rbw , 20, ’power

’)
214 ylim ([-200 16.1])
215 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
216 ’(nbitDDPM=7, nbitDPWM=7, f_{sw} \sim 1 MHz)’})
217 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=6, nbitDDPM=6, f_{sw} \sim 1 MHz)’)
218 snr(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1) ,...
219 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1), rbw , 20, ’power

’)
220 ylim ([-200 16.1])
221 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
222 ’(nbitDDPM=6, nbitDPWM=6, f_{sw} \sim 1 MHz)’})
223 figure(’Name’, ’SNR system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=5, nbitDDPM=5, f_{sw} \sim 1 MHz)’)
224 snr(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1) ,...
225 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1), rbw , 20, ’power

’)
226 ylim ([-200 16.1])
227 title ({’Differential output power spectrum of closed -loop system with DDPM -DPWM

combination ’;...
228 ’(nbitDDPM=5, nbitDPWM=5, f_{sw} \sim 1 MHz)’})
229 %%
230 %Anti -aliasing spectra
231 figure(’Name’, ’Spectum anti -aliasing filter output DDPM -DPWM combination (nbitMOD

=8)’)
232 semilogx(file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 (1:10e6, 1) ,...
233 pow2db(file_PS_cl.PoutAA_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 (1:10e6 , 1)))
234 xlabel(’Frequency [Hz]’)
235 ylabel(’Power [dB]’)
236 title ({’Spectum anti -aliasing filter output DDPM -DPWM combination ’ ,...
237 ’nbitDPWM=8, nbitDDPM=8, nbitADC =16, f_{sw} \sim 1 MHz’})
238

239 figure(’Name’, ’Spectum anti -aliasing filter output DDPM -DPWM combination (nbitMOD
=5)’)

240 semilogx(file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 (1:10e6, 1) ,...
241 pow2db(file_PS_cl.PoutAA_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 (1:10e6 , 1)))
242 xlabel(’Frequency [Hz]’)
243 ylabel(’Power [dB]’)
244 title ({’Spectum anti -aliasing filter output DDPM -DPWM combination ’ ,...
245 ’nbitDPWM=5, nbitDDPM=5, nbitADC =16, f_{sw} \sim 1 MHz’})
246

247 figure(’Name’, ’Spectum anti -aliasing filter output DPWM (nbitPWM =8)’)
248 semilogx(file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:10e6, 1)

,...
249 pow2db(file_PS_cl.PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:10e6

, 1)))

221

CHAPTER 5. APPENDIX

250 xlabel(’Frequency [Hz]’)
251 ylabel(’Power [dB]’)
252 title ({’Spectum anti -aliasing filter output ’ ,...
253 ’nbitDPWM=8, nbitADC =16, f_{sw} \sim 1 MHz’})
254

255 figure(’Name’, ’Spectum anti -aliasing filter output DPWM (nbitPWM =5)’)
256 semilogx(file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:10e6, 1)

,...
257 pow2db(file_PS_cl.PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:10e6

, 1)))
258 xlabel(’Frequency [Hz]’)
259 ylabel(’Power [dB]’)
260 title ({’Spectum anti -aliasing filter output ’ ,...
261 ’nbitDPWM=5, nbitADC =16, f_{sw} \sim 1 MHz’})
262

263 figure(’Name’, ’Spectum anti -aliasing filter output DPWM (nbitPWM =10)’)
264 semilogx(file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 (1:10e6 ,

1) ,...
265 pow2db(file_PS_cl.PoutAA_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 (1:10

e6 , 1)))
266 xlabel(’Frequency [Hz]’)
267 ylabel(’Power [dB]’)
268 title ({’Spectum anti -aliasing filter output ’ ,...
269 ’nbitDPWM =10, nbitADC =16, f_{sw} \sim 1 MHz’})
270 %%
271 %Low frequency flck_SYS ~ 4MHz
272 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge_fclkSYS_LOW.mat’, ’

TE_PWM8_fsw1M ’);
273 %it is necessary import only one t_int_dec because it is constant for all
274 %simulations
275 t_int_dec=TE_PWM8_fsw1M.t_int_dec;
276 t_sim =1.5; %simulation time used
277 t_win =1; %analysis window without transient for fft
278 t_jump=t_sim -t_win; %window time with transient
279

280 sample_start=uint64(t_jump/t_int_dec)+1; %position of first sample in t_win
281 sample_tot=uint64(t_sim/t_int_dec)+1; %number of total sample in vector
282

283 window=rectwin(sample_tot -sample_start); %define the window analysis
284 rbw=round(enbw(window));
285

286 figure(’Name’, ’SNR system with low system frequency (nbitPWM=8, f_{sw} \sim 500
kHz)’)

287 snr(file_PS_cl.PO_DIFF_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1) ,...
288 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1), rbw , 20, ’

power ’)
289

290 figure(’Name’, ’SNR system with low system frequency (nbitPWM=8, f_{sw} \sim 1 MHz)
’)

291 snr(file_PS_cl.PO_DIFF_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1) ,...
292 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1), rbw , 20, ’

power ’)
293

294 figure(’Name’, ’SNR system with low system frequency (nbitPWM=8, f_{sw} \sim 1 MHz)
’)

295 snr(file_PS_cl.PO_DIFF_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1) ,...
296 file_PS_cl.freq_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1), rbw , 20, ’

power ’)
297

222

5.2. CODES

298 figure(’Name’, ’SNR system with low system frequency (nbitPWM=8, f_{sw} \sim 500
kHz)’)

299 snr(file_PS_cl.PO_DIFF_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1) ,...
300 file_PS_cl.freq_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1), rbw , 20,

’power ’)

223

CHAPTER 5. APPENDIX

5.2.12 Code to compute THD from simulations data

1 clc
2 clear
3 close all
4 %%
5 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge.mat’, ’TE_PWM5_fsw1M ’);
6 %it is necessary import only one t_int_dec because it is constant for all
7 %simulations
8 t_int_dec=TE_PWM5_fsw1M.t_int_dec;
9 t_sim =1.5; %simulation time used

10 t_win =1; %analysis window without transient for fft
11 t_jump=t_sim -t_win; %window time with transient
12

13 sample_start=uint64(t_jump/t_int_dec)+1; %position of first sample in t_win
14 sample_tot=uint64(t_sim/t_int_dec)+1; %number of total sample in vector
15 window=rectwin(sample_tot -sample_start); %define the window analysis
16 nfft=numel(window); %define the number of samples point in the window which the fft

is done
17 window_ol=rectwin(sample_tot -1- sample_start); %define the window analysis
18 nfft_ol=numel(window_ol); %define the number of samples point in the window which

the fft is done
19

20 %file and window
21 file_PS_cl=matfile(’SpectraData/PowerSpectra_ClosedLoop.mat’);
22 file_PS_ol=matfile(’SpectraData/PowerSpectra_OpenLoop.mat’);
23 rbw=round(enbw(window));
24 rbw_ol=enbw(window_ol);
25 %%
26 %THD computation
27 %output filter in FP
28 figure(’Name’, ’THD system with output filter in feedback path (nbitPWM=8, f_{sw} \

sim 500 kHz)’)
29 thd(file_PS_cl.PO_DIFF_OFinFP_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1) ,...
30 file_PS_cl.freq_OFinFP_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1), rbw , 20, ’power’

)
31 %CLOSED -LOOP
32 %fsw =500k closed -loop
33 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM =10,

f_{sw} \sim 500 kHz)’)
34 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 (1:20005 ,

1) ,...
35 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM10 (1:20005 , 1),

rbw , 20, ’power’)
36 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=8,

f_{sw} \sim 500 kHz)’)
37 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 ,

1) ,...
38 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1),

rbw , 20, ’power’)
39 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=7,

f_{sw} \sim 500 kHz)’)
40 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 ,

1) ,...
41 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw , 20, ’power’)
42 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=6,

f_{sw} \sim 500 kHz)’)
43 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 ,

224

5.2. CODES

1) ,...
44 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw , 20, ’power’)
45 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=5,

f_{sw} \sim 500 kHz)’)
46 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 ,

1) ,...
47 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw , 20, ’power’)
48 %%
49 %fsw=1MHz closed -loop
50 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM =10,

f_{sw} \sim 1 MHz)’)
51 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 (1:20005 , 1)

,...
52 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM10 (1:20005 , 1),

rbw , 20, ’power’)
53 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=8,

f_{sw} \sim 1 MHz)’)
54 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1)

,...
55 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1),

rbw , 20, ’power’)
56 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=7,

f_{sw} \sim 1 MHz)’)
57 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1)

,...
58 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw , 20, ’power’)
59 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=6,

f_{sw} \sim 1 MHz)’)
60 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1)

,...
61 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw , 20, ’power’)
62 figure(’Name’, ’THD system with anti -aliasing filter in feedback path (nbitPWM=5,

f_{sw} \sim 1 MHz)’)
63 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1)

,...
64 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw , 20, ’power’)
65 %%
66 %noise shaping
67 figure(’Name’, ’THD system with anti -aliasing filter in feedback path , noise

shaping (nbitPWM=8, f_{sw} \sim 1 MHz)’)
68 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS (1:20005 ,

1) ,...
69 file_PS_cl.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8_NS (1:20005 , 1),

rbw , 20, ’power’)
70 figure(’Name’, ’THD system with anti -aliasing filter in feedback path , noise

shaping (nbitPWM=8, f_{sw} \sim 500 kHz)’)
71 thd(file_PS_cl.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS

(1:20005 , 1) ,...
72 file_PS_cl.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8_NS (1:20005 ,

1), rbw , 20, ’power’)
73 %%
74 %OPEN -LOOP
75 %fsw =500k open -loop
76 figure(’Name’, ’THD system open -loop (nbitPWM=8, f_{sw} \sim 500 kHz)’)

225

CHAPTER 5. APPENDIX

77 thd(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 ,
1) ,...

78 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM8 (1:20005 , 1),
rbw_ol +.1, 20, ’power’)

79 figure(’Name’, ’THD system open -loop (nbitPWM=7, f_{sw} \sim 500 kHz)’)
80 thd(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 ,

1) ,...
81 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
82 figure(’Name’, ’THD system open -loop (nbitPWM=6, f_{sw} \sim 500 kHz)’)
83 thd(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 ,

1) ,...
84 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
85 figure(’Name’, ’THD system open -loop (nbitPWM=5, f_{sw} \sim 500 kHz)’)
86 thd(file_PS_ol.PO_DIFF_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 ,

1) ,...
87 file_PS_ol.freq_AAfilterInFeedbackPath_fsw500k_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
88 %%
89 %fsw=1M open -loop
90 figure(’Name’, ’THD system open -loop (nbitPWM=8, f_{sw} \sim 1 MHz)’)
91 thd(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1) ,...
92 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM8 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
93 figure(’Name’, ’THD system open -loop (nbitPWM=7, f_{sw} \sim 1 MHz)’)
94 thd(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1) ,...
95 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM7 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
96 figure(’Name’, ’THD system open -loop (nbitPWM=6, f_{sw} \sim 1 MHz)’)
97 thd(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1) ,...
98 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM6 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
99 figure(’Name’, ’THD system open -loop (nbitPWM=5, f_{sw} \sim 1 MHz)’)

100 thd(file_PS_ol.POP_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1) ,...
101 file_PS_ol.freq_AAfilterInFeedbackPath_fsw1M_nbitADC16_nbitPWM5 (1:20005 , 1),

rbw_ol +.1, 20, ’power’)
102 %%
103 %DDPWM
104 figure(’Name’, ’THD system open -loop DDPWM (nbitPWM =12, f_{sw} \sim 500 kHz , N=8, M

=4)’)
105 thd(file_PS_ol.POP_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1) ,...
106 file_PS_ol.freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1), rbw_ol +.1,

20, ’power ’)
107 figure(’Name’, ’THD system closed -loop DDPWM (nbitPWM =12, f_{sw} \sim 500 kHz , N=8,

M=4)’)
108 thd(file_PS_cl.PODIFF_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1) ,...
109 file_PS_cl.freq_DDPWM_fsw500k_nbitADC16_nbitPWM12_N8M4 (1:20005 , 1), rbw , 20, ’

power ’)
110 figure(’Name’, ’THD system open -loop DDPWM (nbitPWM=9, f_{sw} \sim 500 kHz , N=5, M

=4)’)
111 thd(file_PS_ol.POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1) ,...
112 file_PS_ol.freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1), rbw_ol +.1,

20, ’power ’)
113 figure(’Name’, ’THD system closed -loop DDPWM (nbitPWM=9, f_{sw} \sim 500 kHz , N=5,

M=4)’)
114 thd(file_PS_cl.POP_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1) ,...
115 file_PS_cl.freq_DDPWM_fsw500k_nbitADC16_nbitPWM9_N5M4 (1:20005 , 1), rbw , 20, ’

power ’)

226

5.2. CODES

116 %%
117 %DDPM -DPWM combination
118 %fsw =500k
119 figure(’Name’, ’THD system open -loop DDPM -DPWM combination (nbitADC =16, nbitPWM=8,

nbitDDPM=8, f_{sw} \sim 500 kHz)’)
120 thd(file_PS_ol.PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1) ,...
121 file_PS_ol.freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1), rbw_ol +.1,

20, ’power ’)
122 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=8, nbitDDPM=8, f_{sw} \sim 500 kHz)’)
123 thd(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1) ,...
124 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1), rbw , 20, ’

power ’)
125 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=7, nbitDDPM=7, f_{sw} \sim 500 kHz)’)
126 thd(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1) ,...
127 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1), rbw , 20, ’

power ’)
128 figure(’Name’, ’THD system open -loop DDPM -DPWM combination (nbitADC =16, nbitPWM=6,

nbitDDPM=6, f_{sw} \sim 500 kHz)’)
129 thd(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1) ,...
130 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1), rbw_ol +.1,

20, ’power ’)
131 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=5, nbitDDPM=5, f_{sw} \sim 500 kHz)’)
132 thd(file_PS_cl.PODIFF_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1) ,...
133 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1), rbw , 20, ’

power ’)
134 %fsw=1MHz
135 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=8, nbitDDPM=8, f_{sw} \sim 1 MHz)’)
136 thd(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1) ,...
137 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM8_nbitDDPM8 (1:20005 , 1), rbw , 20, ’power

’)
138 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=7, nbitDDPM=7, f_{sw} \sim 1 MHz)’)
139 thd(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1) ,...
140 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM7_nbitDDPM7 (1:20005 , 1), rbw , 20, ’power

’)
141 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=6, nbitDDPM=6, f_{sw} \sim 1 MHz)’)
142 thd(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1) ,...
143 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM6_nbitDDPM6 (1:20005 , 1), rbw , 20, ’power

’)
144 figure(’Name’, ’THD system closed -loop DDPM -DPWM combination (nbitADC =16, nbitPWM

=5, nbitDDPM=5, f_{sw} \sim 1 MHz)’)
145 thd(file_PS_cl.PODIFF_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1) ,...
146 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM5_nbitDDPM5 (1:20005 , 1), rbw , 20, ’power

’)
147 %%
148 %Low frequency flck_SYS ~ 4MHz
149 load(’DatastoreFiles/SimParameters_nbitADC16_TrailingEdge_fclkSYS_LOW.mat’, ’

TE_PWM8_fsw1M ’);
150 %it is necessary import only one t_int_dec because it is constant for all
151 %simulations
152 t_int_dec=TE_PWM8_fsw1M.t_int_dec;
153 t_sim =1.5; %simulation time used
154 t_win =1; %analysis window without transient for fft
155 t_jump=t_sim -t_win; %window time with transient

227

CHAPTER 5. APPENDIX

156

157 sample_start=uint64(t_jump/t_int_dec)+1; %position of first sample in t_win
158 sample_tot=uint64(t_sim/t_int_dec)+1; %number of total sample in vector
159

160 window=rectwin(sample_tot -sample_start); %define the window analysis
161 rbw=round(enbw(window));
162

163 figure(’Name’, ’THD system with low system frequency (nbitPWM=8, f_{sw} \sim 500
kHz)’)

164 thd(file_PS_cl.PO_DIFF_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1) ,...
165 file_PS_cl.freq_fsw500k_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1), rbw , 20, ’

power ’)
166

167 figure(’Name’, ’THD system with low system frequency (nbitPWM=8, f_{sw} \sim 1 MHz)
’)

168 thd(file_PS_cl.PO_DIFF_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1) ,...
169 file_PS_cl.freq_fsw1M_nbitADC16_nbitPWM8_fclkSYS_LOW (1:20005 , 1), rbw , 20, ’

power ’)
170

171 figure(’Name’, ’THD system with low system frequency (nbitPWM=8, nbitDDPM =8 f_{sw}
\sim 1 MHz)’)

172 thd(file_PS_cl.PO_DIFF_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1) ,...
173 file_PS_cl.freq_fsw1M_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1), rbw , 20, ’

power ’)
174

175 figure(’Name’, ’THD system with low system frequency (nbitPWM=8, f_{sw} \sim 500
kHz)’)

176 thd(file_PS_cl.PO_DIFF_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1) ,...
177 file_PS_cl.freq_fsw500k_nbitADC16_PWM8_DDPM8_fclkSYS_LOW (1:20005 , 1), rbw , 20,

’power ’)

228

Bibliography

[1] Wikipedia. Feb. 2021. url: https://it.wikipedia.org/wiki/Audio#.

[2] Daniel Ruiz, Robson Moreno, and Tales Pimenta. “Design of a class D amplifier
for hearing aid devices”. In: Sept. 2007, pp. 76–80. doi: 10.1145/1284480.
1284507.

[3] N. E. Imane Bellili and K. Bekhouche. “Low Power Class D Audio Amplifier
with High Performance and High Efficiency”. In: 2019 6th International Con-
ference on Image and Signal Processing and their Applications (ISPA). 2019,
pp. 1–4.

[4] M. A. Teplechuk, A. Gribben, and C. Amadi. “True Filterless Class-D Audio
Amplifier”. In: IEEE Journal of Solid-State Circuits 46.12 (2011), pp. 2784–
2793. doi: 10.1109/JSSC.2011.2162913.

[5] Edgar Sanchez-Sinencio Adrian I Colli-Menchi Miguel A Rojas-Gonzalez. De-
sign techniques for integrated CMOS class-D audio amplifiers. Ed. by World
Scientific. Vol. 16. Advanced series in Electrical and Computer Engineering.
2017.

[6] Y. Kang et al. “A review of audio Class D amplifiers”. In: 2016 International
Symposium on Integrated Circuits (ISIC). 2016, pp. 1–4.

[7] T. Karaca and B. Deutschmann. “Electromagnetic evaluation of Class-D switch-
ing schemes”. In: 2015 11th Conference on Ph.D. Research in Microelectronics
and Electronics (PRIME). 2015, pp. 113–116.

[8] M. Auer and T. Karaca. “Digitally assisted EMI-reduction techniques for
Class-D amplifiers with digital control”. In: 2017 11th International Workshop
on the Electromagnetic Compatibility of Integrated Circuits (EMCCompo).
2017, pp. 33–38.

[9] P. Muggler et al. “A filter free class D audio amplifier with 86% power ef-
ficiency”. In: 2004 IEEE International Symposium on Circuits and Systems
(IEEE Cat. No.04CH37512). Vol. 1. 2004, pp. I–1036.

229

https://it.wikipedia.org/wiki/Audio#
https://doi.org/10.1145/1284480.1284507
https://doi.org/10.1145/1284480.1284507
https://doi.org/10.1109/JSSC.2011.2162913

BIBLIOGRAPHY

[10] M. Kinyua, R. Wang, and E. Soenen. “Integrated 105 dB SNR, 0.0031%
THD+N Class-D Audio Amplifier With Global Feedback and Digital Con-
trol in 55 nm CMOS”. In: IEEE Journal of Solid-State Circuits 50.8 (2015),
pp. 1764–1771.

[11] International rectifier. Class D audio amplifier design. Oct. 2003. url: http:
//www.irf.com/product-info/audio/classdtutorial.pdf.

[12] R. Bakker and M. Duffy. “Maximising the efficiency of a Class-D audio ampli-
fier output stage”. In: 2017 28th Irish Signals and Systems Conference (ISSC).
2017, pp. 1–5.

[13] EPC. How to GaN Educational Series. Mar. 2020. url: https://epc-co.
com/epc/DesignSupport/TrainingVideos/HowToGaN.

[14] Toit Mouton and Bruno Putzeys. “Digital Control of a PWM Switching Am-
plifier with Global Feedback”. In: (Aug. 2009).

[15] Joshua Chung, R. McKenzie, and Wai Tung Ng. “A comparison between GaN
and silicon based Class D audio power amplifiers with Pulse Density Modula-
tion”. In: 2016 13th IEEE International Conference on Solid-State and Inte-
grated Circuit Technology (ICSICT). 2016, pp. 90–93. doi: 10.1109/ICSICT.
2016.7998847.

[16] M. Kinyua, R. Wang, and E. Soenen. “Integrated 105 dB SNR, 0.0031%
THD+N Class-D Audio Amplifier With Global Feedback and Digital Con-
trol in 55 nm CMOS”. In: IEEE Journal of Solid-State Circuits 50.8 (2015),
pp. 1764–1771. doi: 10.1109/JSSC.2015.2420314.

[17] S. Poulsen and M. A. E. Andersen. “Self oscillating PWM modulators, a topo-
logical comparision”. In: Conference Record of the Twenty-Sixth International
Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop. 2004,
pp. 403–407.

[18] Learn EMC. EMC Regulations. 2021. url: https://learnemc.com/emc-
regulations-and-standards#:~:text=Countries\%20in\%20the\%20European\
%20Union\%20\%28EU\%29\%20regulate\%20both, on\%20EMC\%20and\
%20be\%20tested\%20and\%20labeled\%20accordingly..

[19] T. Kim et al. “Low Power Digital PWM Buck Converter With a Clock-Gating
Shift-Register”. In: 2019 International Conference on Electronics, Information,
and Communication (ICEIC). 2019, pp. 1–3.

[20] P. S. Crovetti. “All-Digital High Resolution D/A Conversion by Dyadic Digital
Pulse Modulation”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 64.3 (2017), pp. 573–584.

230

http://www.irf.com/product-info/audio/classdtutorial.pdf
http://www.irf.com/product-info/audio/classdtutorial.pdf
https://epc-co.com/epc/DesignSupport/TrainingVideos/HowToGaN
https://epc-co.com/epc/DesignSupport/TrainingVideos/HowToGaN
https://doi.org/10.1109/ICSICT.2016.7998847
https://doi.org/10.1109/ICSICT.2016.7998847
https://doi.org/10.1109/JSSC.2015.2420314
https://learnemc.com/emc-regulations-and-standards#:~:text=Countries\%20in\%20the\%20European\%20Union\%20\%28EU\%29\%20regulate\%20both,on\%20EMC\%20and\%20be\%20tested\%20and\%20labeled\%20accordingly.
https://learnemc.com/emc-regulations-and-standards#:~:text=Countries\%20in\%20the\%20European\%20Union\%20\%28EU\%29\%20regulate\%20both,on\%20EMC\%20and\%20be\%20tested\%20and\%20labeled\%20accordingly.
https://learnemc.com/emc-regulations-and-standards#:~:text=Countries\%20in\%20the\%20European\%20Union\%20\%28EU\%29\%20regulate\%20both,on\%20EMC\%20and\%20be\%20tested\%20and\%20labeled\%20accordingly.
https://learnemc.com/emc-regulations-and-standards#:~:text=Countries\%20in\%20the\%20European\%20Union\%20\%28EU\%29\%20regulate\%20both,on\%20EMC\%20and\%20be\%20tested\%20and\%20labeled\%20accordingly.

BIBLIOGRAPHY

[21] M. Usmonov et al. “Suppression of Quantization-Induced Limit Cycles in Dig-
itally Controlled DC-DC Converters by Dyadic Digital Pulse Width Modu-
lation”. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE).
2019, pp. 2224–2231.

[22] S. Jana and S. Srinivas. “Design of a digital PWM module with independent
carrier amplitude modulation control”. In: 2019 2nd International Conference
on Smart Grid and Renewable Energy (SGRE). 2019, pp. 1–6.

[23] P. S. Crovetti et al. “Limit-Cycle-Free Digitally Controlled DCDC Converters
Based on Dyadic Digital PWM”. In: IEEE Transactions on Power Electronics
35.10 (2020), pp. 11155–11166.

[24] A. V. Peterchev and S. R. Sanders. “Quantization resolution and limit cycling
in digitally controlled PWM converters”. In: 2001 IEEE 32nd Annual Power
Electronics Specialists Conference (IEEE Cat. No.01CH37230). Vol. 2. 2001,
465–471 vol.2. doi: 10.1109/PESC.2001.954158.

[25] R. D. d’Aparo et al. “DC-AC power converter using sigma-delta modulation”.
In: 2010 8th Workshop on Intelligent Solutions in Embedded Systems. 2010,
pp. 79–84.

[26] DigiKey. Microcontroller. Apr. 2021. url: https : / / www . digikey . it /
products/it/integrated-circuits-ics/embedded-microcontrollers/
685?k=microcontroller.

[27] Sam Ben-Yaakov. Diode Reverse Recovery. June 2017. url: https://www.
youtube.com/watch?v=DT8kCmXbSDg.

[28] Sam Ben-Yaakov. So what is GaN MOSFETs’ reverse conduction all about?
June 2020. url: https://www.youtube.com/watch?v=QNHzaiWCUeE&t=774s.

[29] Giuseppe Greco. “AlGaNGaN heterostructures for enhancement mode tran-
sistors”. thesis. Università dgli studi di Catania, 2012.

[30] S. Piotrowicz et al. “Overview of AlGaN/GaN HEMT technology for L- to
Ku-band applications”. In: International Journal of Microwave and Wireless
Technologies 2 (Feb. 2010), pp. 105 –114. doi: 10.1017/S1759078710000061.

[31] JBL. JBL GO2 Specifications. 2021. url: https : / / www . jbl . com / on /
demandware.static/-/Sites-masterCatalog_Harman/default/dw28f379bc/
pdfs/JBL_GO2_Spec_Sheet_English.pdf.

[32] Mathworks. Relay. 2021. url: https://www.mathworks.com/help/simulink/
slref/relay.html?s_tid=doc_ta.

231

https://doi.org/10.1109/PESC.2001.954158
https://www.digikey.it/products/it/integrated-circuits-ics/embedded-microcontrollers/685?k=microcontroller
https://www.digikey.it/products/it/integrated-circuits-ics/embedded-microcontrollers/685?k=microcontroller
https://www.digikey.it/products/it/integrated-circuits-ics/embedded-microcontrollers/685?k=microcontroller
https://www.youtube.com/watch?v=DT8kCmXbSDg
https://www.youtube.com/watch?v=DT8kCmXbSDg
https://www.youtube.com/watch?v=QNHzaiWCUeE&t=774s
https://doi.org/10.1017/S1759078710000061
https://www.jbl.com/on/demandware.static/-/Sites-masterCatalog_Harman/default/dw28f379bc/pdfs/JBL_GO2_Spec_Sheet_English.pdf
https://www.jbl.com/on/demandware.static/-/Sites-masterCatalog_Harman/default/dw28f379bc/pdfs/JBL_GO2_Spec_Sheet_English.pdf
https://www.jbl.com/on/demandware.static/-/Sites-masterCatalog_Harman/default/dw28f379bc/pdfs/JBL_GO2_Spec_Sheet_English.pdf
https://www.mathworks.com/help/simulink/slref/relay.html?s_tid=doc_ta
https://www.mathworks.com/help/simulink/slref/relay.html?s_tid=doc_ta

BIBLIOGRAPHY

[33] Shih-Hsiung Chien, Yi-Wen Chen, and Tai-Haur Kuo. “A Low Quiescent
Current, Low THD+N Class-D Audio Amplifier With Area-Efficient PWM-
Residual-Aliasing Reduction”. In: IEEE Journal of Solid-State Circuits 53.12
(2018), pp. 3377–3385. doi: 10.1109/JSSC.2018.2873613.

[34] Mathworks. Continuous-Discrete Conversion Methods. 2021. url: https://
www.mathworks.com/help/control/ug/continuous-discrete-conversion-
methods.html.

[35] Brian Douglas. Oct. 2020. url: https://www.youtube.com/watch?v=rL_
1oWrOplk&t=1052s.

[36] Salim Ahmed. July 2020. url: https : / / www . youtube . com / watch ? v =
vai5BggQiK8.

[37] Thomas A. Lipo D. Grahame Holmes. Pulse Width Modulation for Power
Converters-Principles and Practice. Ed. by IEEE PRESS. 1st. 2003.

[38] Gabor C. Temes Shanthi Pavan Richard Schreier. Undestanding sigma delta
converter. Ed. by IEEE Press editorial board. 2nd. 2017.

[39] Mathworks. matlab.io.datastore.SimulationDatastore class. 2021. url: https:
//www.mathworks.com/help/simulink/slref/matlab.io.datastore.
simulationdatastore-class.html.

232

https://doi.org/10.1109/JSSC.2018.2873613
https://www.mathworks.com/help/control/ug/continuous-discrete-conversion-methods.html
https://www.mathworks.com/help/control/ug/continuous-discrete-conversion-methods.html
https://www.mathworks.com/help/control/ug/continuous-discrete-conversion-methods.html
https://www.youtube.com/watch?v=rL_1oWrOplk&t=1052s
https://www.youtube.com/watch?v=rL_1oWrOplk&t=1052s
https://www.youtube.com/watch?v=vai5BggQiK8
https://www.youtube.com/watch?v=vai5BggQiK8
https://www.mathworks.com/help/simulink/slref/matlab.io.datastore.simulationdatastore-class.html
https://www.mathworks.com/help/simulink/slref/matlab.io.datastore.simulationdatastore-class.html
https://www.mathworks.com/help/simulink/slref/matlab.io.datastore.simulationdatastore-class.html

	Introduction
	What is an audio system
	Output stage limitations
	Thesis goals and outline

	Class D amplifiers
	Structure of class D audio amplifiers
	Pulse-width modulator
	Output stage
	Other output stage configuration
	Amplification factor of class D amplifier
	Gate drivers

	Audio amplifier parameters
	Efficiency
	Distortion
	Signal To Noise Ratio (SNR)
	PSRR (Power Supply Rejection Ratio) and PS-IMD
	Intermodulation products (IMD)

	Closed-loop configurations and other modulation techniques
	Electromagnetic Interference
	EMI-Reduction techniques

	Digital modulations (DPWM)
	DPWM counter and comparator-based implementation
	Alternative implementations of DPWM
	Digital Sigma-Delta modulation
	Limit Cycle Oscillation (LCO)

	Dyadic Digital Pulse Modulation (DDPM)
	Dyadic sequence
	Dyadic sequence of an integer number
	Spectral analysis of DDPM
	Output filter requirement

	Dyadic Digital Pulse-Width Modulation (DDPWM)
	Devices technology
	Body diode effect
	GaN devices
	GaN physical structure
	GaN FET polarization
	Electrical characteristics
	GaN FET in Class D amplifier applications

	Class D amplifier designs
	Analog filterless design
	Loop filter design

	Digital designs
	ADC in feedback path
	ADC error sampling
	Comparisons among solutions

	Class D amplifier: new frontiers and digital architecture approach

	Design of a class D amplifier
	Proposed digital model
	Specifications of the designed amplifier
	Design of output stage power supply

	Closed-loop system structure and advantages
	Differences and limits of the models

	Amplifier models for simulation purposes
	Analog to digital converter
	Output filter
	DPWM
	Proposed block diagram for class D amplifier
	Open-loop gain and binary representation of ADC code

	Closed-loop design methodology
	Loop compensator filter design without output filter in the loop
	Zero-order hold model and PWM spectrum
	Design of loop compensator filter with output filter in the loop

	Verification of design strategies
	Implementation of loop design of the amplifier with anti-aliasing filter in feedback path
	Quantization noises
	Implementation of loop design of system with output filter in feedback path

	Simulink® models
	ADC model
	Truncation gain
	Noise shaping
	Truncation and noise shaping test
	DPWM blocks scheme
	Dead time model
	Open-loop DC error

	Simulation data management
	Simulation stop time parameter of the simulations
	Simulation integration time
	Decimation factor and data storage

	Class D audio amplifier model with DPWM modulation
	Open-loop results
	Closed-loop results of system with anti-aliasing filter in the loop
	Closed-loop system with output filter in the feedback path
	Comparison between the two solutions

	Class D amplifier model with DDPWM modulation
	DDPM model
	DDPWM model
	DDPWM modulator applied to CDA model

	DDPM-DPWM combination
	DDPM-DPWM combination applied to class D amplifier model

	Results conclusion

	Conclusions
	Appendix
	Spectra
	DPWM open-loop system spectra
	DPWM closed-loop spectra
	DDPWM spectra
	DDPM-DPWM combination closed-loop system spectra

	Codes
	Code for design of system with DPWM modulator and anti-aliasing filter in feedback path
	Code for design of system with DPWM modulator and output filter in feedback path
	Code for design of system with DDPWM modulator
	Code for design of system with DDPM-DPWM combination modulator
	Code for theoretical SNR evaluation
	Code for DDPM algorithm
	Code to set simulation parameters
	Code for the time analysis of system with DPWM modulator working at fsw500 kHz
	Code for the time analysis of system with DPWM modulator working at fsw1 MHz
	Code to compute spectra
	Code to compute SNR from simulations data
	Code to compute THD from simulations data

	Bibliography

